1
|
Liu Z, Dai B, Bao J, Pan Y. T cell metabolism in kidney immune homeostasis. Front Immunol 2024; 15:1498808. [PMID: 39737193 PMCID: PMC11684269 DOI: 10.3389/fimmu.2024.1498808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Kidney immune homeostasis is intricately linked to T cells. Inappropriate differentiation, activation, and effector functions of T cells lead to a spectrum of kidney disease. While executing immune functions, T cells undergo a series of metabolic rewiring to meet the rapid energy demand. The key enzymes and metabolites involved in T cell metabolism metabolically and epigenetically modulate T cells' differentiation, activation, and effector functions, thereby being capable of modulating kidney immune homeostasis. In this review, we first summarize the latest advancements in T cell immunometabolism. Second, we outline the alterations in the renal microenvironment under certain kidney disease conditions. Ultimately, we highlight the metabolic modulation of T cells within kidney immune homeostasis, which may shed light on new strategies for treating kidney disease.
Collapse
Affiliation(s)
- Zikang Liu
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Binbin Dai
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jiwen Bao
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yangbin Pan
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
2
|
Lin Z, Huo H, Huang M, Tao J, Yang Y, Guo J. Fufang Zhenzhu Tiaozhi (FTZ) capsule ameliorates diabetic kidney disease in mice via inhibiting the SGLT2/glycolysis pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118698. [PMID: 39151712 DOI: 10.1016/j.jep.2024.118698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Zhenzhu Tiaozhi (FTZ) capsule is a hospital preparation of a patented traditional Chinese medicine compound. FTZ has been clinically used for nearly 13 years in the treatment of diabetes and glycolipid metabolic diseases. With the significant benefits of SGLT2 inhibitor in patients with diabetic kidney disease (DKD), it provides a research avenue to explore the mechanism of FTZ in treating this disease based on glycolysis pathway. AIM OF THE STUDY To explore the pharmacological characteristics of FTZ in DKD mice and its impact on the glycolysis pathway. MATERIALS AND METHODS We induced a DKD model in C57BL/6 mice by injection of streptozotocin (STZ) combined with long-term high-fat diet. We administered three doses of FTZ for 12 weeks of treatment. Kidney function, blood lipid levels, glucose tolerance, and key glycolytic enzymes were evaluated. Renal pathological changes were observed using HE, MASSON, and PAS staining. The potential targets of the active ingredients of FTZ in the glycolysis pathway were predicted using network pharmacology and molecular docking. Validation was performed using immunohistochemistry and Western blotting. RESULTS FTZ effectively reduces blood glucose, total cholesterol, triglyceride, low density lipoprotein cholesterol, 24 h proteinuria, serum creatinine, blood urea nitrogen, and increases urinary glucose levels. Glucose tolerance and renal pathological changes were significantly improved by FTZ treatment. Pinusolidic acid, a component of FTZ, shows good binding affinity with three active pockets of SGLT2. WB and immunohistochemistry revealed that FTZ significantly inhibits the expression of SGLT2 and its glycolytic related proteins (GLUT2/PKM2/HK2). Hexokinase, pyruvate kinase, and lactate dehydrogenase in the kidney were also significantly inhibited by FTZ in a dose-dependent manner. CONCLUSION FTZ may alleviate the progression of DKD by inhibiting the activation of the SGLT2/glycolytic pathway. Our study provides new insights into the clinical application of FTZ in DKD.
Collapse
Affiliation(s)
- Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China
| | - Minyi Huang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China
| | - Jie Tao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China.
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega Centre, Guangzhou, PR China.
| |
Collapse
|
3
|
Humphries TLR, Gobe GC, Urquhart AJ, Ellis RJ, Galloway GJ, Vesey DA, Francis RS. Identifying biochemical changes in the kidney using proton nuclear magnetic resonance in an adenine diet chronic kidney disease mouse model. NMR IN BIOMEDICINE 2024; 37:e5257. [PMID: 39229964 DOI: 10.1002/nbm.5257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
This study aimed to investigate the metabolic changes in the kidneys in a murine adenine-diet model of chronic kidney disease (CKD). Kidney fibrosis is the common pathological manifestation across CKD aetiologies. Sustained inflammation and fibrosis cause changes in preferred energy metabolic pathways in the cells of the kidney. Kidney cortical tissue from mice receiving a control or adenine-supplemented diet for 8 weeks (late inflammation and fibrosis) and 12 weeks (8 weeks of treatment followed by 4 weeks recovery) were analysed by 2D-correlated nuclear magnetic resonance spectroscopy and compared with histopathology and biomarkers of kidney damage. Tissue metabolite and lipid levels were assessed using the MestreNova software. Expression of genes related to inflammation, fibrosis, and metabolism were measured using quantitative polymerase chain reaction. Animals showed indicators of severely impaired kidney function at 8 and 12 weeks. Significantly increased fibrosis was present at 8 weeks but not in the recovery group suggesting some reversal of fibrosis and amelioration of inflammation. At 8 weeks, metabolites associated with glycolysis were increased, while lipid signatures were decreased. Genes involved in fatty acid oxidation were decreased at 8 weeks but not 12 weeks while genes associated with glycolysis were significantly increased at 8 weeks but not at 12 weeks. In this murine model of CKD, kidney fibrosis was associated with the accumulation of triglyceride and free lactate. There was an up-regulation of glycolytic enzymes and down-regulation of lipolytic enzymes. These metabolic changes reflect the energy demands associated with progressive kidney disease where there is a switch from fatty acid oxidation to that of glycolysis.
Collapse
Affiliation(s)
- Tyrone L R Humphries
- The University of Queensland, Brisbane, Australia
- Princess Alexandra Hospital, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Glenda C Gobe
- The University of Queensland, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Aaron J Urquhart
- The University of Queensland, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Robert J Ellis
- The University of Queensland, Brisbane, Australia
- Princess Alexandra Hospital, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Graham J Galloway
- The University of Queensland, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - David A Vesey
- The University of Queensland, Brisbane, Australia
- Princess Alexandra Hospital, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Ross S Francis
- The University of Queensland, Brisbane, Australia
- Princess Alexandra Hospital, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| |
Collapse
|
4
|
Selvarajah V, Robertson D, Hansen L, Jermutus L, Smith K, Coggi A, Sánchez J, Chang YT, Yu H, Parkinson J, Khan A, Chung HS, Hess S, Dumas R, Duck T, Jolly S, Elliott TG, Baker J, Lecube A, Derwahl KM, Scott R, Morales C, Peters C, Goldenberg R, Parker VER, Heerspink HJL. A randomized phase 2b trial examined the effects of the glucagon-like peptide-1 and glucagon receptor agonist cotadutide on kidney outcomes in patients with diabetic kidney disease. Kidney Int 2024; 106:1170-1180. [PMID: 39218393 DOI: 10.1016/j.kint.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Cotadutide is a glucagon-like peptide-1 (GLP-1) and glucagon receptor agonist that may improve kidney function in patients with type 2 diabetes (T2D) and chronic kidney disease (CKD). In this phase 2b study, patients with T2D and CKD (estimated glomerular filtration rate [eGFR] of 20 or more and under 90 mL/min per 1.73 m2 and urinary albumin-to-creatinine ratio [UACR] over 50 mg/g) were randomized 1:1:1:1:1 to 26 weeks' treatment with standard of care plus subcutaneous cotadutide uptitrated to 100, 300, or 600 μg, or placebo daily (double-blind), or the GLP-1 agonist semaglutide 1 mg once weekly (open-label).The co-primary endpoints were absolute and percentage change versus placebo in UACR from baseline to the end of week 14. Among 248 randomized patients, mean age 67.1 years, 19% were female, mean eGFR was 55.3 mL/min per 1.73 m2, geometric mean was UACR 205.5 mg/g (coefficient of variation 270.0), and 46.8% were receiving concomitant sodium-glucose co-transporter 2 inhibitors. Cotadutide dose-dependently reduced UACR from baseline to the end of week 14, reaching significance at 300 μg (-43.9% [95% confidence interval -54.7 to -30.6]) and 600 μg (-49.9% [-59.3 to -38.4]) versus placebo; with effects sustained at week 26. Serious adverse events were balanced across arms. Safety and tolerability of cotadutide 600 μg were comparable to semaglutide. Thus, our study shows that in patients with T2D and CKD, cotadutide significantly reduced UACR on top of standard of care with an acceptable tolerability profile, suggesting kidney protective benefits that need confirmation in a larger study.
Collapse
Affiliation(s)
- Viknesh Selvarajah
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Darren Robertson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Lars Hansen
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Lutz Jermutus
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Kirsten Smith
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Angela Coggi
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - José Sánchez
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Yi-Ting Chang
- Oncology Biometrics, late Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Hongtao Yu
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Joanna Parkinson
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anis Khan
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - H Sophia Chung
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Sonja Hess
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Richard Dumas
- CISSS Laval, Medecine Department, Endocrinology Division, Laval, Quebec, Canada; Centre de recherches cliniques de Laval, Laval, Quebec, Canada
| | - Tabbatha Duck
- Division of Nephrology, Clinical Research Solutions, Waterloo, Ontario, Canada
| | - Simran Jolly
- Department of Arts and Science, McMaster University, Hamilton, Ontario, Canada
| | | | - John Baker
- Aoteoroa Clinical Trials, Middlemore Hospital, Auckland, New Zealand
| | - Albert Lecube
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital and Obesity, Diabetes and Metabolism (ODIM) Research Group, Institut de Recerca Biomèdica de Lleida, University of Lleida, Lleida, Catalonia, Spain
| | - Karl-Michael Derwahl
- Institute for Clinical Research and Development, Practise of Endocrinology, Berlin, Germany
| | | | | | - Carl Peters
- Diabetes Services, Te Whatu Ora Waitemata, Auckland, New Zealand
| | | | - Victoria E R Parker
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; The George Institute for Global Health, Sydney, Australia.
| |
Collapse
|
5
|
Choi YJ, Richard G, Zhang G, Hodgin JB, Demeke DS, Yang Y, Schaub JA, Tamayo IM, Gurung BK, Naik AS, Nair V, Birznieks C, MacDonald A, Narongkiatikhun P, Gross S, Driscoll L, Flynn M, Tommerdahl K, Nadeau KJ, Shah VN, Vigers T, Snell-Bergeon JK, Kendrick J, van Raalte DH, Li LP, Prasad P, Ladd P, Chin BB, Cherney DZ, McCown PJ, Alakwaa F, Otto EA, Brosius FC, Saulnier PJ, Puelles VG, Goodrich JA, Street K, Venkatachalam MA, Ruiz A, de Boer IH, Nelson RG, Pyle L, Blondin DP, Sharma K, Kretzler M, Bjornstad P. Attenuated kidney oxidative metabolism in young adults with type 1 diabetes. J Clin Invest 2024; 134:e183984. [PMID: 39436695 PMCID: PMC11645151 DOI: 10.1172/jci183984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUNDIn type 1 diabetes (T1D), impaired insulin sensitivity may contribute to the development of diabetic kidney disease (DKD) through alterations in kidney oxidative metabolism.METHODSYoung adults with T1D (n = 30) and healthy controls (HCs) (n = 20) underwent hyperinsulinemic-euglycemic clamp studies, MRI, 11C-acetate PET, kidney biopsies, single-cell RNA-Seq, and spatial metabolomics to assess this relationship.RESULTSParticipants with T1D had significantly higher glomerular basement membrane (GBM) thickness compared with HCs. T1D participants exhibited lower insulin sensitivity and cortical oxidative metabolism, correlating with higher insulin sensitivity. Proximal tubular transcripts of TCA cycle and oxidative phosphorylation enzymes were lower in T1D. Spatial metabolomics showed reductions in tubular TCA cycle intermediates, indicating mitochondrial dysfunction. The Slingshot algorithm identified a lineage of proximal tubular cells progressing from stable to adaptive/maladaptive subtypes, using pseudotime trajectory analysis, which computationally orders cells along a continuum of states. This analysis revealed distinct distribution patterns between T1D and HCs, with attenuated oxidative metabolism in T1D attributed to a greater proportion of adaptive/maladaptive subtypes with low expression of TCA cycle and oxidative phosphorylation transcripts. Pseudotime progression associated with higher HbA1c, BMI, and GBM, and lower insulin sensitivity and cortical oxidative metabolism.CONCLUSIONThese early structural and metabolic changes in T1D kidneys may precede clinical DKD.TRIAL REGISTRATIONClinicalTrials.gov NCT04074668.FUNDINGUniversity of Michigan O'Brien Kidney Translational Core Center grant (P30 DK081943); CROCODILE studies by National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (P30 DK116073), Juvenile Diabetes Research Foundation (JDRF) (2-SRA-2019-845-S-B), Boettcher Foundation, Intramural Research Program at NIDDK and Centers for Disease Control and Prevention (CKD Initiative) under Inter-Agency Agreement #21FED2100157DPG.
