1
|
Basu AG, Paul RS, Wang F, Roy S. Impact of microplastics on aquatic flora: Recent status, mechanisms of their toxicity and bioremediation strategies. CHEMOSPHERE 2024; 370:143983. [PMID: 39701309 DOI: 10.1016/j.chemosphere.2024.143983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The accumulation of microplastics (MPs) in aquatic environments has occurred pervasively. The MPs affect almost all the aquatic plants including the aquatic microorganisms, ultimately disturbing the food chain. Aquatic flora attracts MPs due to the formation of several chemical bonds and interactions, including hydrogen bonds, electrostatic, hydrophobic, and van der Waals. Consequently, they hinder plant growth when adsorbed to the plant surfaces. Moreover, the major metabolic processes, including photosynthesis, reproduction, and nutrient uptake, get affected due to the pore-filling of plant tissues and the blockage of sunlight. Subsequently, prolonged exposure to MPs inflicts excessive generation of reactive oxygen species (ROS), ultimately accelerating programmed cell death. However, it has been realized that bioremediation techniques, including phytoremediation, can effectively mitigate MPs pollution by adsorbing or accumulating MPs by 25-80% at the laboratory scale. In this connection, several microorganisms are vital in deteriorating MPs due to their ability to form biofilm over the MPs' surface. Additionally, the secretion of extracellular enzymes such as styrene monooxygenase, styrene oxide isomerase, phenylacetaldehyde dehydrogenase, PETase, etc., facilitates the degradation of MPs. Moreover, the inherent ability of plants to adsorb and accumulate MPs can be utilized to manage the MPs in aquatic ecosystems. However, there is a dearth of literature and comprehensive reviews highlighting the potential of bioremediation strategies. Therefore, apart from addressing the impact of MPs on aquatic flora, this article attempts to elucidate the physical and chemical basis of plant-plastic interaction and the potential strategies aquatic flora including microorganisms employ to mitigate plastic pollution.
Collapse
Affiliation(s)
- Anindita Ghosh Basu
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| | - Rita Som Paul
- Department of Botany, Siliguri College, Siliguri, Dist. Darjeeling, West Bengal, India.
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, Shandong Province, PR China.
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
2
|
Mandal M, Roy A, Sarkar A. Understanding the possible cellular responses in plants under micro(nano)-plastic (MNPs): Balancing the structural harmony with functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177732. [PMID: 39615174 DOI: 10.1016/j.scitotenv.2024.177732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
The harmful impacts of micro(nano)-plastics (MNPs) on plants have gained significant attention in the last decades. Plants have a greater tendency to aggregate positively charged (+ve) MNPs on leaf surfaces and root tips, and it can be more challenging to enter the plant body than the negatively charged (-ve) MNPs. MNPs <20 nm can directly cross the cell wall and enter mainly via leaf stomata and root crack portion. Additionally, plants with aerenchyma tissue or higher water requirement might be more vulnerable to MNPs as well as environmental factors also affected MNPs uptake like porosity and structure (i.e. crack of soil) of soil, wind speed, etc. The subsequent translocation of MNPs hamper regular morphological, physiological, and biochemical functions by causing oxidative stress, altering several plant metabolic pathways, reducing the rate of photosynthesis and nutrient intake, etc. These induce cellular toxicity and chromosomal alteration; as a result, the total biomass and productivity reduce vigorously. However, there is a knowledge gap regarding MNPs' uptake by plants and related variables affecting phytotoxicity at the omics levels. So, the present literature review represents a comprehensive theoretical framework that includes genomics, transcriptomics, miRNAomics, proteomics, metabolomics, and ionomics/metallomics, which is established to understand the effects of MNPs on plants at the molecular level. As well as it will also help in further studies of the research community in the future because this field is still in the preliminary stages due to a lack of study.
Collapse
Affiliation(s)
- Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India.
| |
Collapse
|
3
|
Ilyas M, Liu X, Yang J, Xu G. Foliar implications of polystyrene nanoplastics on leafy vegetables and its ecological consequences. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136346. [PMID: 39488113 DOI: 10.1016/j.jhazmat.2024.136346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
The rise of airborne micro-nanoplastics (MNPs) pollution poses a significant threat to agroecological systems. Despite this issue, there is a critical gap in our understanding of their specific effects on various leafy vegetable species. To address this, we conducted a controlled experiment applying Polystyrene Nanoplastics (PS-NPs) on four leafy vegetables: Brassica rapa var. chinensis, B. rapa var. parachinensis, Amaranthus viridis, and Allium tuberosum. Our results showed that PS-NPs tend to accumulate within the epidermal layers and cuticles of these vegetables, particularly around stomatal apertures. More PS-NPs were found on the adaxial and abaxial side of leaves, compared to the cross-section. The abundance of PS-NPs accumulations varied significantly among the studied species due to differences in leaf structure. Notably, leaves with trichomes trapped more PS-NPs particles. These accumulation significantly reduced chlorophyll content and photosynthetic rates, altering the growth and nutritional quality of the vegetables. Our findings reveal the ecological effects of PS-NPs on the nutrient content, phenotype, physiology, growth and biomass metrics of common leafy vegetables. This highlights the potential for PS-NPs accumulation in edible plant tissues, raising concerns about food security and human health.
Collapse
Affiliation(s)
- Muhammad Ilyas
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; National Forest Ecosystem Research Station at Xishuangbanna, Mengla, Yunnan 666300, China.
| | - Guorui Xu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| |
Collapse
|
4
|
Xie Y, Ji Z, Abdalkarim SYH, Huang H, Yunusov KE, Yu HY. Investigating interface adhesion of PLA-coated cellulose paper straws: Degradation, plant growth effects, and life cycle assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136101. [PMID: 39405710 DOI: 10.1016/j.jhazmat.2024.136101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
Although bioplastics and paper straws have been introduced as alternatives to single-use plastic straws, their potential environmental, economic, and social impacts have not been analyzed. This study addresses this gap by designing a polylactic acid layer interface adhesion on cellulose paper-based (PLA-P) composite straws by a dip molding process. This process is simple, efficient, and scalable for massive production. Optimizing key manufacturing parameters, including ice bath ultrasonic, overlapping paper strips (2 strips), winding angle (60°), soaking time (5 min), and drying temperature (50 °C), were systematically evaluated to improve straw quality and manufacturing efficiency. PLA chains were found to deposit onto the cellulose network through intermolecular interactions to form a consistent "sandwich" structure, which can improve adhesion, water resistance, and mechanical properties. Interestingly, PLA-P straws effectively decomposed in soil and compost environments, with a 35-40 % degradation rate within 4 months. Besides, PLA-P straw residues affected seed germination and plant growth, but no significant toxic effects were detected. Further, microplastics were observed in soil and plant tissues (roots, stems, and leaves), and their possible diffusion mechanisms were explored. The results of a comprehensive life cycle assessment (LCA) and cost analysis showed that the process improvements reduced the ecological footprint of PLA-P straws and showed good prospects for commercial application. The study's findings contribute to the understanding of bioplastics and paper straws in effectively reducing environmental impact and fostering sustainable development.
Collapse
Affiliation(s)
- Yao Xie
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, l̥Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Ze Ji
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, l̥Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, l̥Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
| | - Haicheng Huang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, l̥Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100128, Uzbekistan
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, l̥Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
| |
Collapse
|
5
|
Lee BH, Lin YC, Zheng YJ, Shen TL, Cheng TY, Huang CC, Hsu WH. Nanoplastics indirectly compromise lettuce growth in hydroponic systems via microbial extracellular vesicles derived from Curvibacter fontanus. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136457. [PMID: 39531814 DOI: 10.1016/j.jhazmat.2024.136457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Recent studies confirm that nanoplastics (NP) cause severe microbial imbalances in various ecosystems, significantly affecting microbial diversity and abundance. Hydroponic systems vital for lettuce production are increasingly threatened by NP contamination in irrigation water and this issue is gaining global attention. This study investigates microbial species in hydroponic irrigation water altered by NP exposure and their impact on lettuce growth. While NP (108-1010 particles/L) did not directly harm or accumulate in lettuce, significant changes in water parameters and microbial communities were observed, particularly an increase in Curvibacter fontanus abundance. Inoculation of sterile irrigation water with NP and C. fontanus led to lettuce mortality, suggesting C. fontanus as a critical mediator. Furthermore, extracellular vesicles (EVs) isolated from C. fontanus, treated with NP, were shown to suppress leaf development, growth, antioxidant defenses, and lettuce survival. This study concludes that NP-induced microbial shifts, particularly involving C. fontanus EVs, indirectly harm hydroponic lettuce production.
