1
|
Mirizio G, Sampson S, Iwafuchi M. Interplay between pioneer transcription factors and epigenetic modifiers in cell reprogramming. Regen Ther 2025; 28:246-252. [PMID: 39834592 PMCID: PMC11745816 DOI: 10.1016/j.reth.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by Yamanaka factors, including pioneer transcription factors (TFs), has greatly reshaped our traditional understanding of cell plasticity and demonstrated the remarkable potential of pioneer TFs. In addition to iPSC reprogramming, pioneer TFs are pivotal in direct reprogramming or transdifferentiation where somatic cells are converted into different cell types without passing through a pluripotent state. Pioneer TFs initiate a reprogramming process through chromatin opening, thereby establishing competence for new gene regulatory programs. The action of pioneer TFs is both influenced by and exerts influence on epigenetic regulation. Despite significant advances, many direct reprogramming processes remain inefficient, which limits their reliability for clinical applications. In this review, we discuss the molecular mechanisms underlying pioneer TF-driven reprogramming, with a focus on their interactions with epigenetic modifiers, including Polycomb repressive complexes (PRCs), nucleosome remodeling and deacetylase (NuRD) complexes, and the DNA methylation machinery. A deeper understanding of the dynamic interplay between pioneer TFs and epigenetic modifiers will be essential for advancing reprogramming technologies and unlocking their full clinical potential.
Collapse
Affiliation(s)
- Gerardo Mirizio
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| | - Samuel Sampson
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| | - Makiko Iwafuchi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| |
Collapse
|
2
|
Shim M, San TT, Shin B, Lee H, Han SB, Lee DK, Kim HJ. Histone demethylase inhibitor KDM5-C70 regulates metabolomic and lipidomic programming during an astrocyte differentiation of rat neural stem cell. Sci Rep 2025; 15:5409. [PMID: 39948097 PMCID: PMC11825845 DOI: 10.1038/s41598-025-88636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Lysine-specific histone demethylase (KDM) 5 inhibition by KDM5-C70 induces astrocytogenesis and highlights the importance of modulation of histone methylation in cell fate specification. This study investigated the role of the histone demethylase inhibitor KDM5-C70 in modulating the metabolic and lipidomic landscape during astrocyte differentiation of rat neural stem cells (NSCs). Using chemical derivatisation combined with gas chromatography-mass spectrometry, 42 metabolites were detected, indicating potential regulation of phospholipid metabolism. Subsequent lipidomic analysis, employing reverse-phase liquid chromatography with high-resolution quadrupole time-of-flight mass spectrometry, identified 180 lipid species and 9 lipid subclasses. Integrative analysis revealed that KDM5-C70 promoted astrocytogenesis through epigenetic changes linked to the attenuation of phosphatidylethanolamine (PE) biosynthesis pathways. The reduced expression of transcripts related to PE highlighted the significance of the PE pathway in influencing cell fate decisions. These quantitative metabolomic and lipidomic analyses not only advance our understanding of NSC differentiation but also lay the groundwork for potential therapeutic strategies targeting metabolic pathways in neurodegenerative diseases and neural injuries.
