1
|
Batasheva S, Kotova S, Frolova A, Fakhrullin R. Atomic force microscopy for characterization of decellularized extracellular matrix (dECM) based materials. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2421739. [PMID: 39559530 PMCID: PMC11573343 DOI: 10.1080/14686996.2024.2421739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
In live organisms, cells are embedded in tissue-specific extracellular matrix (ECM), which provides chemical and mechanical signals important for cell differentiation, migration, and overall functionality. Careful reproduction of ECM properties in artificial cell scaffolds is necessary to get physiologically relevant results of in vitro studies and produce robust materials for cell and tissue engineering. Nanoarchitectonics is a contemporary way to building complex materials from nano-scale objects of artificial and biological origin. Decellularized ECM (dECM), remaining after cell elimination from organs, tissues and cell cultures is arguably the closest equivalent of native ECM achievable today. dECM-based materials can be used as templates or components for producing cell scaffolds using nanoarchitectonic approach. Irrespective of the form, in which dECM is used (whole acellular organ/tissue, bioink or hydrogel), the local stiffness of the dECM scaffold must be evaluated, since the fate of seeded cells depends on the mechanical properties of their environment. Careful dECM characterization is also necessary to reproduce essential ECM traits in artificial cell scaffolds by nanoparticle assembly. Atomic force microscopy (AFM) is a valuable characterization tool, as it allows simultaneous assessment of mechanical and topographic features of the scaffold, and additionally evaluate the efficiency of decellularization process and preservation of the extracellular matrix. This review depicts the current application of AFM in the field of dECM-based materials, including the basics of AFM technique and the use of flicker-noise spectroscopy (FNS) method for the quantification of the dECM micro- and nanostructure.
Collapse
Affiliation(s)
- Svetlana Batasheva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan Kazan, Russian Federation
| | - Svetlana Kotova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Anastasia Frolova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Rawil Fakhrullin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan Kazan, Russian Federation
| |
Collapse
|
2
|
Huang Y, Chen T, Chen X, Chen X, Zhang J, Liu S, Lu M, Chen C, Ding X, Yang C, Huang R, Song Y. Decoding Biomechanical Cues Based on DNA Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310330. [PMID: 38185740 DOI: 10.1002/smll.202310330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Biological systems perceive and respond to mechanical forces, generating mechanical cues to regulate life processes. Analyzing biomechanical forces has profound significance for understanding biological functions. Therefore, a series of molecular mechanical techniques have been developed, mainly including single-molecule force spectroscopy, traction force microscopy, and molecular tension sensor systems, which provide indispensable tools for advancing the field of mechanobiology. DNA molecules with a programmable structure and well-defined mechanical characteristics have attached much attention to molecular tension sensors as sensing elements, and are designed for the study of biomechanical forces to present biomechanical information with high sensitivity and resolution. In this work, a comprehensive overview of molecular mechanical technology is presented, with a particular focus on molecular tension sensor systems, specifically those based on DNA. Finally, the future development and challenges of DNA-based molecular tension sensor systems are looked upon.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ting Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaodie Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ximing Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Menghao Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chong Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiangyu Ding
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruiyun Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
3
|
Srbova L, Arasalo O, Lehtonen AJ, Pokki J. Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures. SOFT MATTER 2024; 20:3483-3498. [PMID: 38587658 DOI: 10.1039/d3sm01425h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 μm). These data show increasing IPN stiffness with crosslinking until saturation (≃15 mM of Ca2+). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture.
Collapse
Affiliation(s)
- Linda Srbova
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Ossi Arasalo
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Arttu J Lehtonen
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Juho Pokki
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| |
Collapse
|
4
|
Forg S, Guo X, von Klitzing R. Influence of Dopamine Methacrylamide on Swelling Behavior and Nanomechanical Properties of PNIPAM Microgels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1521-1534. [PMID: 38146181 DOI: 10.1021/acsami.3c15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The combination of the catechol-containing comonomer dopamine methacrylamide (DMA) with stimuli-responsive poly(N-isopropylacrylamide) (PNIPAM) microgels bears a huge potential in research and for applications due to the versatile properties of catechols. This research gives the first detailed insights into the influence of DMA on the swelling of PNIPAM microgels and their nanomechanical properties. Dynamic light scattering measurements showed that DMA decreases the volume phase transition temperature and completion temperature due to its higher hydrophobicity when compared to NIPAM, while sharpening the transition. The cross-linking ability of DMA decreases the swelling ratios and mesh sizes of the microgels. Microgels adsorbed at the solid surface are characterized by atomic force microscopy─as the DMA content increases, microgels protrude more from the surface. Force spectroscopy measurements below and above the volume phase transition temperature display a stiffening of the microgels with the incorporation of DMA and upon heating across its entire cross section as evidenced by an increase in the E modulus. This confirms the cross-linking ability of DMA. The affine network factor β, derived from the Flory-Rehner theory, is linearly correlated with the E moduli of both pure PNIPAM and P(NIPAM-co-DMA) microgels. However, large DMA amounts hinder the microgel shrinking while maintaining mechanical stiffness, possibly due to catechol interactions within the microgel network.
Collapse
Affiliation(s)
- Sandra Forg
- Soft Matter at Interfaces (SMI), Institute for Physics of Condensed Matter, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Xuhong Guo
- School of Chemical Engineering, East China University of Science and Technology, 200231 Shanghai, China
| | - Regine von Klitzing
- Soft Matter at Interfaces (SMI), Institute for Physics of Condensed Matter, Technical University of Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
5
|
Wong CA, Fraticelli Guzmán NS, Read AT, Hedberg-Buenz A, Anderson MG, Feola AJ, Sulchek T, Ethier CR. A Method for Analyzing AFM Force Mapping Data Obtained from Soft Tissue Cryosections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566263. [PMID: 38014311 PMCID: PMC10680563 DOI: 10.1101/2023.11.08.566263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Atomic force microscopy (AFM) is a valuable tool for assessing mechanical properties of biological samples, but interpretations of measurements on whole tissues can be difficult due to the tissue's highly heterogeneous nature. To overcome such difficulties and obtain more robust estimates of tissue mechanical properties, we describe an AFM force mapping and data analysis pipeline to characterize the mechanical properties of cryosectioned soft tissues. We assessed this approach on mouse optic nerve head and rat trabecular meshwork, cornea, and sclera. Our data show that the use of repeated measurements, outlier exclusion, and log-normal data transformation increases confidence in AFM mechanical measurements, and we propose that this methodology can be broadly applied to measuring soft tissue properties from cryosections.
Collapse
Affiliation(s)
- Cydney A Wong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | | | - A Thomas Read
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Adam Hedberg-Buenz
- Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA
| | - Michael G Anderson
- Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA
| | - Andrew J Feola
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
- Department of Ophthalmology, Emory University, Atlanta, GA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Atlanta GA
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Ophthalmology, Emory University, Atlanta, GA
| |
Collapse
|
6
|
Wang M, Mequanint K. Preparation and Microscopic Mechanical Characterization of L-Methionine-Based Polyphosphazene Fibrous Mats for Vascular Tissue Engineering. Pharmaceutics 2023; 15:2546. [PMID: 38004526 PMCID: PMC10674633 DOI: 10.3390/pharmaceutics15112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigates the mechanical properties, degradation behavior, and biocompatibility of poly[(α-amino acid ester) phosphazene] electrospun fibers based on the ethyl ester of L-methionine (PαAPz-M), a material with potential applications in tissue engineering. We utilized atomic force microscopy (AFM) to evaluate the fiber mechanical characteristics and calculate its Young's modulus, revealing it to closely mimic the stiffness of a natural extracellular matrix (ECM). We also studied the degradation behavior of PαAPz-M scaffolds over 21 days, showing that they maintain the highly porous structure required for tissue engineering. Further evaluation of mesenchymal multipotent 10T1/2 cell and mesenchymal stem cell (MSC) behavior on the scaffolds demonstrated significant cell viability, proliferation, and successful MSC differentiation into smooth muscle cells. Expression of collagen and elastin by MSCs on the fiber mats highlighted potential ECM formation during scaffold degradation, confirming PαAPz-M as a promising material for vascular tissue engineering.
Collapse
Affiliation(s)
| | - Kibret Mequanint
- Department of Chemical & Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B9, Canada;
| |
Collapse
|
7
|
Nizamoglu M, Joglekar MM, Almeida CR, Larsson Callerfelt AK, Dupin I, Guenat OT, Henrot P, van Os L, Otero J, Elowsson L, Farre R, Burgess JK. Innovative three-dimensional models for understanding mechanisms underlying lung diseases: powerful tools for translational research. Eur Respir Rev 2023; 32:230042. [PMID: 37495250 PMCID: PMC10369168 DOI: 10.1183/16000617.0042-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 07/28/2023] Open
Abstract
Chronic lung diseases result from alteration and/or destruction of lung tissue, inevitably causing decreased breathing capacity and quality of life for patients. While animal models have paved the way for our understanding of pathobiology and the development of therapeutic strategies for disease management, their translational capacity is limited. There is, therefore, a well-recognised need for innovative in vitro models to reflect chronic lung diseases, which will facilitate mechanism investigation and the advancement of new treatment strategies. In the last decades, lungs have been modelled in healthy and diseased conditions using precision-cut lung slices, organoids, extracellular matrix-derived hydrogels and lung-on-chip systems. These three-dimensional models together provide a wide spectrum of applicability and mimicry of the lung microenvironment. While each system has its own limitations, their advantages over traditional two-dimensional culture systems, or even over animal models, increases the value of in vitro models. Generating new and advanced models with increased translational capacity will not only benefit our understanding of the pathobiology of lung diseases but should also shorten the timelines required for discovery and generation of new therapeutics. This article summarises and provides an outline of the European Respiratory Society research seminar "Innovative 3D models for understanding mechanisms underlying lung diseases: powerful tools for translational research", held in Lisbon, Portugal, in April 2022. Current in vitro models developed for recapitulating healthy and diseased lungs are outlined and discussed with respect to the challenges associated with them, efforts to develop best practices for model generation, characterisation and utilisation of models and state-of-the-art translational potential.
