1
|
Maes M, Vasupanrajit A, Jirakran K, Zhou B, Tunvirachaisakul C, Almulla AF. Simple dysmood disorder, a mild subtype of major depression, is not an inflammatory condition: Depletion of the compensatory immunoregulatory system. J Affect Disord 2025; 375:75-85. [PMID: 39848470 DOI: 10.1016/j.jad.2025.01.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/13/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND A recent study conducted by the laboratory of the first author revealed that major depression is composed of two distinct subtypes: major dysmood disorder (MDMD) and simple dysmood disorder (SDMD). The latter is a less severe phenotype with fewer aberrant biological pathways. MDMD, but not SDMD, patients were identified to have highly sensitized cytokine/growth factor networks using stimulated whole blood cultures. However, no information regarding serum cytokines/chemokines/growth factors in SDMD is available. OBJECTIVES This case-control study compares 48 serum cytokines/chemokines/growth factors in academic students with SDMD (n = 64) and first episode (FE)-SDMD (n = 47) to those of control students (n = 44) using a multiplex assay. FINDINGS Both FE-SDMD and SDMD exhibited a notable inhibition of immune profiles, such as the compensatory immunoregulatory response system (CIRS) and alternative M2 macrophage and T helper-2 (Th-2) profiles. We observed a substantial reduction in the serum concentrations of five proteins: interleukin (IL)-4, IL-10, soluble IL-2 receptor (sIL-2R), IL-12p40, and macrophage colony-stimulating factor. A considerable proportion of the variability observed in suicidal behaviors (26.7 %) can be accounted for by serum IL-4, IL-10, and sIL-2R (all decreased), CCL11 (eotaxin) and granulocyte CSF (both increased). The same biomarkers (except for IL-10), accounted for 25.5 % of the variance in SDMS severity. A significant correlation exists between decreased levels of IL-4 and elevated ratings of the brooding type of rumination. CONCLUSIONS SDMD is characterized by the suppression of the CIRS profile, which signifies a disruption of immune homeostasis and tolerance, rather than the presence of an inflammatory response.
Collapse
Affiliation(s)
- Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Ph.D. Program in Mental Health, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Fitness and Biopsychological Technology Research Unit, Faculty of Medicine Chulalongkorn University, Bangkok 10330, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Ph.D. Program in Mental Health, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Ph.D. Program in Mental Health, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Maximizing Children's Developmental Potential, Department of Pediatric, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Ph.D. Program in Mental Health, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Abbas F Almulla
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.
| |
Collapse
|
2
|
Petrassi A, Buechler C, Pulipati P, Gertner E. Marked exacerbation of resolving macrophage activation syndrome in a patient with adult-onset Still's disease following one dose of granulocyte colony-stimulating factor. BMJ Case Rep 2025; 18:e262024. [PMID: 40000059 DOI: 10.1136/bcr-2024-262024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Macrophage activation syndrome (MAS) is a frequent complication of adult-onset Still's disease (AOSD) and is characterised by organ dysfunction, cytopenia and coagulopathy. There are few data regarding the use of granulocyte colony-stimulating factor (G-CSF) as a treatment for neutropenia in MAS due to AOSD. This case describes a previously healthy mid-20s patient who was diagnosed with AOSD and subsequently MAS. Although his clinical symptoms and ferritin levels responded well to steroids, interleukin-1 inhibition and Janus kinase inhibition, he developed prolonged and profound neutropenia for which he received one dose of G-CSF. His MAS flared markedly, requiring intensive immunosuppression and significantly prolonging his hospital stay. This report illustrates that G-CSF carries the risk of worsening inflammation leading to MAS, particularly in auto-inflammatory conditions such as AOSD.
Collapse
Affiliation(s)
- Alana Petrassi
- Department of Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Connor Buechler
- Department of Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Priyanjali Pulipati
- Department of Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Rheumatic and Autoimmune Diseases, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Elie Gertner
- Department of Internal Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Rheumatic and Autoimmune Diseases, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
- Section of Rheumatology, Department of Internal Medicine, Regions Hospital, St Paul, Minnesota, USA
| |
Collapse
|
3
|
Srivastava RK, Muzaffar S, Khan J, Bansal M, Agarwal A, Athar M. Common molecular profile of multiple structurally distinct warfare arsenicals in causing cutaneous chemical vesicant injury. Sci Rep 2025; 15:6505. [PMID: 39987158 PMCID: PMC11846883 DOI: 10.1038/s41598-024-83513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/14/2024] [Indexed: 02/24/2025] Open
Abstract
Skin exposure to arsenicals such as lewisite and phenylarsine oxide leads to severe cutaneous damage. Here, we characterized the molecular pathogenesis of skin injury caused by additionally structurally distinct warfare arsenicals including diphenylchlorarsine (DPCA), diphenylcyanoarsine (DPCYA), diethylchloroarsine (DECA). Cutaneous exposure to DPCA/DPCYA showed marked increase in skin erythema and edema at 6 and 24 h followed by scar formation at 72 h, while DECA did not produce such visual injuries in mouse skin. Clinical observations showed significant increase in Draize score and skin bi-fold thickness in a time-dependent manner. DPCA or DPCYA-exposed skin histology revealed highly inflamed hypodermal areas with infiltrated immune cells at 6 and 24 h, however, epidermal cell necrosis was seen at 72 h. Significantly high number of macrophage infiltration observed at 6 h, whereas peak neutrophil infiltration occurred at 72 h. Number of micro-blisters also increased. However, these effects were nonsignificant following topical DECA exposure. RT-PCR confirmed augmented inflammatory responses in the skin challenged with both DPCA/DPCYA, which accompanied increased ROS and unfolded protein response (UPR) signaling. DECA also increased ROS with changes in UPR. Disrupted tight (Yap/ZO-1) and adherens (Yap/α-Catenin) junction proteins underlie time-dependent apoptotic cell death of epidermal keratinocytes. Thus, these studies identify arsenicals-manifested signaling pathways similar to those of lewisite.
Collapse
Affiliation(s)
- Ritesh Kumar Srivastava
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Volker Hall - 509, 1670 University Blvd., Birmingham, AL, 35294-0019, USA
| | - Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Volker Hall - 509, 1670 University Blvd., Birmingham, AL, 35294-0019, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Volker Hall - 509, 1670 University Blvd., Birmingham, AL, 35294-0019, USA
| | - Mohit Bansal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Volker Hall - 509, 1670 University Blvd., Birmingham, AL, 35294-0019, USA.
| |
Collapse
|
4
|
Wei A, Ding T, Li G, Pan F, Tian K, Sun Z, Liu M, Ma Y, Guo Z, Yu Y, Zhan C, Zhang Z, Zhu Y, Wei X. Activated platelet membrane vesicles for broad-spectrum bacterial pulmonary infections management. J Control Release 2025; 380:846-859. [PMID: 39947401 DOI: 10.1016/j.jconrel.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
The development of new antibiotics has lagged behind the rapid evolution of bacterial resistance, prompting the exploration of alternative antimicrobial strategies. Host-directed therapy (HDT) has emerged as a promising approach by harnessing innate immune system's natural defense mechanisms, which reduces reliance on antibiotics, and mitigates the development of resistance. Building on the important role of platelets in host immunity, activated platelet membrane vesicles (PLTv) are developed here as a host-directed therapy for broad-spectrum antibacterial infection management, leveraging several key mechanisms of action. PLTv neutralizes bacterial toxins, thereby reducing cytotoxicity. The presence of platelet receptors on PLTv enables them to act as decoys, binding bacteria through receptor interactions and facilitating their phagocytosis by neutrophils and macrophages. Additionally, PLTv bound to bacteria promote the formation of neutrophil extracellular traps (NETs), enhancing the immune system's ability to trap and kill bacteria. In mouse models of pulmonary infections caused by the Methicillin-resistant Staphylococcus aureus, P. aeruginosa, and A. baumannii, administration of PLTv significantly reduces bacterial counts in the lungs and protects against mortality. Taken together, the present work highlights PLTv as a promising host-directed therapy for combating broad-spectrum pulmonary drug-resistant bacterial infections, leveraging their ability to neutralize toxins, act as decoys, promote phagocytosis, and facilitate NETs formation.
Collapse
Affiliation(s)
- Anqi Wei
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Tianhao Ding
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Guanghui Li
- Department of Pharmacy, Jing'an District Central Hospital of Shanghai, Shanghai 200040, PR China
| | - Feng Pan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Kaisong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Ziwei Sun
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Mengyuan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Yinyu Ma
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Zhiwei Guo
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Yifei Yu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Zui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Ye Zhu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Xiaoli Wei
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
5
|
Lauder AP, Nwiloh A, Eximond M, LeBlanc RE, Dagrosa AT, Barth R, Chamberlin M, McVorran S. Resolution of Pyoderma Gangrenosum During Adjuvant Breast Cancer Therapy. J Clin Med 2025; 14:1320. [PMID: 40004850 PMCID: PMC11856409 DOI: 10.3390/jcm14041320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Pyoderma gangrenosum (PG) is a rare neutrophilic dermatosis characterized by rapidly developing, painful ulcerative lesions. It exhibits pathergy, a phenomenon in which minor trauma or injury to the skin triggers an exaggerated inflammatory response. This leads to the development of new skin lesions or the worsening of existing ones. Treatment typically involves a combination of corticosteroids and immunosuppressive agents. However, even with effective therapy, the overall management of pyoderma gangrenosum remains challenging, and wound healing can be prolonged. The development of pyoderma gangrenosum after breast cancer surgery is rare, and its presence complicates the treatment of patients requiring additional oncologic therapy. In particular, the effect of radiation on these lesions is not well documented. Given the known skin toxicity of radiotherapy and its negative impact on wound healing, the use of adjuvant breast radiation raises significant concerns in this context. Methods: We present the case of a 66-year-old female with Stage IIB invasive ductal carcinoma of the left breast who developed postoperative pyoderma gangrenosum after breast-conserving surgery. The patient was treated with systemic corticosteroids and cyclosporine, and then subsequently underwent standard-of-care adjuvant chemotherapy and radiation. Results: During therapy, she demonstrated rapid resolution of her pyoderma gangrenosum without experiencing excess skin toxicity. Conclusions: While the literature on the direct application of radiation in pyoderma gangrenosum is limited, our case provides evidence supporting the safety of radiation therapy in oncologic cases complicated by this disease. In addition to receiving the benefit of adjuvant therapy for her breast cancer, our patient demonstrated an improvement in her postoperative PG with no adverse skin effects.