Collapse
Affiliation(s)
- Ye Ji Choi
- Department of Biostatistics and Informatics and
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gabriel Richard
- Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Fecherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Québec, Canada
| | - Guanshi Zhang
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
| | - Jeffrey B. Hodgin
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dawit S. Demeke
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yingbao Yang
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer A. Schaub
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian M. Tamayo
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
| | - Bhupendra K. Gurung
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
| | - Abhijit S. Naik
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Carissa Birznieks
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexis MacDonald
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Phoom Narongkiatikhun
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Susan Gross
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lynette Driscoll
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Maureen Flynn
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kalie Tommerdahl
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristen J. Nadeau
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Viral N. Shah
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tim Vigers
- Department of Biostatistics and Informatics and
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Janet K. Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jessica Kendrick
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel H. van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUmc, Amsterdam, Netherlands
| | - Lu-Ping Li
- Radiology Department, Endeavor Health, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Pottumarthi Prasad
- Radiology Department, Endeavor Health, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Patricia Ladd
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Bennett B. Chin
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David Z. Cherney
- Department of Medicine, Division of Nephrology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Phillip J. McCown
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Fadhl Alakwaa
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Edgar A. Otto
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank C. Brosius
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Nephrology, The University of Arizona College of Medicine Tucson, Tucson, Arizona, USA
| | - Pierre Jean Saulnier
- University of Poitiers, INSERM, CHU Poitiers, Clinical Investigation Center CIC 1402, Poitiers, France
| | - Victor G. Puelles
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- III. Department of Medicine, University Medical Center Hamburg–Eppendorf, Hamburg, Germany
| | | | - Kelly Street
- Department of Biostatistics, University of Southern California, Los Angeles, California, USA
| | | | - Aaron Ruiz
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
- SygnaMap, Inc., San Antonio, Texas, USA
| | - Ian H. de Boer
- Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Laura Pyle
- Department of Biostatistics and Informatics and
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Denis P. Blondin
- Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Fecherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Québec, Canada
| | - Kumar Sharma
- Center for Renal Precision Medicine, University of Texas Health–San Antonio, San Antonio, Texas, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Petter Bjornstad
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
6
|
Pan S, Yuan T, Xia Y, Yu W, Li H, Rao T, Ye Z, Li L, Zhou X, Cheng F. SMYD2 Promotes Calcium Oxalate-Induced Glycolysis in Renal Tubular Epithelial Cells via PTEN Methylation. Biomedicines 2024; 12:2279. [PMID: 39457592 PMCID: PMC11504487 DOI: 10.3390/biomedicines12102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Damage to renal tubular cells (RTCs) represents a critical pathological manifestation in calcium oxalate (CaOx) stone disease, but the underlying mechanism remains elusive. Energy metabolism reprogramming is a vital influencer of RTC survival, and SMYD2 is a histone methylation transferase that has been extensively implicated in various metabolic disorders. Hence, this research aimed to identify whether SMYD2 induces the reprogramming of energy metabolism in RTCs exposed to CaOx nephrolithiasis. Methods: Kidney samples were obtained from patients who underwent laparoscopic nephrectomy for non-functioning kidneys caused by nephrolithiasis. The glyoxylate-induced CaOx stone mice model was established and treated with AZ505. The SMYD2-knockout HK-2 cell line was constructed. Histological changes were evaluated by HE, VK, Tunel, Masson stainings. The molecular mechanism was explored through co-immunoprecipitation and western blotting. Results: The results found that SMYD2 upregulation led to energy reprogramming to glycolysis in human kidney tissue samples and in mice with CaOx nephrolithiasis. We also identified the substantial involvement of glycolysis in the induction of apoptosis, inflammation, and epithelial-mesenchymal transition (EMT) in HK-2 cells caused by calcium oxalate monohydrate (COM). In vivo and in vitro results demonstrated that SMYD2 inhibition reduces glycolysis, kidney injury, and fibrosis. Mechanistically, SMYD2 was found to promote metabolic reprogramming of RTCs toward glycolysis by activating the AKT/mTOR pathway via methylated PTEN, which mediates CaOx-induced renal injury and fibrosis. Conclusions: Our findings reveal an epigenetic regulatory role of SMYD2 in metabolic reprogramming in CaOx nephrolithiasis and associated kidney injury, suggesting that targeting SMYD2 and glycolysis may represent a potential therapeutic strategy for CaOx-induced kidney injury and fibrosis.
Collapse
|
7
|
Darshi M, Kugathasan L, Maity S, Sridhar VS, Fernandez R, Limonte CP, Grajeda BI, Saliba A, Zhang G, Drel VR, Kim JJ, Montellano R, Tumova J, Montemayor D, Wang Z, Liu JJ, Wang J, Perkins BA, Lytvyn Y, Natarajan L, Lim SC, Feldman H, Toto R, Sedor JR, Patel J, Waikar SS, Brown J, Osman Y, He J, Chen J, Reeves WB, de Boer IH, Roy S, Vallon V, Hallan S, Gelfond JA, Cherney DZ, Sharma K. Glycolytic lactate in diabetic kidney disease. JCI Insight 2024; 9:e168825. [PMID: 38855868 PMCID: PMC11382878 DOI: 10.1172/jci.insight.168825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/01/2024] [Indexed: 06/11/2024] Open
Abstract
Lactate elevation is a well-characterized biomarker of mitochondrial dysfunction, but its role in diabetic kidney disease (DKD) is not well defined. Urine lactate was measured in patients with type 2 diabetes (T2D) in 3 cohorts (HUNT3, SMART2D, CRIC). Urine and plasma lactate were measured during euglycemic and hyperglycemic clamps in participants with type 1 diabetes (T1D). Patients in the HUNT3 cohort with DKD had elevated urine lactate levels compared with age- and sex-matched controls. In patients in the SMART2D and CRIC cohorts, the third tertile of urine lactate/creatinine was associated with more rapid estimated glomerular filtration rate decline, relative to first tertile. Patients with T1D demonstrated a strong association between glucose and lactate in both plasma and urine. Glucose-stimulated lactate likely derives in part from proximal tubular cells, since lactate production was attenuated with sodium-glucose cotransporter-2 (SGLT2) inhibition in kidney sections and in SGLT2-deficient mice. Several glycolytic genes were elevated in human diabetic proximal tubules. Lactate levels above 2.5 mM potently inhibited mitochondrial oxidative phosphorylation in human proximal tubule (HK2) cells. We conclude that increased lactate production under diabetic conditions can contribute to mitochondrial dysfunction and become a feed-forward component to DKD pathogenesis.
Collapse
Affiliation(s)
- Manjula Darshi
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Luxcia Kugathasan
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Soumya Maity
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Vikas S Sridhar
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Roman Fernandez
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Christine P Limonte
- Schools of Medicine and Public Health, University of Washington, Seattle, Washington, USA
| | - Brian I Grajeda
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Afaf Saliba
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Guanshi Zhang
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Viktor R Drel
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jiwan J Kim
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Richard Montellano
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jana Tumova
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Daniel Montemayor
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Zhu Wang
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jiexun Wang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Bruce A Perkins
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Yuliya Lytvyn
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Loki Natarajan
- Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, California USA
| | - Su Chi Lim
- Clinical Research Unit & Admiralty Medical Centre, Khoo Teck Puat Hospital, Singapore
- Saw Swee Hock School of Public Heath, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Harold Feldman
- Center for Clinical Epidemiology and Biostatistics and
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert Toto
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas, USA
| | - John R Sedor
- Glickman Urology and Kidney and Lerner Research Institutes, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jiten Patel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas, USA
| | - Sushrut S Waikar
- Section of Nephrology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Julia Brown
- Division of Nephrology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yahya Osman
- Division of Nephrology, Department of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jiang He
- School of Public Health, Tulane University Medical Center, New Orleans, Louisiana, USA
| | - Jing Chen
- Division of Nephrology, Department of Medicine, New Orleans, Louisiana, USA
| | - W Brian Reeves
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Ian H de Boer
- Schools of Medicine and Public Health, University of Washington, Seattle, Washington, USA
| | - Sourav Roy
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Volker Vallon
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- VA San Diego Healthcare Center, San Diego, California, USA
| | - Stein Hallan
- Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Nephrology, St. Olav Hospital, Trondheim, Norway
| | - Jonathan Al Gelfond
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - David Zi Cherney
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Kumar Sharma
- Center for Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
Hasegawa K, Tamaki M, Sakamaki Y, Wakino S. Nmnat1 Deficiency Causes Mitoribosome Excess in Diabetic Nephropathy Mediated by Transcriptional Repressor HIC1. Int J Mol Sci 2024; 25:6384. [PMID: 38928090 PMCID: PMC11204038 DOI: 10.3390/ijms25126384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is involved in renal physiology and is synthesized by nicotinamide mononucleotide adenylyltransferase (NMNAT). NMNAT exists as three isoforms, namely, NMNAT1, NMNAT2, and NMNAT3, encoded by Nmnat1, Nmnat2, and Nmnat3, respectively. In diabetic nephropathy (DN), NAD levels decrease, aggravating renal fibrosis. Conversely, sodium-glucose cotransporter-2 inhibitors increase NAD levels, mitigating renal fibrosis. In this regard, renal NAD synthesis has recently gained attention. However, the renal role of Nmnat in DN remains uncertain. Therefore, we investigated the role of Nmnat by establishing genetically engineered mice. Among the three isoforms, NMNAT1 levels were markedly reduced in the proximal tubules (PTs) of db/db mice. We examined the phenotypic changes in PT-specific Nmnat1 conditional knockout (CKO) mice. In CKO mice, Nmnat1 expression in PTs was downregulated when the tubules exhibited albuminuria, peritubular type IV collagen deposition, and mitochondrial ribosome (mitoribosome) excess. In CKO mice, Nmnat1 deficiency-induced mitoribosome excess hindered mitoribosomal translation of mitochondrial inner membrane-associated oxidative phosphorylation complex I (CI), CIII, CIV, and CV proteins and mitoribosomal dysfunction. Furthermore, the expression of hypermethylated in cancer 1, a transcription repressor, was downregulated in CKO mice, causing mitoribosome excess. Nmnat1 overexpression preserved mitoribosomal function, suggesting its protective role in DN.
Collapse
Affiliation(s)
- Kazuhiro Hasegawa
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.T.); (S.W.)
| | - Masanori Tamaki
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.T.); (S.W.)
| | - Yusuke Sakamaki
- Department of Internal Medicine, Tokyo Dental College Ichikawa General Hospital, Chiba 272-8583, Japan;
| | - Shu Wakino
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.T.); (S.W.)
| |
Collapse
|
9
|
Viebahn-Haensler R, León Fernández OS. Mitochondrial Dysfunction, Its Oxidative Stress-Induced Pathologies and Redox Bioregulation through Low-Dose Medical Ozone: A Systematic Review. Molecules 2024; 29:2738. [PMID: 38930804 PMCID: PMC11207058 DOI: 10.3390/molecules29122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Our hypothesis that controlled ozone applications interfere with the redox balance of a biological organism (first published in 1998 with a preclinical trial on protecting the liver from CCl4 intoxication) has been verified over the past two decades in reactive oxygen species (ROS)-induced mitochondrial pathologies, such as rheumatoid arthritis, osteoarthritis, aging processes and type 2 diabetes, and in the prevention of intoxications. Low-dose ozone acts as a redox bioregulator: the restoration of the disturbed redox balance is comprehensible in a number of preclinical and clinical studies by a remarkable increase in the antioxidant repair markers, here mainly shown as a glutathione increase and a reduction in oxidative stress markers, mainly malondialdehyde. The mechanism of action is shown, and relevant data are displayed, evaluated and comprehensively discussed: the repair side of the equilibrium increases by 21% up to 140% compared to the non-ozone-treated groups and depending on the indication, the stress markers are simultaneously reduced, and the redox system regains its balance.