Collapse
Affiliation(s)
- Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Both authors contributed equally
| | - Mugdha M Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Both authors contributed equally
| | - Catarina R Almeida
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | | | - Isabelle Dupin
- Centre de Recherche Cardio-thoracique de Bordeaux, Université de Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
| | - Olivier T Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, University Hospital of Bern, Bern, Switzerland
| | - Pauline Henrot
- Centre de Recherche Cardio-thoracique de Bordeaux, Université de Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
- Service d'exploration fonctionnelle respiratoire, CHU de Bordeaux, Pessac, France
| | - Lisette van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ramon Farre
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, The Netherlands
| |
Collapse
|
8
|
Holuigue H, Nacci L, Di Chiaro P, Chighizola M, Locatelli I, Schulte C, Alfano M, Diaferia GR, Podestà A. Native extracellular matrix probes to target patient- and tissue-specific cell-microenvironment interactions by force spectroscopy. NANOSCALE 2023; 15:15382-15395. [PMID: 37700706 DOI: 10.1039/d3nr01568h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Atomic Force Microscopy (AFM) is successfully used for the quantitative investigation of the cellular mechanosensing of the microenvironment. To this purpose, several force spectroscopy approaches aim at measuring the adhesive forces between two living cells and also between a cell and an appropriate reproduction of the extracellular matrix (ECM), typically exploiting tips suitably functionalised with single components (e.g. collagen, fibronectin) of the ECM. However, these probes only poorly reproduce the complexity of the native cellular microenvironment and consequently of the biological interactions. We developed a novel approach to produce AFM probes that faithfully retain the structural and biochemical complexity of the ECM; this was achieved by attaching to an AFM cantilever a micrometric slice of native decellularised ECM, which was cut by laser microdissection. We demonstrate that these probes preserve the morphological, mechanical, and chemical heterogeneity of the ECM. Native ECM probes can be used in force spectroscopy experiments aimed at targeting cell-microenvironment interactions. Here, we demonstrate the feasibility of dissecting mechanotransductive cell-ECM interactions in the 10 pN range. As proof-of-principle, we tested a rat bladder ECM probe against the AY-27 rat bladder cancer cell line. On the one hand, we obtained reproducible results using different probes derived from the same ECM regions; on the other hand, we detected differences in the adhesion patterns of distinct bladder ECM regions (submucosa, detrusor, and adventitia), in line with the disparities in composition and biophysical properties of these ECM regions. Our results demonstrate that native ECM probes, produced from patient-specific regions of organs and tissues, can be used to investigate cell-microenvironment interactions and early mechanotransductive processes by force spectroscopy. This opens new possibilities in the field of personalised medicine.
Collapse
Affiliation(s)
- H Holuigue
- CIMAINA and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milano, Italy.
| | - L Nacci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| | - P Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| | - M Chighizola
- CIMAINA and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milano, Italy.
| | - I Locatelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy.
| | - C Schulte
- CIMAINA and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milano, Italy.
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milano, Italy
| | - M Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy.
| | - G R Diaferia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| | - A Podestà
- CIMAINA and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
9
|
Lorenc E, Varinelli L, Chighizola M, Brich S, Pisati F, Guaglio M, Baratti D, Deraco M, Gariboldi M, Podestà A. Correlation between biological and mechanical properties of extracellular matrix from colorectal peritoneal metastases in human tissues. Sci Rep 2023; 13:12175. [PMID: 37500685 PMCID: PMC10374531 DOI: 10.1038/s41598-023-38763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Peritoneal metastases (PM) are common routes of dissemination for colorectal cancer (CRC) and remain a lethal disease with a poor prognosis. The properties of the extracellular matrix (ECM) are important in cancer development; studying their changes is crucial to understand CRC-PM development. We studied the elastic properties of ECMs derived from human samples of normal and neoplastic PM by atomic force microscopy (AFM); results were correlated with patient clinical data and expression of ECM components related to metastatic spread. We show that PM progression is accompanied by stiffening of the ECM, increased cancer associated fibroblasts (CAF) activity and increased deposition and crosslinking in neoplastic matrices; on the other hand, softer regions are also found in neoplastic ECMs on the same scales. Our results support the hypothesis that local changes in the normal ECM can create the ground for growth and spread from the tumour of invading metastatic cells. We have found correlations between the mechanical properties (relative stiffening between normal and neoplastic ECM) of the ECM and patients' clinical data, like age, sex, presence of protein activating mutations in BRAF and KRAS genes and tumour grade. Our findings suggest that the mechanical phenotyping of PM-ECM has the potential to predict tumour development.
Collapse
Affiliation(s)
- Ewelina Lorenc
- Dipartimento di Fisica "Aldo Pontremoli" and CIMaINa, Università degli Studi di Milano, via G. Celoria 16, 20133, Milan, Italy
| | - Luca Varinelli
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Matteo Chighizola
- Dipartimento di Fisica "Aldo Pontremoli" and CIMaINa, Università degli Studi di Milano, via G. Celoria 16, 20133, Milan, Italy
| | - Silvia Brich
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Federica Pisati
- Histopathology Unit, Cogentech Ltd. Benefit Corporation with a Sole Shareholder, via Adamello 16, 20139, Milan, Italy
| | - Marcello Guaglio
- Peritoneal Surface Malignancies Unit, Colon and Rectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Dario Baratti
- Peritoneal Surface Malignancies Unit, Colon and Rectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Marcello Deraco
- Peritoneal Surface Malignancies Unit, Colon and Rectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Manuela Gariboldi
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy.
| | - Alessandro Podestà
- Dipartimento di Fisica "Aldo Pontremoli" and CIMaINa, Università degli Studi di Milano, via G. Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
10
|
Mension E, Alonso I, Anglès-Acedo S, Ros C, Otero J, Villarino Á, Farré R, Saco A, Vega N, Castrejón N, Ordi J, Rakislova N, Tortajada M, Matas I, Gómez S, Ribera L, Castelo-Branco C. Effect of Fractional Carbon Dioxide vs Sham Laser on Sexual Function in Survivors of Breast Cancer Receiving Aromatase Inhibitors for Genitourinary Syndrome of Menopause: The LIGHT Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2255697. [PMID: 36763359 PMCID: PMC9918877 DOI: 10.1001/jamanetworkopen.2022.55697] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
IMPORTANCE Survivors of breast cancer present more severe symptoms of genitourinary syndrome of menopause (GSM) than patients without history of breast cancer. Recently, new treatments, such as vaginal laser therapy, have appeared, but evidence of their efficacy remains scarce. OBJECTIVE To assess the safety and efficacy of carbon dioxide (CO2) vs sham vaginal laser therapy after 6 months of follow-up in survivors of breast cancer with GSM receiving aromatase inhibitors. DESIGN, SETTING, AND PARTICIPANTS This prospective double-blind sham-controlled randomized clinical trial with two parallel study groups was performed during October 2020 to March 2022 in a tertiary referral hospital. Survivors of breast cancer using aromatase inhibitors were assessed for eligibility, and eligible patients were randomized into the 2 treatment groups. Follow-up was conducted at 6 months. Data were analyzed in July 2022. INTERVENTIONS All patients from both groups were instructed to use the first-line treatment (FLT) based on nonhormonal moisturizers and vaginal vibrator stimulation. Patients for each group were allocated to 5 monthly sessions of fractional CO2 laser therapy (CLT) or sham laser therapy (SLT). MAIN OUTCOMES AND MEASURES The primary outcome was sexual function, evaluated through Female Sexual Function Index (FSFI) score. Other subjective measures of efficacy included a visual analog scale of dyspareunia, vaginal pH, a Vaginal Health Index, quality of life (assessed via Short-Form 12), and body image (assessed with the Spanish Body Image Scale). Objective measures of efficacy included vaginal maturation index, vaginal epithelial elasticity (measured in Pascals) and vaginal epithelial thickness (measured in millimeters). Measures were assessed before and after the intervention. Tolerance (measured on a Likert scale), adverse effects, and estradiol levels were recorded. RESULTS Among 211 survivors of breast cancer assessed, 84 women were deemed eligible and 72 women (mean [SD] age, 52.6 [8.3] years) were randomized to CLT (35 participants) or SLT (37 participants) and analyzed. There were no statistically significant differences between groups at baseline. At 6 months, both groups showed improvement in FSFI (mean [SD] score at baseline vs 6 months: CLT, 14.8 [8.8] points vs 20.0 [9.5] points; SLT, 15.6 [7.0] points vs 23.5 [6.5] points), but there was no significant difference between CLT and SLT groups in the improvement of sexual function evaluated through the FSFI test overall (mean [SD] difference, 5.2 [1.5] points vs 7.9 [1.2] points; P = .15) or after excluding women who were not sexually active (mean [SD] difference, 2.9 [1.4] points vs 5.5 [1.1] points; P = .15). There were also no differences between improvement of the 2 groups at 6 months of follow-up in the other assessed subjective outcomes, including dyspareunia (mean [SD] difference, -4.3 [3.4] vs -4.5 [2.3]; P = .73), Vaginal Health Index (mean [SD] difference, 3.3 [4.1] vs 5.0 [4.5]; P = .17), body image (mean [SD] difference, -3.7 [4.5] vs -2.7 [4.8]; P = .35), and quality of life (mean [SD] difference, -0.3 [3.6] vs -0.7 [3.2]; P = .39). Similarly, there were no differences in improvements in objective outcomes, including vaginal pH (mean [SD] difference, -0.6 [0.9] vs -0.8 [1.2]; P = .29), vaginal maturation index (mean [SD] difference, 10.2 [17.4] vs 14.4 [17.1]; P = .15), vaginal epithelial thickness (mean [SD] difference, 0.021 [0.014] mm vs 0.013 [0.012] mm; P = .30), vaginal epithelial elasticity (mean [SD] difference, -1373 [3197] Pascals vs -2103 [3771] Pascals; P = .64). There were significant improvements in the overall analysis regardless of group in many outcomes. The 2 interventions were well tolerated, but tolerance was significantly lower in the CLT group than the SLT group (mean [SD] Likert scale score, 3.3 [1.3] vs 4.1 [1.0]; P = .007). No differences were observed in complications or serum estradiol levels. CONCLUSIONS AND RELEVANCE In this randomized clinical trial, vaginal laser treatment was found to be safe after 6 months of follow-up, but no statistically significant differences in efficacy were observed between CLT and SLT. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04619485.