Collapse
Affiliation(s)
- Abigail P. Lauder
- Department of Radiation Oncology and Applied Sciences, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Anita Nwiloh
- Meharry Medical College School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Matthew Eximond
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37752, USA;
| | - Robert E. LeBlanc
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA;
| | - Alicia T. Dagrosa
- Department of Dermatology, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA;
| | - Richard Barth
- Department of Surgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA;
| | - Mary Chamberlin
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA;
| | - Shauna McVorran
- Department of Radiation Oncology and Applied Sciences, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| |
Collapse
|
6
|
Ward AC. Secondary Neutropenias. Biomedicines 2025; 13:497. [PMID: 40002910 PMCID: PMC11853056 DOI: 10.3390/biomedicines13020497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Neutrophils are a critical component of immunity, particularly against bacteria and other pathogens, but also in inflammation and tissue repair. As a consequence, individuals with neutropenia, defined by a reduction in absolute neutrophil counts, exhibit a strong propensity to severe infections that typically present with muted symptoms. Neutropenias encompass a heterogeneous set of disorders, comprising primary neutropenias, in which specific genes are mutated, and the more common secondary neutropenias, which have diverse non-genetic causes. These include hematological and other cancers, involving both direct effects of the cancer itself and indirect impacts via the chemotherapeutic, biological agents and cell-based approaches used for treatment. Other significant causes of secondary neutropenias are non-chemotherapeutic drugs, autoimmune and other immune diseases, infections and nutrient deficiencies. These collectively act by impacting neutrophil production in the bone marrow and/or destruction throughout the body. This review describes the biological and clinical manifestations of secondary neutropenias, detailing their underlying causes and management, with a discussion of alternative and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
7
|
Bahr FS, Müller FE, Kasten M, Benen N, Sieve I, Scherr M, Falk CS, Hilfiker-Kleiner D, Ricke-Hoch M, Ponimaskin E. Serotonin receptor 5-HT7 modulates inflammatory-associated functions of macrophages. Cell Mol Life Sci 2025; 82:51. [PMID: 39833622 PMCID: PMC11747067 DOI: 10.1007/s00018-024-05570-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
The hormone and neurotransmitter serotonin regulates numerous physiological functions within the central nervous system and in the periphery upon binding to specific receptors. In the periphery, the serotonin receptor 7 (5-HT7R) is expressed on different immune cells including monocytes and macrophages. To investigate the impact of 5-HT7R-mediated signaling on macrophage properties, we used human THP-1 cells and differentiated them into pro-inflammatory M1- and anti-inflammatory M2-like macrophages. Pharmacological 5-HT7R activation with the specific agonist LP-211 especially modulates morphology of M1-like macrophages by increasing the number of rounded cells. Furthermore, 5-HT7R stimulation results in significantly reduced phagocytic and migratory ability of M1-like macrophages. Noteworthy, LP-211 treatment leads to changes in secretory properties of all macrophage types with the highest effects obtained for M0- and M2c-like macrophages. Finally, the importance of 5-HT7R for regulation of phagocytosis was confirmed in human primary CD14+ cells. These results indicate that 5-HT7R activation selectively impairs basic functions of macrophages and might thus be a new access point for the modulation of macrophage responses in the future treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Frauke S Bahr
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | | | - Martina Kasten
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Nils Benen
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Irina Sieve
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, DZIF, TTU-IICH, Hannover-Braunschweig Site, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Medical Faculty of the Philipps-University Marburg, Department of Cardiovascular Complications of Oncologic Therapies, Marburg, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
8
|
Araki D, Chen V, Redekar N, Salisbury-Ruf C, Luo Y, Liu P, Li Y, Smith RH, Dagur P, Combs C, Larochelle A. Post-transplant G-CSF impedes engraftment of gene-edited human hematopoietic stem cells by exacerbating p53-mediated DNA damage response. Cell Stem Cell 2025; 32:53-70.e8. [PMID: 39536761 PMCID: PMC11698648 DOI: 10.1016/j.stem.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 05/06/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Granulocyte-colony-stimulating factor (G-CSF) is commonly used to accelerate recovery from neutropenia following chemotherapy and autologous transplantation of hematopoietic stem and progenitor cells (HSPCs) for malignant disorders. However, its utility after ex vivo gene therapy in human HSPCs remains unexplored. We show that administering G-CSF from day 1 to 14 post-transplant impedes engraftment of CRISPR-Cas9 gene-edited human HSPCs in murine xenograft models. G-CSF affects gene-edited HSPCs through a cell-intrinsic mechanism, causing proliferative stress and amplifying the early p53-mediated DNA damage response triggered by Cas9-mediated DNA double-strand breaks. This underscores a threshold mechanism where p53 activation must reach a critical level to impair cellular function. Transiently inhibiting p53 or delaying the initiation of G-CSF treatment to day 5 post-transplant attenuates its negative impact on gene-edited HSPCs. The potential for increased HSPC toxicity associated with post-transplant G-CSF administration in CRISPR-Cas9 autologous HSPC gene therapy warrants consideration in clinical trials.
Collapse
Affiliation(s)
- Daisuke Araki
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Vicky Chen
- Integrated Data Science Services (IDSS), National Institutes of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Neelam Redekar
- Integrated Data Science Services (IDSS), National Institutes of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Christi Salisbury-Ruf
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yan Luo
- DNA Sequencing and Genomics Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Poching Liu
- DNA Sequencing and Genomics Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Yuesheng Li
- DNA Sequencing and Genomics Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Richard H Smith
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Pradeep Dagur
- Flow Cytometry Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Christian Combs
- Light Microscopy Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Céspedes N, Tsolis RM, Piliponsky AM, Luckhart S. The type 2 immune response in gut homeostasis and parasite transmission in malaria. Trends Parasitol 2025; 41:38-51. [PMID: 39658487 DOI: 10.1016/j.pt.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Malaria predisposes to concomitant bacteremia, resulting in increased mortality risk. Previous studies indicated that malaria causes structural changes in the intestine, induces tolerogenic immune responses, inhibits neutrophil recruitment, suppresses innate synthesis of IFN-γ, dysregulates mast cells (MCs) and basophils, and induces Th2-type immune responses. These can reduce parasite control while increasing enteropathogenic dissemination. Moreover, there is growing evidence that Th2 immunity, while protecting the host from overwhelming inflammation, may also contribute to increased parasite transmission. This review explores the roles of the regulatory immune response in bacterial coinfections and parasite transmission in malaria.
Collapse
Affiliation(s)
- Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| | - Adrian M Piliponsky
- Department of Pediatrics and Department of Pathology, Seattle Children's Research Institute, Seattle, WA, USA
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA; Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
10
|
Hampton TH, Barnaby R, Roche C, Nymon A, Fukutani KF, MacKenzie TA, Charpentier LA, Stanton BA. Gene expression responses of CF airway epithelial cells exposed to elexacaftor/tezacaftor/ivacaftor suggest benefits beyond improved CFTR channel function. Am J Physiol Lung Cell Mol Physiol 2024; 327:L905-L916. [PMID: 39437760 PMCID: PMC11684945 DOI: 10.1152/ajplung.00272.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
The combination of elexacaftor/tezacaftor/ivacaftor (ETI, Trikafta) reverses the primary defect in cystic fibrosis (CF) by improving CFTR-mediated Cl- and HCO3- secretion by airway epithelial cells (AECs), leading to improved lung function and less frequent exacerbations and hospitalizations. However, studies have shown that CFTR modulators like ivacaftor, a component of ETI, have numerous effects on CF cells beyond improved CFTR channel function. Because little is known about the effect of ETI on CF AEC gene expression, we exposed primary human AEC to ETI for 48 h and interrogated the transcriptome by RNA-seq and qPCR. ETI increased CFTR Cl- secretion, and defensin gene expression (DEFB1), an observation consistent with reports of decreased bacterial burden in the lungs of people with CF (pwCF). ETI decreased MMP10 and MMP12 gene expression, suggesting that ETI may reduce proteolytic-induced lung destruction in CF. ETI also reduced the expression of the stress response gene heme oxygenase (HMOX1). qPCR analysis confirmed DEFB1, HMOX1, MMP10, and MMP12 gene expression results observed by RNA-seq. Gene pathway analysis revealed that ETI decreased inflammatory signaling, cellular proliferation, and MHC class II antigen presentation. Collectively, these findings suggest that the clinical observation that ETI reduces lung infections in pwCF is related in part to drug-induced increases in DEFB1 and that ETI may reduce lung damage by reducing MMP10 and MMP12 gene expression. Moreover, pathway analysis also identified several other genes responsible for the ETI-induced reduction in inflammation observed in pwCF.NEW & NOTEWORTHY Gene expression responses by CF AECs exposed to ETI suggest that in addition to improving CFTR channel function, ETI is likely to enhance resistance to bacterial infection by increasing levels of beta-defensin 1 (hBD-1). ETI may also reduce lung damage by suppressing MMP10 and MMP12 and reduce airway inflammation by repressing proinflammatory cytokine secretion by CF AECs.
Collapse
Affiliation(s)
- Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Carolyn Roche
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Amanda Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Kiyoshi Ferreira Fukutani
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Todd A MacKenzie
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States
| | - Lily A Charpentier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| |
Collapse
|
11
|
Vander Elst N, Bellemans J, Lavigne R, Briers Y, Meyer E. Endolysin NC5 improves early cloxacillin treatment in a mouse model of Streptococcus uberis mastitis. Appl Microbiol Biotechnol 2024; 108:118. [PMID: 38204128 PMCID: PMC10781846 DOI: 10.1007/s00253-023-12820-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Streptococcus uberis frequently causes bovine mastitis, an infectious udder disease with significant economic implications for dairy cows. Conventional antibiotics, such as cloxacillin, sometimes have limited success in eliminating S. uberis as a stand-alone therapy. To address this challenge, the study objective was to investigate the VersaTile engineered endolysin NC5 as a supplemental therapy to cloxacillin in a mouse model of bovine S. uberis mastitis. NC5 was previously selected based on its intracellular killing and biofilm eradicating activity. To deliver preclinical proof-of-concept of this supplemental strategy, lactating mice were intramammarily infected with a bovine S. uberis field isolate and subsequently treated with cloxacillin (30.0 μg) combined with either a low (23.5 μg) or high (235.0 μg) dose of NC5. An antibiotic monotherapy group, as well as placebo treatment, was included as controls. Two types of responders were identified: fast (n = 17), showing response after 4-h treatment, and slow (n = 10), exhibiting no clear response at 4 h post-treatment across all groups. The high-dose combination therapy in comparison with placebo treatment impacted the hallmarks of mastitis in the fast responders by reducing (i) the bacterial load 13,000-fold (4.11 ± 0.78 Δlog10; p < 0.001), (ii) neutrophil infiltration 5.7-fold (p > 0.05), and (iii) the key pro-inflammatory chemokine IL-8 13-fold (p < 0.01). These mastitis hallmarks typically followed a dose response dependent on the amount of endolysin added. The current in vivo study complements our in vitro data and provides preclinical proof-of-concept of NC5 as an adjunct to intramammary cloxacillin treatment. KEY POINTS: • Engineered endolysin NC5 was preclinically evaluated as add-on to cloxacillin treatment. • Two types of mice (slow and fast responding) were observed. • The add-on treatment decreased bacterial load, neutrophil influx, and pro-inflammatory mediators.
Collapse
Affiliation(s)
- Niels Vander Elst
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 21, 3001, Heverlee, Belgium.
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Julie Bellemans
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 21, 3001, Heverlee, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
12
|
Maes M, Jirakran K, Vasupanrajit A, Zhou B, Tunvirachaisakul C, Almulla AF. Major depressive disorder, neuroticism, suicidal behaviors, and depression severity are associated with cytokine networks and their intricate interactions with metabolic syndrome. J Psychosom Res 2024; 187:111951. [PMID: 39413534 DOI: 10.1016/j.jpsychores.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
OBJECTIVES To identify alterations in the immune profiles in outpatients with major depression (MDD), and its associations with key features, such as suicidal ideation, neuroticism, cognitive symptoms, and the depression phenome while accounting for metabolic syndrome (MetS). METHODS In this case-control study, we assayed 48 serum cytokines, chemokines, and growth factors in 67 healthy controls and 66 MDD outpatients. Around 50 % of the outpatient MDD and control participants had a diagnosis of MetS. RESULTS Ten differentially expressed proteins (DEPs) were upregulated in outpatient MDD (i.e., CXCL12, tumor necrosis factor [TNF]β, platelet-derived growth factor [PDGF], CCL11, interleukins [IL]9, IL4, CCL5, CCL2, CCL4, IL1 receptor antagonist [IL1RN]), indicating an immune and defense response. Six DEPs were downregulated (vascular endothelial growth factor A [VEGFA], IL12, CCL3, colony stimulating factor [CSF]1, IL1B, nerve growth factor [NGF]), indicating lowered neurogenesis and neuron death regulation. Significant interactions between outpatient MDD and MetS caused a) substantial increases in IL4, IL17, TNF, TNFB, CCL2, CCL5, PDGF, IL1RN; and b) downregulation of VEGFA and FGF. A large part of the variance in neuroticism (26 %), suicidal behaviors (23 %), and the MDD phenome (31 %) was predicted by immunological data and interactions between MetS and CCL5, TNFB or VEGFA. CONCLUSION Outpatient MDD is characterized by a cytokine profile with neurotoxic potential which partly explains neuroticism, suicidal behaviors, and the phenome's severity. Lowered IL-10 and activated cytokine profiles with neurotoxic potential are characteristics of outpatient MDD and other depression phenotypes, including severe first-episode inpatient MDD. The presence of MetS in outpatient MDD considerably activates immune profiles with neurotoxic potential. Consequently, immune studies in MDD should always be performed in subjects with and without MetS.