Collapse
|
10
|
Shao M, Chen D, Wang Q, Guo F, Wei F, Zhang W, Gan T, Luo Y, Fan X, Du P, Liu Y, Ma X, Ren G, Song Y, Zhao Y, Qin G. Canagliflozin regulates metabolic reprogramming in diabetic kidney disease by inducing fasting-like and aestivation-like metabolic patterns. Diabetologia 2024; 67:738-754. [PMID: 38236410 DOI: 10.1007/s00125-023-06078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/02/2023] [Indexed: 01/19/2024]
Abstract
AIMS/HYPOTHESIS Sodium-glucose co-transporter 2 (SGLT2) inhibitors (SGLT2i) are antihyperglycaemic drugs that protect the kidneys of individuals with type 2 diabetes mellitus. However, the underlying mechanisms mediating the renal benefits of SGLT2i are not fully understood. Considering the fuel switches that occur during therapeutic SGLT2 inhibition, we hypothesised that SGLT2i induce fasting-like and aestivation-like metabolic patterns, both of which contribute to the regulation of metabolic reprogramming in diabetic kidney disease (DKD). METHODS Untargeted and targeted metabolomics assays were performed on plasma samples from participants with type 2 diabetes and kidney disease (n=35, 11 women) receiving canagliflozin (CANA) 100 mg/day at baseline and 12 week follow-up. Next, a systematic snapshot of the effect of CANA on key metabolites and pathways in the kidney was obtained using db/db mice. Moreover, the effects of glycine supplementation in db/db mice and human proximal tubular epithelial cells (human kidney-2 [HK-2]) cells were studied. RESULTS Treatment of DKD patients with CANA for 12 weeks significantly reduced HbA1c from a median (interquartile range 25-75%) of 49.0 (44.0-57.0) mmol/mol (7.9%, [7.10-9.20%]) to 42.2 (39.7-47.7) mmol/mol (6.8%, [6.40-7.70%]), and reduced urinary albumin/creatinine ratio from 67.8 (45.9-159.0) mg/mmol to 47.0 (26.0-93.6) mg/mmol. The untargeted metabolomics assay showed downregulated glycolysis and upregulated fatty acid oxidation. The targeted metabolomics assay revealed significant upregulation of glycine. The kidneys of db/db mice undergo significant metabolic reprogramming, with changes in sugar, lipid and amino acid metabolism; CANA regulated the metabolic reprogramming in the kidneys of db/db mice. In particular, the pathways for glycine, serine and threonine metabolism, as well as the metabolite of glycine, were significantly upregulated in CANA-treated kidneys. Glycine supplementation ameliorated renal lesions in db/db mice by inhibiting food intake, improving insulin sensitivity and reducing blood glucose levels. Glycine supplementation improved apoptosis of human proximal tubule cells via the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway. CONCLUSIONS/INTERPRETATION In conclusion, our study shows that CANA ameliorates DKD by inducing fasting-like and aestivation-like metabolic patterns. Furthermore, DKD was ameliorated by glycine supplementation, and the beneficial effects of glycine were probably due to the activation of the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Mingwei Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Duo Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingzhu Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Guo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fangyi Wei
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Zhang
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tian Gan
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanyuan Luo
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xunjie Fan
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peijie Du
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanxia Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojun Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gaofei Ren
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanyan Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Guijun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Jiang C, Ma X, Chen J, Zeng Y, Guo M, Tan X, Wang Y, Wang P, Yan P, Lei Y, Long Y, Law BYK, Xu Y. Development of Serum Lactate Level-Based Nomograms for Predicting Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. Diabetes Metab Syndr Obes 2024; 17:1051-1068. [PMID: 38445169 PMCID: PMC10913800 DOI: 10.2147/dmso.s453543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Purpose To establish nomograms integrating serum lactate levels and traditional risk factors for predicting diabetic kidney disease (DKD) in type 2 diabetes mellitus (T2DM) patients. Patients and methods A total of 570 T2DM patients and 100 healthy subjects were enrolled. T2DM patients were categorized into normal and high lactate groups. Univariate and multivariate logistic regression analyses were employed to identify independent predictors for DKD. Then, nomograms for predicting DKD were established, and the model performance was evaluated using the area under the receiver operating characteristic curve (AUC), calibration, and decision curve analysis (DCA). Results T2DM patients exhibited higher lactate levels compared to those in healthy subjects. Glucose, platelet, uric acid, creatinine, and hypertension were independent factors for DKD in T2DM patients with normal lactate levels, while diabetes duration, creatinine, total cholesterol, and hypertension were indicators in high lactate levels group (P<0.05). The AUC values were 0.834 (95% CI, 0.776 to 0.891) and 0.741 (95% CI, 0.688 to 0.795) for nomograms in both normal lactate and high lactate groups, respectively. The calibration curve demonstrated excellent agreement of fit. Furthermore, the DCA revealed that the threshold probability and highest Net Yield were 17-99% and 0.36, and 24-99% and 0.24 for the models in normal lactate and high lactate groups, respectively. Conclusion The serum lactate level-based nomogram models, combined with traditional risk factors, offer an effective tool for predicting DKD probability in T2DM patients. This approach holds promise for early risk assessment and tailored intervention strategies.
Collapse
Affiliation(s)
- Chunxia Jiang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People’s Republic of China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xiumei Ma
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People’s Republic of China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jiao Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Endocrinology, The Third’s Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, People’s Republic of China
| | - Yan Zeng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People’s Republic of China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Man Guo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xiaozhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuping Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People’s Republic of China
- Department of Breast, Thyroid and Vascular Surgery, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Peng Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People’s Republic of China
| | - Pijun Yan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yi Lei
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People’s Republic of China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Betty Yuen Kwan Law
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People’s Republic of China
| | - Yong Xu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People’s Republic of China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
12
|
Chaudhary S, Pahwa F, Nanda RK. Dysregulated cysteine metabolism leads to worsened liver pathology in diabetes-tuberculosis comorbid condition. J Biol Chem 2024; 300:105634. [PMID: 38199571 PMCID: PMC10850780 DOI: 10.1016/j.jbc.2024.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetes mellitus (DM) is a risk factor for developing active tuberculosis (TB) with a 3-fold increase in susceptibility and a 4-fold higher relapse rate. With increasing DM prevalence in TB endemic regions, understanding pathophysiological changes associated with DM-TB comorbidity is imperative. In this study, streptozotocin (STZ)-induced DM C57BL/6 mice were aerosol infected with low dose (100-120 CFU) Mycobacterium tuberculosis H37Rv. At 3 weeks post infection (w.p.i.), multiple tissue mycobacterial load and metabolites were profiled. The liver proteome of DM-TB and controls were analyzed using quantitative proteomics, and multi-omics data were integrated. DM-TB mice showed dysregulated multi-tissue (lungs, liver, brain, kidney and thigh muscle) metabolism. In contrast, the mycobacterial burden in the lung, spleen and liver was similar at 3 w.p.i. in DM-TB and TB groups. Enrichment analysis of deregulated liver metabolites (n = 20; log2DM-TB/TB>±1.0) showed significant perturbation in cysteine-methionine, glycine-serine, BCAA and fatty acid metabolism. 60 out of 1660 identified liver proteins showed deregulation (log2DM-TB/TB>±1.0) and contributed from perturbed cysteine-methionine metabolism corroborating metabolomics data. In addition, amino acid biosynthesis, retinol metabolism and polyol biosynthetic process were also differentially enriched in the livers of DM-TB groups. Global correlation analysis of liver metabolome and proteome data showed a strong association between aspartic acid, pyruvic acid, leucine and isoleucine with CYP450 enzymes involved in retinol metabolism, while iminodiacetic acid, isoleucine and γ-aminobutyric acid (GABA) strong positive correlation involved in cysteine metabolism. Targeting perturbed cysteine metabolism using micro molecules, like DL-Propargylglycine, might help prevent liver damage in DM-TB comorbid conditions.
Collapse
Affiliation(s)
- Shweta Chaudhary
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Falak Pahwa
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ranjan K Nanda
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
13
|
Hou Y, Tan E, Shi H, Ren X, Wan X, Wu W, Chen Y, Niu H, Zhu G, Li J, Li Y, Wang L. Mitochondrial oxidative damage reprograms lipid metabolism of renal tubular epithelial cells in the diabetic kidney. Cell Mol Life Sci 2024; 81:23. [PMID: 38200266 PMCID: PMC10781825 DOI: 10.1007/s00018-023-05078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
The functional and structural changes in the proximal tubule play an important role in the occurrence and development of diabetic kidney disease (DKD). Diabetes-induced metabolic changes, including lipid metabolism reprogramming, are reported to lead to changes in the state of tubular epithelial cells (TECs), and among all the disturbances in metabolism, mitochondria serve as central regulators. Mitochondrial dysfunction, accompanied by increased production of mitochondrial reactive oxygen species (mtROS), is considered one of the primary factors causing diabetic tubular injury. Most studies have discussed how altered metabolic flux drives mitochondrial oxidative stress during DKD. In the present study, we focused on targeting mitochondrial damage as an upstream factor in metabolic abnormalities under diabetic conditions in TECs. Using SS31, a tetrapeptide that protects the mitochondrial cristae structure, we demonstrated that mitochondrial oxidative damage contributes to TEC injury and lipid peroxidation caused by lipid accumulation. Mitochondria protected using SS31 significantly reversed the decreased expression of key enzymes and regulators of fatty acid oxidation (FAO), but had no obvious effect on major glucose metabolic rate-limiting enzymes. Mitochondrial oxidative stress facilitated renal Sphingosine-1-phosphate (S1P) deposition and SS31 limited the elevated Acer1, S1pr1 and SPHK1 activity, and the decreased Spns2 expression. These data suggest a role of mitochondrial oxidative damage in unbalanced lipid metabolism, including lipid droplet (LD) formulation, lipid peroxidation, and impaired FAO and sphingolipid homeostasis in DKD. An in vitro study demonstrated that high glucose drove elevated expression of cytosolic phospholipase A2 (cPLA2), which, in turn, was responsible for the altered lipid metabolism, including LD generation and S1P accumulation, in HK-2 cells. A mitochondria-targeted antioxidant inhibited the activation of cPLA2f isoforms. Taken together, these findings identify mechanistic links between mitochondrial oxidative metabolism and reprogrammed lipid metabolism in diabetic TECs, and provide further evidence for the nephroprotective effects of SS31 via influencing metabolic pathways.
Collapse
Affiliation(s)
- Yanjuan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Enxue Tan
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Honghong Shi
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Xiayu Ren
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Xing Wan
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Wenjie Wu
- Department of Orthopaedics, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yiliang Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Hiumin Niu
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
- Department of Nephrology, Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Guozhen Zhu
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Jing Li
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Province People's Hospital, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Lihua Wang
- Department of Nephrology, Second Hospital, Shanxi Medical University, No.382, Wuyi Road, Taiyuan, Shanxi, 030000, China.
| |
Collapse
|
14
|
Sourris KC, Ding Y, Maxwell SS, Al-Sharea A, Kantharidis P, Mohan M, Rosado CJ, Penfold SA, Haase C, Xu Y, Forbes JM, Crawford S, Ramm G, Harcourt BE, Jandeleit-Dahm K, Advani A, Murphy AJ, Timmermann DB, Karihaloo A, Knudsen LB, El-Osta A, Drucker DJ, Cooper ME, Coughlan MT. Glucagon-like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation. Kidney Int 2024; 105:132-149. [PMID: 38069998 DOI: 10.1016/j.kint.2023.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 01/07/2024]
Abstract
Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.
Collapse
Affiliation(s)
- Karly C Sourris
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.
| | - Yi Ding
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Scott S Maxwell
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Annas Al-Sharea
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Phillip Kantharidis
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Carlos J Rosado
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Sally A Penfold
- Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Claus Haase
- Diabetes Complications Research, Novo Nordisk, Måløv, Denmark
| | - Yangsong Xu
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Josephine M Forbes
- Mater Research Institute, the University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Simon Crawford
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Brooke E Harcourt
- Murdoch Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Karin Jandeleit-Dahm
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michaels Hospital, Toronto, Ontario, Canada
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Anil Karihaloo
- Novo Nordisk Research Center Seattle, Inc., Seattle, Washington, USA
| | | | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, Alfred Research Alliance, Melbourne, Victoria, Australia; Diabetes Complications Division, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia.
| |
Collapse
|
15
|
Eshraghi Y, Abedi M, Gheisari Y. Proteomics to Metabolomics: A New Insight into the Pathogenesis of Hypertensive Nephropathy. Kidney Blood Press Res 2023; 48:710-726. [PMID: 37793351 PMCID: PMC10681119 DOI: 10.1159/000534354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Hypertensive nephropathy (HN) is a high-burden disorder and a leading cause of end-stage renal disease. Despite huge investigations, the underlying mechanisms are yet largely unknown. Systems biology is a promising approach to providing a comprehensive insight into this complex disorder. METHODS Proteome profiles of kidney tubulointerstitium and outer and inner cortex from a rat model of HN were retrieved from the proteomics identification database, and the quality of the datasets was assessed. Proteins that exhibited differential expression were detected and their interactions were analyzed in the kidney sub-compartments. Furthermore, enzymes were linked to the attributed metabolites. Functional enrichment analyses were performed to identify key pathways and processes based on the differentially expressed proteins and predicted metabolites. RESULTS Proteasome-mediated protein degradation, actin cytoskeleton organization, and Rho GTPase signaling pathway are involved in the pathogenesis of HN. Furthermore, tissue hypoxia and dysregulated energy homeostasis are among the key underlying events. The metabolism of purine and amino acids is also affected in HN. CONCLUSION Although the proposed pathogenic mechanisms remain to be further validated in experimental studies, this study contributes to the understanding of the molecular mechanisms of HN through a systematic unsupervised approach. Considering the significant alterations of metabolic pathways, HN can be viewed as an "acquired error of metabolism."