Collapse
Affiliation(s)
- Eduard Mension
- Clinic Institute of Gynecology, Obstetrics and Neonatology, Faculty of Medicine-University of Barcelona, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Inmaculada Alonso
- Gynecology, Obstetrics and Neonatology Service, Hospital Joan XXIII, Tarragona, Spain
| | - Sònia Anglès-Acedo
- Clinic Institute of Gynecology, Obstetrics and Neonatology, Faculty of Medicine-University of Barcelona, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Cristina Ros
- Clinic Institute of Gynecology, Obstetrics and Neonatology, Faculty of Medicine-University of Barcelona, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- CIBER de enfermedades Respiratorias, Madrid, Spain
| | - Álvaro Villarino
- Unit of Biophysics and Bioengineering, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ramon Farré
- Unit of Biophysics and Bioengineering, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- CIBER de enfermedades Respiratorias, Madrid, Spain
| | - Adela Saco
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Naiara Vega
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Natalia Castrejón
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Jaume Ordi
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
- Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Natalia Rakislova
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
- Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Marta Tortajada
- Clinic Institute of Gynecology, Obstetrics and Neonatology, Faculty of Medicine-University of Barcelona, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Isabel Matas
- Clinic Institute of Gynecology, Obstetrics and Neonatology, Faculty of Medicine-University of Barcelona, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Sílvia Gómez
- Clinic Institute of Gynecology, Obstetrics and Neonatology, Faculty of Medicine-University of Barcelona, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Laura Ribera
- Clinic Institute of Gynecology, Obstetrics and Neonatology, Faculty of Medicine-University of Barcelona, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Camil Castelo-Branco
- Clinic Institute of Gynecology, Obstetrics and Neonatology, Faculty of Medicine-University of Barcelona, Hospital Clínic of Barcelona, Barcelona, Spain
- Institut d´Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
11
|
Haage A, Dhasarathy A. Working a second job: Cell adhesion proteins that moonlight in the nucleus. Front Cell Dev Biol 2023; 11:1163553. [PMID: 37169022 PMCID: PMC10164977 DOI: 10.3389/fcell.2023.1163553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
Cells are adept at sensing changes in their environment, transmitting signals internally to coordinate responses to external stimuli, and thereby influencing adaptive changes in cell states and behavior. Often, this response involves modulation of gene expression in the nucleus, which is seen largely as a physically separated process from the rest of the cell. Mechanosensing, whereby a cell senses physical stimuli, and integrates and converts these inputs into downstream responses including signaling cascades and gene regulatory changes, involves the participation of several macromolecular structures. Of note, the extracellular matrix (ECM) and its constituent macromolecules comprise an essential part of the cellular microenvironment, allowing cells to interact with each other, and providing both structural and biochemical stimuli sensed by adhesion transmembrane receptors. This highway of information between the ECM, cell adhesion proteins, and the cytoskeleton regulates cellular behavior, the disruption of which results in disease. Emerging evidence suggests a more direct role for some of these adhesion proteins in chromatin structure and gene regulation, RNA maturation and other non-canonical functions. While many of these discoveries were previously limited to observations of cytoplasmic-nuclear transport, recent advances in microscopy, and biochemical, proteomic and genomic technologies have begun to significantly enhance our understanding of the impact of nuclear localization of these proteins. This review will briefly cover known cell adhesion proteins that migrate to the nucleus, and their downstream functions. We will outline recent advances in this very exciting yet still emerging field, with impact ranging from basic biology to disease states like cancer.
Collapse
Affiliation(s)
- Amanda Haage
- *Correspondence: Amanda Haage, ; Archana Dhasarathy,
| | | |
Collapse
|
12
|
Chen C, Ibrahim Z, Marchand MF, Piolot T, Kamboj S, Carreiras F, Yamada A, Schanne-Klein MC, Chen Y, Lambert A, Aimé C. Three-Dimensional Collagen Topology Shapes Cell Morphology, beyond Stiffness. ACS Biomater Sci Eng 2022; 8:5284-5294. [PMID: 36342082 DOI: 10.1021/acsbiomaterials.2c00879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular heterogeneity is associated with many physiological processes, including pathological ones, such as morphogenesis and tumorigenesis. The extracellular matrix (ECM) is a key player in the generation of cellular heterogeneity. Advances in our understanding rely on our ability to provide relevant in vitro models. This requires obtainment of the characteristics of the tissues that are essential for controlling cell fate. To do this, we must consider the diversity of tissues, the diversity of physiological contexts, and the constant remodeling of the ECM along these processes. To this aim, we have fabricated a library of ECM models for reproducing the scaffold of connective tissues and the basement membrane by using different biofabrication routes based on the electrospinning and drop casting of biopolymers from the ECM. Using a combination of electron microscopy, multiphoton imaging, and AFM nanoindentation, we show that we can vary independently protein composition, topology, and stiffness of ECM models. This in turns allows one to generate the in vivo complexity of the phenotypic landscape of ovarian cancer cells. We show that, while this phenotypic shift cannot be directly correlated with a unique ECM feature, the three-dimensional collagen fibril topology patterns cell shape, beyond protein composition and stiffness of the ECM. On this line, this work is a further step toward the development of ECM models recapitulating the constantly remodeled environment that cells face and thus provides new insights for cancer model engineering and drug testing.
Collapse
Affiliation(s)
- Changchong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, Paris 75005, France
| | - Zeinab Ibrahim
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, Paris 75005, France
| | - Marion F Marchand
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231, France
| | - Tristan Piolot
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231, France
| | - Sahil Kamboj
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Maison Internationale de la Recherche, Rue Descartes, Neuville sur Oise Cedex 95031, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Maison Internationale de la Recherche, Rue Descartes, Neuville sur Oise Cedex 95031, France
| | - Ayako Yamada
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, Paris 75005, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences (LOB), École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Route de Saclay, Palaiseau Cedex 91128, France
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, Paris 75005, France
| | - Ambroise Lambert
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Maison Internationale de la Recherche, Rue Descartes, Neuville sur Oise Cedex 95031, France
| | - Carole Aimé
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, Paris 75005, France
| |
Collapse
|
13
|
Karkali K, Jorba I, Navajas D, Martin-Blanco E. Measuring ventral nerve cord stiffness in live flat-dissected Drosophila embryos by atomic force microscopy. STAR Protoc 2022; 3:101901. [PMID: 36595903 PMCID: PMC9732408 DOI: 10.1016/j.xpro.2022.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Drosophila is an amenable system for addressing the mechanics of morphogenesis. We describe a workflow for characterizing the mechanical properties of its ventral nerve cord (VNC), at different developmental stages, in live, flat-dissected embryos employing atomic force microscopy (AFM). AFM is performed with spherical probes, and stiffness (Young's modulus) is calculated by fitting force curves with Hertz's contact model. For complete details on the use and execution of this protocol, please refer to Karkali et al. (2022).
Collapse
Affiliation(s)
- Katerina Karkali
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain,Corresponding author
| | - Ignasi Jorba
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain,CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain,Facultat de Medicina i Ciencies de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain,Corresponding author
| | - Daniel Navajas
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain,CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain,Facultat de Medicina i Ciencies de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Zhao L, Fu X, Zhang L, Ye Z. Effect of mechanical properties of Jurkat cell on adhesion properties of Jurkat integrin and VCAM-1: An AFM study. Colloids Surf B Biointerfaces 2022; 218:112784. [PMID: 36030725 DOI: 10.1016/j.colsurfb.2022.112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/07/2022] [Accepted: 08/20/2022] [Indexed: 10/15/2022]
Abstract
Mechanical properties play key roles in the immune system, especially the activation, transformation and subsequent effector responses of immune cells. As transmembrane adhesion receptors, integrins mediate the adhesion events of both cells and cell-extracellular matrix (ECM). Integrin affinity would influence the crosslinking of cytoskeleton, leading to the change of elastic properties of cells. In this study, the cells were treated with F-actin destabilizing agent Cytochalasin-D (Cyt-D), fixed by Glutaraldehyde, and cultivated in hypotonic solution respectively. We used Atomic force microscopy (AFM) to quantitatively measure the elasticity of Jurkat cells and adhesion properties between integrins and vascular cell adhesion molecule-1 (VCAM-1), and immunofluorescence to study the alteration of cytoskeleton. Glutaraldehyde had a positive effect on the adhesion force and Young's modulus. However, these mechanical properties decreased in a hypotonic environment, confirming the findings of cellular physiological structure. There was no significant difference in the bond strength and elasticity of Jurkat cells treated with Cytochalasin-D, probably because of lower importance of actin in suspension cells. All the treatments in this study pose a negative effect on the adhesion probability between integrins and VCAM-1, which demonstrates the effect of structural alteration of the cytoskeleton on the conformation of integrin. Clear consistency between adhesion force of integrin/VCAM-1 bond and Young's modulus of Jurkat cells was shown. Our results further demonstrated the relationship between cytoskeleton and integrin-ligand by mechanical characteristics.
Collapse
Affiliation(s)
- Leqian Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China
| | - Xingliang Fu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China
| | - Liyuan Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China.
| |
Collapse
|
15
|
Méndez M, Fabregues F, Ferreri J, Calafell JM, Villarino A, Otero J, Farre R, Carmona F. Biomechanical characteristics of the ovarian cortex in POI patients and functional outcomes after drug-free IVA. J Assist Reprod Genet 2022; 39:1759-1767. [PMID: 35904669 PMCID: PMC9428073 DOI: 10.1007/s10815-022-02579-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/19/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE There is increasing evidence that the ovarian extracellular matrix (ECM) plays a critical role in follicle development. The rigidity of the cortical ECM limits expansion of the follicle and consequently oocyte maturation, maintaining the follicle in its quiescent state. Quiescent primordial, primary, and secondary follicles still exist in primary ovarian insufficiency (POI) patients, and techniques as in vitro activation (IVA) and drug-free IVA have recently been developed aiming to activate these follicles based on the Hippo signaling disruption that is essential in mechanotransduction. In this context, we analyze the effect of drug-free IVA in POI patients, comparing the relationship between possible resumption ovarian function and biomechanical properties of ovarian tissue. METHODS Nineteen POI patients according to ESHRE criteria who underwent drug-free IVA by laparoscopy between January 2018 and December 2019 and were followed up for a year after the intervention. A sample of ovarian cortex taken during the intervention was analyzed by atomic force microscopy (AFM) in order to quantitatively measure tissue stiffness (Young's elastic modulus, E) at the micrometer scale. Functional outcomes after drug-free were analyzed. RESULTS Resumption of ovarian function was observed in 10 patients (52.6%) and two of them became pregnant with live births. There were no differences in clinical characteristics (age and duration of amenorrhea) and basal hormone parameters (FSH and AMH) depending on whether or not there was activation after surgery. However, ovarian cortex stiffness was significantly greater in patients with ovarian activity after drug-free IVA: median E = 5519 Pa (2260-11,296) vs 1501 (999-3474); p-value < 0.001. CONCLUSIONS Biomechanical properties of ovarian cortex in POI patients have a great variability, and higher ovarian tissue stiffness entails a more favorable status when drug-free IVA is applied in their treatment. This status is probably related to an ovary with more residual follicles, which would explain a greater possibility of ovarian follicular reactivations after treatment.