Collapse
Affiliation(s)
- Minki Shim
- College of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Thin Thin San
- College of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Bohyun Shin
- College of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Hyojeong Lee
- College of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sang Beom Han
- College of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Dong-Kyu Lee
- College of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
3
|
Alvarez-Kuglen M, Ninomiya K, Qin H, Rodriguez D, Fiengo L, Farhy C, Hsu WM, Kirk B, Havas A, Feng GS, Roberts AJ, Anderson RM, Serrano M, Adams PD, Sharpee TO, Terskikh AV. ImAge quantitates aging and rejuvenation. NATURE AGING 2024; 4:1308-1327. [PMID: 39210148 DOI: 10.1038/s43587-024-00685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
For efficient, cost-effective and personalized healthcare, biomarkers that capture aspects of functional, biological aging, thus predicting disease risk and lifespan more accurately and reliably than chronological age, are essential. We developed an imaging-based chromatin and epigenetic age (ImAge) that captures intrinsic age-related trajectories of the spatial organization of chromatin and epigenetic marks in single nuclei, in mice. We show that such trajectories readily emerge as principal changes in each individual dataset without regression on chronological age, and that ImAge can be computed using several epigenetic marks and DNA labeling. We find that interventions known to affect biological aging induce corresponding effects on ImAge, including increased ImAge upon chemotherapy treatment and decreased ImAge upon caloric restriction and partial reprogramming by transient OSKM expression in liver and skeletal muscle. Further, ImAge readouts from chronologically identical mice inversely correlated with their locomotor activity, suggesting that ImAge may capture elements of biological and functional age. In sum, we developed ImAge, an imaging-based biomarker of aging with single-cell resolution rooted in the analysis of spatial organization of epigenetic marks.
Collapse
Affiliation(s)
| | - Kenta Ninomiya
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Haodong Qin
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | | | | | - Chen Farhy
- Sanford Burnham Prebys, La Jolla, CA, USA
| | - Wei-Mien Hsu
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Brian Kirk
- Sanford Burnham Prebys, La Jolla, CA, USA
| | | | - Gen-Sheng Feng
- School of Medicine, Univerity of California San Diego, La Jolla, CA, USA
| | | | - Rozalyn M Anderson
- University of Wisconsin, Madison, WI, USA
- GRECC, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Altos Labs, Cambridge Institute of Science, Granta Park, UK
| | | | | | - Alexey V Terskikh
- The Scintillon Research Institute, San Diego, CA, USA.
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
4
|
Ooga M. Chromatin structure in totipotent mouse early preimplantation embryos. J Reprod Dev 2024; 70:152-159. [PMID: 38462486 PMCID: PMC11153117 DOI: 10.1262/jrd.2023-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Totipotency refers to the ability of a single cell to give rise to all the different cell types in the body. Terminally differentiated germ cells (sperm and oocytes) undergo reprogramming, which results in the acquisition of totipotency in zygotes. Since the 1990s, numerous studies have focused on the mechanisms of totipotency. With the emergence of the concept of epigenetic reprogramming, which is important for the undifferentiated and differentiated states of cells, the epigenomes of germ cells and fertilized oocytes have been thoroughly analyzed. However, in early immunostaining studies, detailed epigenomic information was difficult to obtain. In recent years, the explosive development of next-generation sequencing has made it possible to acquire genome-wide information and the rise of genome editing has facilitated the analysis of knockout mice, which was previously difficult. In addition, live imaging can effectively analyze zygotes and 2-cell embryos, for which the number of samples is limited, and provides biological insights that cannot be obtained by other methods. In this review, the progress of our research using these advanced techniques is traced back from the present to its earliest years.
Collapse
Affiliation(s)
- Masatoshi Ooga
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| |
Collapse
|
5
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
6
|
Zhu F, Yan N, Lu X, Xu J, Gu H, Liang J, Cheng K, Wang X, Ma X, Ma N, Zhao X, Chen C, Nie G. Cell-Reprogramming-Inspired Dynamically Responsive Hydrogel Boosts the Induction of Pluripotency via Phase-Separated Biomolecular Condensates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211609. [PMID: 36989141 DOI: 10.1002/adma.202211609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/23/2023] [Indexed: 05/16/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have wide applications in disease modeling, personalized medicine, and tissue engineering. The generation of iPSCs from somatic cells via transcriptional-factor- or chemical molecule-based approaches are time-consuming and inefficient. Here, a cell-reprogramming-inspired dynamically responsive hydrogel is fabricated via a synthetic-biology-based strategy. Human and mouse somatic cells (including senescent cells) are efficiently reprogrammed into iPSCs that exhibit key features of embryonic stem cells. The cell-reprogramming-responsive hydrogel possesses dynamic bioresponsiveness, and it faithfully senses metabolic remodeling and extracellular acidification during cell reprogramming, responding by changing its mechanical properties accordingly. Mechanistic study demonstrates that the autonomous change of the mechanical properties of the cell-reprogramming-responsive hydrogel elicits the formation of Yes-associated protein (YAP) biomolecular condensates with the appropriate timing during cell reprogramming, ensuring a faster and more efficient generation of iPSCs than conventional cell reprogramming approach. Taken together, this study reveals the robust induction of pluripotency by coordination of cell-reprogramming-inspired dynamically responsive hydrogel and phase-separated biomolecular condensates.