Collapse
Affiliation(s)
- Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Ph.D. Program in Mental Health, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Fitness and Biopsychological Technology Research Unit, Faculty of Medicine Chulalongkorn University, Bangkok, 10330, Thailand, Bangkok 10330, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Ph.D. Program in Mental Health, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Maximizing Children's Developmental Potential, Department of Pediatric, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Ph.D. Program in Mental Health, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Ph.D. Program in Mental Health, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Abbas F Almulla
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.
| |
Collapse
|
13
|
Haruna NF, Politanska Y, Connelly AR, O'Connor K, Bhattacharya S, Miklaszewski GE, Pérez-Leonor XG, Rerko G, Hentenaar IT, Nguyen DC, Lamothe Molina PA, Bochner BS, Abdala-Valencia H, Gill MA, Lee FEH, Berdnikovs S. scRNA-seq profiling of human granulocytes reveals expansion of developmentally flexible neutrophil precursors with mixed neutrophil and eosinophil properties in asthma. J Leukoc Biol 2024; 116:1184-1197. [PMID: 38814679 DOI: 10.1093/jleuko/qiae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Neutrophils and eosinophils share common hematopoietic precursors and usually diverge into distinct lineages with unique markers before being released from their hematopoietic site, which is the bone marrow (BM). However, previous studies identified an immature Ly6g(+) Il-5Rα(+) neutrophil population in mouse BM, expressing both neutrophil and eosinophil markers suggesting hematopoietic flexibility. Moreover, others have reported neutrophil populations expressing eosinophil-specific cell surface markers in tissues and altered disease states, confusing the field regarding eosinophil origins, function, and classification. Despite these reports, it is still unclear whether hematopoietic flexibility exists in human granulocytes. To answer this, we utilized single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing to profile human BM and circulating neutrophils and eosinophils at different stages of differentiation and determine whether neutrophil plasticity plays role in asthmatic inflammation. We show that immature metamyelocyte neutrophils in humans expand during severe asthmatic inflammation and express both neutrophil and eosinophil markers. We also show an increase in trilobed eosinophils with mixed neutrophil and eosinophil markers in allergic asthma and that interleukin-5 promotes differentiation of immature blood neutrophils into trilobed eosinophilic phenotypes, suggesting a mechanism of emergency granulopoiesis to promote myeloid inflammatory or remodeling response in patients with chronic asthma. By providing insights into unexpectedly flexible granulocyte biology and demonstrating emergency hematopoiesis in asthma, our results highlight the importance of granulocyte plasticity in eosinophil development and allergic diseases.
Collapse
Affiliation(s)
- Nana-Fatima Haruna
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, 240 East Huron, McGaw M-316, Chicago, IL 60611, United States
| | - Yuliya Politanska
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, 303 East Superior, Simpson Querrey Biomedical Research Center 5-407, Chicago, IL 60611, United States
| | - Andrew R Connelly
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, 240 East Huron, McGaw M-316, Chicago, IL 60611, United States
| | - Kathrine O'Connor
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, 1 Childrens Place, St. Louis, MO 63110, United States
| | - Sourav Bhattacharya
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, 1 Childrens Place, St. Louis, MO 63110, United States
| | - Grace E Miklaszewski
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, 240 East Huron, McGaw M-316, Chicago, IL 60611, United States
| | - Xóchitl G Pérez-Leonor
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, 303 East Superior, Simpson Querrey Biomedical Research Center 5-407, Chicago, IL 60611, United States
| | - Geddy Rerko
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, 303 East Superior, Simpson Querrey Biomedical Research Center 5-407, Chicago, IL 60611, United States
| | - Ian T Hentenaar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, 615 Michael Street, Suite 205, Atlanta, GA 30322, United States
| | - Doan C Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, 615 Michael Street, Suite 205, Atlanta, GA 30322, United States
| | - Pedro Alberto Lamothe Molina
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, 615 Michael Street, Suite 205, Atlanta, GA 30322, United States
| | - Bruce S Bochner
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, 240 East Huron, McGaw M-316, Chicago, IL 60611, United States
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, 303 East Superior, Simpson Querrey Biomedical Research Center 5-407, Chicago, IL 60611, United States
| | - Michelle A Gill
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, 1 Childrens Place, St. Louis, MO 63110, United States
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, 615 Michael Street, Suite 205, Atlanta, GA 30322, United States
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, 240 East Huron, McGaw M-316, Chicago, IL 60611, United States
| |
Collapse
|
14
|
Wang S, Liu Y, Su M, Yang J, Liu H, Qiu W. UFMylation is involved in serum inflammatory cytokines generation and splenic T cell activation induced by lipopolysaccharide. Cytokine 2024; 183:156755. [PMID: 39276536 DOI: 10.1016/j.cyto.2024.156755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
UFMylation, a novel ubiquitin-like protein modification system, has been recently found to be activated in inflammation. However, the effects of UFMylation activation on inflammation in vivo remains unclear. In the present study, we generated a UFMylation activated mice using transgenic (TG) techniques. Lipopolysaccharide (LPS) was used to induce systemic inflammation in both TG and non-transgenic (NTG) mice. Serum cytokines were detected using a Mouse Cytokine Array, and the proportions of splenic NK, B and T cells were determined by using flow cytometry. We found that TG mice showed increased serum G-CSF, TNF RII and decreased serum TCA-3, CD30L, bFGF, IL-15 and MIG compared with NTG mice at baseline. Furthermore, serum cytokines in TG mice exhibited different responses to LPS compared to NTG mice. LPS up-regulated serum TNF RII, G-CSF, MCP-5, RANTES, KC, BLC, MIG and down-regulated IL-1b, IL-2, IL-3, IL-4, IL-5, IL-7, IL-10, IL-12p40, IL-15, IL-17, IFN-γ, TCA-3, Eotaxin-2, LIX, MCP-1, TNFα, GM-CSF in NTG mice, whereas LPS up-regulated G-CSF, MCP-5, RANTES, KC, BLC, MIG, ICAM-1, PF4, Eotaxin, CD30L, MIP-1a, TNFRI and down-regulated IL-1b, IL-3, LIX, MCP-1, TNFα, GM-CSF in TG mice. Data from flow cytometry indicated that LPS significantly reduced the percentages of NK and NKT cells in NTG mice, whereas UFMylation activation inhibited LPS-induced NKT cell decrease. The proportions of B cells, total CD4+ and total CD8+ T cells were comparable between TG and NTG mice in response to LPS treatment, whereas the percentages of CD4+CD69+ and CD8+CD69+T cells were lower in TG mice. These findings suggest that UFMylation may alter LPS-induced serum cytokine profile and participate in splenic T cell activation in vivo.
Collapse
Affiliation(s)
- Sixu Wang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, China; Institute of Urology, Beijing Municipal Health Commission, China; Department of Urology, Beijing Jishuitan Hospital, Capital Medical University, China
| | - Yuyang Liu
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Su
- Department of Clinical Laboratory, Peking University People's Hospital, China
| | - Jing Yang
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, The Third Clinical Medical College of Capital Medical University, China
| | - Hui Liu
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wei Qiu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, China; Institute of Urology, Beijing Municipal Health Commission, China.
| |
Collapse
|
15
|
Lin QM, Long HB, He JT, Zhang ZH, Nam HW, Quan FS, Zhong Q, Liu XQ, Yang ZS. Allyl isothiocyanate exacerbates acute toxoplasmosis through inhibition of inflammatory cytokines. PARASITES, HOSTS AND DISEASES 2024; 62:476-483. [PMID: 39622658 PMCID: PMC11614490 DOI: 10.3347/phd.24054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 12/06/2024]
Abstract
Allyl isothiocyanate (AITC) is a natural product commonly used in food preservation and pharmaceutical applications. Toxoplasmosis, caused by the protozoan pathogen Toxoplasma gondii, is prevalent globally while the impact of AITC on toxoplasmosis is unclear. We explored the effect of AITC on acute toxoplasmosis. We infected C57BL/6 mice with T. gondii type I RH strain following AITC administration. On the 4th day after infection, which corresponds to the initial stage of infection, we collected serum for the determination of inflammatory cytokine levels. The mice serum of the AITC-administered group contained significantly lower levels of granulocyte colony-stimulating factor, interferon-gamma, interleukin (IL)-23 subunit p19, IL-4, IL-6, and monocyte chemoattractant protein-1. The lifespan of the mice in the AITC-administered group was significantly reduced. In vitro experiments showed that AITC promoted the proliferation of intracellular T. gondii accompanied by the inhibition of IL-4, IL-1β, and IL-6 production in RAW264.7 macrophages. Our results showed that AITC facilitated T. gondii infection in the early stage by inhibiting the production of several inflammatory cytokines.
Collapse
Affiliation(s)
- Qiu-Mei Lin
- The First Affiliated Hospital/The First Clinical Medicine School of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou 510080,
China
| | - Hong-Bin Long
- The First Affiliated Hospital/The First Clinical Medicine School of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou 510080,
China
| | - Jun-Ting He
- The First Affiliated Hospital of Sun Yat-Sen University, Zhongshan Er Road, Yuexiu District, Guangzhou 510080,
China
| | - Zhi-hao Zhang
- The First Affiliated Hospital/The First Clinical Medicine School of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou 510080,
China
| | - Ho-Woo Nam
- Department of Parasitology, College of Medicine, The Catholic University of Korea, Seoul 06591,
Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
| | - Qi Zhong
- The First Affiliated Hospital/The First Clinical Medicine School of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou 510080,
China
| | - Xu-Qing Liu
- The First Affiliated Hospital/The First Clinical Medicine School of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou 510080,
China
| | - Zhao-Shou Yang
- The First Affiliated Hospital/The First Clinical Medicine School of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou 510080,
China
| |
Collapse
|
16
|
Abreu H, Lallukka M, Raineri D, Leigheb M, Ronga M, Cappellano G, Spriano S, Chiocchetti A. Evaluation of the immune response of peripheral blood mononuclear cells cultured on Ti6Al4V-ELI polished or etched surfaces. Front Bioeng Biotechnol 2024; 12:1458091. [PMID: 39439551 PMCID: PMC11493608 DOI: 10.3389/fbioe.2024.1458091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction While titanium and its alloys exhibit excellent biocompatibility and corrosion resistance, their polished surfaces can hinder fast and effective osseointegration and other biological processes, such as angiogenesis, due to their inert and hydrophobic properties. Despite being commonly used for orthopedic implants, research focuses on developing surface treatments to improve osseointegration, promoting cell adhesion and proliferation, as well as increasing protein adsorption capacity. This study explores a chemical treatment intended for titanium-based implants that enhances tissue integration without compromising the mechanical properties of the Ti6Al4V substrate. However, recognizing that inflammation contributes to nearly half of early implant failures, we assessed the impact of this treatment on T-cell viability, cytokine production, and phenotype. Methods Ti6Al4V with extra low interstitial (ELI) content discs were treated with hydrofluoric acid followed by a controlled oxidation step in hydrogen peroxide that creates a complex surface topography with micro- and nano-texture and modifies the chemistry of the surface oxide layer. The acid etched surface contains an abundance of hydroxyl groups, crucial for promoting bone growth and apatite precipitation, while also enabling further functionalization with biomolecules. Results While cell viability remained high in both groups, untreated discs triggered an increase in Th2 cells and a decrease of the Th17 subset. Furthermore, peripheral blood mononuclear cells exposed to untreated discs displayed a rise in various pro-inflammatory and anti-inflammatory cytokines compared to the control and treated groups. Conversely, the treated discs showed a similar profile to the control, both in terms of immune cell subset frequencies and cytokine secretion. Discussion The dysregulation of the cytokine profile upon contact with untreated Ti6Al4V-ELI discs, namely upregulation of IL-2 could be responsible for the decrease in Th17 frequency, and thus might contribute to implant-associated bacterial infection. Interestingly, the chemical treatment restores the immune response to levels comparable to the control condition, suggesting the treatment's potential to mitigate inflammation by enhancing biocompatibility.
