1
|
Zhang Y, Wu J, Zheng Y, Xu Y, Yu Z, Ping Y. Voltage Gated Ion Channels and Sleep. J Membr Biol 2024; 257:269-280. [PMID: 39354150 DOI: 10.1007/s00232-024-00325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Ion channels are integral components of the nervous system, playing a pivotal role in shaping membrane potential, neuronal excitability, synaptic transmission and plasticity. Dysfunction in these channels, such as improper expression or localization, can lead to irregular neuronal excitability and synaptic communication, which may manifest as various behavioral abnormalities, including disrupted rest-activity cycles. Research has highlighted the significant impact of voltage gated ion channels on sleep parameters, influencing sleep latency, duration and waveforms. Furthermore, these ion channels have been implicated in the vulnerability to, and the pathogenesis of, several neurological and psychiatric disorders, including epilepsy, autism, schizophrenia, and Alzheimer's disease (AD). In this comprehensive review, we aim to provide a summary of the regulatory role of three predominant types of voltage-gated ion channels-calcium (Ca2+), sodium (Na+), and potassium (K+)-in sleep across species, from flies to mammals. We will also discuss the association of sleep disorders with various human diseases that may arise from the dysfunction of these ion channels, thereby underscoring the potential therapeutic benefits of targeting specific ion channel subtypes for sleep disturbance treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wu
- Faculty of Brain Sciences, University College London, London, UK
| | - Yuxian Zheng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangkun Xu
- Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Ziqi Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Spaargaren KL, Begeer SM, Greaves-Lord K, Riper H, van Straten A. Protocol of a randomized controlled trial into guided internet-delivered cognitive behavioral therapy for insomnia in autistic adults (i-Sleep Autism). Contemp Clin Trials 2024; 146:107704. [PMID: 39357740 DOI: 10.1016/j.cct.2024.107704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Sleep problems, especially insomnia, are prevalent among autistic adults, affecting about 60 %, and significantly impact their quality of life. Internet-based cognitive behavioral therapy for insomnia (iCBT-I) could provide accessible and scalable treatment. Given the unique sensory- and information processing, and social challenges at play in autism, a tailored treatment approach may be essential to tackle sleep problems. Yet, interventions developed and tested specifically for autistic adults were scarce. Addressing this gap is crucial to meet the urgent need for effective insomnia treatments in this population. METHODS With this two-arm, parallel, superiority randomized controlled trial, we will assess the effectiveness of a guided iCBT-I intervention for adults (N = 160) with autism and insomnia (i-Sleep Autism). In co-creation, i-Sleep Autism has been adjusted from an existing intervention (i-Sleep). Inclusion criteria are: age ≥ 18, an ASD diagnosis, and at least sub-threshold insomnia (Insomnia Severity Index ≥10). Participants are randomly assigned to either i-Sleep Autism or an information only waitlist control condition (online psychoeducation and sleep hygiene). After 6 weeks, the control group receives the intervention. Insomnia severity is the primary outcome. Secondary outcomes include pre-sleep arousal, general mental health, depression, anxiety, daily functioning, and quality of life. Assessments will occur at baseline, mid-intervention (3 weeks), post-intervention (6 weeks), and at 6-month follow-up (the intervention group). Linear mixed-effect regression models are employed to evaluate the effectiveness of i-Sleep Autism, alongside exploration of potential moderators and mediators. CONCLUSION This trial can reveal whether autistic adults with insomnia benefit from a guided e-health intervention. TRIAL REGISTRATION NL-OMON56692.
Collapse
Affiliation(s)
- Kirsten L Spaargaren
- Department of Clinical, Neuro-, and Developmental Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Sander M Begeer
- Department of Clinical, Neuro-, and Developmental Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Kirstin Greaves-Lord
- Jonx, Department of (Youth) Mental Health and Autism, Autism Team Northern-Netherlands, Lentis Psychiatric Institute, Laan Corpus Den Hoorn 102-2, 9728 JR Groningen, the Netherlands; Department of Psychology, Clinical Psychology and Experimental Psychopathology Unit, University of Groningen, Broerstraat 5, 9712 CP Groningen, the Netherlands.
| | - Heleen Riper
- Department of Clinical, Neuro-, and Developmental Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centre, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands.
| | - Annemieke van Straten
- Department of Clinical, Neuro-, and Developmental Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Zou M, Zhang Y, Li D, Li S, Hu J, Gao Y, Cheng Z, Liu S, Wu L, Sun C. Correlation of Co-Morbidities with Symptom Severity of Children with Autism Spectrum Disorder: A Cross-Sectional Survey. Nutrients 2024; 16:2960. [PMID: 39275276 PMCID: PMC11397295 DOI: 10.3390/nu16172960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
This study aims to identify potential correlations of the severity of symptoms of children with autism spectrum disorder (ASD) with serum nutritional levels, body composition indicators, diet partiality, and sleep disturbances. The cohort of this cross-sectional study included 120 children with ASD and 110 typically developing (TD) children to assess symptoms of ASD, and to measure serum levels of vitamins and minerals and the body composition values. Diet partiality and sleep disturbances were assessed by administering questionnaires. The serum levels of folic acid, copper, and vitamin B were lower in children with ASD than in TD children, while magnesium and homocysteine were higher (p < 0.05). Children with ASD had greater chest circumference, abdominal skinfold thickness, and body mass index (BMI) than TD children (p < 0.05), and higher prevalences of diet partiality and sleep disturbances (p < 0.001). Lower vitamin A levels and higher vitamin D levels were related to social impairment in children with ASD. Moreover, there were significantly positive correlations of BMI, chest circumference, diet partiality, and sleep disturbances with severity of ASD symptoms (p < 0.05). Collectively, rational nutritional supplementation, dietary management, and behavioral interventions are essential for children with ASD.
Collapse
Affiliation(s)
- Mingyang Zou
- Department of Children's and Adolescent Health, College of Public Health, Harbin Medical University, Harbin 150081, China
| | - Yilin Zhang
- Department of Children's and Adolescent Health, College of Public Health, Harbin Medical University, Harbin 150081, China
| | - Dexin Li
- Department of Children's and Adolescent Health, College of Public Health, Harbin Medical University, Harbin 150081, China
| | - Shengqi Li
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Jingyi Hu
- Department of Children's and Adolescent Health, College of Public Health, Harbin Medical University, Harbin 150081, China
| | - Ya Gao
- Department of Children's and Adolescent Health, College of Public Health, Harbin Medical University, Harbin 150081, China
| | - Zeyu Cheng
- Department of Children's and Adolescent Health, College of Public Health, Harbin Medical University, Harbin 150081, China
| | - Shidan Liu
- Department of Children's and Adolescent Health, College of Public Health, Harbin Medical University, Harbin 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, College of Public Health, Harbin Medical University, Harbin 150081, China
| | - Caihong Sun
- Department of Children's and Adolescent Health, College of Public Health, Harbin Medical University, Harbin 150081, China
- Department of Developmental Behavioral Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin 150023, China
| |
Collapse
|
4
|
Sun H, Shen Y, Ni P, Liu X, Li Y, Qiu Z, Su J, Wang Y, Wu M, Kong X, Cao JL, Xie W, An S. Autism-associated neuroligin 3 deficiency in medial septum causes social deficits and sleep loss in mice. J Clin Invest 2024; 134:e176770. [PMID: 39058792 PMCID: PMC11444198 DOI: 10.1172/jci176770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with autism spectrum disorder (ASD) frequently experience sleep disturbance. Genetic mutations in the neuroligin 3 (NLG3) gene are highly correlative with ASD and sleep disturbance. However, the cellular and neural circuit bases of this correlation remain elusive. Here, we found that the conditional knockout of Nlg3 (Nlg3-CKO) in the medial septum (MS) impairs social memory and reduces sleep. Nlg3 CKO in the MS caused hyperactivity of MSGABA neurons during social avoidance and wakefulness. Activation of MSGABA neurons induced social memory deficits and sleep loss in C57BL/6J mice. In contrast, inactivation of these neurons ameliorated social memory deficits and sleep loss in Nlg3-CKO mice. Sleep deprivation led to social memory deficits, while social isolation caused sleep loss, both resulting in a reduction in NLG3 expression and an increase in activity of GABAergic neurons in the MS from C57BL/6J mice. Furthermore, MSGABA-innervated CA2 neurons specifically regulated social memory without impacting sleep, whereas MSGABA-innervating neurons in the preoptic area selectively controlled sleep without affecting social behavior. Together, these findings demonstrate that the hyperactive MSGABA neurons impair social memory and disrupt sleep resulting from Nlg3 CKO in the MS, and achieve the modality specificity through their divergent downstream targets.