Collapse
Affiliation(s)
- Fei Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Na Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xukun Lu
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Xiaona Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong, 510700, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong, 510700, China
| |
Collapse
|
7
|
Peters L, Venkatachalam A, Ben-Neriah Y. Tissue-Predisposition to Cancer Driver Mutations. Cells 2024; 13:106. [PMID: 38247798 PMCID: PMC10814991 DOI: 10.3390/cells13020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Driver mutations are considered the cornerstone of cancer initiation. They are defined as mutations that convey a competitive fitness advantage, and hence, their mutation frequency in premalignant tissue is expected to exceed the basal mutation rate. In old terms, that translates to "the survival of the fittest" and implies that a selective process underlies the frequency of cancer driver mutations. In that sense, each tissue is its own niche that creates a molecular selective pressure that may favor the propagation of a mutation or not. At the heart of this stands one of the biggest riddles in cancer biology: the tissue-predisposition to cancer driver mutations. The frequency of cancer driver mutations among tissues is non-uniform: for instance, mutations in APC are particularly frequent in colorectal cancer, and 99% of chronic myeloid leukemia patients harbor the driver BCR-ABL1 fusion mutation, which is rarely found in solid tumors. Here, we provide a mechanistic framework that aims to explain how tissue-specific features, ranging from epigenetic underpinnings to the expression of viral transposable elements, establish a molecular basis for selecting cancer driver mutations in a tissue-specific manner.
Collapse
Affiliation(s)
| | | | - Yinon Ben-Neriah
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research (IMRIC), The Faculty of Medicine, Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (L.P.); (A.V.)
| |
Collapse
|
8
|
Wang J, Sun S, Deng H. Chemical reprogramming for cell fate manipulation: Methods, applications, and perspectives. Cell Stem Cell 2023; 30:1130-1147. [PMID: 37625410 DOI: 10.1016/j.stem.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Chemical reprogramming offers an unprecedented opportunity to control somatic cell fate and generate desired cell types including pluripotent stem cells for applications in biomedicine in a precise, flexible, and controllable manner. Recent success in the chemical reprogramming of human somatic cells by activating a regeneration-like program provides an alternative way of producing stem cells for clinical translation. Likewise, chemical manipulation enables the capture of multiple (stem) cell states, ranging from totipotency to the stabilization of somatic fates in vitro. Here, we review progress in using chemical approaches for cell fate manipulation in addition to future opportunities in this promising field.
Collapse
Affiliation(s)
- Jinlin Wang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Shicheng Sun
- Changping Laboratory, 28 Life Science Park Road, Beijing, China; Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, Australia.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Changping Laboratory, 28 Life Science Park Road, Beijing, China.