Collapse
Affiliation(s)
- Bao-Hong Lee
- Department of Horticultural Science, National Chiayi University, Chiayi, Taiwan.
| | - Yi-Ching Lin
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yu-Juan Zheng
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan.
| | - Ting-Yu Cheng
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan.
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan.
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Macan GPF, Munhoz DR, Willems LAJ, Monkley C, Lloyd CEM, Hageman J, Geissen V, Landa BB, Harkes P. Macro- and microplastics leachates: Characterization and impact on seed germination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136013. [PMID: 39423638 DOI: 10.1016/j.jhazmat.2024.136013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Although plastic mulch enhances crop yield, its removal and disposal present significant challenges, contributing to macro- and microplastic pollution in agricultural soils. The adverse effects of this pollution on soil and plant health are not fully understood but may stem from the plastic particles or the toxicity of leached chemical additives. This study assessed the impact of macro- and microplastics from nondegradable LDPE-based (LDPEb) and biodegradable PBAT-based (PBATb) mulch films, along with their leachates, on the germination of three plant species. After seven days of incubation, PBAT mulch leached compounds that significantly inhibited Arabidopsis germination, while cotton and tomato exhibited notable tolerance. Notably, PBATb mulch released a higher concentration of compounds, whereas LDPEb mulch exhibited a greater diversity of leached chemicals. Microplastic particles alone did not hinder seed germination, indicating that plastic toxicity primarily arises from the leachates. Many of these leached compounds lack global regulation and hazard information, underscoring the urgent need for further investigation into their environmental impacts and the development of appropriate regulatory frameworks to mitigate the potential toxicity of chemicals from conventional and biodegradable mulches.
Collapse
Affiliation(s)
- Giovana P F Macan
- Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain; Programa de Doctorado de Ingeniería Agraria, Alimentaria, Forestal y de Desarrollo Rural Sostenible, Universidad de Córdoba, Córdoba, Spain.
| | - Davi R Munhoz
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands.
| | - Leo A J Willems
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Charlie Monkley
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
| | - Charlotte E M Lloyd
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK; School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Jos Hageman
- Biometris, Applied Statistics, Wageningen University & Research, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Blanca B Landa
- Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| |
Collapse
|
7
|
Yuan Z, Nag R, Cummins E. Human exposure to micro/nano-plastics through vegetables, fruits, and grains - A predictive modelling approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135900. [PMID: 39316918 DOI: 10.1016/j.jhazmat.2024.135900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
The emergence of human exposure (HE) to micro/nano-plastics (MN-P) via the food chain is a significant public health concern. This study aimed to evaluate HE from ingesting vegetables, fruits, and grains using linear regression models to analyse MN-P size-concentration relationships and bioaccumulation factors (BF). For Irish adults, the Estimated Daily Intake (EDI) of MN-Ps was calculated, considering potential internalisation in these foods, with a sensitivity analysis addressing variability and uncertainty. The simulated mean (SM) root stomatal diameter in selected plants was 620 nm, indicating the potential uptake of MN-Ps smaller than this size. The SM BF for vegetables was 24.24 for nanoplastics (NP). Limited NP data led to the use of metal nanoparticle (MNP) data, yielding an overall BF of 3.22 for pooled vegetables, fruits, and grains. Potential HE levels of MN-Ps in agricultural soil were simulated at 6.05 × 104 n/kg (SM), with predicted MN-P levels in edible plants at 1.47 × 106 n/kg of food products. The simulated EDI of MN-Ps through all crops was 1.62 × 103 n/kg bw/day, with vegetables contributing the most to MN-P exposure, followed by fruits and grains. Sensitivity parameters are ranked as MN-P abundance in soil > bioaccumulation factor > food consumption.
Collapse
Affiliation(s)
- Zhihao Yuan
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin, Ireland.
| | - Rajat Nag
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin, Ireland.
| | - Enda Cummins
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
8
|
Zhao Y, Du A, Ge T, Li G, Lian X, Zhang S, Hu C, Wang X. Accumulation modes and effects of differentially charged polystyrene nano/microplastics in water spinach (Ipomoea aquatica F.). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135892. [PMID: 39303613 DOI: 10.1016/j.jhazmat.2024.135892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/27/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
There is widespread concern about the risk of nano/microplastics (N/MPs) entering the food chain through higher plants. However, the primary factors that influence the absorption of N/MPs by higher plants remain largely unclear. This study examined the impact of Europium-doped N/MPs with different particle sizes and surface charges by water spinach (Ipomoea aquatica F.) to address this knowledge gap. N/MPs were visualized and quantitatively analyzed using laser confocal microscopy, scanning electron microscopy, and inductively coupled plasma-mass spectrometry. N/MPs with different surface charges were absorbed by the roots, with the apoplastic pathway as the major route of transport. After 28 days of exposure to 50 mg L-1 N/MPs, N/MPs-COOH caused the highest levels of oxidative stress and damage to the roots. The plants accumulated NPs-COOH the most (average 1640.16 mg L-1), while they accumulated NPs-NH2 the least (average 253.70 mg L-1). Particle size was the main factor influencing the translocation of N/MPs from the root to the stem, while the Zeta potential mainly influenced particle entry into the roots from the hydroponic solution as well as stem-to-leaf translocation. Different charged N/MPs induced osmotic stress in the roots. A small amount of N/MPs in the leaves significantly stimulated the production of chlorophyll, while excessive N/MPs significantly reduced its content. These results provide new insights into the mechanism of interaction between N/MPs and plants.
Collapse
Affiliation(s)
- Yachuan Zhao
- College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China; Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, China; Xinjiang Production and Construction Corps (XPCC) Key Laboratory of Utilization and Equipment of Special Agricultural and Forestry Products in Southern Xinjiang, China
| | - Ao Du
- College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China; Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, China; Xinjiang Production and Construction Corps (XPCC) Key Laboratory of Utilization and Equipment of Special Agricultural and Forestry Products in Southern Xinjiang, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Xiaoqing Lian
- College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China; Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, China; Xinjiang Production and Construction Corps (XPCC) Key Laboratory of Utilization and Equipment of Special Agricultural and Forestry Products in Southern Xinjiang, China
| | - Shufeng Zhang
- College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China; Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, China; Xinjiang Production and Construction Corps (XPCC) Key Laboratory of Utilization and Equipment of Special Agricultural and Forestry Products in Southern Xinjiang, China
| | - Can Hu
- College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China; Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, China; Xinjiang Production and Construction Corps (XPCC) Key Laboratory of Utilization and Equipment of Special Agricultural and Forestry Products in Southern Xinjiang, China.
| | - Xufeng Wang
- College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China; Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, China; Xinjiang Production and Construction Corps (XPCC) Key Laboratory of Utilization and Equipment of Special Agricultural and Forestry Products in Southern Xinjiang, China.
| |
Collapse
|
9
|
Liu Z, Senavirathna MDHJ, Fujino T, Kaneko Y. Translocation mechanism and the role of aerenchyma in nanoplastic translocation in Myriophyllum sp. "Roraima" and physiological responses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65356-65370. [PMID: 39579187 DOI: 10.1007/s11356-024-35606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Nanoplastics have become a growing concern due to their potential impact on freshwater vegetation. The uptake, translocation, and effects of 0.05-µm nanoplastics on Myriophyllum sp. "Roraima" were investigated, along with the role of aerenchyma in nanoplastic transport. Microscopic observations revealed nanoplastic particle adsorption to the plant surface and entry into the roots and stems, with higher abundance and more dispersed distribution by direct contact. Nanoplastic particles were detected in the plant stem, primarily concentrated in regions adjacent to the aerenchyma. No morphological effects were observed. Induced changes in photosynthesis, including increased maximum quantum efficiency of photosystem II (Fv/Fm), decreased non-photochemical quenching (NPQ), decreased photosynthetic pigments, and increased photoprotective pigments, were recognized. Additionally, hydrogen peroxide levels and antioxidant enzyme activities varied in response to nanoplastic exposure. This study provides insights into the impact of nanoplastics on Myriophyllum sp. "Roraima" and has reviewed the underlying mechanisms, highlighting the role of aerenchyma in nanoplastic transport within the plant. Moreover, this study contributes to the understanding of the potential impacts of nanoplastic pollution on freshwater macrophytes while acknowledging the influence of phyto-anatomical structure on nanoplastic translocation.