Collapse
Affiliation(s)
- Haiyan Sun
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yu Shen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Pengtao Ni
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xin Liu
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yan Li
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zhentong Qiu
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jiawen Su
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yihan Wang
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Miao Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xiangxi Kong
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shuming An
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Zare MJ, Ahmadi A, Dehbozorgi S, Zare M, Hejazi N. The Association Between Children's Dietary Inflammatory Index (C-DII) and Nutrient Adequacy with Gastrointestinal Symptoms, Sleep Habits, and Autistic Traits. J Autism Dev Disord 2024:10.1007/s10803-024-06328-z. [PMID: 38607471 DOI: 10.1007/s10803-024-06328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Affiliation(s)
- Mohammad Javad Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
| | - Afsane Ahmadi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran.
| | - Sara Dehbozorgi
- Research Center for Psychiatry and Behavior Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
| | - Najmeh Hejazi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
6
|
Silvestri R, Di Perri MC. Is iron depletion the only cause of motor restlessness in restless sleep presenting in autism spectrum disorder? J Clin Sleep Med 2024; 20:337-338. [PMID: 38174874 PMCID: PMC11019212 DOI: 10.5664/jcsm.11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Affiliation(s)
- Rosalia Silvestri
- Sleep Medicine Center, UOSD of Neurophysiopathology and Movement Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Maria Caterina Di Perri
- Sleep Medicine Center, UOSD of Neurophysiopathology and Movement Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Zhuang H, Liang Z, Ma G, Qureshi A, Ran X, Feng C, Liu X, Yan X, Shen L. Autism spectrum disorder: pathogenesis, biomarker, and intervention therapy. MedComm (Beijing) 2024; 5:e497. [PMID: 38434761 PMCID: PMC10908366 DOI: 10.1002/mco2.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Autism spectrum disorder (ASD) has become a common neurodevelopmental disorder. The heterogeneity of ASD poses great challenges for its research and clinical translation. On the basis of reviewing the heterogeneity of ASD, this review systematically summarized the current status and progress of pathogenesis, diagnostic markers, and interventions for ASD. We provided an overview of the ASD molecular mechanisms identified by multi-omics studies and convergent mechanism in different genetic backgrounds. The comorbidities, mechanisms associated with important physiological and metabolic abnormalities (i.e., inflammation, immunity, oxidative stress, and mitochondrial dysfunction), and gut microbial disorder in ASD were reviewed. The non-targeted omics and targeting studies of diagnostic markers for ASD were also reviewed. Moreover, we summarized the progress and methods of behavioral and educational interventions, intervention methods related to technological devices, and research on medical interventions and potential drug targets. This review highlighted the application of high-throughput omics methods in ASD research and emphasized the importance of seeking homogeneity from heterogeneity and exploring the convergence of disease mechanisms, biomarkers, and intervention approaches, and proposes that taking into account individuality and commonality may be the key to achieve accurate diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Zhiyuan Liang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Guanwei Ma
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Ayesha Qureshi
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xiaoqian Ran
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xukun Liu
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xi Yan
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
| |
Collapse
|
8
|
Tener SJ, Lin Z, Park SJ, Oraedu K, Ulgherait M, Van Beek E, Martínez-Muñiz A, Pantalia M, Gatto JA, Volpi J, Stavropoulos N, Ja WW, Canman JC, Shirasu-Hiza M. Neuronal knockdown of Cullin3 as a Drosophila model of autism spectrum disorder. Sci Rep 2024; 14:1541. [PMID: 38233464 PMCID: PMC10794434 DOI: 10.1038/s41598-024-51657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024] Open
Abstract
Mutations in Cullin-3 (Cul3), a conserved gene encoding a ubiquitin ligase, are strongly associated with autism spectrum disorder (ASD). Here, we characterize ASD-related pathologies caused by neuron-specific Cul3 knockdown in Drosophila. We confirmed that neuronal Cul3 knockdown causes short sleep, paralleling sleep disturbances in ASD. Because sleep defects and ASD are linked to metabolic dysregulation, we tested the starvation response of neuronal Cul3 knockdown flies; they starved faster and had lower triacylglyceride levels than controls, suggesting defects in metabolic homeostasis. ASD is also characterized by increased biomarkers of oxidative stress; we found that neuronal Cul3 knockdown increased sensitivity to hyperoxia, an exogenous oxidative stress. Additional hallmarks of ASD are deficits in social interactions and learning. Using a courtship suppression assay that measures social interactions and memory of prior courtship, we found that neuronal Cul3 knockdown reduced courtship and learning compared to controls. Finally, we found that neuronal Cul3 depletion alters the anatomy of the mushroom body, a brain region required for memory and sleep. Taken together, the ASD-related phenotypes of neuronal Cul3 knockdown flies establish these flies as a genetic model to study molecular and cellular mechanisms underlying ASD pathology, including metabolic and oxidative stress dysregulation and neurodevelopment.
Collapse
Affiliation(s)
- Samantha J Tener
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhi Lin
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Scarlet J Park
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Kairaluchi Oraedu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew Ulgherait
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Emily Van Beek
- Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Andrés Martínez-Muñiz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Meghan Pantalia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jared A Gatto
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Julia Volpi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - William W Ja
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Petti T, Gupta M, Fradkin Y, Gupta N. Management of sleep disorders in autism spectrum disorder with co-occurring attention-deficit hyperactivity disorder: update for clinicians. BJPsych Open 2023; 10:e11. [PMID: 38088185 PMCID: PMC10755553 DOI: 10.1192/bjo.2023.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 12/31/2023] Open
Abstract
AIMS To update and examine available literature germane to the recognition, assessment and treatment of comorbid autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD) and sleep disruption, with a predominant focus on children, adolescents and emerging adults. BACKGROUND Considerable overlaps exist among ASD, ADHD and sleep disruption. Literature and guidance for clinicians, administrators, policy makers and families have been limited, as such deliberations were rarely considered until 2013. METHOD This narrative review of the literature addressing sleep disruption issues among those with ASD, ADHD and comorbid ASD and ADHD involved searching multiple databases and use of reverse citations up to the end of September 2022. Emphasis is placed on secondary sources and relevant data for clinical practice. RESULTS Complex clinical presentations of ASD/ADHD/sleep disruption are frequently encountered in clinical practice. Prior to 2013, prevalence, clinical presentation, pathophysiology, prognosis, other sleep-related factors and interventions were determined separately for each disorder, often with overlapping objective and subjective methods employed in the process. High percentages of ADHD and ASD patients have both disorders and sleep disruption. Here, the extant literature is integrated to provide a multidimensional understanding of the relevant issues and insights, allowing enhanced awareness and better care of this complex clinical population. Database limitations are considered. CONCLUSIONS Assessment of ASD symptomatology in youth with ADHD, and the reverse, in cases with disrupted sleep is critical to address the special challenges for case formulation and treatment. Evidence-based approaches to treatment planning and multi-treatment modalities should consider combining psychosocial and biological interventions to address the complexities of each case.
Collapse
Affiliation(s)
- Theodore Petti
- Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Mayank Gupta
- Southwood Psychiatric Hospital, Pittsburgh, Pennsylvania, USA
| | - Yuli Fradkin
- Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | |
Collapse
|
10
|
Mammarella V, Orecchio S, Cameli N, Occhipinti S, Marcucci L, De Meo G, Innocenti A, Ferri R, Bruni O. Using pharmacotherapy to address sleep disturbances in autism spectrum disorders. Expert Rev Neurother 2023; 23:1261-1276. [PMID: 37811652 DOI: 10.1080/14737175.2023.2267761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Sleep disorders are the second most common medical comorbidity in autism spectrum disorder (ASD), with effects on daytime behavior and functioning, mood and anxiety, and autism core features. In children with ASD, insomnia also has a negative impact on the whole family's quality of life. Therefore, treatment of sleep disturbances should be considered as a primary goal in the management of ASD patients, and it is important to clarify the scientific evidence to inappropriate treatments. AREAS COVERED The authors review the current literature concerning the pharmacological treatment options for the management of sleep-related disorders in patients with ASD (aged 0-18 years) using the PubMed and Cochrane Library databases with the search terms: autism, autistic, autism spectrum disorder, ASD, drug, drug therapy, drug intervention, drug treatment, pharmacotherapy, pharmacological treatment, pharmacological therapy, pharmacological intervention, sleep, sleep disturbance, and sleep disorder. EXPERT OPINION Currently, clinicians tend to select medications for the treatment of sleep disorders in ASD based on the first-hand experience of psychiatrists and pediatricians as well as expert opinion. Nevertheless, at the present time, the only compound for which there is sufficient evidence is melatonin, although antihistamines, trazodone, clonidine, ramelteon, gabapentin, or suvorexant can also be considered for selection.