Collapse
Affiliation(s)
- Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Mari Lallukka
- Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Massimiliano Leigheb
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Novara, Italy
| | - Mario Ronga
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Spriano
- Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
17
|
Tai YS, Leung JH, Wang SY, Leung HWC, Chan ALF. Association of Granulocyte Colony-Stimulating Factor Treatment with Risk of Brain Metastasis in Advanced Stage Breast Cancer. Int J Mol Sci 2024; 25:10756. [PMID: 39409083 PMCID: PMC11477282 DOI: 10.3390/ijms251910756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The routine use of granulocyte colony-stimulating factor (GCSF) is not recommended for the prevention or treatment of chemotherapy-induced neutropenia or febrile neutropenia because risks associated with certain types of cancers, distant organ metastases, and primary tumor growth cannot be excluded. We examined the association between GCSF use and the incidence of brain metastasis (BM), as well as BM-free survival (BMFS). This retrospective cohort study included 121 stage IV breast cancer patients without confirmed BM at the time of diagnosis and who received at least one course of systematic chemotherapy or target therapy at a tertiary teaching hospital between 1 January 2014 and 31 December 2022. The effect of GCSF use on BM was assessed with other confounding factors in Cox regression analyses. In this retrospective cohort, patients who received GCSF treatment had a significantly higher incidence of BM than those who did not (34.9% vs. 13.8%, p = 0.011). Univariate Cox regression analysis showed that GCSF use, menopause status, hormone treatment, HER2 treatment, cumulative dosage, dosage density, and neutropenia were independent risk factors for BMFS (p < 0.05). GCSF users had a higher risk of BM (adjusted HR: 2.538; 95% CI: 1.127-5.716, p = 0.025) than nonusers. BM risk was significantly associated with those with neutropenia (RR: 1.84, 95% CI: 1.21, 2.80) but not with those without neutropenia (RR: 0.59, 95% CI: 0.41-0.84, Interaction p-value < 0.05). The higher the dose density of GCSF, the higher the risk compared with those who do not use GCSF (p for trend < 0.01). These preliminary results suggest that GCSF is associated with BM in patients with stage IV breast cancer who did not have BM at initial diagnosis. Further comprehensively designed large-scale observational studies are needed to confirm our preliminary results.
Collapse
Affiliation(s)
- Yun-Sheng Tai
- Department of Breast Surgery, An-Nan Hospital, China Medical University, Tainan 709, Taiwan;
| | - John Hang Leung
- Department of Obstetrics and Gynecology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 600, Taiwan;
| | - Shyh-Yau Wang
- Department of Radiology, An-Nan Hospital, China Medical University, Tainan 709, Taiwan;
| | - Henry W. C. Leung
- Department of Radiation Oncology, An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| | - Agnes L. F. Chan
- Department of Pharmacy, Kaohsiung Show Chwan Memorial Hospital, Kaohsiung 821, Taiwan
| |
Collapse
|
18
|
Boyd AI, Kafer LA, Escapa IF, Kambal A, Tariq H, Hilsenbeck SG, Nguyen-Phuc H, Rajan A, Lensmire JM, Patras KA, Piedra PA, Blutt SE, Lemon KP. Nasal microbionts differentially colonize and elicit cytokines in human nasal epithelial organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614934. [PMID: 39386636 PMCID: PMC11463382 DOI: 10.1101/2024.09.25.614934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Nasal colonization by Staphylococcus aureus or Streptococcus pneumoniae is associated with an increased risk of infection by these pathobionts, whereas nasal colonization by Dolosigranulum species is associated with health. Human nasal epithelial organoids (HNOs) physiologically recapitulate human nasal respiratory epithelium with a robust mucociliary blanket. We reproducibly monocolonized HNOs with these three bacteria for up to 48 hours with varying kinetics across species. HNOs tolerated bacterial monocolonization with localization of bacteria to the mucus layer and minimal cytotoxicity compared to uncolonized HNOs. Human nasal epithelium exhibited both species-specific and general cytokine responses, without induction of type I interferons, consistent with colonization rather than infection. Only live S. aureus colonization induced IL-1 family cytokines, suggestive of inflammasome signaling. D. pigrum and live S. aureus decreased CXCL10, whereas S. pneumoniae increased CXCL11, chemokines involved in antimicrobial responses. HNOs are a compelling model system to reveal host-microbe dynamics at the human nasal mucosa.
Collapse
Affiliation(s)
- Andrea I Boyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- These authors contributed equally
| | - Leah A Kafer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- These authors contributed equally
| | - Isabel F Escapa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Amal Kambal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hira Tariq
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Hoa Nguyen-Phuc
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Present address: Department of Medical Sciences and Technology, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India
| | - Joshua M Lensmire
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Present address: Immunartes, Chicago, Illinois
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Division of Infectious Diseases, Texas Children's Hospital and Department of Pediatrics Baylor College of Medicine, Houston, Texas, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Katherine P Lemon
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
- Division of Infectious Diseases, Texas Children's Hospital and Department of Pediatrics Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
19
|
Jia J, Wang Y, Li M, Wang F, Peng Y, Hu J, Li Z, Bian Z, Yang S. Neutrophils in the premetastatic niche: key functions and therapeutic directions. Mol Cancer 2024; 23:200. [PMID: 39277750 PMCID: PMC11401288 DOI: 10.1186/s12943-024-02107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
Metastasis has been one of the primary reasons for the high mortality rates associated with tumours in recent years, rendering the treatment of current malignancies challenging and representing a significant cause of recurrence in patients who have undergone surgical tumour resection. Halting tumour metastasis has become an essential goal for achieving favourable prognoses following cancer treatment. In recent years, increasing clarity in understanding the mechanisms underlying metastasis has been achieved. The concept of premetastatic niches has gained widespread acceptance, which posits that tumour cells establish a unique microenvironment at distant sites prior to their migration, facilitating their settlement and growth at those locations. Neutrophils serve as crucial constituents of the premetastatic niche, actively shaping its microenvironmental characteristics, which include immunosuppression, inflammation, angiogenesis and extracellular matrix remodelling. These characteristics are intimately associated with the successful engraftment and subsequent progression of tumour cells. As our understanding of the role and significance of neutrophils in the premetastatic niche deepens, leveraging the presence of neutrophils within the premetastatic niche has gradually attracted the interest of researchers as a potential therapeutic target. The focal point of this review revolves around elucidating the involvement of neutrophils in the formation and shaping of the premetastatic niche (PMN), alongside the introduction of emerging therapeutic approaches aimed at impeding cancer metastasis.
Collapse
Affiliation(s)
- Jiachi Jia
- Zhengzhou University, Zhengzhou, 450000, China
| | - Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Mengjia Li
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yingnan Peng
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhen Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Zhilei Bian
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
20
|
Yoshikawa M, Sato Y, Sasaki M, Aratani Y. Myeloperoxidase-deficient mice exposed to Zymosan exhibit severe neutrophilia and anemia with enhanced granulopoiesis and reduced erythropoiesis, accompanied by pulmonary inflammation. Immunobiology 2024; 229:152843. [PMID: 39186867 DOI: 10.1016/j.imbio.2024.152843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/27/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
We previously reported that myeloperoxidase-deficient (MPO-/-) mice develop more severe neutrophil-rich lung inflammation than wild-type mice following intranasal Zymosan administration. Interestingly, we found that these mutant mice with severe lung inflammation also displayed pronounced neutrophilia and anemia, characterized by increased granulopoiesis and decreased erythropoiesis in the bone marrow, compared to wild-type mice. This condition was associated with higher concentrations of granulocyte-colony stimulating factor (G-CSF) in both the lungs and serum, a factor known to enhance granulopoiesis. Neutrophils accumulating in the lungs of MPO-/- mice produced greater amounts of G-CSF than those in wild-type mice, indicating that they are a significant source of G-CSF. In vitro experiments using signal transduction inhibitors and Western blot analysis revealed that MPO-/- neutrophils express higher levels of G-CSF mRNA in response to Zymosan, attributed to the upregulation of the IκB kinase/nuclear factor (NF)-κB pathway and the extracellular-signal-regulated kinase/NF-κB pathway. These findings highlight MPO as a critical regulator of granulopoiesis and erythropoiesis in inflamed tissues.
Collapse
Affiliation(s)
- Misaki Yoshikawa
- Graduate School of Nanobioscience, Seto 22-2, Kanazawa, Yokohama 236-0027, Japan
| | - Yuki Sato
- School of Science, Yokohama City University, Seto 22-2, Kanazawa, Yokohama 236-0027, Japan
| | - Mayu Sasaki
- School of Science, Yokohama City University, Seto 22-2, Kanazawa, Yokohama 236-0027, Japan
| | - Yasuaki Aratani
- Graduate School of Nanobioscience, Seto 22-2, Kanazawa, Yokohama 236-0027, Japan; School of Science, Yokohama City University, Seto 22-2, Kanazawa, Yokohama 236-0027, Japan.
| |
Collapse
|
21
|
Hampton TH, Barnaby R, Roche C, Nymon A, Fukutani KF, MacKenzie TA, Stanton BA. Gene expression responses of CF airway epithelial cells exposed to elexacaftor/tezacaftor/ivacaftor (ETI) suggest benefits beyond improved CFTR channel function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610162. [PMID: 39257747 PMCID: PMC11383677 DOI: 10.1101/2024.08.28.610162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The combination of elexacaftor/tezacaftor/ivacaftor (ETI, Trikafta) reverses the primary defect in Cystic Fibrosis (CF) by improving CFTR mediated Cl - and HCO 3 - secretion by airway epithelial cells (AEC), leading to improved lung function and less frequent exacerbations and hospitalizations. However, studies have shown that CFTR modulators like ivacaftor, a component of ETI, has numerous effects on CF cells beyond improved CFTR channel function. Because little is known about the effect of ETI on CF AEC gene expression we exposed primary human AEC to ETI for 48 hours and interrogated the transcriptome by RNA-seq and qPCR. ETI increased defensin gene expression ( DEFB1 ) an observation consistent with reports of decreased bacterial burden in the lungs of people with CF (pwCF). ETI also decreased MMP10 and MMP12 gene expression, suggesting that ETI may reduce proteolytic induced lung destruction in CF. ETI also reduced the expression of the stress response gene heme oxygenase ( HMOX1 ). qPCR analysis confirmed DEFB1, HMOX1, MMP10 and MMP12 gene expression results observed by RNA-seq. Gene pathway analysis revealed that ETI decreased inflammatory signaling, cellular proliferation and MHC Class II antigen presentation. Collectively, these findings suggest that the clinical observation that ETI reduces lung infections in pwCF is related in part to drug induced increases in DEFB1 , and that ETI may reduce lung damage by reducing MMP10 and MMP12 gene expression, which is predicted to reduce matrix metalloprotease activity. Moreover, pathway analysis also identified several genes responsible for the ETI induced reduction in inflammation observed in people with CF. New and Noteworthy Gene expression responses by CF AEC exposed to ETI suggest that in addition to improving CFTR channel function, ETI is likely to increase resistance to bacterial infection by increasing levels of beta defensin 1 (hBD-1). ETI may also reduce lung damage by suppressing MMP10, and reduce airway inflammation by repressing proinflammatory cytokine secretion by AEC cells.