Collapse
Affiliation(s)
- Zhaozhi Liu
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama-Shi, Saitama, 338-8570, Japan
| | | | - Takeshi Fujino
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama-Shi, Saitama, 338-8570, Japan
| | - Yasuko Kaneko
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama-Shi, Saitama, 338-8570, Japan
| |
Collapse
|
10
|
Wang J, Zhang S, Xing H, Yan P, Wang J. Soil moisture and texture mediating the micro(nano)plastics absorption and growth of lettuce in natural soil conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136575. [PMID: 39579700 DOI: 10.1016/j.jhazmat.2024.136575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The absorption of microplastics and nanoplastics (M(N)Ps) by plants has been reported, but their uptake from natural soils that is similar to the agro-ecosystems remains unclear. Additionally, the influence of soil environment factors, such as soil moisture (SM) and soil texture (ST), on the absorption and migration of M(N)Ps from soil remains uncertain. We examined absorption of M(N)Ps of various sizes by lettuce (Lactuca sativa) in Mollisols with varying levels of SM (5, 10, 15 ml water per 2d) across different ST (23.67 % and 44.09 % sand) under controlled incubation conditions. Our results revealed high M(N)Ps absorption by lettuce from natural soil, with notable distribution, particularly in stem and even on leaf surfaces, suggesting to the potential migration path. M(N)Ps presence reduced lettuce growth across different SM and ST compared with the control group (without M(N)Ps), possibly due to the uptake of M(N)Ps. Higher SM promoted plant growth and transpiration, enhanced M(N)Ps absorption and migration, and resulted in higher concentration observed in the leaves. Moreover, an interaction between SM and ST was observed, affecting the distribution of M(N)Ps in lettuce organs. These findings underscore the significance of SM and ST as key factors affecting M(N)Ps absorption and distribution in plants.
Collapse
Affiliation(s)
- Jiuqi Wang
- School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Shaoliang Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, China.
| | - Hao Xing
- School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Pengke Yan
- School of Resource and Environment, Northeast Agricultural University, Harbin, China
| | - Jingang Wang
- School of Horticulture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Nath S, Enerijiofi KE, Astapati AD, Guha A. Microplastics and nanoplastics in soil: Sources, impacts, and solutions for soil health and environmental sustainability. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:1048-1072. [PMID: 39246015 DOI: 10.1002/jeq2.20625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
The present review discusses the growing concern of microplastics (MPs) and nanoplastics (NPs) in soil, together with their sources, concentration, distribution, and impact on soil microorganisms, human health, and ecosystems. MPs and NPs can enter the soil through various pathways, such as agricultural activities, sewage sludge application, and atmospheric deposition. Once in the soil, they can accumulate in the upper layers and affect soil structure, water retention, and nutrient availability. The presence of MPs and NPs in soil can also have ecological consequences, acting as carriers for pollutants and contaminants, such as heavy metals and persistent organic pollutants. Additionally, the leaching of chemicals and additives from MPs and NPs can pose public health risks through the food web and groundwater contamination. The detection and analyses of MPs and NPs in soil can be challenging, and methods involve spectroscopic and microscopy techniques, such as Fourier-transform infrared spectroscopy and scanning electron microscopy. To mitigate the presence and effects of MPs and NPs in soil, it is essential to reduce plastic waste production, improve waste management practices, and adopt sustainable agricultural practices. Effective mitigation measures include implementing stricter regulations on plastic use, promoting biodegradable alternatives, and enhancing recycling infrastructure. Additionally, soil amendments, such as biochar and compost, can help immobilize MPs and NPs, reducing their mobility and bioavailability. This review article aims to provide a comprehensive understanding of these emerging environmental issues and identify potential solutions to alleviate their impact on soil health, ecosystem functioning, and community health.
Collapse
Affiliation(s)
- Soumitra Nath
- Department of Biotechnology, Gurucharan College, Silchar, Assam, India
| | - Kingsley Erhons Enerijiofi
- Department of Biological Sciences, College of Basic and Applied Sciences, Glorious Vision University, Ogwa, Edo State, Nigeria
| | | | - Anupam Guha
- Michael Madhusudan Dutta College, Sabroom, Tripura, India
| |
Collapse
|
12
|
Lin Y, Wang L, Lin B, Liu B, Guan T, Guo S, Li Q, Wei C. Differences in the uptake and translocation of differentially charged microplastics by the taproot and lateral root of mangroves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174113. [PMID: 38908577 DOI: 10.1016/j.scitotenv.2024.174113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The interception of microplastics (MPs) by mangrove roots plays an indispensable role in reducing the environmental risks of MPs. However, there remains limited research on the fate of the intercepted MPs. Hereby, the uptake and subsequent translocation of 0.2 μm and 2 μm PS MPs with different coating charge by the typical salt-secreting mangrove plants (Aegiceras corniculatum) were investigated. Compared to amino-functionalized PS with positive charge (PS-NH2), the visualized results indicated that the efficient uptake of carboxy-functionalized PS with negative charge (PS-COOH) was more dependent on taproots. But for the lateral roots, it only allowed the entry of PS-NH2 instead of PS-COOH. The specific uptake pathways of PS-NH2 on the lateral roots could attribute to the release of H+ and organic acids by root hairs, as well as the relative higher Zeta potential. After entering the Aegiceras corniculatum roots, the translocation of PS MPs was restricted by their particle sizes. Furthermore, the release of PS MPs from Aegiceras corniculatum leaf surfaces through the salt glands and stomata was observed. And the decline in the photochemical efficiency of leaves under PS MPs exposure also indirectly proved the foliar emission of PS MPs. Our study improved the understanding of the environmental behaviors and risks of the retained MPs in mangroves.
Collapse
Affiliation(s)
- Yichun Lin
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Luya Wang
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, PR China
| | - Bigui Lin
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, PR China
| | - Beibei Liu
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, PR China
| | - Tingting Guan
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Shuai Guo
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Qinfen Li
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, PR China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, PR China
| | - Chaoxian Wei
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Haikou 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, National Long-term Experimental Station for Agriculture Green Development, Danzhou 571737, PR China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Haikou 571101, PR China.
| |
Collapse
|
13
|
Yin J, Zhu T, Li X, Yin X, Xu J, Xu G. Polystyrene nanoplastics induce cell type-dependent secondary wall reinforcement in rice (Oryza sativa) roots and reduce root hydraulic conductivity. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135309. [PMID: 39053057 DOI: 10.1016/j.jhazmat.2024.135309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Nanoplastics (NPs) have been demonstrated the ability to penetrate plant roots and cause stress. However, the extent of NPs penetration into various root tissues and the corresponding plant defense mechanisms remain unclear. This study examined the penetration and accumulation patterns of polystyrene nanoplastics (PS-NPs) in different cell types within rice roots, and explored how the roots quickly modify their cell wall structure in response. The findings showed that fully developed sclerenchyma cells in rice roots effectively prevented the invasion of PS-NPs. Meanwhile, PS-NPs triggered the accumulation of lignin and suberin in specific cells such as the exodermis, sclerenchyma, and xylem vessels. PS-NPs at a concentration of 50 mg L-1 increased cell wall thickness by 18.6 %, 21.1 %, and 22.4 % in epidermis, exodermis, and sclerenchyma cells, respectively, and decreased root hydraulic conductivity by 14.8 %. qPCR analysis revealed that PS-NPs influenced the cell wall synthesis pathway, promoting the deposition of lignin and suberin monomers on the secondary wall through the up-regulation of genes such as OsLAC and OsABCG. These results demonstrate that PS-NPs can induce cell type-specific strengthening of secondary walls and barrier formation in rice roots, suggesting the potential role of plant secondary wall development in mitigating NPs contamination risks in crops.