Collapse
Affiliation(s)
- M. Méndez
- Institute of Gynaecology Obstetrics and Neonatology (ICGON), Hospital Clínic de Barcelona, Barcelona, Spain
| | - F. Fabregues
- Institute of Gynaecology Obstetrics and Neonatology (ICGON), Hospital Clínic de Barcelona, Barcelona, Spain ,August Pi Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - J. Ferreri
- Institute of Gynaecology Obstetrics and Neonatology (ICGON), Hospital Clínic de Barcelona, Barcelona, Spain
| | - J. M. Calafell
- Institute of Gynaecology Obstetrics and Neonatology (ICGON), Hospital Clínic de Barcelona, Barcelona, Spain
| | - A. Villarino
- Biophysics and Bioengineering Unit, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - J. Otero
- Biophysics and Bioengineering Unit, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain ,CIBER of Respiratory Diseases, Madrid, Spain
| | - R. Farre
- August Pi Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain ,Biophysics and Bioengineering Unit, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain ,CIBER of Respiratory Diseases, Madrid, Spain
| | - F. Carmona
- Institute of Gynaecology Obstetrics and Neonatology (ICGON), Hospital Clínic de Barcelona, Barcelona, Spain ,August Pi Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
16
|
López-Mengual A, Segura-Feliu M, Sunyer R, Sanz-Fraile H, Otero J, Mesquida-Veny F, Gil V, Hervera A, Ferrer I, Soriano J, Trepat X, Farré R, Navajas D, Del Río JA. Involvement of Mechanical Cues in the Migration of Cajal-Retzius Cells in the Marginal Zone During Neocortical Development. Front Cell Dev Biol 2022; 10:886110. [PMID: 35652101 PMCID: PMC9150848 DOI: 10.3389/fcell.2022.886110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence points to coordinated action of chemical and mechanical cues during brain development. At early stages of neocortical development, angiogenic factors and chemokines such as CXCL12, ephrins, and semaphorins assume crucial roles in orchestrating neuronal migration and axon elongation of postmitotic neurons. Here we explore the intrinsic mechanical properties of the developing marginal zone of the pallium in the migratory pathways and brain distribution of the pioneer Cajal-Retzius cells. These neurons are generated in several proliferative regions in the developing brain (e.g., the cortical hem and the pallial subpallial boundary) and migrate tangentially in the preplate/marginal zone covering the upper portion of the developing cortex. These cells play crucial roles in correct neocortical layer formation by secreting several molecules such as Reelin. Our results indicate that the motogenic properties of Cajal-Retzius cells and their perinatal distribution in the marginal zone are modulated by both chemical and mechanical factors, by the specific mechanical properties of Cajal-Retzius cells, and by the differential stiffness of the migratory routes. Indeed, cells originating in the cortical hem display higher migratory capacities than those generated in the pallial subpallial boundary which may be involved in the differential distribution of these cells in the dorsal-lateral axis in the developing marginal zone.
Collapse
Affiliation(s)
- Ana López-Mengual
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Miriam Segura-Feliu
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Raimon Sunyer
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain
| | - Héctor Sanz-Fraile
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain
| | - Francina Mesquida-Veny
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Senior Consultant, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de La Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.,University of Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Xavier Trepat
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Integrative Cell and Tissue Dynamics, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Institució Catalana de Recerca I Estudis Avançats, University of Barcelona, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain.,Institut D'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica I Bioenginyeria, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Madrid, Spain.,Cellular and Respiratory Biomechanics, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Holuigue H, Lorenc E, Chighizola M, Schulte C, Varinelli L, Deraco M, Guaglio M, Gariboldi M, Podestà A. Force Sensing on Cells and Tissues by Atomic Force Microscopy. SENSORS (BASEL, SWITZERLAND) 2022; 22:2197. [PMID: 35336366 PMCID: PMC8955449 DOI: 10.3390/s22062197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023]
Abstract
Biosensors are aimed at detecting tiny physical and chemical stimuli in biological systems. Physical forces are ubiquitous, being implied in all cellular processes, including cell adhesion, migration, and differentiation. Given the strong interplay between cells and their microenvironment, the extracellular matrix (ECM) and the structural and mechanical properties of the ECM play an important role in the transmission of external stimuli to single cells within the tissue. Vice versa, cells themselves also use self-generated forces to probe the biophysical properties of the ECM. ECM mechanics influence cell fate, regulate tissue development, and show peculiar features in health and disease conditions of living organisms. Force sensing in biological systems is therefore crucial to dissecting and understanding complex biological processes, such as mechanotransduction. Atomic Force Microscopy (AFM), which can both sense and apply forces at the nanoscale, with sub-nanonewton sensitivity, represents an enabling technology and a crucial experimental tool in biophysics and mechanobiology. In this work, we report on the application of AFM to the study of biomechanical fingerprints of different components of biological systems, such as the ECM, the whole cell, and cellular components, such as the nucleus, lamellipodia and the glycocalyx. We show that physical observables such as the (spatially resolved) Young's Modulus (YM) of elasticity of ECMs or cells, and the effective thickness and stiffness of the glycocalyx, can be quantitatively characterized by AFM. Their modification can be correlated to changes in the microenvironment, physio-pathological conditions, or gene regulation.
Collapse
Affiliation(s)
- Hatice Holuigue
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Ewelina Lorenc
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Matteo Chighizola
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Carsten Schulte
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Luca Varinelli
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (L.V.); (M.G.)
| | - Marcello Deraco
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (M.D.); (M.G.)
| | - Marcello Guaglio
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (M.D.); (M.G.)
| | - Manuela Gariboldi
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (L.V.); (M.G.)
| | - Alessandro Podestà
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| |
Collapse
|
18
|
Lei X, Li H, Han Y, Li J, Yu F, Liang Q. Modulus characterization of cells with submicron colloidal probes by atomic force microscope. Microsc Res Tech 2021; 85:882-891. [PMID: 34708461 DOI: 10.1002/jemt.23957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/11/2021] [Accepted: 09/26/2021] [Indexed: 11/07/2022]
Abstract
Colloidal probes have been increasingly demanded for the characterization of cellular modulus in atomic force microscope because of their well-defined geometry and large contact area with cell. In this work, submicron colloidal probes are prepared by scanning electron microscope/focused ion beam and compared with sharp tip and micron colloidal probe, in conjunction with loading velocity and indentation depth on the apparent elastic modulus. NIM and cartilage cells are used as specimens. The results show that modulus value measured by sharp tip changes significantly with loading velocity while remains almost stable by colloidal probes. Also, submicron colloidal probe is superior in characterizing the modulus with increasing indentation depth, which could help reveal the mechanical details of cellular membrane and the modulus of the whole cell. To test the submicron colloidal probe further, the modulus distribution map of cell is scanned with submicron colloidal probe of 50 nm radius during small and large indentation depths with high spatial resolution. The outcome of this work will provide the effective submicron colloidal probe according to the effect of loading velocity and indentation depth, characterizing the mechanical properties of the cells.
Collapse
Affiliation(s)
- Xiaojiao Lei
- School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huiqin Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Han
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinjin Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Liang
- School of Astronomy and Physics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Rubí-Sans G, Nyga A, Rebollo E, Pérez-Amodio S, Otero J, Navajas D, Mateos-Timoneda MA, Engel E. Development of Cell-Derived Matrices for Three-Dimensional In Vitro Cancer Cell Models. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44108-44123. [PMID: 34494824 DOI: 10.1021/acsami.1c13630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Most morphogenetic and pathological processes are driven by cells responding to the surrounding matrix, such as its composition, architecture, and mechanical properties. Despite increasing evidence for the role of extracellular matrix (ECM) in tissue and disease development, many in vitro substitutes still fail to effectively mimic the native microenvironment. We established a novel method to produce macroscale (>1 cm) mesenchymal cell-derived matrices (CDMs) aimed to mimic the fibrotic tumor microenvironment surrounding epithelial cancer cells. CDMs are produced by human adipose mesenchymal stem cells cultured in sacrificial 3D scaffold templates of fibronectin-coated poly-lactic acid microcarriers (MCs) in the presence of macromolecular crowders. We showed that decellularized CDMs closely mimic the fibrillar protein composition, architecture, and mechanical properties of human fibrotic ECM from cancer masses. CDMs had highly reproducible composition made of collagen types I and III and fibronectin ECM with tunable mechanical properties. Moreover, decellularized and MC-free CDMs were successfully repopulated with cancer cells throughout their 3D structure, and following chemotherapeutic treatment, cancer cells showed greater doxorubicin resistance compared to 3D culture in collagen hydrogels. Collectively, these results support the use of CDMs as a reproducible and tunable tool for developing 3D in vitro cancer models.