Collapse
|
22
|
Choi YJ, Kim Y, Hwang S. Role of Neutrophils in the Development of Steatotic Liver Disease. Semin Liver Dis 2024; 44:300-318. [PMID: 39117322 DOI: 10.1055/s-0044-1789207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review explores the biological aspects of neutrophils, their contributions to the development of steatotic liver disease, and their potential as therapeutic targets for the disease. Although alcohol-associated and metabolic dysfunction-associated liver diseases originate from distinct etiological factors, the two diseases frequently share excessive lipid accumulation as a common contributor to their pathogenesis, thereby classifying them as types of steatotic liver disease. Dysregulated lipid deposition in the liver induces hepatic injury, triggering the activation of the innate immunity, partially through neutrophil recruitment. Traditionally recognized for their role in microbial clearance, neutrophils have recently garnered attention for their involvement in sterile inflammation, a pivotal component of steatotic liver disease pathogenesis. In conclusion, technological innovations, including single-cell RNA sequencing, have gradually disclosed the existence of various neutrophil subsets; however, how the distinct subsets of neutrophil population contribute differentially to the development of steatotic liver disease remains unclear.
Collapse
Affiliation(s)
- You-Jin Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
23
|
Guo B, Liu W, Ji X, Xi B, Meng X, Xie W, Sun Y, Zhang M, Liu P, Zhang W, Yan X, Chen B. CSF3 aggravates acute exacerbation of pulmonary fibrosis by disrupting alveolar epithelial barrier integrity. Int Immunopharmacol 2024; 135:112322. [PMID: 38788452 DOI: 10.1016/j.intimp.2024.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive respiratory disorder characterized by poor prognosis, often presenting with acute exacerbation. The primary cause of death associated with IPF is acute exacerbation of IPF (AE-IPF). However, the pathophysiology of acute exacerbation has not been clearly elucidated yet. This study aims to investigate the underlying pathophysiological molecular mechanism in a mouse AE-PF model. C57BL/6J mice were intratracheally administered bleomycin (BLM, 5 mg/kg) to induce pulmonary fibrosis. After 14 days, lipopolysaccharide (LPS, 2 mg/kg) was injected via the trachea route. Histological assessments, including H&E and Masson staining, as well as inflammatory indicators, were included to evaluate the induction of AE-PF by BLM and LPS in mice. Transcriptomic profiling of pulmonary tissues identified CSF3 as one of the top 10 upregulated DEGs in AE-PF mice. Indeed, administration of exogenous CSF3 protein exacerbated AE-PF in mice. Mechanistically, CSF3 disrupted alveolar epithelial barrier integrity and permeability by regulating specialized cell adhesion complexes such as tight junctions (TJs) and adherens junctions (AJs) via PI3K/p-Akt/Snail pathway, contributing to the aggravation of AE-PF in mice. Moreover, the discovery of elevated sera CSF3 indicated a notable increase in IPF patients during the exacerbation of the disease. Pearson correlation analysis in IPF patients revealed significant positive associations between CSF3 levels and KL-6 levels, LDH levels, CRP levels, respectively. These results provide mechanistic insights into the role of CSF3 in exacerbating of lung fibrotic disease and indicate monitoring CSF3 levels may aid in early clinical decisions for alternative therapy in the management of rapidly progressing IPF.
Collapse
Affiliation(s)
- Bingnan Guo
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Wenwen Liu
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xuan Ji
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Respiratory Medicine, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, China
| | - Bin Xi
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xiao Meng
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Wanwan Xie
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yitian Sun
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Maowei Zhang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Pingli Liu
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Wenhui Zhang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xianliang Yan
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Emergency Medicine, Suining People's Hospital, Xuzhou 221225, Jiangsu, China.
| | - Bi Chen
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.
| |
Collapse
|
24
|
He Y, Su X, Li H, Tang R, Ju Y, Chen S, Wang X. Subcutaneous injection granulocyte colony-stimulating factor (G-CSF) is superior to intrauterine infusion on patients with recurrent implantation failure: A systematic review and network meta-analysis. J Reprod Immunol 2024; 163:104250. [PMID: 38669790 DOI: 10.1016/j.jri.2024.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/02/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Although both subcutaneous injection and intrauterine infusion of granulocyte colony-stimulating factor (G-CSF) have been reported to improve pregnancy outcomes in patients with recurrent implantation failure (RIF), how to administer it is still no consensus. The study aimed to investigate which administration route is optimal. We searched PubMed, Embase, the Cochrane Library (CENTRAL), Web of Science, and China National Knowledge Internet (CNKI) from inception to April 10, 2023, with language in both English and Chinese. The randomized controlled trials (RCTs) compared the effectiveness of G-CSF to treat patients with RIF were included in this network meta-analysis (NMA). The odds ratio (OR) and 95% confidence interval (CI) in pregnancy outcomes (implantation rate, IR; clinical pregnancy rate, CPR; live birth rate, LBR; miscarriage rate, MR; ectopic pregnancy rate, EPR) were summarized by NMA with a random-effects model. A total of 1360 RIF patients from 14 RCTs were included in this NMA, with no publication bias and small sample effects. No direct evidence compared the effectiveness of different administration routes of G-CSF on IR, LBR and MR. Both subcutaneous injection and intrauterine infusion of G-CSF increased the IR (OR = 2.81, 95% CI: 1.10-7.24; OR = 2.15, 95% CI: 1.50-3.07, respectively) and CPR (OR = 2.79, 95% CI: 1.86-4.17; OR = 1.74, 95% CI: 1.30-2.33, respectively) in patients with RIF. According to SUCRA, subcutaneous injection is more likely to be the optimal medication administration route. However, more high-quality studies were also needed to support these, especially IR and LBR.
Collapse
Affiliation(s)
- Yunan He
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China; Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Xiaoxiao Su
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China; Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Hao Li
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China; Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Ruonan Tang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China; Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China; Xi'an Medical University, Xi'an, Shaanxi, China
| | - Ying Ju
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China; Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Shuqiang Chen
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China; Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Xiaohong Wang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China; Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China.
| |
Collapse
|
25
|
Wang M, Caryotakis SE, Smith GG, Nguyen AV, Pleasure DE, Soulika AM. CSF1R antagonism results in increased supraspinal infiltration in EAE. J Neuroinflammation 2024; 21:103. [PMID: 38643194 PMCID: PMC11031888 DOI: 10.1186/s12974-024-03063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/11/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Colony stimulating factor 1 receptor (CSF1R) signaling is crucial for the maintenance and function of various myeloid subsets. CSF1R antagonism was previously shown to mitigate clinical severity in experimental autoimmune encephalomyelitis (EAE). The associated mechanisms are still not well delineated. METHODS To assess the effect of CSF1R signaling, we employed the CSF1R antagonist PLX5622 formulated in chow (PLX5622 diet, PD) and its control chow (control diet, CD). We examined the effect of PD in steady state and EAE by analyzing cells isolated from peripheral immune organs and from the CNS via flow cytometry. We determined CNS infiltration sites and assessed the extent of demyelination using immunohistochemistry of cerebella and spinal cords. Transcripts of genes associated with neuroinflammation were also analyzed in these tissues. RESULTS In addition to microglial depletion, PD treatment reduced dendritic cells and macrophages in peripheral immune organs, both during steady state and during EAE. Furthermore, CSF1R antagonism modulated numbers and relative frequencies of T effector cells both in the periphery and in the CNS during the early stages of the disease. Classical neurological symptoms were milder in PD compared to CD mice. Interestingly, a subset of PD mice developed atypical EAE symptoms. Unlike previous studies, we observed that the CNS of PD mice was infiltrated by increased numbers of peripheral immune cells compared to that of CD mice. Immunohistochemical analysis showed that CNS infiltrates in PD mice were mainly localized in the cerebellum while in CD mice infiltrates were primarily localized in the spinal cords during the onset of neurological deficits. Accordingly, during the same timepoint, cerebella of PD but not of CD mice had extensive demyelinating lesions, while spinal cords of CD but not of PD mice were heavily demyelinated. CONCLUSIONS Our findings suggest that CSF1R activity modulates the cellular composition of immune cells both in the periphery and within the CNS, and affects lesion localization during the early EAE stages.
Collapse
Affiliation(s)
- Marilyn Wang
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Sofia E Caryotakis
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
- University of California, San Francisco, San Francisco, CA, USA
| | - Glendalyn G Smith
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
| | - Alan V Nguyen
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Sutro Biosciences, South San Francisco, CA, USA
| | - David E Pleasure
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Athena M Soulika
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA.
- Shriners Hospitals for Children, Northern California, Sacramento, CA, USA.
| |
Collapse
|
26
|
Zhang J, Li K, Qiu X. Exploring causal correlations between inflammatory cytokines and knee osteoarthritis: a two-sample Mendelian randomization. Front Immunol 2024; 15:1362012. [PMID: 38698846 PMCID: PMC11063282 DOI: 10.3389/fimmu.2024.1362012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Objectives Knee osteoarthritis (KOA) and certain inflammatory cytokines (such as interleukin 1 [IL-1] and tumor necrosis factor alpha [TNF-a]) are related; however, the causal relationship remains unclear. Here, we aimed to assess the causal relationship between 41 inflammatory cytokines and KOA using Mendelian randomization (MR). Methods Two-sample bidirectional MR was performed using genetic variation data for 41 inflammatory cytokines that were obtained from European Genome-Wide Association Study (GWAS) data (n=8293). KOA-related genetic association data were also obtained from European GWAS data (n=40,3124). Inverse variance weighting (IVW), MR, heterogeneity, sensitivity, and multiple validation analyses were performed. Results Granulocyte colony-stimulating factor (G-CSF) or colony-stimulating factor 3 (CSF-3) levels were negatively associated with the risk of developing KOA (OR: 0.93, 95%CI:0.89-0.99, P=0.015). Additionally, macrophage inflammatory protein-1 alpha (MIP-1A/CCL3) was a consequence of KOA (OR: 0.72, 95%CI:0.54-0.97, P=0.032). No causal relationship was evident between other inflammatory cytokines and KOA development. Conclusion This study suggests that certain inflammatory cytokines may be associated with KOA etiology. G-CSF exerts an upstream influence on KOA development, whereas MIP-1A (CCL-3) acts as a downstream factor.
Collapse
Affiliation(s)
| | | | - Xiuyue Qiu
- Nursing School, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Lu X, Wang R, Yu Y, Wei J, Xu Y, Zhou L, Mao F, Li J, Li X, Jia X. Drug Repurposing of ACT001 to Discover Novel Promising Sulfide Prodrugs with Improved Safety and Potent Activity for Neutrophil-Mediated Antifungal Immunotherapy. J Med Chem 2024; 67:5783-5799. [PMID: 38526960 DOI: 10.1021/acs.jmedchem.3c02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Neutrophil-mediated immunotherapy is a promising strategy for treating Candida albicans infection due to its potential in dealing with drug-resistant events. Our previous study found that ACT001 exhibited good antifungal immunotherapeutic activity by inhibiting PD-L1 expression in neutrophils, but its strong cytotoxicity and high BBB permeability hindered its antifungal application. To address these deficiencies, a series of novel sulfide derivatives were designed and synthesized based on a slow-release prodrug strategy. Among these derivatives, compound 16 exhibited stronger inhibition of PD-L1 expression, less cytotoxicity to neutrophils, and lower BBB permeability than ACT001. Compound 16 also significantly enhanced neutrophil-mediated antifungal immunity in C. albicans infected mice, with acceptable pharmacokinetic properties and good oral safety. Moreover, pharmacological mechanism studies demonstrated that ACT001 and compound 16 reduced PD-L1 expression in neutrophils by directly targeting STAT3. Briefly, this study provided a novel prototype compound 16 which exhibited great potential in neutrophil-mediated antifungal immunotherapy.
Collapse
Affiliation(s)
- Xiangran Lu
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Rongrong Wang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yao Yu
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Luoyifan Zhou
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali 671000, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
28
|
Wang M, Jin Z, Huang H, Cheng X, Zhang Q, Tang Y, Zhu X, Zong Z, Li H, Ning Z. Neutrophil hitchhiking: Riding the drug delivery wave to treat diseases. Drug Dev Res 2024; 85:e22169. [PMID: 38477422 DOI: 10.1002/ddr.22169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Neutrophils are a crucial component of the innate immune system and play a pivotal role in various physiological processes. From a physical perspective, hitchhiking is considered a phenomenon of efficient transportation. The combination of neutrophils and hitchhikers has given rise to effective delivery systems both in vivo and in vitro, thus neutrophils hitchhiking become a novel approach to disease treatment. This article provides an overview of the innovative and feasible application of neutrophils as drug carriers. It explores the mechanisms underlying neutrophil function, elucidates the mechanism of drug delivery mediated by neutrophil-hitchhiking, and discusses the potential applications of this strategy in the treatment of cancer, immune diseases, inflammatory diseases, and other medical conditions.