Collapse
Affiliation(s)
- Jingjing Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Tongshan Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan 250100, PR China
| | - Xiaozun Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Xiao Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Jiandi Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Guoxin Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China.
| |
Collapse
|
14
|
Jadhav B, Medyńska-Juraszek A. Microplastic and Nanoplastic in Crops: Possible Adverse Effects to Crop Production and Contaminant Transfer in the Food Chain. PLANTS (BASEL, SWITZERLAND) 2024; 13:2526. [PMID: 39274010 PMCID: PMC11397527 DOI: 10.3390/plants13172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
With the increasing amounts of microplastic (MP) deposited in soil from various agricultural activities, crop plants can become an important source of MP in food products. The last three years of studies gave enough evidence showing that plastic in the form of nanoparticles (<100 nm) can be taken up by the root system and transferred to aboveground plant parts. Furthermore, the presence of microplastic in soil affects plant growth disturbing metabolic processes in plants, thus reducing yields and crop quality. Some of the adverse effects of microplastic on plants have been already described in the meta-analysis; however, this review provides a comprehensive overview of the latest findings about possible adverse effects and risks related to wide microplastic occurrence in soil on crop production safety, including topics related to changes of pesticides behavior and plant pathogen spreading under the presence MP and possibly threaten to human health.
Collapse
Affiliation(s)
- Bhakti Jadhav
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 53 Grunwaldzka Str., 50-357 Wrocław, Poland
| | - Agnieszka Medyńska-Juraszek
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 53 Grunwaldzka Str., 50-357 Wrocław, Poland
| |
Collapse
|
15
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. Plant Defense Mechanisms against Polycyclic Aromatic Hydrocarbon Contamination: Insights into the Role of Extracellular Vesicles. TOXICS 2024; 12:653. [PMID: 39330582 PMCID: PMC11436043 DOI: 10.3390/toxics12090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that pose significant environmental and health risks. These compounds originate from both natural phenomena, such as volcanic activity and wildfires, and anthropogenic sources, including vehicular emissions, industrial processes, and fossil fuel combustion. Their classification as carcinogenic, mutagenic, and teratogenic substances link them to various cancers and health disorders. PAHs are categorized into low-molecular-weight (LMW) and high-molecular-weight (HMW) groups, with HMW PAHs exhibiting greater resistance to degradation and a tendency to accumulate in sediments and biological tissues. Soil serves as a primary reservoir for PAHs, particularly in areas of high emissions, creating substantial risks through ingestion, dermal contact, and inhalation. Coastal and aquatic ecosystems are especially vulnerable due to concentrated human activities, with PAH persistence disrupting microbial communities, inhibiting plant growth, and altering ecosystem functions, potentially leading to biodiversity loss. In plants, PAH contamination manifests as a form of abiotic stress, inducing oxidative stress, cellular damage, and growth inhibition. Plants respond by activating antioxidant defenses and stress-related pathways. A notable aspect of plant defense mechanisms involves plant-derived extracellular vesicles (PDEVs), which are membrane-bound nanoparticles released by plant cells. These PDEVs play a crucial role in enhancing plant resistance to PAHs by facilitating intercellular communication and coordinating defense responses. The interaction between PAHs and PDEVs, while not fully elucidated, suggests a complex interplay of cellular defense mechanisms. PDEVs may contribute to PAH detoxification through pollutant sequestration or by delivering enzymes capable of PAH degradation. Studying PDEVs provides valuable insights into plant stress resilience mechanisms and offers potential new strategies for mitigating PAH-induced stress in plants and ecosystems.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
16
|
Yan Y, Yang H, Du Y, Li X, Li X. Effects and molecular mechanisms of polyethylene microplastic oxidation on wheat grain quality. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134816. [PMID: 38850928 DOI: 10.1016/j.jhazmat.2024.134816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Polyethylene microplastics (PE MPs) are the main MPs in agricultural soils and undergo oxidation upon environmental exposure. However, the influence of MP oxidation on phytotoxicity (especially for crop fruit) is still limited. This study aimed to explore the effect of PE MP oxidation on crop toxicity. Herein, a combination of plant phenotyping, metabolomic, and transcriptomic approaches was used to evaluate the effects of low-oxidation PE (LOPE) and high-oxidation PE (HOPE) on wheat growth, grain quality, and related molecular mechanisms using pot experiments. The results showed that HOPE induced a stronger inhibition of wheat growth and reduction in protein content and mineral elements than LOPE. This was accompanied by root ultrastructural damage and downregulation of carbohydrate metabolism, translation, nutrient reservoir activity, and metal ion binding gene expression. Compared with HOPE, LOPE activated a stronger plant defense response by reducing the starch content by 22.87 %, increasing soluble sugar content by 44.93 %, and upregulating antioxidant enzyme genes and crucial metabolic pathways (e.g., starch and sucrose, linoleic acid, and phenylalanine metabolism). The presence of PE MPs in the environment exacerbates crop growth inhibition and fruit quality deterioration, highlighting the need to consider the environmental and food safety implications of MPs in agricultural soils.
Collapse
Affiliation(s)
- Yan Yan
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Huijie Yang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xiaoqiang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
17
|
Kumar D, Biswas JK, Mulla SI, Singh R, Shukla R, Ahanger MA, Shekhawat GS, Verma KK, Siddiqui MW, Seth CS. Micro and nanoplastics pollution: Sources, distribution, uptake in plants, toxicological effects, and innovative remediation strategies for environmental sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108795. [PMID: 38878390 DOI: 10.1016/j.plaphy.2024.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
Microplastics and nanoplastics (MNPs), are minute particles resulting from plastic fragmentation, have raised concerns due to their widespread presence in the environment. This study investigates sources and distribution of MNPs and their impact on plants, elucidating the intricate mechanisms of toxicity. Through a comprehensive analysis, it reveals that these tiny plastic particles infiltrate plant tissues, disrupting vital physiological processes. Micro and nanoplastics impair root development, hinder water and nutrient uptake, photosynthesis, and induce oxidative stress and cyto-genotoxicity leading to stunted growth and diminished crop yields. Moreover, they interfere with plant-microbe interactions essential for nutrient cycling and soil health. The research also explores the translocation of these particles within plants, raising concerns about their potential entry into the food chain and subsequent human health risks. The study underscores the urgency of understanding MNPs toxicity on plants, emphasizing the need for innovative remediation strategies such as bioremediation by algae, fungi, bacteria, and plants and eco-friendly plastic alternatives. Addressing this issue is pivotal not only for environmental conservation but also for ensuring sustainable agriculture and global food security in the face of escalating plastic pollution.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Department of Botany, University of Delhi, New Delhi-110007, Delhi, India
| | - Jayanta Kumar Biswas
- International Centre for Ecological Engineering, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia- 741235, West Bengal, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore- 560064, Karnataka, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida- 201308, India
| | - Ravindra Shukla
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak- 484887, Madhya Pradesh, India
| | - Mohammad Abass Ahanger
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Gyan Singh Shekhawat
- Department of Botany, Jai Narain Vyas University, Jodhpur, 342005, Rajasthan, India
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning-530007, China
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Sabour-813210, Bhagalpur, Bihar, India
| | | |
Collapse
|
18
|
Gopinath N, Karthikeyan A, Joseph A, Vijayan AS, Vandana S, Nair BG. Fluorescent carbon dot embedded polystyrene: an alternative for micro/nanoplastic translocation study in leguminous plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34464-7. [PMID: 39060893 DOI: 10.1007/s11356-024-34464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Micro/nanoplastics are widespread in terrestrial ecosystem. Even though many studies have been reported on the effects of these in marine environment, studies concerning their accumulation and impact on terrestrial ecosystem have been scanty. The current study was designed to determine how terrestrial plants, especially legumes, interact with micro/nanoplastics to gain insights into their uptake and translocation. The paper describes the synthesis of fluorescent carbon dot embedded polystyrene (CDPS) followed by its characterization. Translocation studies at different concentrations from 2 to 100% (v/v) for tracking the movement and accumulation of microplastics in Vigna radiata and Vigna angularis were performed. The optical properties of the synthesized CDPS were investigated, and their translocation within the plants was visualized using fluorescence microscopy. These findings were further validated by scanning electron microscopy (SEM) imaging of the plant sections. The results showed that concentrations higher than 6% (v/v) displayed noticeable fluorescence in the vascular region and on the cell walls, while concentrations below this threshold did not. The study highlights the potential of utilizing fluorescent CDPS as markers for investigating the ecological consequences and biological absorption of microplastics in agricultural systems. This method offers a unique technique for monitoring and analyzing the routes of microplastic accumulation in edible plants, with significant implications for both food safety and environmental health.