Collapse
Affiliation(s)
- Valeria Mammarella
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Silvia Orecchio
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Noemi Cameli
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Sara Occhipinti
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Lavinia Marcucci
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Giuliano De Meo
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Alice Innocenti
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
| | - Oliviero Bruni
- Department of Social and Developmental Psychology, Sapienza University, Rome, Italy
| |
Collapse
|
11
|
von Deneen KM, Garstka MA, Hrbáč T, Zhu Y, Wang H, Su JC. Editorial: Neuroimaging insights into the link between sleep disturbances and neuropsychiatric disorders. Front Psychiatry 2023; 14:1243486. [PMID: 37457768 PMCID: PMC10343953 DOI: 10.3389/fpsyt.2023.1243486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Karen M. von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Malgorzata A. Garstka
- Core Research Laboratory, Department of Endocrinology, Xi'an, Shaanxi, China
- Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tomáš Hrbáč
- Neurochirurgická Klinika, Fakultní Nemocnice Ostrava, Ostrava, Czechia
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - HuaNing Wang
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jun Chang Su
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Martinez-Cayuelas E, Merino-Andreu M, Losada-Del Pozo R, Gavela-Pérez T, Garcés C, Soriano-Guillén L. Response to Melatonin Treatment in Children With Autism spectrum Disorder and Relationship to Sleep Parameters and Melatonin Levels. J Child Neurol 2023:8830738231173606. [PMID: 37192744 DOI: 10.1177/08830738231173606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Melatonin is one of the most used pharmacologic treatments for sleep problems in autism spectrum disorder, though its relationship with circadian and sleep parameters is still not well stablished. A naturalistic study was conducted in children with autism spectrum disorder, previously drug-naïve, before and after treatment with immediate-release melatonin. Circadian rhythms and sleep parameters were studied using an ambulatory circadian-monitoring device, and saliva samples were collected enabling determination of dim light melatonin onset. Twenty-six children with autism spectrum disorder (age 10.50 ± 2.91) were included. Immediate-release melatonin modified circadian rhythm as indicated by wrist skin temperature, showing an increase at night. A positive correlation was found between time of peak melatonin and sleep efficiency improvement values. Sleep-onset latency and efficiency improved with immediate-release melatonin. Immediate-release melatonin could be an effective treatment to improve sleep onset and restore a typical pattern of wrist temperature, which appears to be lost in autism spectrum disorder.
Collapse
Affiliation(s)
- Elena Martinez-Cayuelas
- Department of Pediatrics, Instituto de Investigación Sanitaria- Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain
| | - Milagros Merino-Andreu
- Neurophisiology, Sleep Unit, Hospital Universitario La Paz, Paseo de la Castellana, 261. 28046, Madrid, Spain
| | - Rebeca Losada-Del Pozo
- Department of Pediatrics, Instituto de Investigación Sanitaria- Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain
| | - Teresa Gavela-Pérez
- Department of Pediatrics, Instituto de Investigación Sanitaria- Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Garcés
- Lipid Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain
| | - Leandro Soriano-Guillén
- Department of Pediatrics, Instituto de Investigación Sanitaria- Fundación Jiménez Díaz. Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Yap CX, Henders AK, Alvares GA, Giles C, Huynh K, Nguyen A, Wallace L, McLaren T, Yang Y, Hernandez LM, Gandal MJ, Hansell NK, Cleary D, Grove R, Hafekost C, Harun A, Holdsworth H, Jellett R, Khan F, Lawson LP, Leslie J, Levis Frenk M, Masi A, Mathew NE, Muniandy M, Nothard M, Miller JL, Nunn L, Strike LT, Cadby G, Moses EK, de Zubicaray GI, Thompson PM, McMahon KL, Wright MJ, Visscher PM, Dawson PA, Dissanayake C, Eapen V, Heussler HS, Whitehouse AJO, Meikle PJ, Wray NR, Gratten J. Interactions between the lipidome and genetic and environmental factors in autism. Nat Med 2023; 29:936-949. [PMID: 37076741 PMCID: PMC10115648 DOI: 10.1038/s41591-023-02271-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/22/2023] [Indexed: 04/21/2023]
Abstract
Autism omics research has historically been reductionist and diagnosis centric, with little attention paid to common co-occurring conditions (for example, sleep and feeding disorders) and the complex interplay between molecular profiles and neurodevelopment, genetics, environmental factors and health. Here we explored the plasma lipidome (783 lipid species) in 765 children (485 diagnosed with autism spectrum disorder (ASD)) within the Australian Autism Biobank. We identified lipids associated with ASD diagnosis (n = 8), sleep disturbances (n = 20) and cognitive function (n = 8) and found that long-chain polyunsaturated fatty acids may causally contribute to sleep disturbances mediated by the FADS gene cluster. We explored the interplay of environmental factors with neurodevelopment and the lipidome, finding that sleep disturbances and unhealthy diet have a convergent lipidome profile (with potential mediation by the microbiome) that is also independently associated with poorer adaptive function. In contrast, ASD lipidome differences were accounted for by dietary differences and sleep disturbances. We identified a large chr19p13.2 copy number variant genetic deletion spanning the LDLR gene and two high-confidence ASD genes (ELAVL3 and SMARCA4) in one child with an ASD diagnosis and widespread low-density lipoprotein-related lipidome derangements. Lipidomics captures the complexity of neurodevelopment, as well as the biological effects of conditions that commonly affect quality of life among autistic people.
Collapse
Affiliation(s)
- Chloe X Yap
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia.
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
| | - Gail A Alvares
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anh Nguyen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Leanne Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
| | - Tiana McLaren
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
| | - Yuanhao Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
| | - Leanna M Hernandez
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael J Gandal
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Lifespan Brain Institute at Penn Medicine and The Children's Hospital of Philadelphia, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Narelle K Hansell
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Dominique Cleary
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Rachel Grove
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Faculty of Health, University of Technology Sydney, Sydney, New South Wales, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Claire Hafekost
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Alexis Harun
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Helen Holdsworth
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Rachel Jellett
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Feroza Khan
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Lauren P Lawson
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, Victoria, Australia
| | - Jodie Leslie
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Mira Levis Frenk
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Anne Masi
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Nisha E Mathew
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Melanie Muniandy
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Michaela Nothard
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Jessica L Miller
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Lorelle Nunn
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Gemma Cadby
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Eric K Moses
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul A Dawson
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
| | - Cheryl Dissanayake
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Valsamma Eapen
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Academic Unit of Child Psychiatry South West Sydney, Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Helen S Heussler
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Child Development Program, Children's Health Queensland, Brisbane, Queensland, Australia
| | - Andrew J O Whitehouse
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Jacob Gratten
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
- Cooperative Research Centre for Living with Autism, Long Pocket, Queensland, Australia.
| |
Collapse
|
14
|
Bazin B, Geoffroy PA, Benzaquen H, Maruani J, Romier A, Lejoyeux M, D'ortho MP, Frija-Masson J. Continuous positive airway pressure as an accurate marker for non-24-hour sleep-wake rhythm disorder. J Sleep Res 2023:e13859. [PMID: 36799093 DOI: 10.1111/jsr.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
Non-24-h sleep-wake rhythm disorder is quite rare in sighted patients and frequently associated with psychiatric disorders. We report the case of a 46-year-old man with autism spectrum disorder (ASD) and agoraphobia who had been referred for a suspicion of obstructive sleep apnea syndrome (OSAS). Polysomnography and arterial blood gas confirmed moderate OSAS associated with hypoventilation. Continuous positive airway pressure (CPAP) was started on fixed mode with excellent results. At follow-up, his CPAP report data revealed an irregular sleep-wake rhythm with a progressive offset of sleep schedule and wake time delayed from 1 h from day to day. Melatonin (or agonist) is efficacious and safe for long-term treatment in ASD and circadian rhythm sleep-wake disorder (CRSWD) with light therapy and wakefulness promoting medication. This case underlines the importance to sensitise psychiatrists to sleep and CRSWD, and also that CPAP data offer a possible objective alternative to sleep diary.