Collapse
Affiliation(s)
- Menghui Wang
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhenhua Jin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xifu Cheng
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Qin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Ying Tang
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaoping Zhu
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhikun Ning
- Department of Day Ward, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
29
|
Kim YS, Jeong YS, Bae GH, Kang JH, Lee M, Zabel BA, Bae YS. CD200R high neutrophils with dysfunctional autophagy establish systemic immunosuppression by increasing regulatory T cells. Cell Mol Immunol 2024; 21:349-361. [PMID: 38311677 PMCID: PMC10978921 DOI: 10.1038/s41423-024-01136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 02/06/2024] Open
Abstract
Distinct neutrophil populations arise during certain pathological conditions. The generation of dysfunctional neutrophils during sepsis and their contribution to septicemia-related systemic immune suppression remain unclear. In this study, using an experimental sepsis model that features immunosuppression, we identified a novel population of pathogenic CD200Rhigh neutrophils that are generated during the initial stages of sepsis and contribute to systemic immune suppression by enhancing regulatory T (Treg) cells. Compared to their CD200Rlow counterparts, sepsis-generated CD200Rhigh neutrophils exhibit impaired autophagy and dysfunction, with reduced chemotactic migration, superoxide anion production, and TNF-α production. Increased soluble CD200 blocks autophagy and neutrophil maturation in the bone marrow during experimental sepsis, and recombinant CD200 treatment in vitro can induce neutrophil dysfunction similar to that observed in CD200Rhigh neutrophils. The administration of an α-CD200R antibody effectively reversed neutrophil dysfunction by enhancing autophagy and protecting against a secondary infection challenge, leading to increased survival. Transcriptome analysis revealed that CD200Rhigh neutrophils expressed high levels of Igf1, which elicits the generation of Treg cells, while the administration of an α-CD200R antibody inhibited Treg cell generation in a secondary infection model. Taken together, our findings revealed a novel CD200Rhigh neutrophil population that mediates the pathogenesis of sepsis-induced systemic immunosuppression by generating Treg cells.
Collapse
Affiliation(s)
- Ye Seon Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Geon Ho Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Ji Hyeon Kang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mingyu Lee
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Brian A Zabel
- Palo Alto Veterans Institute for Research, Veterans Affairs Hospital, Palo Alto, CA, 94304, USA
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
| |
Collapse
|
30
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Martin KR, Gamell C, Tai TY, Bonelli R, Hansen J, Tatoulis J, Alhamdoosh M, Wilson N, Wicks I. Whole blood transcriptomics reveals granulocyte colony-stimulating factor as a mediator of cardiopulmonary bypass-induced systemic inflammatory response syndrome. Clin Transl Immunology 2024; 13:e1490. [PMID: 38375330 PMCID: PMC10875393 DOI: 10.1002/cti2.1490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Objectives Systemic inflammatory response syndrome (SIRS) is a frequent complication of cardiopulmonary bypass (CPB). SIRS is associated with significant morbidity and mortality, but its pathogenesis remains incompletely understood, and as a result, biomarkers are lacking and treatment remains expectant and supportive. This study aimed to understand the pathophysiological mechanisms driving SIRS induced by CPB and identify novel therapeutic targets that might reduce systemic inflammation and improve patient outcomes. Methods Twenty-one patients undergoing cardiac surgery and CPB were recruited, and blood was sampled before, during and after surgery. SIRS was defined using the American College of Chest Physicians/Society of Critical Care Medicine criteria. We performed immune cell profiling and whole blood transcriptomics and measured individual mediators in plasma/serum to characterise SIRS induced by CPB. Results Nineteen patients fulfilled criteria for SIRS, with a mean duration of 2.7 days. Neutrophil numbers rose rapidly with CPB and remained elevated for at least 48 h afterwards. Transcriptional signatures associated with neutrophil activation and degranulation were enriched during CPB. We identified a network of cytokines governing these transcriptional changes, including granulocyte colony-stimulating factor (G-CSF), a regulator of neutrophil production and function. Conclusions We identified neutrophils and G-CSF as major regulators of CPB-induced systemic inflammation. Short-term targeting of G-CSF could provide a novel therapeutic strategy to limit neutrophil-mediated inflammation and tissue damage in SIRS induced by CPB.
Collapse
Affiliation(s)
- Katherine R Martin
- WEHIParkvilleVICAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVICAustralia
| | | | - Tsin Yee Tai
- WEHIParkvilleVICAustralia
- CSL Innovation, Bio21 InstituteParkvilleVICAustralia
| | - Roberto Bonelli
- WEHIParkvilleVICAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVICAustralia
- CSL Innovation, Bio21 InstituteParkvilleVICAustralia
| | | | - James Tatoulis
- Cardiothoracic SurgeryRoyal Melbourne HospitalParkvilleVICAustralia
- Department of SurgeryUniversity of MelbourneParkvilleVICAustralia
| | | | | | - Ian Wicks
- WEHIParkvilleVICAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVICAustralia
- Department of RheumatologyRoyal Melbourne HospitalParkvilleVICAustralia
| |
Collapse
|
32
|
Xia LY, Wang ZF, Cui XM, Li YG, Ye RZ, Zhu DY, Li FX, Zhang J, Wang WH, Zhang MZ, Gao WY, Li LF, Que TC, Wang TC, Jia N, Jiang JF, Gao YW, Cao WC. Isolation and characterization of a pangolin-borne HKU4-related coronavirus that potentially infects human-DPP4-transgenic mice. Nat Commun 2024; 15:1048. [PMID: 38316817 PMCID: PMC10844334 DOI: 10.1038/s41467-024-45453-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
We recently detected a HKU4-related coronavirus in subgenus Merbecovirus (named pangolin-CoV-HKU4-P251T) from a Malayan pangolin1. Here we report isolation and characterization of pangolin-CoV-HKU4-P251T, the genome sequence of which is closest to that of a coronavirus from the greater bamboo bat (Tylonycteris robustula) in Yunnan Province, China, with a 94.3% nucleotide identity. Pangolin-CoV-HKU4-P251T is able to infect human cell lines, and replicates more efficiently in cells that express human-dipeptidyl-peptidase-4 (hDPP4)-expressing and pangolin-DPP4-expressing cells than in bat-DPP4-expressing cells. After intranasal inoculation with pangolin-CoV-HKU4-P251, hDPP4-transgenic female mice are likely infected, showing persistent viral RNA copy numbers in the lungs. Progressive interstitial pneumonia developed in the infected mice, characterized by the accumulation of macrophages, and increase of antiviral cytokines, proinflammatory cytokines, and chemokines in lung tissues. These findings suggest that the pangolin-borne HKU4-related coronavirus has a potential for emerging as a human pathogen by using hDPP4.
Collapse
Affiliation(s)
- Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Zhen-Fei Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China
| | - Yuan-Guo Li
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Fang-Xu Li
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Jie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Wen-Hao Wang
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Lian-Feng Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Teng-Cheng Que
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Tie-Cheng Wang
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China.
| | - Yu-Wei Gao
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China.
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China.
| |
Collapse
|
33
|
Aymonnier K, Bosetta E, Leborgne NGF, Ullmer A, Le Gall M, De Chiara A, Salnot V, Many S, Scapini P, Wicks I, Chatfield S, Martin KR, Witko-Sarsat V. G-CSF reshapes the cytosolic PCNA scaffold and modulates glycolysis in neutrophils. J Leukoc Biol 2024; 115:205-221. [PMID: 37824822 DOI: 10.1093/jleuko/qiad122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Cytosolic proliferating cell nuclear antigen (PCNA) is involved in neutrophil survival and function, in which it acts as a scaffold and associates with proteins involved in apoptosis, NADPH oxidase activation, cytoskeletal dynamics, and metabolism. While the PCNA interactome has been characterized in neutrophils under homeostatic conditions, less is known about neutrophil PCNA in pathophysiological contexts. Granulocyte colony-stimulating factor (G-CSF) is a cytokine produced in response to inflammatory stimuli that regulates many aspects of neutrophil biology. Here, we used isolated normal-density neutrophils from G-CSF-treated haemopoietic stem cell donors (GDs) as a model to understand the role of PCNA during inflammation. Proteomic analysis of the neutrophil cytosol revealed significant differences between GDs and healthy donors (HDs). PCNA was one of the most upregulated proteins in GDs, and the PCNA interactome was significantly different in GDs compared with HDs. Importantly, while PCNA associated with almost all enzymes involved in glycolysis in HDs, these associations were decreased in GDs. Functionally, neutrophils from GDs had a significant increase in glycolysis compared with HDs. Using p21 competitor peptides, we showed that PCNA negatively regulates neutrophil glycolysis in HDs but had no effect on GD neutrophils. These data demonstrate that G-CSF alters the PCNA scaffold, affecting interactions with key glycolytic enzymes, and thus regulates glycolysis, the main energy pathway utilized by neutrophils. By this selective control of glycolysis, PCNA can organize neutrophils functionality in parallel with other PCNA mechanisms of prolonged survival. PCNA may therefore be instrumental in the reprogramming that neutrophils undergo in inflammatory or tumoral settings.
Collapse
Affiliation(s)
- Karen Aymonnier
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Enzo Bosetta
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Nathan G F Leborgne
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Audrey Ullmer
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Morgane Le Gall
- Proteom'IC facility, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du Faubourg Saint Jacques, Paris F-75014, France
| | - Alessia De Chiara
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Virginie Salnot
- Proteom'IC facility, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du Faubourg Saint Jacques, Paris F-75014, France
| | - Souganya Many
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Patrizia Scapini
- Department of General Pathology, University of Verona, Verona 37134, Italy
| | - Ian Wicks
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
- Department of Rheumatology, Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Simon Chatfield
- Department of Rheumatology, Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Katherine R Martin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
| | - Véronique Witko-Sarsat
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| |
Collapse
|
34
|
Ye Y, Wang CE, Zhong R, Xiong XM. Associations of the circulating levels of cytokines with risk of ankylosing spondylitis: a Mendelian randomization study. Front Immunol 2023; 14:1291206. [PMID: 38173728 PMCID: PMC10761470 DOI: 10.3389/fimmu.2023.1291206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Background Observational studies have shown that changes in circulating cytokine/growth factor levels occur throughout the initiation and progression of ankylosing spondylitis (AS), yet whether they are etiologic or downstream effects remains unclear. In this study, we performed a summarized-level bidirectional Mendelian randomization (MR) analysis to shed light on the causal relationship between the two. Methods Genetic instrumental-variables (IVs) associated with circulating cytokine/growth factor levels were derived from a genome-wide association study (GWAS) of 8,293 European individuals, whereas summary data for the AS were obtained from a FinnGen GWAS of 166,144 participants. We used the inverse-variance-weighted (IVW) method as the main analysis for causal inference. Furthermore, several sensitivity analyses (MR-Egger, weighted median, MR-PRESSO and Cochran's Q test) were utilized to examine the robustness of the results. Finally, reverse MR analysis was performed to assess reverse causality between AS and circulating cytokine/growth factor levels. Results After Bonferroni correction, circulating levels of Cutaneous T-cell attracting (CTACK) and Monocyte specific chemokine 3 (MCP-3) were positively associated with a higher risk of AS (odds ratio [OR]: 1.224, 95% confidence interval [95% Cl]: 1.022 ~ 1.468, P = 0.028; OR: 1.250, 95% Cl: 1.016 ~ 1.539, P = 0.035). In addition, elevated circulating levels of Basic fibroblast growth factor (FGF-basic), Granulocyte colony-stimulating factor (G-CSF) and MCP-3 was considered a consequence of AS disease (β = 0.023, P = 0.017; β = 0.017, P = 0.025; β = 0.053, P = 0.025). The results of the sensitivity analysis were generally consistent. Conclusion The present study supplies genetic evidence for the relationship between circulating cytokine levels and AS. Targeted interventions of specific cytokines may help to reduce the risk of AS initiation and progression.