| |
Collapse
|
9
|
Aguirre M, Escobar M, Forero Amézquita S, Cubillos D, Rincón C, Vanegas P, Tarazona MP, Atuesta Escobar S, Blanco JC, Celis LG. Application of the Yamanaka Transcription Factors Oct4, Sox2, Klf4, and c-Myc from the Laboratory to the Clinic. Genes (Basel) 2023; 14:1697. [PMID: 37761837 PMCID: PMC10531188 DOI: 10.3390/genes14091697] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
The transcription factors Oct4, Sox2, Klf4, and c-Myc enable the reprogramming of somatic cells into induced pluripotent cells. Reprogramming generates newly differentiated cells for potential therapies in cancer, neurodegenerative diseases, and rejuvenation processes. In cancer therapies, these transcription factors lead to a reduction in the size and aggressiveness of certain tumors, such as sarcomas, and in neurodegenerative diseases, they enable the production of dopaminergic cells in Parkinson's disease, the replacement of affected neuronal cells in olivopontocerebellar atrophy, and the regeneration of the optic nerve. However, there are limitations, such as an increased risk of cancer development when using Klf4 and c-Myc and the occurrence of abnormal dyskinesias in the medium term, possibly generated by the uncontrolled growth of differentiated dopaminergic cells and the impairment of the survival of the new cells. Therefore, the Yamanaka transcription factors have shown therapeutic potential through cell reprogramming for some carcinomas, neurodegenerative diseases, and rejuvenation. However, the limitations found in the studies require further investigation before the use of these transcription factors in humans.
Collapse
Affiliation(s)
- Marisol Aguirre
- Department of Genetics, Fundación Valle del Lili, Cali 760026, Colombia;
- Faculty of Medicine, Universidad Icesi, Cali 760031, Colombia
| | - Manuela Escobar
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| | | | - David Cubillos
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| | - Camilo Rincón
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| | - Paula Vanegas
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| | - María Paula Tarazona
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| | - Sofía Atuesta Escobar
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| | - Juan Camilo Blanco
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| | - Luis Gustavo Celis
- Faculty of Medicine, Universidad de La Sabana, Km 7, Autopista Norte de Bogotá, Chía 250001, Colombia
| |
Collapse
|
10
|
Zhou Y, Sharma S, Sun X, Guan X, Hou Y, Yang Z, Shi H, Zou MH, Song P, Zhou J, Wang S, Hu Z, Li C. SMYD2 regulates vascular smooth muscle cell phenotypic switching and intimal hyperplasia via interaction with myocardin. Cell Mol Life Sci 2023; 80:264. [PMID: 37615725 PMCID: PMC11071988 DOI: 10.1007/s00018-023-04883-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
The SET and MYND domain-containing protein 2 (SMYD2) is a histone lysine methyltransferase that has been reported to regulate carcinogenesis and inflammation. However, its role in vascular smooth muscle cell (VSMC) homeostasis and vascular diseases has not been determined. Here, we investigated the role of SMYD2 in VSMC phenotypic modulation and vascular intimal hyperplasia and elucidated the underlying mechanism. We observed that SMYD2 expression was downregulated in injured carotid arteries in mice and phenotypically modulated VSMCs in vitro. Using an SMC-specific SMYD2 knockout mouse model, we found that SMYD2 ablation in VSMCs exacerbated neointima formation after vascular injury in vivo. Conversely, SMYD2 overexpression inhibited VSMC proliferation and migration in vitro and attenuated arterial narrowing in injured vessels in mice. SMYD2 downregulation promoted VSMC phenotypic switching accompanied with enhanced proliferation and migration. Mechanistically, genome-wide transcriptome analysis and loss/gain-of-function studies revealed that SMYD2 up-regulated VSMC contractile gene expression and suppressed VSMC proliferation and migration, in part, by promoting expression and transactivation of the master transcription cofactor myocardin. In addition, myocardin directly interacted with SMYD2, thereby facilitating SMYD2 recruitment to the CArG regions of SMC contractile gene promoters and leading to an open chromatin status around SMC contractile gene promoters via SMYD2-mediated H3K4 methylation. Hence, we conclude that SMYD2 is a novel regulator of VSMC contractile phenotype and intimal hyperplasia via a myocardin-dependent epigenetic regulatory mechanism.
Collapse
Affiliation(s)
- Yu Zhou
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA.