Collapse
Affiliation(s)
- Gerard Rubí-Sans
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Agata Nyga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Elena Rebollo
- Molecular Imaging Platform, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Soledad Pérez-Amodio
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- IMEM-BRT group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
| | - Jorge Otero
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona 08036, Spain
- CIBER de Enfermedades Respiratorias, Madrid 28029, Spain
| | - Daniel Navajas
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona 08036, Spain
- CIBER de Enfermedades Respiratorias, Madrid 28029, Spain
| | - Miguel A Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès (Barcelona) 08195, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- IMEM-BRT group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
| |
Collapse
|
20
|
Bioprintable Lung Extracellular Matrix Hydrogel Scaffolds for 3D Culture of Mesenchymal Stromal Cells. Polymers (Basel) 2021; 13:polym13142350. [PMID: 34301107 PMCID: PMC8309540 DOI: 10.3390/polym13142350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cell (MSC)-based cell therapy in acute respiratory diseases is based on MSC secretion of paracrine factors. Several strategies have proposed to improve this are being explored including pre-conditioning the MSCs prior to administration. We here propose a strategy for improving the therapeutic efficacy of MSCs based on cell preconditioning by growing them in native extracellular matrix (ECM) derived from the lung. To this end, a bioink with tunable stiffness based on decellularized porcine lung ECM hydrogels was developed and characterized. The bioink was suitable for 3D culturing of lung-resident MSCs without the need for additional chemical or physical crosslinking. MSCs showed good viability, and contraction assays showed the existence of cell–matrix interactions in the bioprinted scaffolds. Adhesion capacity and length of the focal adhesions formed were increased for the cells cultured within the lung hydrogel scaffolds. Also, there was more than a 20-fold increase of the expression of the CXCR4 receptor in the 3D-cultured cells compared to the cells cultured in plastic. Secretion of cytokines when cultured in an in vitro model of lung injury showed a decreased secretion of pro-inflammatory mediators for the cells cultured in the 3D scaffolds. Moreover, the morphology of the harvested cells was markedly different with respect to conventionally (2D) cultured MSCs. In conclusion, the developed bioink can be used to bioprint structures aimed to improve preconditioning MSCs for therapeutic purposes.
Collapse
|
21
|
The role of physical cues in the development of stem cell-derived organoids. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 51:105-117. [PMID: 34120215 PMCID: PMC8964551 DOI: 10.1007/s00249-021-01551-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Organoids are a novel three-dimensional stem cells’ culture system that allows the in vitro recapitulation of organs/tissues structure complexity. Pluripotent and adult stem cells are included in a peculiar microenvironment consisting of a supporting structure (an extracellular matrix (ECM)-like component) and a cocktail of soluble bioactive molecules that, together, mimic the stem cell niche organization. It is noteworthy that the balance of all microenvironmental components is the most critical step for obtaining the successful development of an accurate organoid instead of an organoid with heterogeneous morphology, size, and cellular composition. Within this system, mechanical forces exerted on stem cells are collected by cellular proteins and transduced via mechanosensing—mechanotransduction mechanisms in biochemical signaling that dictate the stem cell specification process toward the formation of organoids. This review discusses the role of the environment in organoids formation and focuses on the effect of physical components on the developmental system. The work starts with a biological description of organoids and continues with the relevance of physical forces in the organoid environment formation. In this context, the methods used to generate organoids and some relevant published reports are discussed as examples showing the key role of mechanosensing–mechanotransduction mechanisms in stem cell-derived organoids.
Collapse
|
22
|
Sanz-Fraile H, Amoros S, Mendizabal I, Galvez-Monton C, Prat-Vidal C, Bayes-Genis A, Navajas D, Farre R, Otero J. Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture. Tissue Eng Part A 2021; 26:358-370. [PMID: 32085691 DOI: 10.1089/ten.tea.2019.0199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type I collagen hydrogels are of high interest in tissue engineering. With the evolution of 3D bioprinting technologies, a high number of collagen-based scaffolds have been reported for the development of 3D cell cultures. A recent proposal was to mix collagen with silk fibroin derived from Bombyx mori silkworm. Nevertheless, due to the difficulties in the preparation and the characteristics of the protein, several problems such as phase separation and collagen denaturation appear during the procedure. Therefore, the common solution is to diminish the concentration of collagen although in that way the most biologically relevant component is reduced. In this study, we present a new, simple, and effective method to develop a collagen-silk hybrid hydrogel with high collagen concentration and with increased stiffness approaching that of natural tissues, which could be of high interest for the development of cardiac patches for myocardial regeneration and for preconditioning of mesenchymal stem cells (MSCs) to improve their therapeutic potential. Sericin in the silk was preserved by using a physical solubilizing procedure that results in a preserved fibrous structure of type I collagen, as shown by ultrastructural imaging. The macro- and micromechanical properties of the hybrid hydrogels measured by tensile stretch and atomic force microscopy, respectively, showed a more than twofold stiffening than the collagen-only hydrogels. Rheological measurements showed improved printability properties for the developed biomaterial. The suitability of the hydrogels for 3D cell culture was assessed by 3D bioprinting bone marrow-derived MSCs cultured within the scaffolds. The result was a biomaterial with improved printability characteristics that better resembled the mechanical properties of natural soft tissues while preserving biocompatibility owing to the high concentration of collagen. Impact statement In this study, we report the development of silk microfiber-reinforced type I collagen hydrogels for 3D bioprinting and cell culture. In contrast with previously reported studies, a novel physical method allowed the preservation of the silk sericin protein. Hydrogels were stable, showed no phase separation between the biomaterials, and they presented improved printability. An increase between two- and threefold of the multiscale stiffness of the scaffolds was achieved with no need of using additional crosslinkers or complex methods, which could be of high relevance for cardiac patches development and for preconditioning mesenchymal stem cells (MSCs) for therapeutic applications. We demonstrate that bone marrow-derived MSCs can be effectively bioprinted and 3D cultured within the stiffened structures.
Collapse
Affiliation(s)
- Hector Sanz-Fraile
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Susana Amoros
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Irene Mendizabal
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Carolina Galvez-Monton
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,Hearth Institute (iCor), Germans Trias i Pujol University Hospital, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Prat-Vidal
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,Hearth Institute (iCor), Germans Trias i Pujol University Hospital, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,Hearth Institute (iCor), Germans Trias i Pujol University Hospital, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Daniel Navajas
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ramon Farre
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Institut d'investigacions Biomèdiques Agustí Pi i Sunyer, Barcelona, Spain
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Li M, Xi N, Wang YC, Liu LQ. Atomic force microscopy for revealing micro/nanoscale mechanics in tumor metastasis: from single cells to microenvironmental cues. Acta Pharmacol Sin 2021; 42:323-339. [PMID: 32807839 PMCID: PMC8027022 DOI: 10.1038/s41401-020-0494-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Mechanics are intrinsic properties which appears throughout the formation, development, and aging processes of biological systems. Mechanics have been shown to play important roles in regulating the development and metastasis of tumors, and understanding tumor mechanics has emerged as a promising way to reveal the underlying mechanisms guiding tumor behaviors. In particular, tumors are highly complex diseases associated with multifaceted factors, including alterations in cancerous cells, tissues, and organs as well as microenvironmental cues, indicating that investigating tumor mechanics on multiple levels is significantly helpful for comprehensively understanding the effects of mechanics on tumor progression. Recently, diverse techniques have been developed for probing the mechanics of tumors, among which atomic force microscopy (AFM) has appeared as an excellent platform enabling simultaneously characterizing the structures and mechanical properties of living biological systems ranging from individual molecules and cells to tissue samples with unprecedented spatiotemporal resolution, offering novel possibilities for understanding tumor physics and contributing much to the studies of cancer. In this review, we survey the recent progress that has been achieved with the use of AFM for revealing micro/nanoscale mechanics in tumor development and metastasis. Challenges and future progress are also discussed.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, China
| | - Yue-Chao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian-Qing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Soriano JL, Calpena AC, Rodríguez-Lagunas MJ, Domènech Ò, Bozal-de Febrer N, Garduño-Ramírez ML, Clares B. Endogenous Antioxidant Cocktail Loaded Hydrogel for Topical Wound Healing of Burns. Pharmaceutics 2020; 13:pharmaceutics13010008. [PMID: 33375069 PMCID: PMC7822007 DOI: 10.3390/pharmaceutics13010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
The main goal of this work is the study of the skin wound healing efficacy of an antioxidant cocktail consisting of vitamins A, D, E and the endogenous pineal hormone melatonin (MLT), with all of these loaded into a thermosensitive hydrogel delivery system. The resulting formulation was characterized by scanning electron microscopy. The antioxidant efficacy and microbiological activity against Gram positive and Gram negative strains were also assayed. The skin healing efficacy was tested using an in vivo model which included histological evaluation. Furthermore, atomic force microscopy was employed to evaluate the wound healing efficacy of rat skin burns through the determination of its elasticity at the nanoscale using force spectroscopy analysis. The resulting hydrogel exhibited sol state at low temperature and turned into a gel at 30 ± 0.2 °C. The hydrogel containing the antioxidant cocktail showed higher scavenging activity than the hydrogel containing vitamins or MLT, separately. The formulation showed optimal antimicrobial activity. It was comparable to a commercial reference. It was also evidenced that the hydrogel containing the antioxidant cocktail exhibited the strongest healing process in the skin burns of rats, similar to the assayed commercial reference containing silver sulfadiazine. Histological studies confirmed the observed results. Finally, atomic force microscopy demonstrated a similar distribution of Young's modulus values between burned skin treated with the commercial reference and burned skin treated with hydrogel containing the antioxidant cocktail, and all these with healthy skin. The use of an antioxidant cocktail of vitamins and MLT might be a promising treatment for skin wounds for future clinical studies.
Collapse
Affiliation(s)
- José L. Soriano
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Ana C. Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Nanoscience & Nanotechnology Institute (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (A.C.C.); (B.C.); Tel.: +34-934-024-560 (A.C.C.); +34-958-246-664 (B.C.)
| | - María J. Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Òscar Domènech
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Nanoscience & Nanotechnology Institute (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Nuria Bozal-de Febrer
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain;
| | - María L. Garduño-Ramírez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, 62209 Cuernavaca, Mexico;
| | - Beatriz Clares
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
- Nanoscience & Nanotechnology Institute (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- Correspondence: (A.C.C.); (B.C.); Tel.: +34-934-024-560 (A.C.C.); +34-958-246-664 (B.C.)
| |
Collapse
|
25
|
Dasgupta D, Pally D, Saini DK, Bhat R, Ghosh A. Nanomotors Sense Local Physicochemical Heterogeneities in Tumor Microenvironments*. Angew Chem Int Ed Engl 2020; 59:23690-23696. [PMID: 32918839 PMCID: PMC7756332 DOI: 10.1002/anie.202008681] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/16/2020] [Indexed: 12/11/2022]
Abstract
The invasion of cancer is brought about by continuous interaction of malignant cells with their surrounding tissue microenvironment. Investigating the remodeling of local extracellular matrix (ECM) by invading cells can thus provide fundamental insights into the dynamics of cancer progression. In this paper, we use an active untethered nanomechanical tool, realized as magnetically driven nanomotors, to locally probe a 3D tissue culture environment. We observed that nanomotors preferentially adhere to the cancer-proximal ECM and magnitude of the adhesive force increased with cell lines of higher metastatic ability. We experimentally confirmed that sialic acid linkage specific to cancer-secreted ECM makes it differently charged, which causes this adhesion. In an assay consisting of both cancerous and non-cancerous epithelia, that mimics the in vivo histopathological milieu of a malignant breast tumor, we find that nanomotors preferentially decorate the region around the cancer cells.