Collapse
Affiliation(s)
- Nigina Gopinath
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Akash Karthikeyan
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Abey Joseph
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Athira S Vijayan
- Department of Material Science and Engineering, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Sajith Vandana
- Department of Material Science and Engineering, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Baiju G Nair
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, 673601, India.
- Department of Material Science and Engineering, National Institute of Technology Calicut, Calicut, Kerala, 673601, India.
| |
Collapse
|
19
|
Jaffar MT, Chang W, Zhang J, Mukhtar A, Mushtaq Z, Ahmed M, Zahir ZA, Siddique KHM. Sugarcane bagasse biochar boosts maize growth and yield in salt-affected soil by improving soil enzymatic activities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121418. [PMID: 38852408 DOI: 10.1016/j.jenvman.2024.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Salinization is a leading threat to soil degradation and sustainable crop production. The application of organic amendments could improve crop growth in saline soil. Thus, we assessed the impact of sugarcane bagasse (SB) and its biochar (SBB) on soil enzymatic activity and growth response of maize crop at three various percentages (0.5%, 1%, and 2% of soil) under three salinity levels (1.66, 4, and 8 dS m-1). Each treatment was replicated three times in a completely randomized block design with factorial settings. The results showed that SB and SBB can restore the impact of salinization, but the SBB at the 2% addition rate revealed promising results compared to SB. The 2% SBB significantly enhanced shoot length (23.4%, 26.1%, and 41.8%), root length (16.8%, 20.8%, and 39.0%), grain yield (17.6%, 25.1%, and 392.2%), relative water contents (11.2%, 13.1%, and 19.2%), protein (17.2%, 19.6%, and 34.9%), and carotenoid (16.3, 30.3, and 49.9%) under different salinity levels (1.66, 4, and 8 dS m-1, respectively). The 2% SBB substantially drop the Na+ in maize root (28.3%, 29.9%, and 22.4%) and shoot (36.1%, 37.2%, and 38.5%) at 1.66, 4, and 8 dS m-1. Moreover, 2% SBB is the best treatment to boost the urease by 110.1%, 71.7%, and 91.2%, alkaline phosphatase by 28.8%, 38.8%, and 57.6%, and acid phosphatase by 48.4%, 80.1%, and 68.2% than control treatment under 1.66, 4 and 8 dS m-1, respectively. Pearson analysis showed that all the growth and yield parameters were positively associated with the soil enzymatic activities and negatively correlated with electrolyte leakage and sodium. The structural equational model (SEM) showed that the different application percentage of amendments significantly influences the growth and physiological parameters at all salinity levels. SEM explained the 81%, 92%, and 95% changes in maize yield under 1.66, 4, and 8 dS m-1, respectively. So, it is concluded that the 2% SBB could be an efficient approach to enhance the maize yield by ameliorating the noxious effect of degraded saline soil.
Collapse
Affiliation(s)
| | - Wenqian Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Jianguo Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China.
| | - Ahmed Mukhtar
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Zain Mushtaq
- Department of Soil Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ahmed
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
20
|
Saudrais F, Schvartz M, Renault JP, Vieira J, Devineau S, Leroy J, Taché O, Boulard Y, Pin S. The Impact of Virgin and Aged Microstructured Plastics on Proteins: The Case of Hemoglobin Adsorption and Oxygenation. Int J Mol Sci 2024; 25:7047. [PMID: 39000151 PMCID: PMC11241625 DOI: 10.3390/ijms25137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Plastic particles, particularly micro- and nanoparticles, are emerging pollutants due to the ever-growing amount of plastics produced across a wide variety of sectors. When plastic particles enter a biological medium, they become surrounded by a corona, giving them their biological identity and determining their interactions in the living environment and their biological effects. Here, we studied the interactions of microstructured plastics with hemoglobin (Hb). Virgin polyethylene microparticles (PEMPs) and polypropylene microparticles (PPMPs) as well as heat- or irradiation-aged microparticles (ag-PEMPs and ag-PPMPs) were used to quantify Hb adsorption. Polypropylene filters (PP-filters) were used to measure the oxygenation of adsorbed Hb. Microstructured plastics were characterized using optical microscopy, SAXS, ATR-FTIR, XPS, and Raman spectroscopy. Adsorption isotherms showed that the Hb corona thickness is larger on PPMPs than on PEMPs and Hb has a higher affinity for PPMPs than for PEMPs. Hb had a lower affinity for ag-PEMPs and ag-PPMPs, but they can be adsorbed in larger amounts. The presence of partial charges on the plastic surface and the oxidation rate of microplastics may explain these differences. Tonometry experiments using an original method, the diffuse reflection of light, showed that adsorbed Hb on PP-filters retains its cooperativity, but its affinity for O2 decreases significantly.
Collapse
Affiliation(s)
- Florent Saudrais
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Marion Schvartz
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | | | - Jorge Vieira
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Stéphanie Devineau
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, 75013 Paris, France
| | - Jocelyne Leroy
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Olivier Taché
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Yves Boulard
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Serge Pin
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| |
Collapse
|
21
|
Jiang Y, Chen X, Cao X, Wang C, Yue L, Li X, Wang Z. Mechanistic insight into the intensification of arsenic toxicity to rice (Oryza sativa L.) by nanoplastic: Phytohormone and glutathione metabolism modulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134086. [PMID: 38521034 DOI: 10.1016/j.jhazmat.2024.134086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In this study, nanoplastic (NPs) at environmentally relevant concentration (0.001% w/w) had no effect on the growth of rice, while significantly elevated the phytotoxicity of As (III) by 9.4-22.8% based on the endpoints of biomass and photosynthesis. Mechanistically, NPs at 0.001% w/w enhanced As accumulation in the rice shoots and roots by 70.9% and 24.5%, respectively. Reasons of this finding can was that (1) the co-exposure with As and NPs significantly decreased abscisic acid content by 16.0% in rice, with subsequent increasing the expression of aquaporin related genes by 2.1- to 2.7-folds as compared with As alone treatment; (2) the presence of NPs significantly inhibited iron plaque formation on rice root surface by 22.5%. We firstly demonstrated that "Trojan horse effect" had no contribution to the enhancement of As accumulation by NPs exposure. Additionally, NPs disrupted the salicylic acid, jasmonic acid, and glutathione metabolism, which subsequently enhancing the oxidation (7.0%) and translocation (37.0%) of in planta As, and reducing arsenic detoxification pathways (e.g., antioxidative system (28.6-37.1%), As vacuolar sequestration (36.1%), and As efflux (18.7%)). Our findings reveal that the combined toxicity of NPs and traditional contaminations should be considered for realistic evaluations of NPs.