Collapse
Affiliation(s)
- Balthazar Bazin
- Multidisciplinary Functional Exploration Department FHU APOLLO, Assistance Publique Hôpitaux de Paris, Bichat Hospital, Paris, France.,GHU Paris-Psychiatry and Neurosciences, Paris, France
| | - Pierre A Geoffroy
- GHU Paris-Psychiatry and Neurosciences, Paris, France.,Paris University, Neurodiderot, INSERM, Paris, France.,Psychiatry and Addictology Department, AP-HP, GHU Paris Nord, DMU Neurosciences, Bichat Hospital, Paris, France
| | - Hélène Benzaquen
- Multidisciplinary Functional Exploration Department FHU APOLLO, Assistance Publique Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - Julia Maruani
- GHU Paris-Psychiatry and Neurosciences, Paris, France.,Paris University, Neurodiderot, INSERM, Paris, France.,Psychiatry and Addictology Department, AP-HP, GHU Paris Nord, DMU Neurosciences, Bichat Hospital, Paris, France
| | - Alix Romier
- Psychiatry and Addictology Department, AP-HP, GHU Paris Nord, DMU Neurosciences, Bichat Hospital, Paris, France
| | - Michel Lejoyeux
- GHU Paris-Psychiatry and Neurosciences, Paris, France.,Paris University, Neurodiderot, INSERM, Paris, France.,Psychiatry and Addictology Department, AP-HP, GHU Paris Nord, DMU Neurosciences, Bichat Hospital, Paris, France
| | - Marie-Pia D'ortho
- Multidisciplinary Functional Exploration Department FHU APOLLO, Assistance Publique Hôpitaux de Paris, Bichat Hospital, Paris, France.,Paris University, Neurodiderot, INSERM, Paris, France
| | - Justine Frija-Masson
- Multidisciplinary Functional Exploration Department FHU APOLLO, Assistance Publique Hôpitaux de Paris, Bichat Hospital, Paris, France.,Paris University, Neurodiderot, INSERM, Paris, France
| |
Collapse
|
15
|
Leung MHB, Ngan STJ, Cheng PWC, Chan FCG, Chang WC, Cheung HK, Ho C, Lee CKK, Tang YCV, Wong SMC, Chan KLP. Sleep problems in children with autism spectrum disorder in Hong Kong: a cross-sectional study. Front Psychiatry 2023; 14:1088209. [PMID: 37139314 PMCID: PMC10149766 DOI: 10.3389/fpsyt.2023.1088209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/17/2023] [Indexed: 05/05/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a growing prevalence of sleep problems associated with significant behavioral problems and more severe autism clinical presentation. Little is known about the relationships between autism traits and sleep problems in Hong Kong. Therefore, this study aimed to examine whether children with autism have increased sleep problems than non-autistic children in Hong Kong. The secondary objective was to examine the factors associated with sleep problems in an autism clinical sample. Methods This cross-sectional study recruited 135 children with autism and 102 with the same age range of non-autistic children, aged between 6 and 12 years. Both groups were screened and compared on their sleep behaviors using the Children's Sleep Habits Questionnaire (CSHQ). Results Children with autism had significantly more sleep problems than non-autistic children [t (226.73) = 6.20, p < 0.001]. Bed -sharing [beta = 0.25, t (165) = 2.75, p = 0.07] and maternal age at birth [beta = 0.15, t (165) = 2.05, p = 0.043] were significant factors associated with CSHQ score on the top of autism traits. Stepwise linear regression modeling identified that only separation anxiety disorder (beta = 4.83, t = 2.40, p = 0.019) best-predicted CSHQ. Conclusion In summary, autistic children suffered from significantly more sleep problems and co-occurring separation anxiety disorder brings greater sleep problems as compared to non-autistic children. Clinicians should be more aware of sleep problems to provide more effective treatments to children with autism.
Collapse
Affiliation(s)
- Man Ho Brian Leung
- Department of Psychiatry, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | | | - Pak Wing Calvin Cheng
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
- *Correspondence: Pak Wing Calvin Cheng
| | | | - Wing Chung Chang
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Hoi Kei Cheung
- Department of Psychiatry, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Chung Ho
- Department of Psychiatry, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Chi Kei Krystal Lee
- Department of Psychiatry, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | | | | | | |
Collapse
|
16
|
DelRosso LM, Reuter-Yuill LM, Cho Y, Ferri R, Mogavero MP, Picchietti DL. Clinical efficacy and safety of intravenous ferric carboxymaltose treatment for restless legs symptoms and low serum ferritin in children with autism spectrum disorder. Sleep Med 2022; 100:488-493. [PMID: 36265207 DOI: 10.1016/j.sleep.2022.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Restless legs syndrome (RLS) may be underdiagnosed in children with autism spectrum disorder (ASD) due to difficulty expressing the symptoms in their own words. In addition, administration of oral iron may be particularly difficult in children with ASD. METHODS This was a retrospective, open-label case series of children with ASD, restless legs (RL) symptoms, and serum ferritin <30 μg/L, who either had failed or did not tolerate oral iron, and were subsequently treated with intravenous (IV) ferric carboxymaltose (FCM). Patients received a single dose of IV FCM, 15 mg/kg up to a maximum dose of 750 mg. Data collected pre- and eight weeks post-infusion included presenting symptoms, serum ferritin, iron profile, and Clinical Global Impression Scale (CGI-Severity pre- and CGI-Improvement post-infusion). Adverse effects were assessed. RESULTS Nineteen children, 4-11 years old (12 male, median age 6, interquartile range (IQR 4-11) were included. A definite RLS diagnosis was identified in 6 verbal children (31.6%). RL symptoms (designated probable RLS) in the 13 other children met all RLS diagnostic criteria except "improvement of symptoms with movement," which was not definitively determined. Baseline median values were: ferritin 10 μg/L (IQR 10-16), iron 66.5 μg/dL (IQR 57-96), TIBC 382 μg/dL (IQR 360-411) and transferrin saturation 19% (IQR 14-28). Median CGI-S was 4 (moderate symptoms) (IQR 3-4). At eight weeks after IV FCM, all measures were improved. Median ferritin was 68 μg/L (IQR 62.5-109, p < 0.00045). Median CGI-I was 1 (very much improved) (IQR 1-2). All children meeting definite RLS criteria improved. Three children in the probable RLS group did not improve. Children meeting the full RLS criteria had lower baseline ferritin levels than those with a probable diagnosis (9 μg/L, IQR 9-10 vs. 13 μg/L, IQR 10-16, Mann-Whitney test p < 0.045). Adverse effects included lightheadedness, gastrointestinal discomfort, fever, and headache among others. CONCLUSIONS The majority of children (84.2%) with ASD, restless legs symptoms, and serum ferritin <30 μg/L had clinical improvement and significantly better serum iron parameters after a single IV FCM infusion. Although larger, randomized trials are needed, IV FCM appears to be a promising treatment for this subset of children with ASD.