Collapse
Affiliation(s)
| | | | | | - Xiao-ming Xiong
- Department of Spinal Surgery, Affiliated Sports Hospital of Chengdu Sport University, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Gurule NJ, Malcolm KC, Harris C, Knapp JR, O'Connor BP, McClendon J, Janssen WJ, Lee FFY, Price C, Osaghae-Nosa J, Wheeler EA, McMahon CM, Pietras EM, Pollyea DA, Alper S. Myelodysplastic neoplasm-associated U2AF1 mutations induce host defense defects by compromising neutrophil chemotaxis. Leukemia 2023; 37:2115-2124. [PMID: 37591942 PMCID: PMC10539173 DOI: 10.1038/s41375-023-02007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Myelodysplastic neoplasm (MDS) is a hematopoietic stem cell disorder that may evolve into acute myeloid leukemia. Fatal infection is among the most common cause of death in MDS patients, likely due to myeloid cell cytopenia and dysfunction in these patients. Mutations in genes that encode components of the spliceosome represent the most common class of somatically acquired mutations in MDS patients. To determine the molecular underpinnings of the host defense defects in MDS patients, we investigated the MDS-associated spliceosome mutation U2AF1-S34F using a transgenic mouse model that expresses this mutant gene. We found that U2AF1-S34F causes a profound host defense defect in these mice, likely by inducing a significant neutrophil chemotaxis defect. Studies in human neutrophils suggest that this effect of U2AF1-S34F likely extends to MDS patients as well. RNA-seq analysis suggests that the expression of multiple genes that mediate cell migration are affected by this spliceosome mutation and therefore are likely drivers of this neutrophil dysfunction.
Collapse
Affiliation(s)
- Natalia J Gurule
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA
| | | | - Chelsea Harris
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Jennifer R Knapp
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Brian P O'Connor
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA
| | | | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA
| | - Caitlin Price
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Jackson Osaghae-Nosa
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Emily A Wheeler
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | - Eric M Pietras
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | | | - Scott Alper
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA.
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA.
| |
Collapse
|
36
|
Qu J, Jin J, Zhang M, Ng LG. Neutrophil diversity and plasticity: Implications for organ transplantation. Cell Mol Immunol 2023; 20:993-1001. [PMID: 37386174 PMCID: PMC10468536 DOI: 10.1038/s41423-023-01058-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
Neutrophils, as the first defenders against external microbes and stimuli, are highly active and finely regulated innate immune cells. Emerging evidence has challenged the conventional dogma that neutrophils are a homogeneous population with a short lifespan that promotes tissue damage. Recent findings on neutrophil diversity and plasticity in homeostatic and disease states have centered on neutrophils in the circulation. In contrast, a comprehensive understanding of tissue-specialized neutrophils in health and disease is still lacking. This article will first discuss how multiomics advances have contributed to our understanding of neutrophil heterogeneity and diversification in resting and pathological settings. This discussion will be followed by a focus on the heterogeneity and role of neutrophils in solid organ transplantation and how neutrophils may contribute to transplant-related complications. The goal of this article is to provide an overview of the research on the involvement of neutrophils in transplantation, with the aim that this may draw attention to an underappreciated area of neutrophil research.
Collapse
Affiliation(s)
- Junwen Qu
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jingsi Jin
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ming Zhang
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
37
|
Zheng Y, Wang W, Huo Y, Gui Y. Maternal Obesity and Kawasaki Disease-like Vasculitis: A New Perspective on Cardiovascular Injury and Inflammatory Response in Offspring Male Mice. Nutrients 2023; 15:3823. [PMID: 37686855 PMCID: PMC10490206 DOI: 10.3390/nu15173823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Maternal obesity affects the risk of cardiovascular disease and inflammatory response in offspring. However, the impact of maternal obesity on offspring with Kawasaki disease (KD), the leading cause of childhood acquired heart disease, is still an understudied area. This study aimed to elucidate the impact of maternal obesity on offspring in KD-like vasculitis and the underlying mechanisms. Offspring of obese female mice and normal diet dams were randomly divided into two subgroups. The pups were injected intraperitoneally with either Candida albicans water-soluble fraction (CAWS) or phosphate buffered saline (PBS) to establish the obesity (OB)-CAWS group, OB group, wild type (WT)-CAWS group, and WT group. Their weight was monitored during the study. After four weeks, echocardiography was applied to obtain the alternation of cardiac structures. Mouse cytokine panel, Hematoxylin-Eosin (HE) staining, western blot, and real-time qPCR were used to study the pathological changes and protein and RNA expression alternations. Based on the study of pathology, serology and molecular biology, maternal obesity lead to more severe vasculitis and induced altered cardiac structure in the offspring mice and promoted the expression of pro-inflammatory cytokines through activating the NF-κB signaling pathway. Maternal obesity aggravated the inflammatory response of offspring mice in KD-like vasculitis.
Collapse
Affiliation(s)
- Yuanzheng Zheng
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| | - Wenji Wang
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510080, China
| | - Yu Huo
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| | - Yonghao Gui
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| |
Collapse
|
38
|
Cao W, Fan D. Neutrophils: a subgroup of neglected immune cells in ALS. Front Immunol 2023; 14:1246768. [PMID: 37662922 PMCID: PMC10468589 DOI: 10.3389/fimmu.2023.1246768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic, progressive neurodegenerative disease characterized by the loss of motor neurons. Dysregulated peripheral immunity has been identified as a hallmark of ALS. Neutrophils, as the front-line responders of innate immunity, contribute to host defense through pathogen clearance. However, they can concurrently play a detrimental role in chronic inflammation. With the unveiling of novel functions of neutrophils in neurodegenerative diseases, it becomes essential to review our current understanding of neutrophils and to recognize the gap in our knowledge about their role in ALS. Thus, a detailed comprehension of the biological processes underlying neutrophil-induced pathogenesis in ALS may assist in identifying potential cell-based therapeutic strategies to delay disease progression.
Collapse
Affiliation(s)
- Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
39
|
Araki D, Chen V, Redekar N, Salisbury-Ruf C, Luo Y, Liu P, Li Y, Smith RH, Dagur P, Combs C, Larochelle A. Post-Transplant Administration of G-CSF Impedes Engraftment of Gene Edited Human Hematopoietic Stem Cells by Exacerbating the p53-Mediated DNA Damage Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547089. [PMID: 37425704 PMCID: PMC10327043 DOI: 10.1101/2023.06.29.547089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Granulocyte colony stimulating factor (G-CSF) is commonly used as adjunct treatment to hasten recovery from neutropenia following chemotherapy and autologous transplantation of hematopoietic stem and progenitor cells (HSPCs) for malignant disorders. However, the utility of G-CSF administration after ex vivo gene therapy procedures targeting human HSPCs has not been thoroughly evaluated. Here, we provide evidence that post-transplant administration of G-CSF impedes engraftment of CRISPR-Cas9 gene edited human HSPCs in xenograft models. G-CSF acts by exacerbating the p53-mediated DNA damage response triggered by Cas9- mediated DNA double-stranded breaks. Transient p53 inhibition in culture attenuates the negative impact of G-CSF on gene edited HSPC function. In contrast, post-transplant administration of G-CSF does not impair the repopulating properties of unmanipulated human HSPCs or HSPCs genetically engineered by transduction with lentiviral vectors. The potential for post-transplant G-CSF administration to aggravate HSPC toxicity associated with CRISPR-Cas9 gene editing should be considered in the design of ex vivo autologous HSPC gene editing clinical trials.
Collapse
|
40
|
Song Z, Bhattacharya S, Huang G, Greenberg ZJ, Yang W, Bagaitkar J, Schuettpelz LG, Dinauer MC. NADPH oxidase 2 limits amplification of IL-1β-G-CSF axis and an immature neutrophil subset in murine lung inflammation. Blood Adv 2023; 7:1225-1240. [PMID: 36103336 PMCID: PMC10111367 DOI: 10.1182/bloodadvances.2022007652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
The leukocyte NADPH oxidase 2 (NOX2) regulates inflammation independent of its antimicrobial activity. Inherited defects in NOX2 lead to chronic granulomatous disease (CGD), associated with recurrent bacterial and fungal infections, often with excessive neutrophilic inflammation that results in significant inflammatory burden and tissue damage. We previously showed that excessive leukotriene B4 (LTB4) production by NOX2-deficient mouse neutrophils was a key driver of elevated lung neutrophil infiltration in the initial response to pulmonary challenge with the model fungal particle zymosan. We now identify interleukin-1β (IL-1β) and downstream granulocyte colony-stimulating factor (G-CSF) as critical amplifying signals that augment and sustain neutrophil accrual in CGD mice. Neutrophils, delivered into the lung via LTB4, were the primary source of IL-1β within the airways, and their increased numbers in CGD lungs led to significantly elevated local and plasma G-CSF. Elevated G-CSF simultaneously promoted increased granulopoiesis and mobilized the release of higher numbers of an immature CD101- neutrophil subset from the marrow, which trafficked to the lung and acquired a significantly more proinflammatory transcriptome in CGD mice compared with wild-type mice. Thus, neutrophil-produced IL-1β and downstream G-CSF act sequentially but nonredundantly with LTB4 to deploy neutrophils and amplify inflammation in CGD mice after inhalation of zymosan. NOX2 plays a critical role in dampening multiple components of a feed-forward pipeline for neutrophil recruitment, and these findings highlight NOX2 as a key regulator of neutrophil number, subsets, and function at inflamed sites.
Collapse
Affiliation(s)
- Zhimin Song
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Sourav Bhattacharya
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Guangming Huang
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Zev J. Greenberg
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH
| | - Laura G. Schuettpelz
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Mary C. Dinauer
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
41
|
Feyen J, Ernst MPT, van der Velden VHJ, Valk PJM, Broeders L, Touw IP, Raaijmakers MHGP. A congenital CSF3R mutation in chronic neutropenia reveals a vital role for a cytokine receptor extracellular hinge motif in the response to granulocyte colony-stimulating factor. Pediatr Blood Cancer 2023; 70:e30039. [PMID: 36316822 DOI: 10.1002/pbc.30039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 02/24/2023]
Abstract
We describe a patient with congenital neutropenia (CN) with a homozygous germline mutation in the colony-stimulating factor 3 receptor gene (CSF3R). The patient's bone marrow shows lagging neutrophil development with subtle left shift and unresponsiveness to CSF3 in in vitro colony assays. This patient illustrates that the di-proline hinge motif in the extracellular cytokine receptor homology domain of CSF3R is critical for adequate neutrophil production, but dispensable for in vivo terminal neutrophil maturation. This report underscores that CN patients with inherited CSF3R mutations should be marked as a separate clinical entity, characterized by a failure to respond to CSF3.
Collapse
Affiliation(s)
- Jacqueline Feyen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Martijn P T Ernst
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lianne Broeders
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ivo P Touw
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | |
Collapse
|
42
|
Jacob M, Masood A, Abdel Rahman AM. Multi-Omics Profiling in PGM3 and STAT3 Deficiencies: A Tale of Two Patients. Int J Mol Sci 2023; 24:ijms24032406. [PMID: 36768728 PMCID: PMC9916661 DOI: 10.3390/ijms24032406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/27/2023] Open
Abstract
Hyper-IgE Syndrome (HIES) is a heterogeneous group of primary immune-deficiency disorders characterized by elevated levels of IgE, eczema, and recurrent skin and lung infections. HIES that is autosomally dominant in the signal transducer and activator of transcription 3 (STAT3), and autosomal recessive mutations in phosphoglucomutase 3 (PGM3) have been reported in humans. An early diagnosis, based on clinical suspicion and immunological assessments, is challenging. Patients' metabolomics, proteomics, and cytokine profiles were compared to DOCK 8-deficient and atopic dermatitis patients. The PGM3 metabolomics profile identified significant dysregulation in hypotaurine, hypoxanthine, uridine, and ribothymidine. The eight proteins involved include bifunctional arginine demethylase and lysyl hydroxylase (JMJD1B), type 1 protein phosphatase inhibitor 4 (PPI 4), and platelet factor 4 which aligned with an increased level of the cytokine GCSF. Patients with STAT3 deficiency, on the other hand, showed significant dysregulation in eight metabolites, including an increase in protocatechuic acid, seven proteins including ceruloplasmin, and a plasma protease C1 inhibitor, in addition to cytokine VEGF being dysregulated. Using multi-omics profiling, we identified the dysregulation of endothelial growth factor (EGFR) and tumor necrosis factor (TNF) signaling pathways in PGM3 and STAT3 patients, respectively. Our findings may serve as a stepping stone for larger prospective HIES clinical cohorts to validate their future use as biomarkers.