Collapse
Affiliation(s)
- Yi Jiang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaofei Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Ayyappan K, Thiruvenkatasamy K, Balu R, Devendrapandi G, Kadaikunnan S, Ayyamperumal R. Numerical model study on stability of a micro-tidal inlet at Muttukadu along the east coast of Bay of Bengal. ENVIRONMENTAL RESEARCH 2024; 248:118304. [PMID: 38295979 DOI: 10.1016/j.envres.2024.118304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/03/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The complexity of micro-tidal inlets arises from the combined action of littoral drift and tidal range on their stability. Consequently, understanding and evaluating their stability poses a significant challenge. This study aims to shed some insight on the assessment of inlet stability by employing Delft 3D model. The stability of the inlet between the ocean and estuary relies on the balance between the longshore transport rate and the spring tidal prism. Disrupting this equilibrium results in the closure of the inlets. The movement of sediments in the surf zone is primarily driven by longshore velocity, which acts as the driving force for littoral drift, which is estimated using Delft 3D wave model. The longshore transport rate is estimated by employing empirical relationships and numerical codes based on the obtained driving force. Subsequently, the stability of the inlet is assessed based on these estimations. The spring tidal prism refers to the discharge of water flowing into the ocean from inlets and estuaries. Flow velocity is determined using Delft 3D flow model. The input data for nearshore circulation resulting from waves and currents is primarily collected through field measurements and data collected from Indian National Centre for Ocean Information Services (INCOIS). For the current study, Muttukadu (12°47'13″N, 80°15'01″E) inlet, Kovalam along the East Coast of the Indian Peninsula is investigated by assessing its seasonal variations. This study contributes to the management of marine biological ecology, the expansion of small-scale artisanal fishing, the promotion of water sports-related tourism, the advancement of fishing harbor development, and the execution of coastal engineering projects.
Collapse
Affiliation(s)
- K Ayyappan
- School of Maritime Studies of Vels Institute of Science, Technology & Advanced Studies, Chennai, India.
| | - K Thiruvenkatasamy
- Department of Naval Architecture and Offshore Engineering, AMET University, Chennai, India
| | - Ranjith Balu
- Research and Development Cell, Lovely Professional University, Phagwara, 144411-India; School of Advanced Materials Science and Engineering, Kumoh National Institute of Technology, Gyeongbuk, 39177, Republic of Korea
| | - Gautham Devendrapandi
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, Thandalam, Chennai 602105,India
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ramamoorthy Ayyamperumal
- Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou 13 University, Lanzhou, 730000, China
| |
Collapse
|
23
|
Abedini S, Pourseyedi S, Zolala J, Mohammadi H, Abdolshahi R. Green synthesis of Superparamagnetic Iron Oxide and Silver Nanoparticles in Satureja hortensis Leave Extract: Evaluation of Antifungal Effects on Botryosphaeriaceae Species. Curr Microbiol 2024; 81:149. [PMID: 38642138 DOI: 10.1007/s00284-024-03647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/21/2024] [Indexed: 04/22/2024]
Abstract
In recent years, green synthesis methods of metallic nanoparticles (MNPs) have been attractive because of the more facile, cheaper, and appropriate features associated with biomolecules in MNPs biosynthesis. This research represented an easy, fast, and environmentally friendly method to biosynthesis of superparamagnetic iron oxide nanoparticles (SPIONPs) and silver nanoparticles (AgNPs) by the Satureja hortensis leaf extract as stabilizer and reducer. The SPIONPs synthesized in co-precipitation method. The biosynthesized SPIONPs and AgNPs were studied their antifungal effects against three Botryosphaeriaceae plant pathogens, Botryosphaeria dothidea, Diplodia seriata, and Neofusicoccum parvum. UV-visible spectra (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (Fe-SEM), energy-dispersive X-ray spectroscopy (EDX), and vibrating-sample magnetometer (VSM) analyses were used to evaluate the physicochemical properties and verify the formation of green synthesized SPIONPs and AgNPs. UV-Vis spectra revealed absorption peaks at 243 and 448 nm for SPIONs and 436 nm for AgNPs, respectively. Microscopic and XRD analysis showed that SPIONPs and AgNPs was found spherical in shape with an average particle size of SPIONPs and AgNPs 10 and 12 nm, respectively. The antifungal test against Botryosphaeriaceae species showed that SPIONPs and AgNPs possess antifungal properties against B. dothidea, D. seriata, and N. parvum. However, AgNPs exhibits greater antifungal activity than SPIONPs. The results of the cytotoxicity tests of SPIONs and AgNPs on the MCF-7 cell line showed that AgNPs was significantly more cytotoxic towards the MCF-7 cell line, whereas no significant cytotoxic effect was recorded by SPIONs. Therefore, these biosynthesized MNPs could be substituted for toxic fungicides that are extensively applied in agriculture and contribute to environmental health and food safety.
Collapse
Affiliation(s)
- Sara Abedini
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahram Pourseyedi
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Jafar Zolala
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamid Mohammadi
- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Roohollah Abdolshahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
24
|
Arumugam A, Fang C, Selvin J, Kuppusamy S, Ricky Devi O, Zhang F, Guo X, Kadaikunnan S, Balu R, Liu X. Plant biomass extracted eco-friendly natural surfactant enhanced bio-electrokinetic remediation of crude oil contaminated soil. ENVIRONMENTAL RESEARCH 2024; 245:117913. [PMID: 38145737 DOI: 10.1016/j.envres.2023.117913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/27/2023]
Abstract
The current work investigates bioremediation (BIO) and electrokinetic (EK) remediation of crude oil hydrocarbons utilizing the biomass-electrokinetic (BIO-EK) approaches. The use of natural surfactants derived from plant biomass may improve remediation capacity by enhancing the solubility of organic pollutants. Sapindus mukorossi, a natural surfactant producer, was extracted from plant biomass in this study. The crude oil biodegradation efficiency was reported to be 98 %. In nature, FTIR confirms that plant biomass is lipopeptide. GCMS revealed that the crude oil (C7 - C23) was efficiently bio-degraded from lower to higher molecular weight. The application of natural surfactants in electokinetic remediation increased the plant biomass degradation of crude oil polluted soil by 98% compared to electrokinetic 55% in 2 days. Natural surfactant improves hydrocarbon solubilization and accelerates hydrocarbon electro migration to the anodic compartment, as confirmed by the presence of greater total organic content than the electrokinetic. This study proves that BIO-EK compared with a natural surfactant derived from plant biomass may be utilized to improve in situ bioremediation of crude oil polluted soils.
Collapse
Affiliation(s)
- Arulprakash Arumugam
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China
| | - Canxiang Fang
- Science and Technology on Aerospace Chemical Power Laboratory, Xiangyang, 441003, China; Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, China
| | - Joseph Selvin
- School of Life Science and Department of Microbiology, Pondicherry University, Pondicherry, Chinna Kalapet, 605014, India
| | - Sathishkumar Kuppusamy
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Okram Ricky Devi
- Department of Agronomy, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
| | - Xiang Guo
- Science and Technology on Aerospace Chemical Power Laboratory, Xiangyang, 441003, China; Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, China.
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ranjith Balu
- School of Advanced Material Science and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeonbuk, 39177, Republic of Korea
| | - Xinghui Liu
- Science and Technology on Aerospace Chemical Power Laboratory, Xiangyang, 441003, China; Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, China; Division of Research and Development, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
25
|
Agbasi JC, Ezugwu AL, Omeka ME, Ucheana IA, Aralu CC, Abugu HO, Egbueri JC. More about making profits or providing safe drinking water? A state-of-the-art review on sachet water contamination in Nigeria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:255-297. [PMID: 38439577 DOI: 10.1080/26896583.2024.2319009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Public health concerns on surface and groundwater contamination worldwide have increased. Sachet water contamination has also raised serious concerns across many developing countries. While previous studies attempted to address this issue, this review takes a different approach by utilizing a comprehensive analysis of physicochemical parameters, heavy metals, and microbial loads tested in sachet water across Nigeria's six geopolitical zones, within the period of 2020-2023. In this review study, over 50 articles were carefully analyzed. Collected data unveiled regional variations in the quality of sachet water across Nigeria. Noteworthy concerns revolve around levels of pH, total hardness, magnesium, calcium, nickel, iron, lead, mercury, arsenic, and cadmium. Fecal contamination was also identified as a significant issue, with the prevalence of several pathogens like Escherichia coli, Salmonella typhi, Enterobacter cloacae, Staphylococcus aureus, and Enterococcus faecalis. The manufacturing, delivery, storage, and final sale of sachet water, as well as poor environmental hygiene, were identified as potential contamination sources. The intake of contaminated sachet water exposes the citizens to waterborne and carcinogenic diseases. While the sachet water industry keeps growing and making profits, it is apparent that improvement calls made by previous studies, regarding the quality of water produced, have not been paid serious attention.