Collapse
Affiliation(s)
- Lourdes M DelRosso
- Seattle Children's Hospital and University of Washington, Seattle, WA, USA.
| | - Lilith M Reuter-Yuill
- Western Michigan University, Kalamazoo, MI, Comprehensive Speech and Therapy Center, Jackson, MI, and Southern Illinois University, Carbondale, IL, USA
| | - Yeilim Cho
- Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology I.C., Oasi Research Institute - IRCCS, Troina, Italy
| | - Maria P Mogavero
- Institute of Molecular Bioimaging and Physiology, National Research Council, Milan, Italy; Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Italy
| | - Daniel L Picchietti
- University of Illinois School of Medicine, Carle Illinois College of Medicine, Carle Foundation Hospital, and University of Illinois School of Medicine, Urbana, IL, USA
| |
Collapse
|
17
|
Singla R, Mishra A, Cao R. The trilateral interactions between mammalian target of rapamycin (mTOR) signaling, the circadian clock, and psychiatric disorders: an emerging model. Transl Psychiatry 2022; 12:355. [PMID: 36045116 PMCID: PMC9433414 DOI: 10.1038/s41398-022-02120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Circadian (~24 h) rhythms in physiology and behavior are evolutionarily conserved and found in almost all living organisms. The rhythms are endogenously driven by daily oscillatory activities of so-called "clock genes/proteins", which are widely distributed throughout the mammalian brain. Mammalian (mechanistic) target of rapamycin (mTOR) signaling is a fundamental intracellular signal transduction cascade that controls important neuronal processes including neurodevelopment, synaptic plasticity, metabolism, and aging. Dysregulation of the mTOR pathway is associated with psychiatric disorders including autism spectrum disorders (ASD) and mood disorders (MD), in which patients often exhibit disrupted daily physiological rhythms and abnormal circadian gene expression in the brain. Recent work has found that the activities of mTOR signaling are temporally controlled by the circadian clock and exhibit robust circadian oscillations in multiple systems. In the meantime, mTOR signaling regulates fundamental properties of the central and peripheral circadian clocks, including period length, entrainment, and synchronization. Whereas the underlying mechanisms remain to be fully elucidated, increasing clinical and preclinical evidence support significant crosstalk between mTOR signaling, the circadian clock, and psychiatric disorders. Here, we review recent progress in understanding the trilateral interactions and propose an "interaction triangle" model between mTOR signaling, the circadian clock, and psychiatric disorders (focusing on ASD and MD).
Collapse
Affiliation(s)
- Rubal Singla
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Abhishek Mishra
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA. .,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
18
|
Chehbani F, Tomaiuolo P, Picinelli C, Baccarin M, Castronovo P, Scattoni ML, Gaddour N, Persico AM. Yield of array-CGH analysis in Tunisian children with autism spectrum disorder. Mol Genet Genomic Med 2022; 10:e1939. [PMID: 35762097 PMCID: PMC9356560 DOI: 10.1002/mgg3.1939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with strong genetic underpinnings. Microarray-based comparative genomic hybridization (aCGH) technology has been proposed as a first-level test in the genetic diagnosis of ASD and of neurodevelopmental disorders in general. METHODS We performed aCGH on 98 Tunisian children (83 boys and 15 girls) diagnosed with ASD according to DSM-IV criteria. RESULTS "Pathogenic" or "likely pathogenic" copy number variants (CNVs) were detected in 11 (11.2%) patients, CNVs of "uncertain clinical significance" in 26 (26.5%), "likely benign" or "benign" CNVs were found in 37 (37.8%) and 24 (24.5%) patients, respectively. Gene set enrichment analysis involving genes spanning rare "pathogenic," "likely pathogenic," or "uncertain clinical significance" CNVs, as well as SFARI database "autism genes" in common CNVs, detected eight neuronal Gene Ontology classes among the top 10 most significant, including synapse, neuron differentiation, synaptic signaling, neurogenesis, and others. Similar results were obtained performing g: Profiler analysis. Neither transcriptional regulation nor immune pathways reached significance. CONCLUSIONS aCGH confirms its sizable diagnostic yield in a novel sample of autistic children from North Africa. Recruitment of additional families is under way, to verify whether genetic contributions to ASD in the Tunisian population, differently from other ethnic groups, may involve primarily neuronal genes, more than transcriptional regulation and immune-related pathways.
Collapse
Affiliation(s)
- Fethia Chehbani
- Department of Psychiatry, Research Laboratory “Vulnerability to Psychotic Disorders LR 05 ES 10”Monastir University HospitalMonastirTunisia
- Faculty of PharmacyUniversity of MonastirMonastirTunisia
| | | | - Chiara Picinelli
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
| | - Marco Baccarin
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
- Department of GeneticsSynlab Suisse SABioggioSwitzerland
| | - Paola Castronovo
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
| | | | - Naoufel Gaddour
- Unit of Child PsychiatryMonastir University HospitalMonastirTunisia
| | - Antonio M. Persico
- Child & Adolescent Neuropsychiatry ProgramModena University Hospital & Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
19
|
Han GT, Trevisan DA, Abel EA, Cummings EM, Carlos C, Bagdasarov A, Kala S, Parker T, Canapari C, McPartland JC. Associations between sleep problems and domains relevant to daytime functioning and clinical symptomatology in autism: A meta-analysis. Autism Res 2022; 15:1249-1260. [PMID: 35635067 DOI: 10.1002/aur.2758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022]
Abstract
Autistic individuals experience significantly higher rates of sleep problems compared to the general population, which negatively impacts various aspects of daytime functioning. The strength of associations across domains of functioning has not yet been summarized across studies. The present meta-analysis examined the strength of associations between sleep problems and various domains of daytime functioning in autistic individuals. Searches were conducted in EMBASE, PubMed, Web of Science, and Google Scholar through May 2020. Inclusion criteria were: an index of sleep disturbance in individuals diagnosed with autism spectrum disorder (ASD); data collected prior to any sleep-related intervention; statistical data indicating relations between sleep problems and outcomes relevant to behavior, cognition, and physical or mental health. Exclusion criteria were: statistics characterizing the relationship between sleep disturbance and outcome variables that partialled out covariates; studies examining correlations between different measures of sleep disturbance. Participants totaled 15,074 from 49 published articles and 51 samples, yielding 209 effect sizes. Sleep problems were significantly associated with more clinical symptomatology and worse daytime functioning. Subgroup analyses demonstrated that sleep problems were most strongly associated with internalizing and externalizing symptoms and executive functioning, followed by core autism symptoms, family factors, and adaptive functioning. Findings highlight the far-reaching consequences of sleep problems on daytime functioning for autistic individuals and support the continued prioritization of sleep as a target for intervention through integrated care models to improve wellbeing. LAY SUMMARY: Autistic individuals experience higher rates of sleep problems, such as difficulty falling asleep and staying asleep, compared to the general population. We quantitatively summarized the literature about how sleep problems are related to different aspects of daytime functioning to identify areas that may be most affected by sleep. Sleep problems were related to all areas assessed, with the strongest associations for mood and anxiety symptoms. We recommend prioritizing sleep health in autistic individuals to improve wellbeing and quality of life.
Collapse
Affiliation(s)
- Gloria T Han
- Yale School of Medicine, Yale Child Study Center, Yale University, New Haven, Connecticut, USA
| | - Dominic A Trevisan
- Yale School of Medicine, Yale Child Study Center, Yale University, New Haven, Connecticut, USA
| | - Emily A Abel
- Yale School of Medicine, Yale Child Study Center, Yale University, New Haven, Connecticut, USA.,Human Development & Family Studies, Purdue University, West Lafayette, Indiana, USA
| | - Elise M Cummings
- Yale School of Medicine, Yale Child Study Center, Yale University, New Haven, Connecticut, USA.,Department of Psychology, Stony Brook University, Stony Brook, New York, USA
| | - Carter Carlos
- Yale School of Medicine, Yale Child Study Center, Yale University, New Haven, Connecticut, USA.,Department of Vision Science, Univeristy of California at Berkeley, Berkeley, California, USA
| | - Armen Bagdasarov
- Yale School of Medicine, Yale Child Study Center, Yale University, New Haven, Connecticut, USA.,Department of Psychology & Neuroscience, Duke University, Durham, North Carolina, USA
| | - Shashwat Kala
- Yale School of Medicine, Yale Child Study Center, Yale University, New Haven, Connecticut, USA
| | - Termara Parker
- Yale School of Medicine, Yale Child Study Center, Yale University, New Haven, Connecticut, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
| | - Craig Canapari
- Yale School of Medicine, Yale Child Study Center, Yale University, New Haven, Connecticut, USA
| | - James C McPartland
- Yale School of Medicine, Yale Child Study Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
20
|
Dell'Osso L, Massoni L, Battaglini S, Cremone IM, Carmassi C, Carpita B. Biological correlates of altered circadian rhythms, autonomic functions and sleep problems in autism spectrum disorder. Ann Gen Psychiatry 2022; 21:13. [PMID: 35534878 PMCID: PMC9082467 DOI: 10.1186/s12991-022-00390-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by a complex and multifaceted neurobehavioral syndrome. In the last decades, several studies highlighted an increased prevalence of sleep problems in ASD, which would be associated with autonomic system and circadian rhythm disruption. The present review aimed to summarize the available literature about sleep problems in ASD subjects and about the possible biological factors implicated in circadian rhythm and autonomic system deregulation in this population, as well as possible therapeutic approaches. Shared biological underpinnings between ASD symptoms and altered circadian rhythms/autonomic functions are also discussed. Studies on sleep showed how ASD subjects typically report more problems regarding insufficient sleep time, bedtime resistance and reduced sleep pressure. A link between sleep difficulties and irritability, deficits in social skills and behavioral problems was also highlighted. Among the mechanisms implicated, alteration in genes related to circadian rhythms, such as CLOCK genes, and in melatonin levels were reported. ASD subjects also showed altered hypothalamic pituitary adrenal (HPA) axis and autonomic functions, generally with a tendency towards hyperarousal and hyper sympathetic state. Intriguingly, some of these biological alterations in ASD individuals were not associated only with sleep problems but also with more autism-specific clusters of symptoms, such as communication impairment or repetitive behaviors Although among the available treatments melatonin showed promising results, pharmacological studies for sleep problems in ASD need to follow more standardized protocols to reach more repeatable and reliable results. Further research should investigate the issue of sleep problems in ASD in a broader perspective, taking into account shared pathophysiological mechanisms for core and associated symptoms of ASD.