Collapse
Affiliation(s)
- Yasin Eshraghi
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Abedi
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Wang Z, Hao D, Zhao S, Zhang Z, Zeng Z, Wang X. Lactate and Lactylation: Clinical Applications of Routine Carbon Source and Novel Modification in Human Diseases. Mol Cell Proteomics 2023; 22:100641. [PMID: 37678638 PMCID: PMC10570128 DOI: 10.1016/j.mcpro.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Cell metabolism generates numerous intermediate metabolites that could serve as feedback and feed-forward regulation substances for posttranslational modification. Lactate, a metabolic product of glycolysis, has recently been conceptualized to play a pleiotropic role in shaping cell identities through metabolic rewiring and epigenetic modifications. Lactate-derived carbons, sourced from glucose, mediate the crosstalk among glycolysis, lactate, and lactylation. Furthermore, the multiple metabolic fates of lactate make it an ideal substrate for metabolic imaging in clinical application. Several studies have identified the crucial role of protein lactylation in human diseases associated with cell fate determination, embryonic development, inflammation, neoplasm, and neuropsychiatric disorders. Herein, this review will focus on the metabolic fate of lactate-derived carbon to provide useful information for further research and therapeutic approaches in human diseases. We comprehensively discuss its role in reprogramming and modification during the regulation of glycolysis, the clinical translation prospects of the hyperpolarized lactate signal, lactyl modification in human diseases, and its application with other techniques and omics.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Hao
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co, Ltd, Shijiazhuang, China
| | - Shuiying Zhao
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyin Zhang
- Division of Information, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zeng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Xiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China; Konge Larsen ApS, Kongens Lyngby, Denmark.
| |
Collapse
|
17
|
Hallan SI, Øvrehus MA, Darshi M, Montemayor D, Langlo KA, Bruheim P, Sharma K. Metabolic Differences in Diabetic Kidney Disease Patients with Normoalbuminuria versus Moderately Increased Albuminuria. KIDNEY360 2023; 4:1407-1418. [PMID: 37612821 PMCID: PMC10615383 DOI: 10.34067/kid.0000000000000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Key Points The pathophysiological mechanisms of diabetic kidney disease (DKD) with normal (nonalbuminuric DKD) versus moderately increased albuminuria (A-DKD) are not well-understood. Fatty acid biosynthesis and oxydation, gluconeogenesis, TCA cycle, and glucose-alanine cycle were more disturbed in patients with A-DKD compared with those with nonalbuminuric DKD with identical eGFR. DKD patients with and without microalbuminuria could represent different clinical phenotypes. Background The pathophysiological mechanisms of diabetic kidney disease (DKD) with normal versus moderately increased albuminuria (nonalbuminuric DKD [NA-DKD] and A-DKD) are currently not well-understood and could have implications for diagnosis and treatment. Methods Fourteen patients with NA-DKD with urine albumin–creatinine ratio <3 mg/mmol, 26 patients with A-DKD with albumin–creatinine ratio 3–29 mg/mmol, and 60 age- and sex-matched healthy controls were randomly chosen from a population-based cohort study (Nord-Trøndelag Health Study-3, Norway). Seventy-four organic acids, 21 amino acids, 21 biogenic acids, 40 acylcarnitines, 14 sphingomyelins, and 88 phosphatidylcholines were quantified in urine. One hundred forty-six patients with diabetes from the US-based Chronic Renal Insufficiency Cohort study were used to verify main findings. Results Patients with NA-DKD and A-DKD had similar age, kidney function, diabetes treatment, and other traditional risk factors. Still, partial least-squares discriminant analysis showed strong metabolite-based separation (R2, 0.82; Q2, 0.52), with patients with NA-DKD having a metabolic profile positioned between the profiles of healthy controls and patients with A-DKD. Seventy-five metabolites contributed significantly to separation between NA-DKD and A-DKD (variable importance in projection scores ≥1.0) with propionylcarnitine (C3), phosphatidylcholine C38:4, medium-chained (C8) fatty acid octenedioic acid, and lactic acid as the top metabolites (variable importance in projection scores, 2.7–2.2). Compared with patients with NA-DKD, those with A-DKD had higher levels of short-chained acylcarnitines, higher long-chained fatty acid levels with more double bounds, higher branched-chain amino acid levels, and lower TCA cycle intermediates. The main findings were similar by random forest analysis and in the Chronic Renal Insufficiency Cohort study. Formal enrichment analysis indicated that fatty acid biosynthesis and oxydation, gluconeogenesis, TCA cycle, and glucose-alanine cycle were more disturbed in patients with A-DKD compared with those with NA-DKD with identical eGFR. We also found indications of a Warburg-like effect in patients with A-DKD (i.e. , metabolism of glucose to lactate despite adequate oxygen). Conclusion DKD patients with normoalbuminuria differ substantially in their metabolic disturbances compared with patients with moderately increase albuminuria and could represent different clinical phenotypes.
Collapse
Affiliation(s)
- Stein I Hallan
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Nephrology, St. Olav Hospital, Trondheim, Norway
| | | | - Manjula Darshi
- Center for Renal Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Daniel Montemayor
- Center for Renal Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Knut A Langlo
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Nephrology, St. Olav Hospital, Trondheim, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kumar Sharma
- Center for Renal Precision Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Nephrology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
18
|
Juszczak F, Pierre L, Decarnoncle M, Jadot I, Martin B, Botton O, Caron N, Dehairs J, Swinnen JV, Declèves AE. Sex differences in obesity-induced renal lipid accumulation revealed by lipidomics: a role of adiponectin/AMPK axis. Biol Sex Differ 2023; 14:63. [PMID: 37770988 PMCID: PMC10537536 DOI: 10.1186/s13293-023-00543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Sex differences have been observed in the development of obesity-related complications in patients, as well as in animal models. Accumulating evidence suggests that sex-dependent regulation of lipid metabolism contributes to sex-specific physiopathology. Lipid accumulation in the renal tissue has been shown to play a major role in the pathogenesis of obesity-induced kidney injury. Unlike in males, the physiopathology of the disease has been poorly described in females, particularly regarding the lipid metabolism adaptation. METHODS Here, we compared the lipid profile changes in the kidneys of female and male mice fed a high-fat diet (HFD) or low-fat diet (LFD) by lipidomics and correlated them with pathophysiological changes. RESULTS We showed that HFD-fed female mice were protected from insulin resistance and hepatic steatosis compared to males, despite similar body weight gains. Females were particularly protected from renal dysfunction, oxidative stress, and tubular lipid accumulation. Both HFD-fed male and female mice presented dyslipidemia, but lipidomic analysis highlighted differential renal lipid profiles. While both sexes presented similar neutral lipid accumulation with obesity, only males showed increased levels of ceramides and phospholipids. Remarkably, protection against renal lipotoxicity in females was associated with enhanced renal adiponectin and AMP-activated protein kinase (AMPK) signaling. Circulating adiponectin and its renal receptor levels were significantly lower in obese males, but were maintained in females. This observation correlated with the maintained basal AMPK activity in obese female mice compared to males. CONCLUSIONS Collectively, our findings suggest that female mice are protected from obesity-induced renal dysfunction and lipotoxicity associated with enhanced adiponectin and AMPK signaling compared to males.
Collapse
Affiliation(s)
- Florian Juszczak
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium.
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium.
| | - Louise Pierre
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Morgane Decarnoncle
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Inès Jadot
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Blanche Martin
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Olivia Botton
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Nathalie Caron
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| |
Collapse
|
19
|
Gregory A, Yumnamcha T, Shawky M, Eltanani S, Naghdi A, Ross BX, Lin X, Ibrahim AS. The Warburg effect alters amino acid homeostasis in human retinal endothelial cells: implication for proliferative diabetic retinopathy. Sci Rep 2023; 13:15973. [PMID: 37749155 PMCID: PMC10520048 DOI: 10.1038/s41598-023-43022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Proliferative diabetic retinopathy (PDR) remains a leading cause of blindness despite progress in screening and treatment. Recently, the Warburg effect, a metabolic alteration affecting amino acid (AA) metabolism in proliferating cells, has drawn attention regarding its role in PDR. This study aimed to investigate the impact of the Warburg effect on AA metabolism in human retinal endothelial cells (HRECs) subjected to PDR-associated risk factors and validate the findings in patients with PDR. In vitro experiments exposed HRECs to high glucose (HG) and/or hypoxia (Hyp), known inducers of the Warburg effect. The HG + Hyp group of HRECs exhibited significant differences in non-essential AAs with aliphatic non-polar side chains, mainly driven by elevated glycine concentrations. Pathway enrichment analysis revealed several glycine metabolism-related pathways significantly altered due to the Warburg effect induced by HG + Hyp. Crucially, vitreous humor samples from PDR patients displayed higher glycine levels compared to non-diabetic and diabetic patients without PDR. The odds ratio for PDR patients with glycine levels above the cut-off of 0.0836 µM was 28 (p = 0.03) compared to non-PDR controls. In conclusion, this study provides mechanistic insights into how a specific Warburg effect subtype contributes to glycine accumulation in PDR and supports glycine's potential as a biomarker for PDR pathogenesis.
Collapse
Affiliation(s)
- Andrew Gregory
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI, 48201, USA
| | - Thangal Yumnamcha
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI, 48201, USA
| | - Mohamed Shawky
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI, 48201, USA
- Department of Biochemistry, Faculty of Pharmacy, Horus University, Damietta, Egypt
| | - Shaimaa Eltanani
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI, 48201, USA
| | - Armaan Naghdi
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI, 48201, USA
| | - Bing X Ross
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI, 48201, USA
| | - Xihui Lin
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI, 48201, USA
| | - Ahmed S Ibrahim
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI, 48201, USA.
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
- Department of Pharmacology, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI, 48201, USA.
| |
Collapse
|
20
|
Nageeta F, Waqar F, Allahi I, Murtaza F, Nasir M, Danesh F, Irshad B, Kumar R, Tayyab A, Khan MSM, Kumar S, Varrassi G, Khatri M, Muzammil MA, Mohamad T. Precision Medicine Approaches to Diabetic Kidney Disease: Personalized Interventions on the Horizon. Cureus 2023; 15:e45575. [PMID: 37868402 PMCID: PMC10587911 DOI: 10.7759/cureus.45575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a significant complication of diabetes that requires innovative interventions to address its increasing impact. Precision medicine is a rapidly emerging paradigm that shows excellent promise in tailoring therapeutic strategies to the unique profiles of individual patients. This abstract examines the potential of precision medicine in managing DKD. It explores the genetic and molecular foundations, identifies biomarkers for risk assessment, provides insights into pharmacogenomics, and discusses targeted therapies. Integrating omics data and data analytics provides a comprehensive landscape for making informed decisions. The abstract highlights the difficulties encountered during the clinical implementation process, the ethical factors to be considered, and the importance of involving patients. In addition, it showcases case studies that demonstrate the effectiveness of precision-based interventions. As the field progresses, the abstract anticipates a future characterized by the integration of artificial intelligence in diagnostics and treatment. It highlights the significant impact that precision medicine can have in revolutionizing the provision of care for DKD.
Collapse
Affiliation(s)
- Fnu Nageeta
- Medicine, Ghulam Muhammad Mahar Medical College, Sukkur, PAK
| | - Fahad Waqar
- Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Ibtesam Allahi
- General Surgery, Allama Iqbal Medical College, Lahore, PAK
| | | | | | - Fnu Danesh
- Internal Medicine, Liaquat University of Medical and Health Sciences, Thatta, PAK
| | - Beena Irshad
- Medicine, Sharif Medical and Dental College, Lahore, PAK
| | - Rajesh Kumar
- Spine Surgery, Sunnybrook Hospital, University of Toronto, Toronto, CAN
| | - Arslan Tayyab
- Internal Medicine, Quaid-e-Azam Medical College, Bahawalpur, PAK
| | | | - Satesh Kumar
- Medicine and Surgery, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, PAK
| | | | - Mahima Khatri
- Medicine and Surgery, Dow University of Health Sciences, Karachi, PAK
| | | | - Tamam Mohamad
- Cardiovascular Medicine, Wayne State University, Detroit, USA
| |
Collapse
|
21
|
Shimada S, Hoffmann BR, Yang C, Kurth T, Greene AS, Liang M, Dash RK, Cowley AW. Metabolic Responses of Normal Rat Kidneys to a High Salt Intake. FUNCTION 2023; 4:zqad031. [PMID: 37575482 PMCID: PMC10413938 DOI: 10.1093/function/zqad031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 08/15/2023] Open
Abstract
In this study, novel methods were developed, which allowed continuous (24/7) measurement of arterial blood pressure and renal blood flow in freely moving rats and the intermittent collection of arterial and renal venous blood to estimate kidney metabolic fluxes of O2 and metabolites. Specifically, the study determined the effects of a high salt (HS; 4.0% NaCl) diet upon whole kidney O2 consumption and arterial and renal venous plasma metabolomic profiles of normal Sprague-Dawley rats. A separate group of rats was studied to determine changes in the cortex and outer medulla tissue metabolomic and mRNAseq profiles before and following the switch from a 0.4% to 4.0% NaCl diet. In addition, targeted mRNA expression analysis of cortical segments was performed. Significant changes in the metabolomic and transcriptomic profiles occurred with feeding of the HS diet. A progressive increase of kidney O2 consumption was found despite a reduction in expression of most of the mRNA encoding enzymes of TCA cycle. A novel finding was the increased expression of glycolysis-related genes in Cx and isolated proximal tubular segments in response to an HS diet, consistent with increased release of pyruvate and lactate from the kidney to the renal venous blood. Data suggests that aerobic glycolysis (eg, Warburg effect) may contribute to energy production under these circumstances. The study provides evidence that kidney metabolism responds to an HS diet enabling enhanced energy production while protecting from oxidative stress and injury. Metabolomic and transcriptomic analysis of kidneys of Sprague-Dawley rats fed a high salt diet.