Collapse
Affiliation(s)
- Johnson C Agbasi
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria
| | - Arinze Longinus Ezugwu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Michael Ekuru Omeka
- Department of Geology, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
| | - Ifeanyi Adolphus Ucheana
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
- Central Science Laboratory, University of Nigeria, Nsukka, Enugu State, Nigeria
| | | | - Hillary Onyeka Abugu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Johnbosco C Egbueri
- Department of Geology, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria
| |
Collapse
|
26
|
Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li K, Zhang Q, Zhao X, Du D. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169420. [PMID: 38128670 DOI: 10.1016/j.scitotenv.2023.169420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.
Collapse
Affiliation(s)
- Ali Raza Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Jiabao Lou
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Sundas Batool
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Pakistan
| | - Tingting Zhao
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Kexin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qiuyue Zhang
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering,Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
27
|
Yu X, Dilanchiev A, Bibi S. Enhancing labor productivity as a key strategy for fostering green economic growth and resource efficiency. Heliyon 2024; 10:e24640. [PMID: 38322975 PMCID: PMC10844128 DOI: 10.1016/j.heliyon.2024.e24640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Amidst a time when uncontrolled economic growth has frequently harmed the environment, it is crucial to reassess our strategy toward economic progress. The necessity to tackle climate change, resource depletion, and environmental deterioration demands a profound transition towards ecologically sound and sustainable economic development. This study examines the crucial significance of labor productivity in promoting sustainable economic growth and the effective utilization of resources in Asia, Europe, and South America from 1990 to 2020. To accomplish this, we utilized the Data Envelopment Analysis (DEA) methodology to examine a range of input and output characteristics thoroughly. These parameters included labor productivity, renewable energy usage, material efficiency, Green GDP, carbon footprint, and water footprint. The results of our study demonstrate significant regional variations in the efficient utilization of labor and resources to promote sustainable economic development. The findings of the DEA model emphasize that countries with higher labor productivity are more capable of pursuing an environmentally benign and sustainable financial path. Moreover, our research demonstrates a substantial association between enhanced labor productivity and diminished carbon and water footprints. This highlights the importance of labor productivity as a fundamental element for maximizing resource efficiency. In addition, we propose policy suggestions that motivate and improve worker efficiency as a practical strategy to accomplish both economic growth and environmental sustainability.
Collapse
Affiliation(s)
- Xie Yu
- Party School of CPC Shenzhen Longhua District Committee, Shenzhen, 518000, Guangdong, China
| | - Azer Dilanchiev
- School of Business, International Blacksea University, Georgia
| | - Sidra Bibi
- School of Economics and Management, Chongqing Jiaotong University, China
| |
Collapse
|
28
|
Maharjan KK. Microplastics research in Nepal: Present scenario and current gaps in knowledge. Heliyon 2024; 10:e24956. [PMID: 38318064 PMCID: PMC10838786 DOI: 10.1016/j.heliyon.2024.e24956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
The topic of microplastics has drawn considerable scholarly interest in recent times. The objective of this study is to provide an overview of the current state of microplastic pollution research in Nepal and to make future research recommendations. To achieve the objective, three popular databases (Web of Science, SCOPUS and Google Scholar) were used. The results showed that the current scenario for microplastic research in Nepal is in its early stage, which commenced in 2020. A total of six papers were recorded over the period from 2020 to 2023. The research conducted in the fields were rivers, lakes, snow, and sediments. Studies have provided evidence of the occurrence of microplastics in diverse aquatic ecosystems. Lakeshore sediments show concentrations of 100.5 ± 58.6 items/kg dry weight, while shoreline sediments of Phewa lake exhibit variability between 55 and 122.5 items/kg. The lake water in winter records 2.96 ± 1.83 Microplastics per Liter (MPs/L), river water indicates 202 ± 100 items/m3, and snow demonstrates 30 MP/L. In freshwater ecosystems, microplastics, specifically fibers, were found to be the prevailing type, while fragments were recorded in road dust. The study conducted in Nepal provided evidence of the presence of a wide range of polymers. The polymers encompassed polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polyamide, polystyrene (PS), and polyester. Microplastic research in Nepal, initiated in 2020, covered rivers, lakes, snow, and sediments. Diverse aquatic ecosystems reveal microplastic presence, emphasizing the need for continued study and awareness. Although extensive research has been carried out on the subject of microplastic contamination and its effects on various creatures on a global scale, an examination of the implications of microplastics on animals, plants, and humans in Nepal has not been found in any scholarly publications. There exists a noticeable deficit of research investigating the consumption of microplastics by human.
Collapse
Affiliation(s)
- Kishor Kumar Maharjan
- Department of Environmental Science, Tri-Chandra Multiple Campus, Tribhuvan University, Nepal
- Faculty of Environmental Management, Prince of Songkla University, Thailand
| |
Collapse
|
29
|
Maqbool Z, Shahbaz Farooq M, Rafiq A, Uzair M, Yousuf M, Ramzan Khan M, Huo S. Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23257. [PMID: 38310926 DOI: 10.1071/fp23257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.
Collapse
Affiliation(s)
- Zubaira Maqbool
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Department of Soil Science and Environmental Science, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Farooq
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad 44000, Pakistan
| | - Anum Rafiq
- Institute Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Uzair
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Muhammad Yousuf
- Pakistan Agriculture Research Council (PARC), G5, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Shuhao Huo
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
30
|
Sencan A, Kilic S, Kaya H. Stimulating effect of biogenic nanoparticles on the germination of basil (Ocimum basilicum L.) seeds. Sci Rep 2024; 14:1715. [PMID: 38242902 PMCID: PMC10798979 DOI: 10.1038/s41598-023-50654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
Metal nanoparticles synthesized using various biosources are the subject of focus in many research areas thanks to their improved biological effects and increased bioavailability. Silver (Ag), zinc oxide (ZnO) and magnetite (Fe3O4) nanoparticles (NPs) were obtained by using low-cost, low-energy, environmentally friendly, non-toxic chemicals and easily accessible thyme leaves and lavender flowers. The effects of various concentrations of biosynthesized NPs on the germination and germination index of basil seeds were defined comparatively. Phytochemicals in lavender flower extract acted as reducing and capping agents in the biosynthesis of Ag-NPs, and phytochemicals in thyme leaves extract acted for the biosynthesis of ZnO-NPs ve Fe3O4-NPs. Relative root length was detected at 25 mg/L ZnO-NP, stem length at 50 mg/L ZnO-NP, and relative seed germination 100 mg/L Fe3O4-NP with the maximum value. However, germination percentage, germination index, germination vigor index and root length were found to be maximum compared to other NP applications at Ag-NPs at 200 mg/L. This research showed that the germination promoting effects of NPs, which may be essential microelements, are related to their size, surface area, morphology and concentration. Thus, it promoted early and rapid germination by breaking the NP's seed dormancy.