Collapse
Affiliation(s)
- Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy
| | - Leonardo Massoni
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy
| | - Simone Battaglini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy
| | - Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa, Italy.
| |
Collapse
|
21
|
Zhang L, Xu Y, Li H, Li B, Duan G, Zhu C. The role of probiotics in children with autism spectrum disorders: A study protocol for a randomised controlled trial. PLoS One 2022; 17:e0263109. [PMID: 35202432 PMCID: PMC8870536 DOI: 10.1371/journal.pone.0263109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurological and developmental condition that begins in infancy or earlier and lasts through the individual’s lifetime. The aetiology and mechanisms of ASD are not yet fully understood, and current treatment comprises mainly education and rehabilitation, without significant improvement in the core symptoms. Recent studies suggest that microbiota change in children with ASD after the ingestion of probiotics may improve the balance of microbiota and thus ASD symptoms. Objective The objectives of this study are to evaluate the efficacy of probiotics on the symptoms of children with ASD and the possible mechanisms involved. Methods This is a prospective controlled trial. A total of 160 children with ASD will be stratified and allocated to placebo and probiotics groups randomised according to the severity of their ASD symptoms. The probiotics group will be given probiotics supplements orally twice a day for 3 months and the control group will be given a placebo at the same amount, in addition to the baseline therapy of education and rehabilitation. All the children will be evaluated systematically by using different scales, questionnaires before, during, and after 3 months’ treatment, as well as 3 months after discontinuation. The potential impact of probiotics on immunity and inflammation, metabolism, and metagenome will also be investigated. Discussion Our previous study showed that the abundance of intestinal flora was greatly different in children with ASD, and that Bifidobacterium was associated with the severity of ASD. In the present study, we will investigate the impact of probiotics supplementation on the symptoms of Children with ASD, with the purpose of evaluating the possible therapeutic effects of additives on ASD and of providing a reference for clinical treatment. The results will help to disclose as yet unknown relationship between probiotics and ASD. Trial registration This study has been registered with Chinese Clinical Trial Registry (ChiCTR-2000037941).
Collapse
Affiliation(s)
- Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiqin Duan
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Göteborg, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
22
|
Reynaud E, Pottelette J, Rabot J, Rolling J, Royant-Parola S, Hartley S, Coutelle R, Schröder CM. Differential effects of COVID-related lockdown on sleep-wake rhythms in adults with autism spectrum disorder compared to the general population. Autism Res 2022; 15:945-956. [PMID: 35234355 PMCID: PMC9073973 DOI: 10.1002/aur.2692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/25/2022]
Abstract
COVID‐related lockdown led to a radical modification of daily activities and routines which are known to affect sleep. Compared to the general population, participants with autism may be particularly vulnerable to the repercussions of lockdown on sleep, given their intrinsic inflexible adherence to routines and the high overall prevalence of sleep disturbances in this population. The study is a French nation‐wide online survey assessing sleep–wake rhythms and behaviors known to affect sleep (daily screen time, daylight exposure, and physical activity), before and during COVID‐related lockdown. Respondents were 207 adults with autism (56% female) and 1652 adults of the general population (77% female), with a mean age 35.3 years (SD 11.3). Before lockdown, the adults with autism displayed on average later bedtime and waking hours, lower sleep quality, more evening screen time, less exposure to daylight, and less exercise (all p < 0.01). Lockdown affected all studied measures of sleep and related exposures in a similar way in both groups: poorer self‐rated sleep quality as well as a less regular and delayed sleep–wake rhythm, longer screen time in the evening and less exposure to daylight (all p < 0.001). Adults with autism displayed significantly higher levels of sleep and circadian rhythm disturbances and less favorable daily routines known to regulate sleep. While the effect of confinement on sleep and sleep related behaviors was similar in both groups, the results highlight that the pre‐existing shift in circadian rhythms and lifestyles in adults with ASD further deteriorated during lockdown.
Collapse
Affiliation(s)
- Eve Reynaud
- UPR3212 - Institute of cellular and intergrative Neurosciences, CNRS UPR3212-Institute of Cellular and Integrative Neurosciences, Strasbourg, France
| | - Julien Pottelette
- UPR3212 - Institute of cellular and intergrative Neurosciences, CNRS UPR3212-Institute of Cellular and Integrative Neurosciences, Strasbourg, France.,Department of Child and Adolescent Psychiatry, Strasbourg University Hospitals, Strasbourg, France.,Expert Centre for High-Functioning Autism, Fondation FondaMental, Strasbourg, France.,Autism Ressource Centre 67, Strasbourg, France
| | - Juliette Rabot
- UPR3212 - Institute of cellular and intergrative Neurosciences, CNRS UPR3212-Institute of Cellular and Integrative Neurosciences, Strasbourg, France.,Department of Child and Adolescent Psychiatry, Strasbourg University Hospitals, Strasbourg, France.,Expert Centre for High-Functioning Autism, Fondation FondaMental, Strasbourg, France.,Autism Ressource Centre 67, Strasbourg, France
| | - Julie Rolling
- UPR3212 - Institute of cellular and intergrative Neurosciences, CNRS UPR3212-Institute of Cellular and Integrative Neurosciences, Strasbourg, France.,Department of Child and Adolescent Psychiatry, Strasbourg University Hospitals, Strasbourg, France
| | | | - Sarah Hartley
- Réseau Morphée, Paris, France.,Physiologie et Explorations fonctionnelles, APHP Hospital Raymond Poincaré Paris, Garches, France
| | - Romain Coutelle
- Department of Child and Adolescent Psychiatry, Strasbourg University Hospitals, Strasbourg, France.,Expert Centre for High-Functioning Autism, Fondation FondaMental, Strasbourg, France.,Autism Ressource Centre 67, Strasbourg, France
| | - Carmen M Schröder
- UPR3212 - Institute of cellular and intergrative Neurosciences, CNRS UPR3212-Institute of Cellular and Integrative Neurosciences, Strasbourg, France.,Department of Child and Adolescent Psychiatry, Strasbourg University Hospitals, Strasbourg, France.,Expert Centre for High-Functioning Autism, Fondation FondaMental, Strasbourg, France
| |
Collapse
|
23
|
Jiao J, Tan L, Zhang Y, Li T, Tang X. Repetitive transcranial magnetic stimulation for insomnia in patients with autism spectrum disorder: Study protocol for a randomized, double-blind, and sham-controlled clinical trial. Front Psychiatry 2022; 13:977341. [PMID: 36245883 PMCID: PMC9554245 DOI: 10.3389/fpsyt.2022.977341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Insomnia is the most common comorbidity in children with autism spectrum disorder (ASD) and seriously affects their rehabilitation and prognosis. Thus, an intervention targeting insomnia in ASD seems warranted. Repetitive transcranial magnetic stimulation (rTMS), a potentially effective treatment for improving sleep quality and optimizing sleep structure, has already been demonstrated to alleviate insomnia symptoms and sleep disturbance in different neurological and neuropsychiatric conditions. This trial aims to investigate the effects of rTMS on insomnia in patients with ASD. METHOD This study is designed to be a double-blind, randomized, and sham-controlled trial with a target sample size of 30 participants (aged 3-13 years) diagnosed with ASD comorbid with insomnia. The intervention phase will comprise 20 sessions of rTMS or sham rTMS applied over the right dorsolateral prefrontal cortex (DLPFC) within four consecutive weeks. The effect of rTMS on insomnia and other symptoms of ASD will be investigated through home-PSG (two consecutive overnights), sleep diary, CSHQ, CARS, ABC, SRS, RBS-R, and metabolomics analysis at baseline and posttreatment. A follow-up assessment 1 month after the intervention will examine the long-term effects. DISCUSSION The results of this study may address an important knowledge gap and may provide evidence for the use of rTMS to treat insomnia in ASD. Furthermore, it will elucidate the potential mechanism and link between sleep disorders and clinical symptoms. CLINICAL TRIAL REGISTRATION The study is ongoing and has been registered at the Chinese Clinical Trial Registry (ChiCTR2100049266) on 28/07/2021.