Collapse
Affiliation(s)
- Minnie Jacob
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11564, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925(98), Riyadh 11461, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11564, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
43
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
44
|
Chen Y, Zhu M, Huang B, Jiang Y, Su J. Advances in cell membrane-coated nanoparticles and their applications for bone therapy. BIOMATERIALS ADVANCES 2023; 144:213232. [PMID: 36502750 DOI: 10.1016/j.bioadv.2022.213232] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Due to the specific structure of natural bone, most of the therapeutics are incapable to be delivered into the targeted site with effective concentrations. Nanotechnology has provided a good way to improve this issue, cell membrane mimetic nanoparticles (NPs) have been emerging as an ideal nanomaterial which integrates the advantages of natural cell membranes with synthetic NPs to significantly improve the biocompatibility as well as achieving long-lasting circulation and targeted delivery. In addition, functionalized modifications of the cell membrane facilitate more precise targeting and therapy. Here, an overview of the preparation of cell membrane-coated NPs and the properties of cell membranes from different cell sources has been given to expatiate their function and potential applications. Strategies for functionalized modification of cell membranes are also briefly described. The application of cell membrane-coated NPs for bone therapy is then presented according to the function of cell membranes. Moreover, the prospects and challenges of cell membrane-coated NPs for translational medicine have also been discussed.
Collapse
Affiliation(s)
- Yutong Chen
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China; School of Medicine, Shanghai University, Shanghai 200444, PR China; School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mengru Zhu
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China; School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Biaotong Huang
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China; Wenzhou Institute of Shanghai University, Wenzhou 325000, PR China.
| | - Yingying Jiang
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China.
| | - Jiacan Su
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
45
|
Martin KR, Day JA, Hansen JA, D'Silva DB, Wong HL, Garnham A, Sandow JJ, Nijagal B, Wilson N, Wicks IP. CD98 defines a metabolically flexible, proinflammatory subset of low-density neutrophils in systemic lupus erythematosus. Clin Transl Med 2023; 13:e1150. [PMID: 36653319 PMCID: PMC9849148 DOI: 10.1002/ctm2.1150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Low-density neutrophils (LDN) are a distinct subset of neutrophils rarely detected in healthy people but appear in the blood of patients with autoimmune diseases, including systemic lupus erythematosus (SLE), and are mobilised in response to granulocyte colony-stimulating factor (G-CSF). The aim of this study was to identify novel mechanisms responsible for the pathogenic capacity of LDN in SLE. METHODS Neutrophils were isolated from donors treated with G-CSF, and whole-cell proteomic analysis was performed on LDN and normal-density neutrophils. RESULTS CD98 is significantly upregulated in LDN from G-CSF donors and defines a subset of LDN within the blood of SLE patients. CD98 is a transmembrane protein that dimerises with L-type amino acid transporters. We show that CD98 is responsible for the increased bioenergetic capacity of LDN. CD98 on LDN mediates the uptake of essential amino acids that are used by mitochondria to produce adenosine triphosphate, especially in the absence of glucose. Inhibition of CD98 reduces the metabolic flexibility of this population, which may limit their pathogenic capacity. CD98+ LDN produce more proinflammatory cytokines and chemokines than their normal density counterparts and are resistant to apoptosis, which may also contribute to tissue inflammation and end organ damage in SLE. CONCLUSIONS CD98 provides a phenotypic marker for LDN that facilitates identification of this population without density-gradient separation and represents a novel therapeutic target to limit its pathogenic capacity.
Collapse
Affiliation(s)
- Katherine R. Martin
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Jessica A. Day
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of RheumatologyRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Jacinta A. Hansen
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Damian B. D'Silva
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Huon L. Wong
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Alexandra Garnham
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Jarrod J. Sandow
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Brunda Nijagal
- Metabolomics AustraliaBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVictoriaAustralia
| | | | - Ian P. Wicks
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of RheumatologyRoyal Melbourne HospitalParkvilleVictoriaAustralia
| |
Collapse
|
46
|
Jiang Z, Wang Z, Wei X, Yu XF. Inflammatory checkpoints in amyotrophic lateral sclerosis: From biomarkers to therapeutic targets. Front Immunol 2022; 13:1059994. [PMID: 36618399 PMCID: PMC9815501 DOI: 10.3389/fimmu.2022.1059994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron damage. Due to the complexity of the ALS, so far the etiology and underlying pathogenesis of sporadic ALS are not completely understood. Recently, many studies have emphasized the role of inflammatory networks, which are comprised of various inflammatory molecules and proteins in the pathogenesis of ALS. Inflammatory molecules and proteins may be used as independent predictors of patient survival and might be used in patient stratification and in evaluating the therapeutic response in clinical trials. This review article describes the latest advances in various inflammatory markers in ALS and its animal models. In particular, this review discusses the role of inflammatory molecule markers in the pathogenesis of the disease and their relationship with clinical parameters. We also highlight the advantages and disadvantages of applying inflammatory markers in clinical manifestations, animal studies, and drug clinical trials. Further, we summarize the potential application of some inflammatory biomarkers as new therapeutic targets and therapeutic strategies, which would perhaps expand the therapeutic interventions for ALS.
Collapse
|
47
|
Huang HC, Chen YT, Lin HH, Li ZQ, Yang JM, Tzou SC. Inhibition of IRAK1 Is an Effective Therapy for Autoimmune Hypophysitis in Mice. Int J Mol Sci 2022; 23:ijms232314958. [PMID: 36499283 PMCID: PMC9738236 DOI: 10.3390/ijms232314958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Autoimmune hypophysitis (AH) is an autoimmune disease of the pituitary for which the pathogenesis is incompletely known. AH is often treated with corticosteroids; however, steroids may lead to considerable side effects. Using a mouse model of AH (experimental autoimmune hypophysitis, EAH), we show that interleukin-1 receptor-associated kinase 1 (IRAK1) is upregulated in the pituitaries of mice that developed EAH. We identified rosoxacin as a specific inhibitor for IRAK1 and found it could treat EAH. Rosoxacin treatment at an early stage (day 0-13) slightly reduced disease severity, whereas treatment at a later stage (day 14-27) significantly suppressed EAH. Further investigation indicated rosoxacin reduced production of autoantigen-specific antibodies. Rosoxacin downregulated production of cytokines and chemokines that may dampen T cell differentiation or recruitment to the pituitary. Finally, rosoxacin downregulated class II major histocompatibility complex expression on antigen-presenting cells that may lead to impaired activation of autoantigen-specific T cells. These data suggest that IRAK1 may play a pathogenic role in AH and that rosoxacin may be an effective drug for AH and other inflammatory diseases involving IRAK1 dysregulation.
Collapse
Affiliation(s)
- Hsiao-Chen Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yun-Ti Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Han-Huei Lin
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Zhi-Qin Li
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jinn-Moon Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: (J.-M.Y.); (S.-C.T.)
| | - Shey-Cherng Tzou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: (J.-M.Y.); (S.-C.T.)
| |
Collapse
|
48
|
PD-L1 negatively regulates antifungal immunity by inhibiting neutrophil release from bone marrow. Nat Commun 2022; 13:6857. [PMID: 36369287 PMCID: PMC9652346 DOI: 10.1038/s41467-022-34722-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) has been shown to be inducibly expressed on neutrophils to suppress host immunity during polymicrobial sepsis, virus and parasite infections. However, the role of PD-L1 on neutrophil-mediated antifungal immunity remains wholly unknown. Here, we show that the expression of PD-L1 on murine and human neutrophils was upregulated upon the engagement of C-type lectin receptor Dectin-1 with its ligand β-glucans, exposed on fungal pathogen Candida albicans yeast. Moreover, β-glucan stimulation induced PD-L1 translocation into nucleus to regulate the production of chemokines CXCL1 and CXCL2, which control neutrophil mobilization. Importantly, C. albicans infection-induced expression of PD-L1 leads to neutrophil accumulation in bone marrow, through mediating their autocrine secretion of CXCL1/2. Furthermore, neutrophil-specific deficiency of PD-L1 impaired CXCL1/2 secretion, which promoted neutrophil migration from bone marrow into the peripheral circulation, thereby conferring host resistance to C. albicans infection. Finally, either PD-L1 blockade or pharmacological inhibition of PD-L1 expression significantly increased neutrophil release from bone marrow to enhance host antifungal immunity. Our data together indicate that activation of Dectin-1/PD-L1 cascade by β-glucans inhibits neutrophil release from bone marrow reserve, contributing to the negative regulation of antifungal innate immunity, which functions as a potent immunotherapeutic target against life-threatening fungi infections.
Collapse
|
49
|
Jiang W, Li X, Xiang C, Zhou W. Neutrophils in pancreatic cancer: Potential therapeutic targets. Front Oncol 2022; 12:1025805. [PMID: 36324574 PMCID: PMC9618950 DOI: 10.3389/fonc.2022.1025805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 08/30/2023] Open
Abstract
Pancreatic cancer is a digestive system malignancy and poses a high mortality worldwide. Traditionally, neutrophils have been thought to play a role in acute inflammation. In contrast, their importance during tumor diseases has been less well studied. Generally, neutrophils are recruited into the tumor microenvironment and exert inflammation and tumor-promoting effects. As an essential part of the tumor microenvironment, neutrophils play diverse roles in pancreatic cancer, such as angiogenesis, progression, metastasis and immunosuppression. Additionally, neutrophils can be a new potential therapeutic target in cancer. Inhibitors of cytokines, chemokines and neutrophil extracellular traps can exert antitumor effects. In this review, we describe the role of neutrophils in the development and progression of pancreatic cancer, discuss their potential as therapeutic targets, and aim to provide ideas for improving the prognosis of patients with this malignant tumor disease.
Collapse
Affiliation(s)
- Wenkai Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xin Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Caifei Xiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
50
|
Fiestas Solórzano VE, de Lima RC, de Azeredo EL. The Role of Growth Factors in the Pathogenesis of Dengue: A Scoping Review. Pathogens 2022; 11:1179. [PMID: 36297236 PMCID: PMC9608673 DOI: 10.3390/pathogens11101179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 12/07/2022] Open
Abstract
Growth factors (GFs) have a role in tissue repair and in the modulation of the expression of inflammatory cells in damage caused by pathogens. This study aims to systematize the evidence on the role of GFs in the pathogenesis of dengue. This scoping review considered all published peer-reviewed studies in the MEDLINE and Embase databases. Ultimately, 58 studies that analyzed GFs in dengue patients, published between 1998 and 2021, were included. DENV-2 infection and secondary infection were more frequent in the patients studied. ELISA and multiplex immunoassay (Luminex) were the most used measurement techniques. Increased levels of vascular endothelial growth factor, granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, transforming growth factor beta, and hepatocyte growth factor as well as reduced levels of platelet-derived growth factor and epidermal growth factor were observed in severe dengue in most studies. Vascular endothelial growth factor and hepatocyte growth factor were identified as biomarkers of severity. In addition, there is evidence that the dengue virus can use the growth factor pathway to facilitate its entry into the cell and promote its viral replication. The use of tyrosine kinase inhibitors is an alternative treatment for dengue that is being studied.
Collapse
|