Collapse
Affiliation(s)
- Satoshi Shimada
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian R Hoffmann
- Mass Spectrometry and Protein Chemistry, Protein Sciences, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Theresa Kurth
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andrew S Greene
- Mass Spectrometry and Protein Chemistry, Protein Sciences, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI 53226, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
22
|
Huang X, Gao L, Deng R, Peng Y, Wu S, Lu J, Liu X. Huangqi-Danshen decoction reshapes renal glucose metabolism profiles that delays chronic kidney disease progression. Biomed Pharmacother 2023; 164:114989. [PMID: 37315436 DOI: 10.1016/j.biopha.2023.114989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Huangqi-Danshen decoction (HDD), a Chinese herbal preparation, is effective in clinical treatment of chronic kidney disease (CKD). However, the underlying mechanism remains to be clarified. In this study, we aimed to investigate the role of HDD in the regulation of renal glucose metabolism in a CKD mouse model. The 0.2% adenine-induced CKD mouse model was administered HDD extract at a dose of 6.8 g/kg/day for 4 weeks. Detection of renal glucose metabolites was performed by ultra-performance liquid chromatography-tandem mass spectrometry. The expression of renal fibrosis and glucose metabolism-related proteins was tested by Western blotting, immunohistochemistry, and immunofluorescence. The results showed that HDD treatment could significantly reduce serum creatinine (0.36 ± 0.10 mg/dL vs. 0.51 ± 0.07 mg/dL, P < 0.05) and blood urea nitrogen (40.02 ± 3.73 mg/dL vs. 62.91 ± 10 mg/dL, P < 0.001) levels, and improve renal pathological injury and fibrosis. Aberrant glucose metabolism was found in the kidneys of CKD mice, manifested by enhanced glycolysis and pentose phosphate pathway, and tricarboxylic acid cycle inhibition, which could be partially restored by HDD treatment. Furthermore, HDD regulated the expression of hexokinase 2, phosphofructokinase, pyruvate kinase M2, pyruvate dehydrogenase E1, oxoglutarate dehydrogenase, and glucose-6-phosphate dehydrogenase in CKD mice. In conclusion, HDD protected against adenine-induced CKD, reshaped glucose metabolism profiles, and restored the expression of key enzymes of glucose metabolism in the kidneys of CKD mice. This study sheds light on targeting glucose metabolism for the treatment of CKD and screening small molecule compounds from herbal medicine to slow CKD progression.
Collapse
Affiliation(s)
- Xi Huang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Liwen Gao
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Ruyu Deng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Yu Peng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Shanshan Wu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China.
| |
Collapse
|
23
|
Iacobini C, Vitale M, Pugliese G, Menini S. The "sweet" path to cancer: focus on cellular glucose metabolism. Front Oncol 2023; 13:1202093. [PMID: 37305566 PMCID: PMC10248238 DOI: 10.3389/fonc.2023.1202093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
The hypoxia-inducible factor-1α (HIF-1α), a key player in the adaptive regulation of energy metabolism, and the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2), a critical regulator of glucose consumption, are the main drivers of the metabolic rewiring in cancer cells. The use of glycolysis rather than oxidative phosphorylation, even in the presence of oxygen (i.e., Warburg effect or aerobic glycolysis), is a major metabolic hallmark of cancer. Aerobic glycolysis is also important for the immune system, which is involved in both metabolic disorders development and tumorigenesis. More recently, metabolic changes resembling the Warburg effect have been described in diabetes mellitus (DM). Scientists from different disciplines are looking for ways to interfere with these cellular metabolic rearrangements and reverse the pathological processes underlying their disease of interest. As cancer is overtaking cardiovascular disease as the leading cause of excess death in DM, and biological links between DM and cancer are incompletely understood, cellular glucose metabolism may be a promising field to explore in search of connections between cardiometabolic and cancer diseases. In this mini-review, we present the state-of-the-art on the role of the Warburg effect, HIF-1α, and PKM2 in cancer, inflammation, and DM to encourage multidisciplinary research to advance fundamental understanding in biology and pathways implicated in the link between DM and cancer.
Collapse
|
24
|
Mouton AJ, do Carmo JM, da Silva AA, Omoto ACM, Hall JE. Targeting immunometabolism during cardiorenal injury: roles of conventional and alternative macrophage metabolic fuels. Front Physiol 2023; 14:1139296. [PMID: 37234412 PMCID: PMC10208225 DOI: 10.3389/fphys.2023.1139296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Macrophages play critical roles in mediating and resolving tissue injury as well as tissue remodeling during cardiorenal disease. Altered immunometabolism, particularly macrophage metabolism, is a critical underlying mechanism of immune dysfunction and inflammation, particularly in individuals with underlying metabolic abnormalities. In this review, we discuss the critical roles of macrophages in cardiac and renal injury and disease. We also highlight the roles of macrophage metabolism and discuss metabolic abnormalities, such as obesity and diabetes, which may impair normal macrophage metabolism and thus predispose individuals to cardiorenal inflammation and injury. As the roles of macrophage glucose and fatty acid metabolism have been extensively discussed elsewhere, we focus on the roles of alternative fuels, such as lactate and ketones, which play underappreciated roles during cardiac and renal injury and heavily influence macrophage phenotypes.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ana C. M. Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
25
|
Darshi M, Tumova J, Saliba A, Kim J, Baek J, Pennathur S, Sharma K. Crabtree effect in kidney proximal tubule cells via late-stage glycolytic intermediates. iScience 2023; 26:106462. [PMID: 37091239 PMCID: PMC10119590 DOI: 10.1016/j.isci.2023.106462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
The Crabtree effect is defined as a rapid glucose-induced repression of mitochondrial oxidative metabolism and has been described in yeasts and tumor cells. Using plate-based respirometry, we identified the Crabtree effect in normal (non-tumor) kidney proximal tubule epithelial cells (PTEC) but not in other kidney cells (podocytes or mesangial cells) or mammalian cells (C2C12 myoblasts). Glucose-induced repression of respiration was prevented by reducing glycolysis at the proximal step with 2-deoxyglucose and partially reversed by pyruvate. The late-stage glycolytic intermediates glyceraldehyde 3-phosphate, 3-phosphoglycerate, and phosphoenolpyruvate, but not the early-stage glycolytic intermediates or lactate, inhibited respiration in permeabilized PTEC and kidney cortex mitochondria, mimicking the Crabtree effect. Studies in diabetic mice indicated a pattern of increased late-stage glycolytic intermediates consistent with a similar pattern occurring in vivo. Our results show the unique presence of the Crabtree effect in kidney PTEC and identify the major mediators of this effect.
Collapse
Affiliation(s)
- Manjula Darshi
- Division of Nephrology, Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jana Tumova
- Division of Nephrology, Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Afaf Saliba
- Division of Nephrology, Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jiwan Kim
- Division of Nephrology, Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Judy Baek
- Department of Internal Medicine-Nephrology and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine-Nephrology and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kumar Sharma
- Division of Nephrology, Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
26
|
Comparison of Local Metabolic Changes in Diabetic Rodent Kidneys Using Mass Spectrometry Imaging. Metabolites 2023; 13:metabo13030324. [PMID: 36984764 PMCID: PMC10060001 DOI: 10.3390/metabo13030324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Understanding the renal region-specific metabolic alteration in different animal models of diabetic nephropathy (DN) is critical for uncovering the underlying mechanisms and for developing effective treatments. In the present study, spatially resolved metabolomics based on air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) was used to compare the local metabolic changes in the kidneys of HFD/STZ-induced diabetic rats and db/db mice. As a result, a total of 67 and 59 discriminating metabolites were identified and visualized in the kidneys of the HFD/STZ-induced diabetic rats and db/db mice, respectively. The result showed that there were significant region-specific changes in the glycolysis, TCA cycle, lipid metabolism, carnitine metabolism, choline metabolism, and purine metabolism in both DN models. However, the regional levels of the ten metabolites, including glucose, AMP, eicosenoic acid, eicosapentaenoic acid, Phosphatidylserine (36:1), Phosphatidylserine (36:4), Phosphatidylethanolamine (34:1), Phosphatidylethanolamine (36:4), Phosphatidylcholine (34:2), Phosphatidylinositol (38:5) were changed in reversed directions, indicating significant differences in the local metabolic phenotypes of these two commonly used DN animal models. This study provides comprehensive and in-depth analysis of the differences in the tissue and molecular pathological features in diabetic kidney injury in HFD/STZ-induced diabetic rats and db/db mice.
Collapse
|
27
|
Tanriover C, Copur S, Ucku D, Cakir AB, Hasbal NB, Soler MJ, Kanbay M. The Mitochondrion: A Promising Target for Kidney Disease. Pharmaceutics 2023; 15:pharmaceutics15020570. [PMID: 36839892 PMCID: PMC9960839 DOI: 10.3390/pharmaceutics15020570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Mitochondrial dysfunction is important in the pathogenesis of various kidney diseases and the mitochondria potentially serve as therapeutic targets necessitating further investigation. Alterations in mitochondrial biogenesis, imbalance between fusion and fission processes leading to mitochondrial fragmentation, oxidative stress, release of cytochrome c and mitochondrial DNA resulting in apoptosis, mitophagy, and defects in energy metabolism are the key pathophysiological mechanisms underlying the role of mitochondrial dysfunction in kidney diseases. Currently, various strategies target the mitochondria to improve kidney function and kidney treatment. The agents used in these strategies can be classified as biogenesis activators, fission inhibitors, antioxidants, mPTP inhibitors, and agents which enhance mitophagy and cardiolipin-protective drugs. Several glucose-lowering drugs, such as glucagon-like peptide-1 receptor agonists (GLP-1-RA) and sodium glucose co-transporter-2 (SGLT-2) inhibitors are also known to have influences on these mechanisms. In this review, we delineate the role of mitochondrial dysfunction in kidney disease, the current mitochondria-targeting treatment options affecting the kidneys and the future role of mitochondria in kidney pathology.
Collapse
Affiliation(s)
- Cem Tanriover
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Duygu Ucku
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Ahmet B. Cakir
- Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Nuri B. Hasbal
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, 34010 Istanbul, Turkey
| | - Maria Jose Soler
- Nephrology and Kidney Transplant Research Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, 34010 Istanbul, Turkey
- Correspondence: or ; Tel.: +90-212-2508250
| |
Collapse
|
28
|
Shimada S, Hoffmann BR, Yang C, Kurth T, Greene AS, Liang M, Dash RK, Cowley AW. Metabolic responses of normal rat kidneys to a high salt intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524636. [PMID: 36711564 PMCID: PMC9882299 DOI: 10.1101/2023.01.18.524636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the present study, novel methods were developed which allowed continuous (24/7) measurement of blood pressure (BP) and renal blood flow (RBF) in freely moving rats and the intermittent collection of arterial and renal venous blood to estimate kidney metabolic fluxes of O 2 and metabolites. The study determined the effects of a high salt (HS) diet upon whole kidney O 2 consumption and the metabolomic profiles of normal Sprague Dawley (SD) rats. A separate group of rats was studied to determine changes in the cortex (Cx) and outer medulla (OM) tissue metabolomic and mRNAseq profiles before and following the switch from a 0.4% to a 4.0% NaCl diet. Significant changes in the metabolomic and transcriptomic profiles occurred with feeding of the HS diet. A progressive increase of kidney O 2 consumption was found despite a reduction in expression of most of the mRNA encoding enzymes of TCA cycle. Increased glycolysis was evident with the elevation of mRNA expression encoding key glycolytic enzymes and release of pyruvate and lactate from the kidney in the renal venous blood. Glycolytic production of NADH is used in either the production of lactate or oxidized via the malate aspartate shuttle. Aerobic glycolysis (e.g., Warburg-effect) may account for the needed increase in cellular energy. The study provides evidence that kidney metabolism responds to a HS diet enabling enhanced energy production while protecting from oxidate stress and injury.