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratory of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, No 58, Zhongshan 2nd Street, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| | - Shaligram Sharma
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Xiaonan Sun
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Xiaoqing Guan
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Yuning Hou
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
- Cancer Animal Models Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hang Shi
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Ping Song
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shenming Wang
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratory of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, No 58, Zhongshan 2nd Street, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Zuojun Hu
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratory of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, No 58, Zhongshan 2nd Street, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| | - Chunying Li
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA.
| |
Collapse
|
11
|
Zhang W, Jiang T, Xie K. Epigenetic reprogramming in pancreatic premalignancy and clinical implications. Front Oncol 2023; 13:1024151. [PMID: 36874143 PMCID: PMC9978013 DOI: 10.3389/fonc.2023.1024151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Evodiamine as an anticancer agent: a comprehensive review on its therapeutic application, pharmacokinetic, toxicity, and metabolism in various cancers. Cell Biol Toxicol 2022; 39:1-31. [PMID: 36138312 DOI: 10.1007/s10565-022-09772-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Evodiamine is a major alkaloid component found in the fruit of Evodia rutaecarpa. It shows the anti-proliferative potential against a wide range of cancers by suppressing cell growth, invasion, and metastasis and inducing apoptosis both in vitro and in vivo. Evodiamine shows its anticancer potential by modulating aberrant signaling pathways. Additionally, the review focuses on several therapeutic implications of evodiamine, such as epigenetic modification, cancer stem cells, and epithelial to mesenchymal transition. Moreover, combinatory drug therapeutics along with evodiamine enhances the anticancer efficacy of chemotherapeutic drugs in various cancers by overcoming the chemo resistance and radio resistance shown by cancer cells. It has been widely used in preclinical trials in animal models, exhibiting very negligible side effects against normal cells and effective against cancer cells. The pharmacokinetic and pharmacodynamics-based collaborations of evodiamine are also included. Due to its poor bioavailability, synthetic analogs of evodiamine and its nano capsule have been formulated to enhance its bioavailability and reduce toxicity. In addition, this review summarizes the ongoing research on the mechanisms behind the antitumor potential of evodiamine, which proposes an exciting future for such interests in cancer biology.
Collapse
|
13
|
Jiang T, Wei F, Xie K. Clinical significance of pancreatic ductal metaplasia. J Pathol 2022; 257:125-139. [PMID: 35170758 DOI: 10.1002/path.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Pancreatic ductal metaplasia (PDM) is the stepwise replacement of differentiated somatic cells with ductal or ductal-like cells in the pancreas. PDM is usually triggered by cellular and environmental insults. PDM development may involve all cell lineages of the pancreas, and acinar cells with the highest plasticity are the major source of PDM. Pancreatic progenitor cells are also involved as cells of origin or transitional intermediates. PDM is heterogeneous at the histological, cellular, and molecular levels and only certain subsets of PDM develop further into pancreatic intraepithelial neoplasia (PanIN) and then pancreatic ductal adenocarcinoma (PDAC). The formation and evolution of PDM is regulated at the cellular and molecular levels through a complex network of signaling pathways. The key molecular mechanisms that drive PDM formation and its progression into PanIN/PDAC remain unclear, but represent key targets for reversing or inhibiting PDM. Alternatively, PDM could be a source of pancreas regeneration, including both exocrine and endocrine components. Cellular aging and apoptosis are obstacles to PDM-to-PanIN progression or pancreas regeneration. Functional identification of the cellular and molecular events driving senescence and apoptosis in PDM and its progression would help not only to restrict the development of PDM into PanIN/PDAC, but may also facilitate pancreatic regeneration. This review systematically assesses recent advances in the understanding of PDM physiology and pathology, with a focus on its implications for enhancing regeneration and prevention of cancer. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Fang Wei
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| |
Collapse
|
14
|
Calciolari B, Scarpinello G, Tubi LQ, Piazza F, Carrer A. Metabolic control of epigenetic rearrangements in B cell pathophysiology. Open Biol 2022; 12:220038. [PMID: 35580618 PMCID: PMC9113833 DOI: 10.1098/rsob.220038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/26/2022] [Indexed: 01/04/2023] Open
Abstract
Both epigenetic and metabolic reprogramming guide lymphocyte differentiation and can be linked, in that metabolic inputs can be integrated into the epigenome to inform cell fate decisions. This framework has been thoroughly investigated in several pathophysiological contexts, including haematopoietic cell differentiation. In fact, metabolite availability dictates chromatin architecture and lymphocyte specification, a multi-step process where haematopoietic stem cells become terminally differentiated lymphocytes (effector or memory) to mount the adaptive immune response. B and T cell precursors reprogram their cellular metabolism across developmental stages, not only to meet ever-changing energetic demands but to impose chromatin accessibility and regulate the function of master transcription factors. Metabolic control of the epigenome has been extensively investigated in T lymphocytes, but how this impacts type-B life cycle remains poorly appreciated. This assay will review our current understanding of the connection between cell metabolism and epigenetics at crucial steps of B cell maturation and how its dysregulation contributes to malignant transformation.