Collapse
Affiliation(s)
- Aziz Sencan
- Department of Chemical Engineering, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Semra Kilic
- Department of Biology, Suleyman Demirel University, 32260, Isparta, Turkey.
| | - Havva Kaya
- Department of Bioengineering, Suleyman Demirel University, 32260, Isparta, Turkey
| |
Collapse
|
31
|
Zhang X, Sheng Y, Liu Z. Using expertise as an intermediary: Unleashing the power of blockchain technology to drive future sustainable management using hidden champions. Heliyon 2024; 10:e23807. [PMID: 38226273 PMCID: PMC10788455 DOI: 10.1016/j.heliyon.2023.e23807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
An overview of blockchain fundamentals and its potential benefits for sustainability is provided. The role of expertise as an intermediary on the blockchain to drive transparency and accountability is examined. This research examines the potential of blockchain technology in the field of economic management and to drive future sustainable development in emerging companies, which are referred to as hidden champions. This study addresses the need for transparent and responsive practices that promote social stability, economic growth, and environmental sustainability. The goals are to analyze economic functions, investigate the formation of appropriate economic patterns, facilitate equitable distribution, and support environmental protection efforts. The research method includes case studies and theoretical frameworks to collect relevant data. The results emphasize the importance of balancing competing interests, promoting security, and strengthening inclusive decision-making processes. This study emphasizes the intersection between economic development and environmental protection and highlights the role of sustainability criteria in guiding land use practices. The conclusion emphasizes that sustainable economic practices are critical for social, economic and environmental development, especially in emerging economies. Practical recommendations are provided to policymakers and stakeholders to improve economic governance frameworks and help achieve the Sustainable Development Goals.
Collapse
Affiliation(s)
- Xin Zhang
- School of Business, Applied Technology College of Soochow University, Kunshan, 215325, China
| | - Yifei Sheng
- School of Engineering, University of Manchester, Manchester, United Kingdom
| | - Z. Liu
- Energy Research Center, Energy Economics Institute, Beijing, China
| |
Collapse
|
32
|
Sembada AA, Lenggoro IW. Transport of Nanoparticles into Plants and Their Detection Methods. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:131. [PMID: 38251096 PMCID: PMC10819755 DOI: 10.3390/nano14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Nanoparticle transport into plants is an evolving field of research with diverse applications in agriculture and biotechnology. This article provides an overview of the challenges and prospects associated with the transport of nanoparticles in plants, focusing on delivery methods and the detection of nanoparticles within plant tissues. Passive and assisted delivery methods, including the use of roots and leaves as introduction sites, are discussed, along with their respective advantages and limitations. The barriers encountered in nanoparticle delivery to plants are highlighted, emphasizing the need for innovative approaches (e.g., the stem as a new recognition site) to optimize transport efficiency. In recent years, research efforts have intensified, leading to an evendeeper understanding of the intricate mechanisms governing the interaction of nanomaterials with plant tissues and cells. Investigations into the uptake pathways and translocation mechanisms within plants have revealed nuanced responses to different types of nanoparticles. Additionally, this article delves into the importance of detection methods for studying nanoparticle localization and quantification within plant tissues. Various techniques are presented as valuable tools for comprehensively understanding nanoparticle-plant interactions. The reliance on multiple detection methods for data validation is emphasized to enhance the reliability of the research findings. The future outlooks of this field are explored, including the potential use of alternative introduction sites, such as stems, and the continued development of nanoparticle formulations that improve adhesion and penetration. By addressing these challenges and fostering multidisciplinary research, the field of nanoparticle transport in plants is poised to make significant contributions to sustainable agriculture and environmental management.
Collapse
Affiliation(s)
- Anca Awal Sembada
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - I. Wuled Lenggoro
- Department of Applied Physics and Chemical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| |
Collapse
|
33
|
Wang Y. Study on the degradation conditions of corn stalks by Asian corn borer digestive enzymes combined with white-rot fungus. Sci Prog 2024; 107:368504241239447. [PMID: 38511725 PMCID: PMC10958821 DOI: 10.1177/00368504241239447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Since the environmentally friendly reuse of corn stalks attracts more and more attention, it is an efficient and feasible way to reuse corn stalks as forage. However, whether the cellulose, lignin, and hemicellulose within corn stalks can be effectively decomposed becomes a key to reusing corn stalks as forage. Orthogonal test was designed by five different degradation temperatures (22°C, 24°C, 26°C, 28°C, 30°C), five different pH values (4, 5, 6, 8, 10), and five different degradation time durations (5, 15, 25, 30, and 35 days) to examine 25 kinds of different degradation conditions. It was found that the decomposition effect of hemicellulose, cellulose, and lignin, of group 25 (26°C, pH = 5, 25 days) was stronger compared with other groups, with the contents calculated as 8.22%, 31.55%, and 22.55% individually (p < 0.01, p < 0.05). Group 19 (22°C, pH = 4, 5 days) revealed the worst degradation effect of cellulose, lignin, and hemicellulose compared to other groups, with contents calculated as 15.48%, 38.85%, and 29.57%, individually (p < 0.01, p < 0.05). The research data deliver a basis for ideal degradation conditions for corn stalks degradation in combination with the digestive enzymes of P. chrysosporium and O. furnacalis larva. Aiming to explore a highly efficient and environmentally friendly corn stalk degradation method.
Collapse
Affiliation(s)
- Yanchen Wang
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Jilin Engineering Normal University, Changchun, China
| |
Collapse
|
34
|
Orosun MM, Nwabachili S, Alshehri RF, Omeje M, Alshdoukhi IF, Okoro HK, Ogunkunle CO, Louis H, Abdulhamid FA, Osahon SE, Mohammed AU, Ehinlafa EO, Yunus SO, Ife-Adediran O. Potentially toxic metals in irrigation water, soil, and vegetables and their health risks using Monte Carlo models. Sci Rep 2023; 13:21220. [PMID: 38040785 PMCID: PMC10692326 DOI: 10.1038/s41598-023-48489-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Food safety has become a serious global concern because of the accumulation of potentially toxic metals (PTMs) in crops cultivated on contaminated agricultural soils. Amongst these toxic elements, arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb) receive worldwide attention because of their ability to cause deleterious health effects. Thus, an assessment of these toxic metals in the soils, irrigation waters, and the most widely consumed vegetables in Nigeria; Spinach (Amaranthushybridus), and Cabbage (Brassica oleracea) was evaluated using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The mean concentration (measured in mg kg-1) of the PTMs in the soils was in the sequence Cr (81.77) > Pb(19.91) > As(13.23) > Cd(3.25), exceeding the WHO recommended values in all cases. This contamination was corroborated by the pollution evaluation indices. The concentrations (measured in mg l-1) of the PTMs in the irrigation water followed a similar pattern i.e. Cr(1.87) > Pb(1.65) > As(0.85) > Cd(0.20). All the PTMs being studied, were found in the vegetables with Cr (5.37 and 5.88) having the highest concentration, followed by Pb (3.57 and 4.33), and As (1.09 and 1.67), while Cd (0.48 and 1.04) had the lowest concentration (all measured in mg kg-1) for cabbage and spinach, respectively. The concentration of the toxic metals was higher in spinach than in cabbage, which may be due to the redistribution of the greater proportion of the metals above the ground tissue, caused by the bioavailability of metals in the aqueous phase. Expectedly, the hazard index (HI),and carcinogenic risk values of spinach were higher than that of cabbage. This implies that spinach poses potentially higher health risks. Similarly, the Monte Carlo simulation results reveal that the 5th percentile, 95th percentile, and 50th percentile of the cumulative probability of cancer risks due to the consumption of these vegetables exceeds the acceptable range of 1.00E-6 and 1.00E-4. Thus, the probable risk of a cancerous effect is high, and necessary remedial actions are recommended.
Collapse
Affiliation(s)
- Muyiwa Michael Orosun
- Radiation, Health, and Environmental Physics Group, Physics Department, University of Ilorin, Ilorin, Nigeria.
- Department of Physics, University of Ilorin, Ilorin, Nigeria.
| | | | - Reem F Alshehri
- Department of Chemistry, College of Science, Taibah University, Medina, Saudi Arabia
| | - Maxwell Omeje
- Department of Physics, Covenant University, Ota, Ogun State, Nigeria
| | - Ibtehaj F Alshdoukhi
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Science, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hussein K Okoro
- Department of Industrial Chemistry, University of Ilorin, Ilorin, Nigeria
| | | | - Hitler Louis
- Department of Chemistry, University of Calabar, Calabar, Nigeria
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | | | - Adamu Usman Mohammed
- Department of Applied Geology, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | | | | | | |
Collapse
|