Collapse
Affiliation(s)
- Debayan Dasgupta
- Centre for Nano Science and EngineeringIndian Institute of ScienceBangalore560012India
| | - Dharma Pally
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangalore560012India
| | - Deepak K. Saini
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangalore560012India
- Centre for Biosystems Science and Engineering, IIScBangalore560012India
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangalore560012India
| | - Ambarish Ghosh
- Centre for Nano Science and EngineeringIndian Institute of ScienceBangalore560012India
- Department of PhysicsIndian Institute of ScienceBangalore560012India
| |
Collapse
|
26
|
Affiliation(s)
- Chandra Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
27
|
Kubiak A, Zieliński T, Pabijan J, Lekka M. Nanomechanics in Monitoring the Effectiveness of Drugs Targeting the Cancer Cell Cytoskeleton. Int J Mol Sci 2020; 21:E8786. [PMID: 33233645 PMCID: PMC7699791 DOI: 10.3390/ijms21228786] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing attention is devoted to the use of nanomechanics as a marker of various pathologies. Atomic force microscopy (AFM) is one of the techniques that could be applied to quantify the nanomechanical properties of living cells with a high spatial resolution. Thus, AFM offers the possibility to trace changes in the reorganization of the cytoskeleton in living cells. Impairments in the structure, organization, and functioning of two main cytoskeletal components, namely, actin filaments and microtubules, cause severe effects, leading to cell death. That is why these cytoskeletal components are targets for antitumor therapy. This review intends to describe the gathered knowledge on the capability of AFM to trace the alterations in the nanomechanical properties of living cells induced by the action of antitumor drugs that could translate into their effectiveness.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland; (A.K.); (T.Z.); (J.P.)
| |
Collapse
|
28
|
Interleukin-1β Modulation of the Mechanobiology of Primary Human Pulmonary Fibroblasts: Potential Implications in Lung Repair. Int J Mol Sci 2020; 21:ijms21228417. [PMID: 33182538 PMCID: PMC7696791 DOI: 10.3390/ijms21228417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022] Open
Abstract
Pro-inflammatory cytokines like interleukin-1β (IL-1β) are upregulated during early responses to tissue damage and are expected to transiently compromise the mechanical microenvironment. Fibroblasts are key regulators of tissue mechanics in the lungs and other organs. However, the effects of IL-1β on fibroblast mechanics and functions remain unclear. Here we treated human pulmonary fibroblasts from control donors with IL-1β and used Atomic Force Microscopy to unveil that IL-1β significantly reduces the stiffness of fibroblasts concomitantly with a downregulation of filamentous actin (F-actin) and alpha-smooth muscle (α-SMA). Likewise, COL1A1 mRNA was reduced, whereas that of collagenases MMP1 and MMP2 were upregulated, favoring a reduction of type-I collagen. These mechanobiology changes were functionally associated with reduced proliferation and enhanced migration upon IL-1β stimulation, which could facilitate lung repair by drawing fibroblasts to sites of tissue damage. Our observations reveal that IL-1β may reduce local tissue rigidity by acting both intracellularly and extracellularly through the downregulation of fibroblast contractility and type I collagen deposition, respectively. These IL-1β-dependent mechanical effects may enhance lung repair further by locally increasing pulmonary tissue compliance to preserve normal lung distension and function. Moreover, our results support that IL-1β provides innate anti-fibrotic protection that may be relevant during the early stages of lung repair.
Collapse
|
29
|
Dasgupta D, Pally D, Saini DK, Bhat R, Ghosh A. Nanomotors Sense Local Physicochemical Heterogeneities in Tumor Microenvironments**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Debayan Dasgupta
- Centre for Nano Science and Engineering Indian Institute of Science Bangalore 560012 India
| | - Dharma Pally
- Department of Molecular Reproduction, Development and Genetics Indian Institute of Science Bangalore 560012 India
| | - Deepak K. Saini
- Department of Molecular Reproduction, Development and Genetics Indian Institute of Science Bangalore 560012 India
- Centre for Biosystems Science and Engineering, IISc Bangalore 560012 India
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics Indian Institute of Science Bangalore 560012 India
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering Indian Institute of Science Bangalore 560012 India
- Department of Physics Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
30
|
Bingham GC, Lee F, Naba A, Barker TH. Spatial-omics: Novel approaches to probe cell heterogeneity and extracellular matrix biology. Matrix Biol 2020; 91-92:152-166. [DOI: 10.1016/j.matbio.2020.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
|
31
|
Zemła J, Bobrowska J, Kubiak A, Zieliński T, Pabijan J, Pogoda K, Bobrowski P, Lekka M. Indenting soft samples (hydrogels and cells) with cantilevers possessing various shapes of probing tip. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2020; 49:485-495. [PMID: 32803311 PMCID: PMC7456413 DOI: 10.1007/s00249-020-01456-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/06/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
The identification of cancer-related changes in cells and tissues based on the measurements of elastic properties using atomic force microscopy (AFM) seems to be approaching clinical application. Several limiting aspects have already been discussed; however, still, no data have shown how specific AFM probe geometries are related to the biomechanical evaluation of cancer cells. Here, we analyze and compare the nanomechanical results of mechanically homogenous polyacrylamide gels and heterogeneous bladder cancer cells measured using AFM probes of various tip geometry, including symmetric and non-symmetric pyramids and a sphere. Our observations show large modulus variability aligned with both types of AFM probes used and with the internal structure of the cells. Altogether, these results demonstrate that it is possible to differentiate between compliant and rigid samples of kPa elasticity; however, simultaneously, they highlight the strong need for standardized protocols for AFM-based elasticity measurements if applied in clinical practice including the use of a single type of AFM cantilever.
Collapse
Affiliation(s)
- Joanna Zemła
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Kraków, Poland.
| | - Justyna Bobrowska
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Andrzej Kubiak
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Tomasz Zieliński
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Joanna Pabijan
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Piotr Bobrowski
- Institute of Metallurgy and Materials Science Polish Academy of Sciences, PL-30059, Kraków, Poland
| | - Małgorzata Lekka
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Kraków, Poland.
| |
Collapse
|
32
|
Huang H, Dai C, Shen H, Gu M, Wang Y, Liu J, Chen L, Sun L. Recent Advances on the Model, Measurement Technique, and Application of Single Cell Mechanics. Int J Mol Sci 2020; 21:E6248. [PMID: 32872378 PMCID: PMC7504142 DOI: 10.3390/ijms21176248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since the cell was discovered by humans, it has been an important research subject for researchers. The mechanical response of cells to external stimuli and the biomechanical response inside cells are of great significance for maintaining the life activities of cells. These biomechanical behaviors have wide applications in the fields of disease research and micromanipulation. In order to study the mechanical behavior of single cells, various cell mechanics models have been proposed. In addition, the measurement technologies of single cells have been greatly developed. These models, combined with experimental techniques, can effectively explain the biomechanical behavior and reaction mechanism of cells. In this review, we first introduce the basic concept and biomechanical background of cells, then summarize the research progress of internal force models and experimental techniques in the field of cell mechanics and discuss the latest mechanical models and experimental methods. We summarize the application directions of cell mechanics and put forward the future perspectives of a cell mechanics model.
Collapse
Affiliation(s)
| | | | | | | | | | - Jizhu Liu
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China; (H.H.); (C.D.); (H.S.); (M.G.); (Y.W.); (L.S.)
| | - Liguo Chen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China; (H.H.); (C.D.); (H.S.); (M.G.); (Y.W.); (L.S.)
| | | |
Collapse
|
33
|
Applications of atomic force microscopy in immunology. Front Med 2020; 15:43-52. [PMID: 32820379 DOI: 10.1007/s11684-020-0769-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/04/2020] [Indexed: 01/20/2023]
Abstract
Cellular mechanics, a major regulating factor of cellular architecture and biological functions, responds to intrinsic stresses and extrinsic forces exerted by other cells and the extracellular matrix in the microenvironment. Cellular mechanics also acts as a fundamental mediator in complicated immune responses, such as cell migration, immune cell activation, and pathogen clearance. The principle of atomic force microscopy (AFM) and its three running modes are introduced for the mechanical characterization of living cells. The peak force tapping mode provides the most delicate and desirable virtues to collect high-resolution images of morphology and force curves. For a concrete description of AFM capabilities, three AFM applications are discussed. These applications include the dynamic progress of a neutrophil-extracellular-trap release by neutrophils, the immunological functions of macrophages, and the membrane pore formation mediated by perforin, streptolysin O, gasdermin D, or membrane attack complex.