Collapse
Affiliation(s)
- Beatrice Calciolari
- Department of Biology (DiBio), of the University of Padova, Padova, Italy
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Greta Scarpinello
- Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), of the University of Padova, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Alessandro Carrer
- Department of Biology (DiBio), of the University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
15
|
Guan J, Wang G, Wang J, Zhang Z, Fu Y, Cheng L, Meng G, Lyu Y, Zhu J, Li Y, Wang Y, Liuyang S, Liu B, Yang Z, He H, Zhong X, Chen Q, Zhang X, Sun S, Lai W, Shi Y, Liu L, Wang L, Li C, Lu S, Deng H. Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature 2022; 605:325-331. [PMID: 35418683 DOI: 10.1038/s41586-022-04593-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/01/2022] [Indexed: 12/17/2022]
Abstract
Cellular reprogramming can manipulate the identity of cells to generate the desired cell types1-3. The use of cell intrinsic components, including oocyte cytoplasm and transcription factors, can enforce somatic cell reprogramming to pluripotent stem cells4-7. By contrast, chemical stimulation by exposure to small molecules offers an alternative approach that can manipulate cell fate in a simple and highly controllable manner8-10. However, human somatic cells are refractory to chemical stimulation owing to their stable epigenome2,11,12 and reduced plasticity13,14; it is therefore challenging to induce human pluripotent stem cells by chemical reprogramming. Here we demonstrate, by creating an intermediate plastic state, the chemical reprogramming of human somatic cells to human chemically induced pluripotent stem cells that exhibit key features of embryonic stem cells. The whole chemical reprogramming trajectory analysis delineated the induction of the intermediate plastic state at the early stage, during which chemical-induced dedifferentiation occurred, and this process was similar to the dedifferentiation process that occurs in axolotl limb regeneration. Moreover, we identified the JNK pathway as a major barrier to chemical reprogramming, the inhibition of which was indispensable for inducing cell plasticity and a regeneration-like program by suppressing pro-inflammatory pathways. Our chemical approach provides a platform for the generation and application of human pluripotent stem cells in biomedicine. This study lays foundations for developing regenerative therapeutic strategies that use well-defined chemicals to change cell fates in humans.