Collapse
|
29
|
Iacobini C, Vitale M, Haxhi J, Pesce C, Pugliese G, Menini S. Mutual Regulation between Redox and Hypoxia-Inducible Factors in Cardiovascular and Renal Complications of Diabetes. Antioxidants (Basel) 2022; 11:2183. [PMID: 36358555 PMCID: PMC9686572 DOI: 10.3390/antiox11112183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Oxidative stress and hypoxia-inducible factors (HIFs) have been implicated in the pathogenesis of diabetic cardiovascular and renal diseases. Reactive oxygen species (ROS) mediate physiological and pathophysiological processes, being involved in the modulation of cell signaling, differentiation, and survival, but also in cyto- and genotoxic damage. As master regulators of glycolytic metabolism and oxygen homeostasis, HIFs have been largely studied for their role in cell survival in hypoxic conditions. However, in addition to hypoxia, other stimuli can regulate HIFs stability and transcriptional activity, even in normoxic conditions. Among these, a regulatory role of ROS and their byproducts on HIFs, particularly the HIF-1α isoform, has received growing attention in recent years. On the other hand, HIF-1α and HIF-2α exert mutually antagonistic effects on oxidative damage. In diabetes, redox-mediated HIF-1α deregulation contributes to the onset and progression of cardiovascular and renal complications, and recent findings suggest that deranged HIF signaling induced by hyperglycemia and other cellular stressors associated with metabolic disorders may cause mitochondrial dysfunction, oxidative stress, and inflammation. Understanding the mechanisms of mutual regulation between HIFs and redox factors and the specific contribution of the two main isoforms of HIF-α is fundamental to identify new therapeutic targets for vascular complications of diabetes.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Jonida Haxhi
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| |
Collapse
|
30
|
Lee DY, Kim JY, Ahn E, Hyeon JS, Kim GH, Park KJ, Jung Y, Lee YJ, Son MK, Kim SW, Han SY, Kim JH, Roh GS, Cha DR, Hwang GS, Kim WH. Associations between local acidosis induced by renal LDHA and renal fibrosis and mitochondrial abnormalities in patients with diabetic kidney disease. Transl Res 2022; 249:88-109. [PMID: 35788054 DOI: 10.1016/j.trsl.2022.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 10/31/2022]
Abstract
During the progression of diabetic kidney disease (DKD), renal lactate metabolism is rewired. The relationship between alterations in renal lactate metabolism and renal fibrosis in patients with diabetes has only been partially established due to a lack of biopsy tissues from patients with DKD and the intricate mechanism of lactate homeostasis. The role of lactate dehydrogenase A (LDHA)-mediated lactate generation in renal fibrosis and dysfunction in human and animal models of DKD was explored in this study. Measures of lactate metabolism (urinary lactate levels and LDHA expression) and measures of DKD progression (estimated glomerular filtration rate and Wilms' tumor-1 expression) were strongly negatively correlated in patients with DKD. Experiments with streptozotocin-induced DKD rat models and the rat renal mesangial cell model confirmed our findings. We found that the pathogenesis of DKD is linked to hypoxia-mediated lactic acidosis, which leads to fibrosis and mitochondrial abnormalities. The pathogenic characteristics of DKD were significantly reduced when aerobic glycolysis or LDHA expression was inhibited. Further studies will aim to investigate whether local acidosis caused by renal LDHA might be exploited as a therapeutic target in patients with DKD.
Collapse
Affiliation(s)
- Dae-Yeon Lee
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea; Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Ji-Yeon Kim
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Eunyong Ahn
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jin Seong Hyeon
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Gyu-Hee Kim
- Division of Metabolic Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Keon-Jae Park
- Division of Metabolic Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Youngae Jung
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Yoo-Jeong Lee
- Division of Metabolic Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Mi Kyoung Son
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Seung Woo Kim
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Sang Youb Han
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Jae-Hong Kim
- Division of Life Sciences, College of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea.
| | - Geum-Sook Hwang
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea.
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| |
Collapse
|
31
|
Liu X, Liu H, Zeng L, Lv Y. BRCA1 overexpression attenuates breast cancer cell growth and migration by regulating the pyruvate kinase M2-mediated Warburg effect via the PI3K/AKT signaling pathway. PeerJ 2022; 10:e14052. [PMID: 36193432 PMCID: PMC9526413 DOI: 10.7717/peerj.14052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 01/19/2023] Open
Abstract
This work explored the mechanism of the effect of breast-cancer susceptibility gene 1 (BRCA1) on the metabolic characteristics of breast cancer cells, including the Warburg effect and its specific signaling. We transfected MCF-7 cells with a BRCA1-encoding LXSN plasmid or PKM2 siRNA and examined cancer cell metabolism using annexin V staining, inhibitory concentration determination, Western blotting, glucose uptake and lactic acid content measurements, and Transwell assays to assess glycolytic activity, cell apoptosis, and migration, and sensitivity to anti-cancer treatment. The BRCA1-expressing MCF-7 cells demonstrated low PKM2 expression and decreased glycolytic activity (downregulated hexokinase 2 (HK2) expression, upregulated isocitrate dehydrogenase 1 (IDH1) expression, and reduced O2 and glucose consumption and lactate production) via regulation of PI3K/AKT pathway compared with the empty LXSN group. BRCA1 transfection slightly increased apoptotic activity, decreased cell migration, and increased the IC50 index for doxorubicin, paclitaxel, and cisplatin. Inhibiting PKM2 using siRNA attenuated the IC50 index for doxorubicin, paclitaxel, and cisplatin compared with the control. Inhibiting PKM2 activated PI3K/AKT signaling, increased apoptosis, and decreased MCF-7 cell migration. Our data suggest that BRCA1 overexpression reverses the Warburg effect, inhibits cancer cell growth and migration, and enhances the sensitivity to anti-cancer treatment by decreasing PKM2 expression regulated by PI3K/AKT signaling. These novel metabolic findings represent a potential mechanism by which BRCA1 exerts its inhibitory effect on breast cancer.
Collapse
|
32
|
The Warburg effect: Saturation of mitochondrial NADH shuttles triggers aerobic lactate fermentation. Mol Cell 2022; 82:3119-3121. [PMID: 36055204 PMCID: PMC9888598 DOI: 10.1016/j.molcel.2022.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/02/2023]
Abstract
In this issue of Molecular Cell, Wang et al. investigate the Warburg effect in proliferating cells and demonstrate that lactate fermentation is a secondary mechanism activated after mitochondrial shuttles exceed their capacity to oxidize cytosolic NADH.
Collapse
|
33
|
Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nat Rev Nephrol 2022; 18:588-603. [PMID: 35798902 DOI: 10.1038/s41581-022-00592-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/20/2022]
Abstract
Kidney tubular epithelial cells (TECs) have a crucial role in the damage and repair response to acute and chronic injury. To adequately respond to constant changes in the environment, TECs have considerable bioenergetic needs, which are supported by metabolic pathways. Although little is known about TEC metabolism, a number of ground-breaking studies have shown that defective glucose metabolism or fatty acid oxidation in the kidney has a key role in the response to kidney injury. Imbalanced use of these metabolic pathways can predispose TECs to apoptosis and dedifferentiation, and contribute to lipotoxicity and kidney injury. The accumulation of lipids and aberrant metabolic adaptations of TECs during kidney disease can also be driven by receptors of the innate immune system. Similar to their actions in innate immune cells, pattern recognition receptors regulate the metabolic rewiring of TECs, causing cellular dysfunction and lipid accumulation. TECs should therefore be considered a specialized cell type - like cells of the innate immune system - that is subject to regulation by immunometabolism. Targeting energy metabolism in TECs could represent a strategy for metabolically reprogramming the kidney and promoting kidney repair.
Collapse
|
34
|
Franko A, Irmler M, Prehn C, Heinzmann SS, Schmitt-Kopplin P, Adamski J, Beckers J, von Kleist-Retzow JC, Wiesner R, Häring HU, Heni M, Birkenfeld AL, de Angelis MH. Bezafibrate Reduces Elevated Hepatic Fumarate in Insulin-Deficient Mice. Biomedicines 2022; 10:biomedicines10030616. [PMID: 35327418 PMCID: PMC8945094 DOI: 10.3390/biomedicines10030616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Glucotoxic metabolites and pathways play a crucial role in diabetic complications, and new treatment options which improve glucotoxicity are highly warranted. In this study, we analyzed bezafibrate (BEZ) treated, streptozotocin (STZ) injected mice, which showed an improved glucose metabolism compared to untreated STZ animals. In order to identify key molecules and pathways which participate in the beneficial effects of BEZ, we studied plasma, skeletal muscle, white adipose tissue (WAT) and liver samples using non-targeted metabolomics (NMR spectroscopy), targeted metabolomics (mass spectrometry), microarrays and mitochondrial enzyme activity measurements, with a particular focus on the liver. The analysis of muscle and WAT demonstrated that STZ treatment elevated inflammatory pathways and reduced insulin signaling and lipid pathways, whereas BEZ decreased inflammatory pathways and increased insulin signaling and lipid pathways, which can partly explain the beneficial effects of BEZ on glucose metabolism. Furthermore, lysophosphatidylcholine levels were lower in the liver and skeletal muscle of STZ mice, which were reverted in BEZ-treated animals. BEZ also improved circulating and hepatic glucose levels as well as lipid profiles. In the liver, BEZ treatment reduced elevated fumarate levels in STZ mice, which was probably due to a decreased expression of urea cycle genes. Since fumarate has been shown to participate in glucotoxic pathways, our data suggests that BEZ treatment attenuates the urea cycle in the liver, decreases fumarate levels and, in turn, ameliorates glucotoxicity and reduces insulin resistance in STZ mice.
Collapse
Affiliation(s)
- Andras Franko
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tuebingen, Germany; (A.F.); (H.-U.H.); (M.H.); (A.L.B.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, University of Tübingen, 72076 Tuebingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany;
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany; (M.I.); (J.A.)
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany; (M.I.); (J.A.)
| | - Cornelia Prehn
- Metabolomics and Proteomics Core (MPC), Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| | - Silke S. Heinzmann
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (S.S.H.); (P.S.-K.)
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (S.S.H.); (P.S.-K.)
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany; (M.I.); (J.A.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Johannes Beckers
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany;
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany; (M.I.); (J.A.)
- Chair of Experimental Genetics, Technical University of Munich, 85354 Freising, Germany
| | - Jürgen-Christoph von Kleist-Retzow
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Köln, 50931 Cologne, Germany; (J.-C.v.K.-R.); (R.W.)
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Rudolf Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Köln, 50931 Cologne, Germany; (J.-C.v.K.-R.); (R.W.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Köln, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Köln, 50931 Cologne, Germany
| | - Hans-Ulrich Häring
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tuebingen, Germany; (A.F.); (H.-U.H.); (M.H.); (A.L.B.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, University of Tübingen, 72076 Tuebingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany;
| | - Martin Heni
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tuebingen, Germany; (A.F.); (H.-U.H.); (M.H.); (A.L.B.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, University of Tübingen, 72076 Tuebingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany;
| | - Andreas L. Birkenfeld
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tuebingen, Germany; (A.F.); (H.-U.H.); (M.H.); (A.L.B.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, University of Tübingen, 72076 Tuebingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany;
| | - Martin Hrabě de Angelis
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany;
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany; (M.I.); (J.A.)
- Chair of Experimental Genetics, Center of Life and Food Sciences, Weihenstephan, Technische Universität München, 85354 Freising, Germany
- Correspondence: ; Tel.: +49-89-3187-3302
| |
Collapse
|
35
|
Ito M, Gurumani MZ, Merscher S, Fornoni A. Glucose- and Non-Glucose-Induced Mitochondrial Dysfunction in Diabetic Kidney Disease. Biomolecules 2022; 12:biom12030351. [PMID: 35327540 PMCID: PMC8945149 DOI: 10.3390/biom12030351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial dysfunction plays an important role in the pathogenesis and progression of diabetic kidney disease (DKD). In this review, we will discuss mitochondrial dysfunction observed in preclinical models of DKD as well as in clinical DKD with a focus on oxidative phosphorylation (OXPHOS), mitochondrial reactive oxygen species (mtROS), biogenesis, fission and fusion, mitophagy and urinary mitochondrial biomarkers. Both glucose- and non-glucose-induced mitochondrial dysfunction will be discussed. In terms of glucose-induced mitochondrial dysfunction, the energetic shift from OXPHOS to aerobic glycolysis, called the Warburg effect, occurs and the resulting toxic intermediates of glucose metabolism contribute to DKD-induced injury. In terms of non-glucose-induced mitochondrial dysfunction, we will review the roles of lipotoxicity, hypoxia and vasoactive pathways, including endothelin-1 (Edn1)/Edn1 receptor type A signaling pathways. Although the relative contribution of each of these pathways to DKD remains unclear, the goal of this review is to highlight the complexity of mitochondrial dysfunction in DKD and to discuss how markers of mitochondrial dysfunction could help us stratify patients at risk for DKD.
Collapse
Affiliation(s)
| | | | - Sandra Merscher
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-7745 (A.F.)
| | - Alessia Fornoni
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-7745 (A.F.)
| |
Collapse
|
36
|
Kruse ARS, Spraggins JM. Uncovering Molecular Heterogeneity in the Kidney With Spatially Targeted Mass Spectrometry. Front Physiol 2022; 13:837773. [PMID: 35222094 PMCID: PMC8874197 DOI: 10.3389/fphys.2022.837773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease.