Collapse
|
34
|
Abstract
As the crucial non-cellular component of tissues, the extracellular matrix (ECM) provides both physical support and signaling regulation to cells. Some ECM molecules provide a fibrillar environment around cells, while others provide a sheet-like basement membrane scaffold beneath epithelial cells. In this Review, we focus on recent studies investigating the mechanical, biophysical and signaling cues provided to developing tissues by different types of ECM in a variety of developing organisms. In addition, we discuss how the ECM helps to regulate tissue morphology during embryonic development by governing key elements of cell shape, adhesion, migration and differentiation. Summary: This Review discusses our current understanding of how the extracellular matrix helps guide developing tissues by influencing cell adhesion, migration, shape and differentiation, emphasizing the biophysical cues it provides.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| |
Collapse
|
35
|
Mora-Navarro C, Badileanu A, Gracioso Martins AM, Ozpinar EW, Gaffney L, Huntress I, Harrell E, Enders JR, Peng X, Branski RC, Freytes DO. Porcine Vocal Fold Lamina Propria-Derived Biomaterials Modulate TGF-β1-Mediated Fibroblast Activation in Vitro. ACS Biomater Sci Eng 2020; 6:1690-1703. [PMID: 33455360 DOI: 10.1021/acsbiomaterials.9b01837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vocal fold lamina propria (VFLP), one of the outermost layers of the vocal fold (VF), is composed of tissue-specific extracellular matrix (ECM) proteins and is highly susceptible to injury. Various biomaterials have been clinically tested to treat voice disorders (e.g., hydrogels, fat, and hyaluronic acid), but satisfactory recovery of the VF functionality remains elusive. Fibrosis or scar formation in the VF is a major challenge, and the development and refinement of novel therapeutics that promote the healing and normal function of the VF are needed. Injectable hydrogels derived from native tissues have been previously reported with major advantages over synthetic hydrogels, including constructive tissue remodeling and reduced scar tissue formation. This study aims to characterize the composition of a decellularized porcine VFLP-ECM scaffold and the cytocompatibility and potential antifibrotic properties of a hydrogel derived from VFLP-ECM. In addition, we isolated potential matrix-bound vesicles (MBVs) and macromolecules from the VFLP-ECM that also downregulated smooth muscle actin ACTA2 under transforming growth factor-beta 1 (TGF-β1) stimulation. The results provide evidence of the unique protein composition of the VFLP-ECM and the potential link between the components of the VFLP-ECM and the inhibition of TGF-β1 signaling observed in vitro when transformed into injectable forms.
Collapse
Affiliation(s)
- Camilo Mora-Navarro
- Joint Department of Biomedical Engineering, North Carolina State University/ University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Andreea Badileanu
- Joint Department of Biomedical Engineering, North Carolina State University/ University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ana M Gracioso Martins
- Joint Department of Biomedical Engineering, North Carolina State University/ University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Emily W Ozpinar
- Joint Department of Biomedical Engineering, North Carolina State University/ University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lewis Gaffney
- Joint Department of Biomedical Engineering, North Carolina State University/ University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ian Huntress
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erin Harrell
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jeffrey R Enders
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ryan C Branski
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York 10016-6402, United States
| | - Donald O Freytes
- Joint Department of Biomedical Engineering, North Carolina State University/ University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
36
|
Otero J, Navajas D, Alcaraz J. Characterization of the elastic properties of extracellular matrix models by atomic force microscopy. Methods Cell Biol 2019; 156:59-83. [PMID: 32222227 DOI: 10.1016/bs.mcb.2019.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tissue elasticity is a critical regulator of cell behavior in normal and diseased conditions like fibrosis and cancer. Since the extracellular matrix (ECM) is a major regulator of tissue elasticity and function, several ECM-based models have emerged in the last decades, including in vitro endogenous ECM, decellularized tissue ECM and ECM hydrogels. The development of such models has urged the need to quantify their elastic properties particularly at the nanometer scale, which is the relevant length scale for cell-ECM interactions. For this purpose, the versatility of atomic force microscopy (AFM) to quantify the nanomechanical properties of soft biomaterials like ECM models has emerged as a very suitable technique. In this chapter we provide a detailed protocol on how to assess the Young's elastic modulus of ECM models by AFM, discuss some of the critical issues, and provide troubleshooting guidelines as well as illustrative examples of AFM measurements, particularly in the context of cancer.
Collapse
Affiliation(s)
- J Otero
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - D Navajas
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - J Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
37
|
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019; 11:701-720. [PMID: 31617079 PMCID: PMC6815321 DOI: 10.1007/s12551-019-00587-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
38
|
Viji Babu PK, Rianna C, Mirastschijski U, Radmacher M. Nano-mechanical mapping of interdependent cell and ECM mechanics by AFM force spectroscopy. Sci Rep 2019; 9:12317. [PMID: 31444369 PMCID: PMC6707266 DOI: 10.1038/s41598-019-48566-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular matrix (ECM), as a dynamic component of the tissue, influences cell behavior and plays an important role in cell mechanics and tissue homeostasis. Reciprocally, this three-dimensional scaffold is dynamically, structurally and mechanically modified by cells. In the field of biophysics, the independent role of cell and ECM mechanics has been largely investigated; however, there is a lack of experimental data reporting the interdependent interplay between cell and ECM mechanics, measured simultaneously. Here, using Atomic Force Microscopy (AFM) we have characterized five different decellularized matrices diverse in their topography, ECM composition and stiffness and cultured them with normal and pathological fibroblasts (scar and Dupuytren's). We investigated the change in topography and elasticity of these matrices due to cell seeding, by using AFM peak force imaging and mechanical mapping, respectively. We found normal fibroblasts soften these matrices more than pathological fibroblasts, suggesting that pathological fibroblasts are profoundly influencing tissue stiffening in fibrosis. We detected different ECM composition of decellularized matrices used here influences fibroblast stiffness, thus highlighting that cell mechanics not only depends on ECM stiffness but also on their composition. We used confocal microscopy to assess fibroblasts invasion and found pathological fibroblasts were invading the matrices deeper than normal fibroblasts.
Collapse
Affiliation(s)
| | - Carmela Rianna
- Institute of Biophysics, University of Bremen, Bremen, Germany
| | - Ursula Mirastschijski
- Wound Repair Unit, Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | |
Collapse
|
39
|
Tang G, Galluzzi M, Zhang B, Shen YL, Stadler FJ. Biomechanical Heterogeneity of Living Cells: Comparison between Atomic Force Microscopy and Finite Element Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7578-7587. [PMID: 30272980 DOI: 10.1021/acs.langmuir.8b02211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atomic force microscopy (AFM) indentation is a popular method for characterizing the micromechanical properties of soft materials such as living cells. However, the mechanical data obtained from deep indentation measurements can be difficult and problematic to interpret as a result of the complex geometry of a cell, the nonlinearity of indentation contact, and constitutive relations of heterogeneous hyperelastic soft components. Living MDA-MB-231 cells were indented by spherical probes to obtain morphological and mechanical data that were adopted to build an accurate finite element model (FEM) for a parametric study. Initially, a 2D-axisymmetric numerical model was constructed with the main purpose of understanding the effect of geometrical and mechanical properties of constitutive parts such as the cell body, nucleus, and lamellipodium. A series of FEM deformation fields were directly compared with atomic force spectroscopy in order to resolve the mechanical convolution of heterogeneous parts and quantify Young's modulus and the geometry of nuclei. Furthermore, a 3D finite element model was constructed to investigate indentation events located far from the axisymmetric geometry. In this framework, the joint FEM/AFM approach has provided a useful methodology and a comprehensive characterization of the heterogeneous structure of living cells, emphasizing the deconvolution of geometrical structure and the true elastic modulus of the cell nucleus.
Collapse
Affiliation(s)
- Guanlin Tang
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials , Shenzhen University , Shenzhen 518055 , PR China
| | - Massimiliano Galluzzi
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials , Shenzhen University , Shenzhen 518055 , PR China
- Shenzhen Key Laboratory of Nanobiomechanics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , Guangdong , China
- CIMAINA and Dipartimento di Fisica , Università degli Studi di Milano , via Celoria 16 , 20133 Milano , Italy
| | - Bokai Zhang
- Shenzhen Key Laboratory of Nanobiomechanics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , Guangdong , China
| | - Yu-Lin Shen
- Department of Mechanical Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials , Shenzhen University , Shenzhen 518055 , PR China
| |
Collapse
|
40
|
Qian L, Zhao H. Nanoindentation of Soft Biological Materials. MICROMACHINES 2018; 9:E654. [PMID: 30544918 PMCID: PMC6316095 DOI: 10.3390/mi9120654] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023]
Abstract
Nanoindentation techniques, with high spatial resolution and force sensitivity, have recently been moved into the center of the spotlight for measuring the mechanical properties of biomaterials, especially bridging the scales from the molecular via the cellular and tissue all the way to the organ level, whereas characterizing soft biomaterials, especially down to biomolecules, is fraught with more pitfalls compared with the hard biomaterials. In this review we detail the constitutive behavior of soft biomaterials under nanoindentation (including AFM) and present the characteristics of experimental aspects in detail, such as the adaption of instrumentation and indentation response of soft biomaterials. We further show some applications, and discuss the challenges and perspectives related to nanoindentation of soft biomaterials, a technique that can pinpoint the mechanical properties of soft biomaterials for the scale-span is far-reaching for understanding biomechanics and mechanobiology.
Collapse
Affiliation(s)
- Long Qian
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| |
Collapse
|
41
|
Basoli F, Giannitelli SM, Gori M, Mozetic P, Bonfanti A, Trombetta M, Rainer A. Biomechanical Characterization at the Cell Scale: Present and Prospects. Front Physiol 2018; 9:1449. [PMID: 30498449 PMCID: PMC6249385 DOI: 10.3389/fphys.2018.01449] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The rapidly growing field of mechanobiology demands for robust and reproducible characterization of cell mechanical properties. Recent achievements in understanding the mechanical regulation of cell fate largely rely on technological platforms capable of probing the mechanical response of living cells and their physico–chemical interaction with the microenvironment. Besides the established family of atomic force microscopy (AFM) based methods, other approaches include optical, magnetic, and acoustic tweezers, as well as sensing substrates that take advantage of biomaterials chemistry and microfabrication techniques. In this review, we introduce the available methods with an emphasis on the most recent advances, and we discuss the challenges associated with their implementation.
Collapse
Affiliation(s)
- Francesco Basoli
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Manuele Gori
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Pamela Mozetic
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Alessandra Bonfanti
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Marcella Trombetta
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy.,Institute for Photonics and Nanotechnologies, National Research Council, Rome, Italy
| |
Collapse
|
42
|
Atomic force microscopy methodology and AFMech Suite software for nanomechanics on heterogeneous soft materials. Nat Commun 2018; 9:3584. [PMID: 30181577 PMCID: PMC6123404 DOI: 10.1038/s41467-018-05902-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Atomic force microscopy has proven to be a valuable technique to characterize the mechanical and morphological properties of heterogeneous soft materials such as biological specimens in liquid environment. Here we propose a 3-step method in order to investigate biological specimens where heterogeneity hinder a quantitative characterization: (1) precise AFM calibration, (2) nano-indentation in force volume mode, (3) array of finite element simulations built from AFM indentation events. We combine simulations to determine internal geometries, multi-layer material properties, and interfacial friction. In order to easily perform this analysis from raw AFM data to simulation comparison, we propose a standalone software, AFMech Suite comprising five interacting interfaces for simultaneous calibration, morphology, adhesion, mechanical, and simulation analysis. We test the methodology on soft hydrogels with hard spherical inclusions, as a soft-matter model system. Finally, we apply the method on E. coli bacteria supported on soft/hard hydrogels to prove usefulness in biological field. Atomic force microscopy is an indispensable method in characterizing soft materials but the complexity of biological samples makes reproducible measurements difficult. Here the authors use a 3-step method to investigate biological specimens in which vertical and lateral heterogeneity hinders a precise quantitative characterization.