Collapse
Affiliation(s)
- Jian Jiao
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Tan
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Zhang
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Taomei Li
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangdong Tang
- Sleep Medicine Center, Mental Health Center, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Insomnia. Sleep Med Clin 2022; 17:67-76. [DOI: 10.1016/j.jsmc.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Shui AM, Richdale AL, Katz T. Evaluating sleep quality using the CSHQ-Autism. Sleep Med 2021; 87:69-76. [PMID: 34534745 DOI: 10.1016/j.sleep.2021.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Sleep problems are common in autistic children and adversely impact daytime functioning. The Children's Sleep Habits Questionnaire (CSHQ) [39] was developed from a community-based sample of children and has validated a cut-off score of 41. Katz et al. [50] developed an abbreviated 23-item four-factor version of the CSHQ, which may be useful when assessing sleep in autistic children. However, a cut-off value has not yet been developed. OBJECTIVE Our objective was to develop and validate a cut-off for the CSHQ-autism total score in order to identify sleep problems among autistic children. We hypothesized that the derived cut-off value for the CSHQ-autism would perform better than the original CSHQ cut at 41 on validation in a sample of autistic children. METHODS Age-specific cut-off values were developed and validated using receiver operating characteristic analysis. RESULTS The derived cut-off values for the CSHQ-autism total score were 34, 35, 33, and 35 for the 2-3, 4-10, 11-17, and 2-17 years age groups, respectively. On validation, all cut-off values performed with moderate to high sensitivity (76.6-82.4%) and moderate specificity (69.1-75.5%), while the original CSHQ cut at 41 had high sensitivity (89.9-93.0%) but low specificity (42.6-57.7%). Using McNemar's tests, the CSHQ-autism had significantly higher specificity but lower sensitivity than the original CSHQ cut at 41 in all age groups. CONCLUSIONS The CSHQ-autism cut-off values performed better overall than the original CSHQ cut at 41 in a sample of autistic children. The CSHQ-autism cut-off can help identify sleep problems among autistic children.
Collapse
Affiliation(s)
- Amy M Shui
- Biostatistics Center, Massachusetts General Hospital, 50 Staniford Street, Suite 560, Boston, MA, 02114, USA; Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th Street, 2(nd)Floor, San Francisco, CA, 94158, USA.
| | - Amanda L Richdale
- Olga Tennison Autism Research Centre, School of Psychology and Public Health, La Trobe University, Kingsbury Drive, Bundoora, VIC, 3086, Australia.
| | - Terry Katz
- Department of Pediatrics, University of Colorado School of Medicine, 13123 E, 16(th)Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
26
|
Carthy E, Ellender T. Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci 2021; 15:680214. [PMID: 34335160 PMCID: PMC8317266 DOI: 10.3389/fnins.2021.680214] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
The biogenic amine, histamine, has been shown to critically modulate inflammatory processes as well as the properties of neurons and synapses in the brain, and is also implicated in the emergence of neurodevelopmental disorders. Indeed, a reduction in the synthesis of this neuromodulator has been associated with the disorders Tourette's syndrome and obsessive-compulsive disorder, with evidence that this may be through the disruption of the corticostriatal circuitry during development. Furthermore, neuroinflammation has been associated with alterations in brain development, e.g., impacting synaptic plasticity and synaptogenesis, and there are suggestions that histamine deficiency may leave the developing brain more vulnerable to proinflammatory insults. While most studies have focused on neuronal sources of histamine it remains unclear to what extent other (non-neuronal) sources of histamine, e.g., from mast cells and other sources, can impact brain development. The few studies that have started exploring this in vitro, and more limited in vivo, would indicate that non-neuronal released histamine and other preformed mediators can influence microglial-mediated neuroinflammation which can impact brain development. In this Review we will summarize the state of the field with regard to non-neuronal sources of histamine and its impact on both neuroinflammation and brain development in key neural circuits that underpin neurodevelopmental disorders. We will also discuss whether histamine receptor modulators have been efficacious in the treatment of neurodevelopmental disorders in both preclinical and clinical studies. This could represent an important area of future research as early modulation of histamine from neuronal as well as non-neuronal sources may provide novel therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Elliott Carthy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
27
|
Black B. Sleep and Autism: An impactful and complex relationship that requires a personalized medicine approach. Sleep 2021; 44:6320054. [PMID: 34255079 DOI: 10.1093/sleep/zsab178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Benjamin Black
- University of Missouri, Department of Child Health, Columbia, MO, United States of America
| |
Collapse
|
28
|
|
29
|
Huang S, Sun T, Zhu Y, Song S, Zhang J, Huang L, Chen Q, Peng G, Zhao D, Yu H, Jing J. Impact of the COVID-19 Pandemic on Children with ASD and Their Families: An Online Survey in China. Psychol Res Behav Manag 2021; 14:289-297. [PMID: 33692639 PMCID: PMC7939504 DOI: 10.2147/prbm.s293426] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 11/23/2022] Open
Abstract
Background The COVID-19 pandemic and lockdown will have short-term and long-term psychosocial and mental health implications for children. Children with autism may have some specific needs for support because of their difficulties in social communication, stereotyped behavior patterns, and other specificities brought about by autism. Purpose The purpose of this study was to investigate the impact of the COVID-19 pandemic on ASD children and their families. Patients and Methods A total of 406 parents of ASD children completed an online survey investigating basic information; sleep, outdoor activities, and rehabilitation training; ASD children's frequency of abnormal behaviors; and stress and emotional status of parents. Results 50.3% of the parents thought their children had sleep problems, and 47.3% of the parents thought their children's outdoor activity time was reduced. About 40% of parents think that their children have improved cognitive ability, language expression, and understanding. 36.2% of the families reported that their children's emotional and social performance became worse. 60.8% of parents reported that their children's training intensity decreased. The most common abnormal behaviors observed in children with ASD were being easily distracted, losing temper, and crying. 81.3% of parents did not have anxiety, but 98% of parents reported that family training was under pressure. Conclusion The main impact of the COVID-19 pandemic on children with ASD is that they do not have access to professional rehabilitation training. These families need more medical support, especially in family training, to help parents improve the social and emotional control skills of ASD children.