Collapse
Affiliation(s)
- Jingyang Guan
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Guan Wang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jinlin Wang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Zhengyuan Zhang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yao Fu
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Lin Cheng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Gaofan Meng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yulin Lyu
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Jialiang Zhu
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yanqin Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanglu Wang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shijia Liuyang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Bei Liu
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zirun Yang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huanjing He
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xinxing Zhong
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qijing Chen
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xu Zhang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shicheng Sun
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Weifeng Lai
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yan Shi
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Lulu Liu
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Lipeng Wang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China. .,State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
16
|
Early reactivation of clustered genes on the inactive X chromosome during somatic cell reprogramming. Stem Cell Reports 2021; 17:53-67. [PMID: 34919813 PMCID: PMC8758948 DOI: 10.1016/j.stemcr.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/04/2022] Open
Abstract
Reprogramming of murine female somatic cells to induced pluripotent stem cells (iPSCs) is accompanied by X chromosome reactivation (XCR), by which the inactive X chromosome (Xi) in female somatic cells becomes reactivated. However, how Xi initiates reactivation during reprogramming remains poorly defined. Here, we used a Sendai virus-based reprogramming system to generate partially reprogrammed iPSCs that appear to be undergoing the initial phase of XCR. Allele-specific RNA-seq of these iPSCs revealed that XCR initiates at a subset of genes clustered near the centromere region. The initial phase of XCR occurs when the cells transit through mesenchymal-epithelial transition (MET) before complete shutoff of Xist expression. Moreover, regulatory regions of these genes display dynamic changes in lysine-demethylase 1a (KDM1A) occupancy. Our results identified clustered genes on the Xi that show reactivation in the initial phase of XCR during reprogramming and suggest a possible role for histone demethylation in this process. Partially reprogrammed iPSCs enabled analyses of early events in XCR XCR initiates at a subset of genes clustered near the centromere region XCR occurs before complete shutoff of Xist expression during reprogramming KDM1A inhibition appears to directly reactivate transcription from the Xi
Collapse
|
17
|
Boon R. Metabolic Fuel for Epigenetic: Nuclear Production Meets Local Consumption. Front Genet 2021; 12:768996. [PMID: 34804127 PMCID: PMC8595138 DOI: 10.3389/fgene.2021.768996] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022] Open
Abstract
Epigenetic modifications are responsible for finetuning gene expression profiles to the needs of cells, tissues, and organisms. To rapidly respond to environmental changes, the activity of chromatin modifiers critically depends on the concentration of a handful of metabolites that act as substrates and co-factors. In this way, these enzymes act as metabolic sensors that directly link gene expression to metabolic states. Although metabolites can easily diffuse through the nuclear pore, molecular mechanisms must be in place to regulate epigenetic marker deposition in specific nuclear subdomains or even on single loci. In this review, I explore the possible subcellular sites of metabolite production that influence the epigenome. From the relationship between cytoplasmic metabolism and nuclear metabolite deposition, I converse to the description of a compartmentalized nuclear metabolism. Last, I elaborate on the possibility of metabolic enzymes to operate in phase-separated nuclear microdomains formed by multienzyme and chromatin-bound protein complexes.
Collapse
Affiliation(s)
- Ruben Boon
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, United States.,The Broad Institute of Harvard and MIT, Cambridge, MA, United States.,Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Wolf SJ, Melvin WJ, Gallagher K. Macrophage-mediated inflammation in diabetic wound repair. Semin Cell Dev Biol 2021; 119:111-118. [PMID: 34183242 PMCID: PMC8985699 DOI: 10.1016/j.semcdb.2021.06.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023]
Abstract
Non-healing wounds in Type 2 Diabetes (T2D) patients represent the most common cause of amputation in the US, with an associated 5-year mortality of nearly 50%. Our lab has examined tissue from both T2D murine models and human wounds in order to explore mechanisms contributing to impaired wound healing. Current published data in the field point to macrophage function serving a pivotal role in orchestrating appropriate wound healing. Wound macrophages in mice and patients with T2D are characterized by a persistent inflammatory state; however, the mechanisms that control this persistent inflammatory state are unknown. Current literature demonstrates that gene regulation through histone modifications, DNA modifications, and microRNA can influence macrophage plasticity during wound healing. Further, accumulating studies reveal the importance of cells such as adipocytes, infiltrating immune cells (PMNs and T cells), and keratinocytes secrete factors that may help drive macrophage polarization. This review will examine the role of macrophages in the wound healing process, along with their function and interactions with other cells, and how it is perturbed in T2D. We also explore epigenetic factors that regulate macrophage polarization in wounds, while highlighting the emerging role of other cell types that may influence macrophage phenotype following tissue injury.