Collapse
Affiliation(s)
- Angela R. S. Kruse
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Jeffrey M. Spraggins
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Jeffrey M. Spraggins,
| |
Collapse
|
37
|
Bai Y, Wei C, Li P, Sun X, Cai G, Chen X, Hong Q. Primary cilium in kidney development, function and disease. Front Endocrinol (Lausanne) 2022; 13:952055. [PMID: 36072924 PMCID: PMC9441790 DOI: 10.3389/fendo.2022.952055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
The primary cilium is a hair-like, microtubule-based organelle that is covered by the cell membrane and extends from the surface of most vertebrate cells. It detects and translates extracellular signals to direct various cellular signaling pathways to maintain homeostasis. It is mainly distributed in the proximal and distal tubules and collecting ducts in the kidney. Specific signaling transduction proteins localize to primary cilia. Defects in cilia structure and function lead to a class of diseases termed ciliopathies. The proper functioning of primary cilia is essential to kidney organogenesis and the maintenance of epithelial cell differentiation and proliferation. Persistent cilia dysfunction has a role in the early stages and progression of renal diseases, such as cystogenesis and acute tubular necrosis (ATN). In this review, we focus on the central role of cilia in kidney development and illustrate how defects in cilia are associated with renal disease progression.
Collapse
Affiliation(s)
- Yunfeng Bai
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Cuiting Wei
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Xiangmei Chen, ; Quan Hong,
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- *Correspondence: Xiangmei Chen, ; Quan Hong,
| |
Collapse
|
38
|
Vallon V, Nakagawa T. Renal Tubular Handling of Glucose and Fructose in Health and Disease. Compr Physiol 2021; 12:2995-3044. [PMID: 34964123 PMCID: PMC9832976 DOI: 10.1002/cphy.c210030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proximal tubule of the kidney is programmed to reabsorb all filtered glucose and fructose. Glucose is taken up by apical sodium-glucose cotransporters SGLT2 and SGLT1 whereas SGLT5 and potentially SGLT4 and GLUT5 have been implicated in apical fructose uptake. The glucose taken up by the proximal tubule is typically not metabolized but leaves via the basolateral facilitative glucose transporter GLUT2 and is returned to the systemic circulation or used as an energy source by distal tubular segments after basolateral uptake via GLUT1. The proximal tubule generates new glucose in metabolic acidosis and the postabsorptive phase, and fructose serves as an important substrate. In fact, under physiological conditions and intake, fructose taken up by proximal tubules is primarily utilized for gluconeogenesis. In the diabetic kidney, glucose is retained and gluconeogenesis enhanced, the latter in part driven by fructose. This is maladaptive as it sustains hyperglycemia. Moreover, renal glucose retention is coupled to sodium retention through SGLT2 and SGLT1, which induces secondary deleterious effects. SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing independent of kidney function and diabetes. Dietary excess of fructose also induces tubular injury. This can be magnified by kidney formation of fructose under pathological conditions. Fructose metabolism is linked to urate formation, which partially accounts for fructose-induced tubular injury, inflammation, and hemodynamic alterations. Fructose metabolism favors glycolysis over mitochondrial respiration as urate suppresses aconitase in the tricarboxylic acid cycle, and has been linked to potentially detrimental aerobic glycolysis (Warburg effect). © 2022 American Physiological Society. Compr Physiol 12:2995-3044, 2022.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, USA,Department of Pharmacology, University of California San Diego, La Jolla, California, USA,VA San Diego Healthcare System, San Diego, California, USA,Correspondence to and
| | - Takahiko Nakagawa
- Division of Nephrology, Rakuwakai-Otowa Hospital, Kyoto, Japan,Correspondence to and
| |
Collapse
|
39
|
Wen L, Li Y, Li S, Hu X, Wei Q, Dong Z. Glucose Metabolism in Acute Kidney Injury and Kidney Repair. Front Med (Lausanne) 2021; 8:744122. [PMID: 34912819 PMCID: PMC8666949 DOI: 10.3389/fmed.2021.744122] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The kidneys play an indispensable role in glucose homeostasis via glucose reabsorption, production, and utilization. Conversely, aberrant glucose metabolism is involved in the onset, progression, and prognosis of kidney diseases, including acute kidney injury (AKI). In this review, we describe the regulation of glucose homeostasis and related molecular factors in kidneys under normal physiological conditions. Furthermore, we summarize recent investigations about the relationship between glucose metabolism and different types of AKI. We also analyze the involvement of glucose metabolism in kidney repair after injury, including renal fibrosis. Further research on glucose metabolism in kidney injury and repair may lead to the identification of novel therapeutic targets for the prevention and treatment of kidney diseases.
Collapse
Affiliation(s)
- Lu Wen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Ying Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Siyao Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Xiaoru Hu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Zheng Dong
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| |
Collapse
|
40
|
Zhu X, Jiang L, Long M, Wei X, Hou Y, Du Y. Metabolic Reprogramming and Renal Fibrosis. Front Med (Lausanne) 2021; 8:746920. [PMID: 34859009 PMCID: PMC8630632 DOI: 10.3389/fmed.2021.746920] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
There are several causes of chronic kidney disease, but all of these patients have renal fibrosis. Although many studies have examined the pathogenesis of renal fibrosis, there are still no effective treatments. A healthy and balanced metabolism is necessary for normal cell growth, proliferation, and function, but metabolic abnormalities can lead to pathological changes. Normal energy metabolism is particularly important for maintaining the structure and function of the kidneys because they consume large amounts of energy. We describe the metabolic reprogramming that occurs during renal fibrosis, which includes changes in fatty acid metabolism and glucose metabolism, and the relationship of these changes with renal fibrosis. We also describe the potential role of novel drugs that disrupt this metabolic reprogramming and the development of fibrosis, and current and future challenges in the treatment of fibrosis.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Jiang
- Physical Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yue Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Chang MY, Tsai TI, Chou LF, Hsu SH, Yang HY, Hung CC, Tian YC, Ong ACM, Yang CW. Metformin induces lactate accumulation and accelerates renal cyst progression in Pkd1-deficient mice. Hum Mol Genet 2021; 31:1560-1573. [PMID: 34957500 DOI: 10.1093/hmg/ddab340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Metabolic reprogramming is a potential treatment strategy for autosomal dominant polycystic kidney disease (ADPKD). Metformin has been shown to inhibit the early stages of cyst formation in animal models. However, metformin can lead to lactic acidosis in diabetic patients with advanced chronic kidney disease, and its efficacy in ADPKD is still not fully understood. Here, we investigated the effect of metformin in an established hypomorphic mouse model of PKD that presents stable and heritable knockdown of Pkd1. The Pkd1 miRNA transgenic mice of both genders were randomized to receive metformin or saline injections. Metformin was administrated through daily intraperitoneal injection from postnatal day 35 for 4 weeks. Unexpectedly, metformin treatment at a concentration of 150 mg/kg increased disease severity, including kidney-to-body weight ratio, cystic index and plasma BUN levels, and was associated with increased renal tubular cell proliferation and plasma lactate levels. Functional enrichment analysis for cDNA microarrays from kidney samples revealed significant enrichment of several pro-proliferative pathways including β-catenin, hypoxia-inducible factor-1α, protein kinase Cα and Notch signaling pathways in the metformin-treated mutant mice. The plasma metformin concentrations were still within the recommended therapeutic range for type 2 diabetic patients. Short-term metformin treatment in a second Pkd1 hypomorphic model (Pkd1RC/RC) was however neutral. These results demonstrate that metformin may exacerbate late-stage cyst growth associated with the activation of lactate-related signaling pathways in Pkd1 deficiency. Our findings indicate that using metformin in the later stage of ADPKD might accelerate disease progression and call for the cautious use of metformin in these patients.
Collapse
Affiliation(s)
- Ming-Yang Chang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Tsung-Inn Tsai
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Li-Fang Chou
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Shen-Hsing Hsu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Albert C M Ong
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| |
Collapse
|
42
|
Faivre A, Verissimo T, Auwerx H, Legouis D, de Seigneux S. Tubular Cell Glucose Metabolism Shift During Acute and Chronic Injuries. Front Med (Lausanne) 2021; 8:742072. [PMID: 34778303 PMCID: PMC8585753 DOI: 10.3389/fmed.2021.742072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Acute and chronic kidney disease are responsible for large healthcare costs worldwide. During injury, kidney metabolism undergoes profound modifications in order to adapt to oxygen and nutrient shortage. Several studies highlighted recently the importance of these metabolic adaptations in acute as well as in chronic phases of renal disease, with a potential deleterious effect on fibrosis progression. Until recently, glucose metabolism in the kidney has been poorly studied, even though the kidney has the capacity to use and produce glucose, depending on the segment of the nephron. During physiology, renal proximal tubular cells use the beta-oxidation of fatty acid to generate large amounts of energy, and can also produce glucose through gluconeogenesis. In acute kidney injury, proximal tubular cells metabolism undergo a metabolic shift, shifting away from beta-oxidation of fatty acids and gluconeogenesis toward glycolysis. In chronic kidney disease, the loss of fatty acid oxidation is also well-described, and data about glucose metabolism are emerging. We here review the modifications of proximal tubular cells glucose metabolism during acute and chronic kidney disease and their potential consequences, as well as the potential therapeutic implications.
Collapse
Affiliation(s)
- Anna Faivre
- Laboratory of Nephrology, Geneva University Hospitals, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Thomas Verissimo
- Laboratory of Nephrology, Geneva University Hospitals, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Hannah Auwerx
- Laboratory of Nephrology, Geneva University Hospitals, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - David Legouis
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Intensive Care Unit, Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Sophie de Seigneux
- Laboratory of Nephrology, Geneva University Hospitals, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
43
|
Spatial-resolved metabolomics reveals tissue-specific metabolic reprogramming in diabetic nephropathy by using mass spectrometry imaging. Acta Pharm Sin B 2021; 11:3665-3677. [PMID: 34900545 PMCID: PMC8642449 DOI: 10.1016/j.apsb.2021.05.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
Detailed knowledge on tissue-specific metabolic reprogramming in diabetic nephropathy (DN) is vital for more accurate understanding the molecular pathological signature and developing novel therapeutic strategies. In the present study, a spatial-resolved metabolomics approach based on air flow-assisted desorption electrospray ionization (AFADESI) and matrix-assisted laser desorption ionization (MALDI) integrated mass spectrometry imaging (MSI) was proposed to investigate tissue-specific metabolic alterations in the kidneys of high-fat diet-fed and streptozotocin (STZ)-treated DN rats and the therapeutic effect of astragaloside IV, a potential anti-diabetic drug, against DN. As a result, a wide range of functional metabolites including sugars, amino acids, nucleotides and their derivatives, fatty acids, phospholipids, sphingolipids, glycerides, carnitine and its derivatives, vitamins, peptides, and metal ions associated with DN were identified and their unique distribution patterns in the rat kidney were visualized with high chemical specificity and high spatial resolution. These region-specific metabolic disturbances were ameliorated by repeated oral administration of astragaloside IV (100 mg/kg) for 12 weeks. This study provided more comprehensive and detailed information about the tissue-specific metabolic reprogramming and molecular pathological signature in the kidney of diabetic rats. These findings highlighted the promising potential of AFADESI and MALDI integrated MSI based metabolomics approach for application in metabolic kidney diseases.
Collapse
Key Words
- ADP, adenosine diphosphate
- AFADESI, air flow-assisted desorption electrospray ionization
- AGEs, advanced glycation end products
- AMP, adenosine monophosphate
- AMPK, adenosine monophosphate activated protein kinase
- AST, astragaloside IV
- ATP, adenosine triphosphate
- Astragaloside IV
- BUN, blood urea nitrogen
- CL, cardiolipin
- Cre, creatinine
- DAG, diacylglycerol
- DESI, desorption electrospray ionization
- DM, diabetes mellitus
- DN, diabetic nephropathy
- DPA, docosapentaenoic acid
- Diabetic nephropathy
- ESKD, end-stage kidney disease
- FBG, fasting blood glucose
- GLU, glucose
- GMP, guanosine monophosphate
- GSH, glutathione
- H&E, hematoxylin and eosin
- HPLC, high-performance liquid chromatography
- HbA1c, glycosylated hemoglobin
- LysoPC, lysophosphatidylcholine
- LysoPG, lysophosphatidylglycerol
- MALDI, matrix-assisted laser desorption ionization
- MS, mass spectrometry
- MSI, mass spectrometry imaging
- Mass spectrometry imaging
- Metabolic reprogramming
- NMR, nuclear magnetic resonance
- Na-CMC, sodium carboxymethyl cellulose
- PA, phosphatidic acid
- PC, phosphatidylcholine
- PE, phosphatidylethanolamine
- PG, phosphatidylglycerol
- PPP, pentose phosphate pathway
- PS, phosphatidylserine
- PUFA, polyunsaturated fatty acids
- ROI, regions of interest
- ROS, reactive oxygen species
- SDH, succinate dehydrogenase
- SGLTs, sodium-glucose cotransporters
- SM, sphingomyelin
- STZ, streptozotocin
- Spatial-resolved metabolomics
- TCA, tricarboxylic acid
- TCHO, total cholesterol
- TG, triglyceride
- UMP, uridine monophosphate
- VIP, variable importance in projection
- p-AMPK, phosphorylated adenosine monophosphate activated protein kinase
Collapse
|
44
|
Liu H, Sridhar VS, Montemayor D, Lovblom LE, Lytvyn Y, Ye H, Kim J, Ali MT, Scarr D, Lawler PR, Perkins BA, Sharma K, Cherney DZI. Changes in plasma and urine metabolites associated with empagliflozin in patients with type 1 diabetes. Diabetes Obes Metab 2021; 23:2466-2475. [PMID: 34251085 DOI: 10.1111/dom.14489] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
AIM To examine the impact of the sodium-glucose co-transporter-2 inhibitor, empagliflozin, on plasma and urine metabolites in participants with type 1 diabetes. MATERIAL AND METHODS Participants (n = 40, 50% male, mean age 24.3 years) with type 1 diabetes and without overt evidence of diabetic kidney disease had baseline assessments performed under clamped euglycaemia and hyperglycaemia, on two consecutive days. Participants then proceeded to an 8-week, open-label treatment period with empagliflozin 25 mg/day, followed by repeat assessments under clamped euglycaemia and hyperglycaemia. Plasma and urine metabolites were first grouped into metabolic pathways using MetaboAnalyst software. Principal component analysis was performed to create a representative value for each sufficiently represented metabolic group (false discovery rate ≤ 0.1) for further analysis. RESULTS Of the plasma metabolite groups, tricarboxylic acid (TCA) cycle (P < .0001), biosynthesis of unsaturated fatty acids (P = .0045), butanoate (P < .0001), propanoate (P = .0053), and alanine, aspartate and glutamate (P < .0050) metabolites were increased after empagliflozin treatment under clamped euglycaemia. Of the urine metabolite groups, only butanoate metabolites (P = .0005) were significantly increased. Empagliflozin treatment also attenuated the increase in a number of urine metabolites observed with acute hyperglycaemia. CONCLUSIONS Empagliflozin was associated with increased lipid and TCA cycle metabolites in participants with type 1 diabetes, suggesting a shift in metabolic substrate use and improved mitochondrial function. These effects result in more efficient energy production and may contribute to end-organ protection by alleviating local hypoxia and oxidative stress.