Collapse
|
43
|
Recent Advances in Nanocomposites Based on Aliphatic Polyesters: Design, Synthesis, and Applications in Regenerative Medicine. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the last decade, biopolymer matrices reinforced with nanofillers have attracted great research efforts thanks to the synergistic characteristics derived from the combination of these two components. In this framework, this review focuses on the fundamental principles and recent progress in the field of aliphatic polyester-based nanocomposites for regenerative medicine applications. Traditional and emerging polymer nanocomposites are described in terms of polymer matrix properties and synthesis methods, used nanofillers, and nanocomposite processing and properties. Special attention has been paid to the most recent nanocomposite systems developed by combining alternative copolymerization strategies with specific nanoparticles. Thermal, electrical, biodegradation, and surface properties have been illustrated and correlated with the nanoparticle kind, content, and shape. Finally, cell-polymer (nanocomposite) interactions have been described by reviewing analysis methodologies such as primary and stem cell viability, adhesion, morphology, and differentiation processes.
Collapse
|
44
|
Caluori G, Pribyl J, Pesl M, Oliver-De La Cruz J, Nardone G, Skladal P, Forte G. Advanced and Rationalized Atomic Force Microscopy Analysis Unveils Specific Properties of Controlled Cell Mechanics. Front Physiol 2018; 9:1121. [PMID: 30174612 PMCID: PMC6107778 DOI: 10.3389/fphys.2018.01121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023] Open
Abstract
The cell biomechanical properties play a key role in the determination of the changes during the essential cellular functions, such as contraction, growth, and migration. Recent advances in nano-technologies have enabled the development of new experimental and modeling approaches to study cell biomechanics, with a level of insights and reliability that were not possible in the past. The use of atomic force microscopy (AFM) for force spectroscopy allows nanoscale mapping of the cell topography and mechanical properties under, nearly physiological conditions. A proper evaluation process of such data is an essential factor to obtain accurate values of the cell elastic properties (primarily Young's modulus). Several numerical models were published in the literature, describing the depth sensing indentation as interaction process between the elastic surface and indenting probe. However, many studies are still relying on the nowadays outdated Hertzian model from the nineteenth century, or its modification by Sneddon. The lack of comparison between the Hertz/Sneddon model with their modern modifications blocks the development of advanced analysis software and further progress of AFM promising technology into biological sciences. In this work, we applied a rationalized use of mechanical models for advanced postprocessing and interpretation of AFM data. We investigated the effect of the mechanical model choice on the final evaluation of cellular elasticity. We then selected samples subjected to different physicochemical modulators, to show how a critical use of AFM data handling can provide more information than simple elastic modulus estimation. Our contribution is intended as a methodological discussion of the limitations and benefits of AFM-based advanced mechanical analysis, to refine the quantification of cellular elastic properties and its correlation to undergoing cellular processes in vitro.
Collapse
Affiliation(s)
- Guido Caluori
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Interventional Cardiac Electrophysiology, Brno, Czechia.,Central European Institute of Technology of Masaryk University, Nanobiotechnology, Brno, Czechia
| | - Jan Pribyl
- Central European Institute of Technology of Masaryk University, Nanobiotechnology, Brno, Czechia
| | - Martin Pesl
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Interventional Cardiac Electrophysiology, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,First Department of Internal Medicine/Cardioangiology, St. Anne's Hospital, Masaryk University, Brno, Czechia
| | - Jorge Oliver-De La Cruz
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Center for Translational Medicine, Brno, Czechia
| | - Giorgia Nardone
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Center for Translational Medicine, Brno, Czechia
| | - Petr Skladal
- Central European Institute of Technology of Masaryk University, Nanobiotechnology, Brno, Czechia
| | - Giancarlo Forte
- International Clinical Research Center of the St. Anne's University Hospital Brno (FNUSA-ICRC), Center for Translational Medicine, Brno, Czechia.,Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
45
|
Zemła J, Stachura T, Gross-Sondej I, Górka K, Okoń K, Pyka-Fościak G, Soja J, Sładek K, Lekka M. AFM-based nanomechanical characterization of bronchoscopic samples in asthma patients. J Mol Recognit 2018; 31:e2752. [PMID: 30019775 DOI: 10.1002/jmr.2752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/16/2018] [Accepted: 06/10/2018] [Indexed: 12/11/2022]
Abstract
Asthma is not a single disease, but recently, it is considered as a syndrome characterized through various clinical presentations and different etiopathologies. Large degree of the disease heterogeneity manifests in distinct characteristics that translate into variability of properties at single cell and molecular levels. Here, we conducted measurements of mechanical properties of bronchial tissue samples collected from patients suffering from asthma. The results obtained from different applied protocols for sample preparation may indicate that deep freezing and storage in liquid nitrogen, followed by consecutive unfreezing of tissue samples, preserve tissue mechanical properties as indicated by a parameter referred here as a tissue relative stiffness index. Tissue relative stiffness index quantifies both the degree of heterogeneity and deformability of tissue samples regarding healthy one. These studies demonstrate that the freezing protocol, optimized towards asthma tissue, can facilitate atomic force microscopy use what, together with recent findings on standardization of elasticity measurements, enables the measurements of large group of samples with minimized influence of errors stemming from the applied methodology of tissue stiffness determination.
Collapse
Affiliation(s)
- Joanna Zemła
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Tomasz Stachura
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Śniadeckich 10, 31-531, Kraków, Poland
| | - Iwona Gross-Sondej
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Śniadeckich 10, 31-531, Kraków, Poland
| | - Karolina Górka
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Śniadeckich 10, 31-531, Kraków, Poland
| | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University Medical College, Grzegórzecka 16, 31-531, Kraków, Poland
| | - Grażyna Pyka-Fościak
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034, Kraków, Poland
| | - Jerzy Soja
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Śniadeckich 10, 31-531, Kraków, Poland
| | - Krzysztof Sładek
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Śniadeckich 10, 31-531, Kraków, Poland
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland
| |
Collapse
|
46
|
Langhans SA. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front Pharmacol 2018; 9:6. [PMID: 29410625 PMCID: PMC5787088 DOI: 10.3389/fphar.2018.00006] [Citation(s) in RCA: 943] [Impact Index Per Article: 134.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
Drug development is a lengthy and costly process that proceeds through several stages from target identification to lead discovery and optimization, preclinical validation and clinical trials culminating in approval for clinical use. An important step in this process is high-throughput screening (HTS) of small compound libraries for lead identification. Currently, the majority of cell-based HTS is being carried out on cultured cells propagated in two-dimensions (2D) on plastic surfaces optimized for tissue culture. At the same time, compelling evidence suggests that cells cultured in these non-physiological conditions are not representative of cells residing in the complex microenvironment of a tissue. This discrepancy is thought to be a significant contributor to the high failure rate in drug discovery, where only a low percentage of drugs investigated ever make it through the gamut of testing and approval to the market. Thus, three-dimensional (3D) cell culture technologies that more closely resemble in vivo cell environments are now being pursued with intensity as they are expected to accommodate better precision in drug discovery. Here we will review common approaches to 3D culture, discuss the significance of 3D cultures in drug resistance and drug repositioning and address some of the challenges of applying 3D cell cultures to high-throughput drug discovery.
Collapse
Affiliation(s)
- Sigrid A. Langhans
- Nemours Center for Childhood Cancer Research and Nemours Center for Neuroscience Research, Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
47
|
Gabasa M, Duch P, Jorba I, Giménez A, Lugo R, Pavelescu I, Rodríguez-Pascual F, Molina-Molina M, Xaubet A, Pereda J, Alcaraz J. Epithelial contribution to the profibrotic stiff microenvironment and myofibroblast population in lung fibrosis. Mol Biol Cell 2017; 28:3741-3755. [PMID: 29046395 PMCID: PMC5739292 DOI: 10.1091/mbc.e17-01-0026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
The contribution of epithelial-to-mesenchymal transition (EMT) to the profibrotic stiff microenvironment and myofibroblast accumulation in pulmonary fibrosis remains unclear. We examined EMT-competent lung epithelial cells and lung fibroblasts from control (fibrosis-free) donors or patients with idiopathic pulmonary fibrosis (IPF), which is a very aggressive fibrotic disorder. Cells were cultured on profibrotic conditions including stiff substrata and TGF-β1, and analyzed in terms of morphology, stiffness, and expression of EMT/myofibroblast markers and fibrillar collagens. All fibroblasts acquired a robust myofibroblast phenotype on TGF-β1 stimulation. Yet IPF myofibroblasts exhibited higher stiffness and expression of fibrillar collagens than control fibroblasts, concomitantly with enhanced FAKY397 activity. FAK inhibition was sufficient to decrease fibroblast stiffness and collagen expression, supporting that FAKY397 hyperactivation may underlie the aberrant mechanobiology of IPF fibroblasts. In contrast, cells undergoing EMT failed to reach the values exhibited by IPF myofibroblasts in all parameters examined. Likewise, EMT could be distinguished from nonactivated control fibroblasts, suggesting that EMT does not elicit myofibroblast precursors either. Our data suggest that EMT does not contribute directly to the myofibroblast population, and may contribute to the stiff fibrotic microenvironment through their own stiffness but not their collagen expression. Our results also support that targeting FAKY397 may rescue normal mechanobiology in IPF.
Collapse
Affiliation(s)
- Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Paula Duch
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Ignasi Jorba
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Alícia Giménez
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Roberto Lugo
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Irina Pavelescu
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | - Maria Molina-Molina
- ILD Unit, Pulmonology Department, University Hospital of Bellvitge. Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Antoni Xaubet
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Pneumology Service, Hospital Clínic, 08036 Barcelona, Spain
| | - Javier Pereda
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Departament of Physiology, Faculty of Pharmacy, Universitat de València, 46100 València, Spain
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|