Collapse
Affiliation(s)
- Saijun Huang
- Department of Child Healthcare, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, 528000, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510280, People's Republic of China
| | - Tao Sun
- Department of Child Healthcare, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, 528000, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510280, People's Republic of China
| | - Yanna Zhu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-Sen University, Guangdong, Guangzhou, 510080, People's Republic of China
| | - Shanshan Song
- Department of Child Healthcare, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, 528000, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510280, People's Republic of China
| | - Jie Zhang
- Department of Child Healthcare, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Linjuan Huang
- Health Management Center, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, People's Republic of China
| | - Qiang Chen
- Department of Child Psychological Health, Zhuhai Women and Children's Hospital, Zhuhai, Guangdong, 519001, People's Republic of China
| | - Guangyang Peng
- Department of Child Rehabilitation, Huanggang Ping'an Rehabilitation Hospital, Huanggang, Hubei, 438000, People's Republic of China
| | - Dongmei Zhao
- Department of Child Healthcare, Jinan Children's Hospital, Jinan, Shandong, 250022, People's Republic of China
| | - Hong Yu
- Department of Child Healthcare, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, 528000, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510280, People's Republic of China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-Sen University, Guangdong, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
30
|
Tian Y, Ji Y, Mei X, Pan J, He W, Sun J, Wan K, Yang H. Lower Plasma Melatonin in the Intervertebral Disk Degeneration Patients Was Associated with Increased Proinflammatory Cytokines. Clin Interv Aging 2021; 16:215-224. [PMID: 33568902 PMCID: PMC7869702 DOI: 10.2147/cia.s290045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Intervertebral disc degeneration (IDD) was considered to be the pathological basis of intervertebral disc herniation (IDH). However, the plasma melatonin in the IDD cases and healthy controls remained unclear. Methods In this case–control study, a total of 71 IDD cases and 54 healthy controls were enrolled between April 2020 and August 2020. The diagnostic effect of plasma melatonin for IDD was detected using receiver operating characteristic curve. The correlations between two continuous variables were detected with the Pearson linear analyses. Results It was found that lower melatonin concentration was detected in the IDD cases (1.906 ± 1.041 vs 3.072 ± 0.511 pg/mL, P<0.001). Through receiver operating characteristic curve analyses, it was found that plasma melatonin could be used as a diagnostic biomarker for IDD (area under curve=0.808, P<0.001). In advanced correlation analyses, it was found that plasma melatonin concentration was negatively associated with the age, symptom durations, IDD disease severity and proinflammatory factors, including IL-6 and TNF-α concentrations (P<0.05). Comparing with the higher melatonin groups, significantly increased IL-6 (0.601 ± 0.085 vs 0.507 ± 0.167 pg/mL, P=0.028) and TNF-α (3.022 ± 0.286 vs 2.353 ± 0.641, P<0.001) were detected in the patients with lower melatonin concentration. Conclusion The plasma melatonin concentration was significantly decreased in the IDD cases and plasma melatonin could be used as a diagnostic biomarker for IDD. Lower plasma melatonin was associated with longer disease durations, elevated disease severity and higher inflammatory cytokines levels in IDD patients.
Collapse
Affiliation(s)
- Yixing Tian
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yiming Ji
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xin Mei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jun Pan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Wenye He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jiajia Sun
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Kaichen Wan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
31
|
Ueda R, Okada T, Kita Y, Ozawa Y, Inoue H, Shioda M, Kono Y, Kono C, Nakamura Y, Amemiya K, Ito A, Sugiura N, Matsuoka Y, Kaiga C, Kubota M, Ozawa H. Psychological Status Associated With Low Quality of Life in School-Age Children With Neurodevelopmental Disorders During COVID-19 Stay-At-Home Period. Front Psychiatry 2021; 12:676493. [PMID: 34733180 PMCID: PMC8558384 DOI: 10.3389/fpsyt.2021.676493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/23/2021] [Indexed: 12/05/2022] Open
Abstract
Background: This study seeks to ascertain how the COVID-19 stay-at-home period has affected the quality of life (QOL) of children with neurodevelopmental disorders (NDDs) who had experienced sleep schedules alteration and clarify what psychological status predicted low QOL in children with and without altered sleep patterns. Materials and Methods: Study participants were 86 children between 8 and 17 years of age (mean age, 11.7 years; 70 boys, 16 girls; mean intellectual quotient, 83.6). QOL was evaluated using the self-assessment KINDLR. Participants answered questions regarding depression and anxiety on a visual analog scale (VAS) for temporary mood. Their parents answered questionnaires regarding their maladaptive behaviors and differences in sleep patterns before and during the COVID-19 pandemic. The student's t-test was performed to examine the presence or absence of sleep changes in the children, which affected QOL, temporary mood, and maladaptive behaviors. Multiple or simple linear regression analyses were also performed to identify the psychogenic factors that significantly affected decreased QOL for each group with and without changes in sleep schedule. Results: During the COVID-19 stay-at-home period, 46.5% of participants experienced changes in sleep patterns. These changes were associated with decreased QOL as well as internalized symptoms. The decreased QOL of children with sleep patterns changed was predicted by a high level of depression. In addition, low QOL in children with unchanged sleep patterns was predicted by a high level of depression and low current mood status. Conclusions: Almost half of the participants experienced a poor sleep schedule during the stay-at-home period. These alterations in sleep patterns were associated with a low QOL. The QOL of children with a stable life schedule was affected not only by depressive tendencies but also temporary moods. Therefore, they need to live a fulfilling life to maintain their QOL. However, the QOL of children with poor sleep patterns was affected only by depressive tendencies. Hence, clinicians need to ensure that children with NDDs are well-diagnosed with depression and treated for sleep problems.
Collapse
Affiliation(s)
- Riyo Ueda
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Child Neurology, Shimada Ryoiku Center Hachioji, Hachioji, Japan
| | - Takashi Okada
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yosuke Kita
- Mori Arinori Center for Higher Education and Global Mobility, Hitotsubashi University, Kunitachi, Japan.,Cognitive Brain Research Unit (CBRU), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Yuri Ozawa
- Department of Child Neurology, Shimada Ryoiku Center Hachioji, Hachioji, Japan
| | - Hisami Inoue
- Department of Child Neurology, Shimada Ryoiku Center Hachioji, Hachioji, Japan
| | - Mutsuki Shioda
- Department of Child Neurology, Shimada Ryoiku Center Hachioji, Hachioji, Japan
| | - Yoshimi Kono
- Department of Child Neurology, Shimada Ryoiku Center Hachioji, Hachioji, Japan
| | - Chika Kono
- Department of Child Neurology, Shimada Ryoiku Center Hachioji, Hachioji, Japan
| | - Yukiko Nakamura
- Department of Child Neurology, Shimada Ryoiku Center Hachioji, Hachioji, Japan
| | - Kaoru Amemiya
- Department of Child Neurology, Shimada Ryoiku Center Hachioji, Hachioji, Japan
| | - Ai Ito
- Department of Child Neurology, Shimada Ryoiku Center Hachioji, Hachioji, Japan
| | - Nobuko Sugiura
- Department of Child Neurology, Shimada Ryoiku Center Hachioji, Hachioji, Japan
| | - Yuichiro Matsuoka
- Department of Child Neurology, Shimada Ryoiku Center Hachioji, Hachioji, Japan
| | - Chinami Kaiga
- Department of Child Neurology, Shimada Ryoiku Center Hachioji, Hachioji, Japan
| | - Masaya Kubota
- Department of Child Neurology, Shimada Ryoiku Center Hachioji, Hachioji, Japan
| | - Hiroshi Ozawa
- Department of Child Neurology, Shimada Ryoiku Center Hachioji, Hachioji, Japan
| |
Collapse
|
32
|
Abstract
There is increasing recognition that epilepsy can be associated with a broad spectrum of comorbidities. While epileptic seizures are an essential element of epilepsy in children, there is a spectrum of neurological, mental health and cognitive disorders that add to the disease burden of childhood epilepsy resulting in a decreased quality of life. The most common comorbid conditions in childhood epilepsy include depression, anxiety, autism spectrum disorders, sleep disorders, attention deficits, cognitive impairment, and migraine. While epilepsy can result in comorbidities, many of the comorbidities of childhood have a bi-directional association, with the comorbid condition increasing risk for epilepsy and epilepsy increasing the risk for the comorbid condition. The bidirectional feature of epilepsy and the comorbidities suggest a common underlying pathological basis for both the seizures and comorbid condition. While recognition of the comorbid conditions of pediatric epilepsies is increasing, there has been a lag in the development of effective therapies partly out of concern that drugs used to treat the comorbid conditions could increase seizure susceptibility. There is now some evidence that most drugs used for comorbid conditions are safe and do not lower seizure threshold. Unfortunately, the evidence showing drugs are effective in treating many of the childhood comorbidities of epilepsy is quite limited. There is a great need for randomized, placebo-controlled drug trials for efficacy and safety in the treatment of comorbidities of childhood epilepsy.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Stafford Hall, 118C, Burlington, VT, 05405, USA.
| |
Collapse
|