Collapse
Affiliation(s)
- Hongyan Liu
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, UHN, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Vikas S Sridhar
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada
| | - Daniel Montemayor
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Leif Erik Lovblom
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Yuliya Lytvyn
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hongping Ye
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jiwan Kim
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mir Tariq Ali
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Daniel Scarr
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Patrick R Lawler
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David Z I Cherney
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, UHN, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Sarkar S, Chen S, Spencer B, Situ X, Afkarian M, Matsukuma K, Corwin MT, Wang G. Non-Alcoholic Steatohepatitis Severity Associates with FGF21 Level and Kidney Glucose Uptake. Metab Syndr Relat Disord 2021; 19:491-497. [PMID: 34448598 PMCID: PMC10027339 DOI: 10.1089/met.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Nonalcoholic steatohepatitis (NASH) is a severe form of fatty liver disease that has been shown to be associated with chronic kidney disease (CKD). Mechanism for the association of NASH with CKD remains unclear. In this study, we examined the association between NASH severity and kidney glucose uptake and the liver-secreted signaling molecule fibroblast growth factor 21 (FGF21). Methods: Kinetic parameters for kidney glucose transport rate (K1) and standardized uptake value (SUV) were determined using dynamic positron emission tomography after injection of 18F-fluorodeoxyglucose. Liver biopsies were scored for NASH activity (inflammation and ballooning), fibrosis, and steatosis FGF21 was measured from fasting serum samples. Patients were categorized by liver biopsy and multivariate analyses were performed to evaluate the associations. Results: Of 41 NASH patients 73% were females, 71% white, 51% with steatosis ≥2, 39% with NASH activity ≥4 and fibrosis ≥3. With severe NASH activity, kidney SUV significantly increased even when adjusted for underlying insulin-resistant (IR) state. Kidney K1 decreased significantly in higher liver activity in unadjusted models but not when adjusted for IR. FGF21 decreased with severe liver activity in adjusted models (P < 0.05) and associated with kidney K1 but not SUV. Conclusion: Our pilot data indicate that kidney glucose metabolism associates with NASH activity and FGF21 levels, suggesting a potential mechanism to NASH-induced CKD. Clinical Trials.gov ID: NCT02754037.
Collapse
Affiliation(s)
- Souvik Sarkar
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, Sacramento, California, USA
| | - Shuai Chen
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Davis, California, USA
| | - Benjamin Spencer
- Department of Radiology, University of California, Davis, Sacramento, California, USA
| | - Xiaolu Situ
- Department of Statistics, University of California, Davis, Davis, California, USA
| | - Maryam Afkarian
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Sacramento, California, USA
| | - Karen Matsukuma
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Michael T Corwin
- Department of Radiology, University of California, Davis, Sacramento, California, USA
| | - Guobao Wang
- Department of Radiology, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
46
|
Roointan A, Gheisari Y, Hudkins KL, Gholaminejad A. Non-invasive metabolic biomarkers for early diagnosis of diabetic nephropathy: Meta-analysis of profiling metabolomics studies. Nutr Metab Cardiovasc Dis 2021; 31:2253-2272. [PMID: 34059383 DOI: 10.1016/j.numecd.2021.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022]
Abstract
AIM Diabetic nephropathy (DN) is one of the worst complications of diabetes. Despite a growing number of DN metabolite profiling studies, most studies are suffering from inconsistency in their findings. The main goal of this meta-analysis was to reach to a consensus panel of significantly dysregulated metabolites as potential biomarkers in DN. DATA SYNTHESIS To identify the significant dysregulated metabolites, meta-analysis was performed by "vote-counting rank" and "robust rank aggregation" strategies. Bioinformatics analyses were performed to identify the most affected genes and pathways. Among 44 selected studies consisting of 98 metabolite profiles, 17 metabolites (9 up-regulated and 8 down-regulated metabolites), were identified as significant ones by both the meta-analysis strategies (p-value<0.05 and OR>2 or <0.5) and selected as DN metabolite meta-signature. Furthermore, enrichment analyses confirmed the involvement of various effective biological pathways in DN pathogenesis, such as urea cycle, TCA cycle, glycolysis, and amino acid metabolisms. Finally, by performing a meta-analysis over existing time-course studies in DN, the results indicated that lactic acid, hippuric acid, allantoin (in urine), and glutamine (in blood), are the topmost non-invasive early diagnostic biomarkers. CONCLUSION The identified metabolites are potentially involved in diabetic nephropathy pathogenesis and could be considered as biomarkers or drug targets in the disease. PROSPERO REGISTRATION NUMBER CRD42020197697.
Collapse
Affiliation(s)
- Amir Roointan
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kelly L Hudkins
- Department of Pathology, University of Washington, School of Medicine, Seattle, United States
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
47
|
Iacobini C, Vitale M, Pesce C, Pugliese G, Menini S. Diabetic Complications and Oxidative Stress: A 20-Year Voyage Back in Time and Back to the Future. Antioxidants (Basel) 2021; 10:727. [PMID: 34063078 PMCID: PMC8147954 DOI: 10.3390/antiox10050727] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Twenty years have passed since Brownlee and colleagues proposed a single unifying mechanism for diabetic complications, introducing a turning point in this field of research. For the first time, reactive oxygen species (ROS) were identified as the causal link between hyperglycemia and four seemingly independent pathways that are involved in the pathogenesis of diabetes-associated vascular disease. Before and after this milestone in diabetes research, hundreds of articles describe a role for ROS, but the failure of clinical trials to demonstrate antioxidant benefits and some recent experimental studies showing that ROS are dispensable for the pathogenesis of diabetic complications call for time to reflect. This twenty-year journey focuses on the most relevant literature regarding the main sources of ROS generation in diabetes and their role in the pathogenesis of cell dysfunction and diabetic complications. To identify future research directions, this review discusses the evidence in favor and against oxidative stress as an initial event in the cellular biochemical abnormalities induced by hyperglycemia. It also explores possible alternative mechanisms, including carbonyl stress and the Warburg effect, linking glucose and lipid excess, mitochondrial dysfunction, and the activation of alternative pathways of glucose metabolism leading to vascular cell injury and inflammation.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy;
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| |
Collapse
|
48
|
Valdés A, Lucio-Cazaña FJ, Castro-Puyana M, García-Pastor C, Fiehn O, Marina ML. Comprehensive metabolomic study of the response of HK-2 cells to hyperglycemic hypoxic diabetic-like milieu. Sci Rep 2021; 11:5058. [PMID: 33658594 PMCID: PMC7930035 DOI: 10.1038/s41598-021-84590-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of chronic kidney disease. Although hyperglycaemia has been determined as the most important risk factor, hypoxia also plays a relevant role in the development of this disease. In this work, a comprehensive metabolomic study of the response of HK-2 cells, a human cell line derived from normal proximal tubular epithelial cells, to hyperglycemic, hypoxic diabetic-like milieu has been performed. Cells simultaneously exposed to high glucose (25 mM) and hypoxia (1% O2) were compared to cells in control conditions (5.5 mM glucose/18.6% O2) at 48 h. The combination of advanced metabolomic platforms (GC-TOF MS, HILIC- and CSH-QExactive MS/MS), freely available metabolite annotation tools, novel databases and libraries, and stringent cut-off filters allowed the annotation of 733 metabolites intracellularly and 290 compounds in the extracellular medium. Advanced bioinformatics and statistical tools demonstrated that several pathways were significantly altered, including carbohydrate and pentose phosphate pathways, as well as arginine and proline metabolism. Other affected metabolites were found in purine and lipid metabolism, the protection against the osmotic stress and the prevention of the activation of the β-oxidation pathway. Overall, the effects of the combined exposure of HK-cells to high glucose and hypoxia are reasonably compatible with previous in vivo works.
Collapse
Affiliation(s)
- Alberto Valdés
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España.
- West Coast Metabolomics Center, UC Davis, Davis, CA, USA.
| | - Francisco J Lucio-Cazaña
- Departamento de Biología de Sistemas, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España
- Instituto de Investigación Química Andrés M del Rio, IQAR, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España
| | - Coral García-Pastor
- Departamento de Biología de Sistemas, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis, Davis, CA, USA
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España.
- Instituto de Investigación Química Andrés M del Rio, IQAR, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Diabetic kidney disease (DKD) continues to be the primary cause of chronic kidney disease in the USA and around the world. The numbers of people with DKD also continue to rise despite current treatments. Certain newer hypoglycemic drugs offer a promise of slowing progression, but it remains to be seen how effective these will be over time. Thus, continued exploration of the mechanisms underlying the development and progression of DKD is essential in order to discover new treatments. Hyperglycemia is the main cause of the cellular damage seen in DKD. But, exactly how hyperglycemia leads to the activation of processes that are ultimately deleterious is incompletely understood. RECENT FINDINGS Studies primarily over the past 10 years have provided novel insights into the interplay of hyperglycemia, glucose metabolic pathways, mitochondrial function, and the potential importance of what has been called the Warburg effect on the development and progression of DKD. This review will provide a brief overview of glucose metabolism and the hypotheses concerning the pathogenesis of DKD and then discuss in more detail the supporting data that indicate a role for the interplay of glucose metabolic pathways and mitochondrial function.
Collapse
Affiliation(s)
- Robert C Stanton
- Kidney and Hypertension Section, Joslin Diabetes Center; Beth Israel Deaconess Medical Center, and Harvard Medical School; Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.
| |
Collapse
|
50
|
Thonsri U, Wongkham S, Wongkham C, Hino S, Nakao M, Roytrakul S, Koga T, Seubwai W. High glucose-ROS conditions enhance the progression in cholangiocarcinoma via upregulation of MAN2A2 and CHD8. Cancer Sci 2020; 112:254-264. [PMID: 33141432 PMCID: PMC7780024 DOI: 10.1111/cas.14719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 10/27/2020] [Indexed: 01/11/2023] Open
Abstract
Diabetes is a major risk factor in the development and progression of several cancers including cholangiocarcinoma (CCA). However, the molecular mechanism by which hyperglycemia potentiates progression of CCA is not clearly understood. Here, we showed that a high glucose condition significantly increased reactive oxygen species (ROS) production and promoted aggressive phenotypes of CCA cells, including proliferation and migration activities. Mannosidase alpha class 2a member 2 (MAN2A2), was upregulated at both mRNA and protein levels in a high glucose‐ and ROS‐dependent manner. In addition, cell proliferation and migration were significantly reduced by MAN2A2 knockdown. Based on our proteome and in silico analyses, we further found that chromodomain helicase DNA‐binding protein 8 (CHD8) was induced by ROS signaling and regulated MAN2A2 expression. Overexpression of CHD8 increased MAN2A2 expression, while CHD8 knockdown dramatically reduced proliferation and migration as well as MAN2A2 expression in CCA cells. Moreover, both MAN2A2 and CHD8 were highly expressed with positive correlation in CCA tumor tissues. Collectively, these data suggested that high glucose conditions promote CCA progression through ROS‐mediated upregulation of MAN2A2 and CHD8. Thus, glucose metabolism is a promising therapeutic target to control tumor progression in patients with CCA and diabetes.
Collapse
Affiliation(s)
- Unchalee Thonsri
- Faculty of Medicine, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Faculty of Medicine, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chaisiri Wongkham
- Faculty of Medicine, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Tomoaki Koga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Wunchana Seubwai
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Faculty of Medicine, Department of Forensic Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|