Collapse
Affiliation(s)
- Sonya J. Wolf
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - William J. Melvin
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Katherine Gallagher
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA,Correspondence to: Department of Surgery, University of Michigan, 1500 East Medical Center Drive, SPC 5867, Ann Arbor, MI 48109, USA. (K. Gallagher)
| |
Collapse
|
19
|
Colussi C, Grassi C. Epigenetic regulation of neural stem cells: The emerging role of nucleoporins. STEM CELLS (DAYTON, OHIO) 2021; 39:1601-1614. [PMID: 34399020 PMCID: PMC9290943 DOI: 10.1002/stem.3444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/28/2021] [Indexed: 11/06/2022]
Abstract
Nucleoporins (Nups) are components of the nuclear pore complex that, besides regulating nucleus-cytoplasmic transport, emerged as a hub for chromatin interaction and gene expression modulation. Specifically, Nups act in a dynamic manner both at specific gene level and in the topological organization of chromatin domains. As such, they play a fundamental role during development and determination of stemness/differentiation balance in stem cells. An increasing number of reports indicate the implication of Nups in many central nervous system functions with great impact on neurogenesis, neurophysiology, and neurological disorders. Nevertheless, the role of Nup-mediated epigenetic regulation in embryonic and adult neural stem cells (NSCs) is a field largely unexplored and the comprehension of their mechanisms of action is only beginning to be unveiled. After a brief overview of epigenetic mechanisms, we will present and discuss the emerging role of Nups as new effectors of neuroepigenetics and as dynamic platform for chromatin function with specific reference to the biology of NSCs.
Collapse
Affiliation(s)
- Claudia Colussi
- Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti" (IASI)-CNR, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
20
|
Ge Y, Smits AM, Liu J, Zhang J, van Brakel TJ, Goumans MJTH, Jongbloed MRM, de Vries AAF. Generation, Characterization, and Application of Inducible Proliferative Adult Human Epicardium-Derived Cells. Cells 2021; 10:2064. [PMID: 34440833 PMCID: PMC8391799 DOI: 10.3390/cells10082064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
RATIONALE In recent decades, the great potential of human epicardium-derived cells (EPDCs) as an endogenous cell source for cardiac regeneration has been recognized. The limited availability and low proliferation capacity of primary human EPDCs and phenotypic differences between EPDCs obtained from different individuals hampers their reproducible use for experimental studies. AIM To generate and characterize inducible proliferative adult human EPDCs for use in fundamental and applied research. METHODS AND RESULTS Inducible proliferation of human EPDCs was achieved by doxycycline-controlled expression of simian virus 40 large T antigen (LT) with a repressor-based lentiviral Tet-On system. In the presence of doxycycline, these inducible EPDCs (iEPDCs) displayed high and long-term proliferation capacity. After doxycycline removal, LT expression ceased and the iEPDCs regained their cuboidal epithelial morphology. Similar to primary EPDCs, iEPDCs underwent an epithelial-to-mesenchymal transition (EMT) after stimulation with transforming growth factor β3. This was confirmed by reverse transcription-quantitative polymerase chain reaction analysis of epithelial and mesenchymal marker gene expression and (immuno) cytochemical staining. Collagen gel-based cell invasion assays demonstrated that mesenchymal iEPDCs, like primary EPDCs, possess increased invasion and migration capacities as compared to their epithelial counterparts. Mesenchymal iEPDCs co-cultured with sympathetic ganglia stimulated neurite outgrowth similarly to primary EPDCs. CONCLUSION Using an inducible LT expression system, inducible proliferative adult human EPDCs were generated displaying high proliferative capacity in the presence of doxycycline. These iEPDCs maintain essential epicardial characteristics with respect to morphology, EMT ability, and paracrine signaling following doxycycline removal. This renders iEPDCs a highly useful new in vitro model for studying human epicardial properties.
Collapse
Affiliation(s)
- Yang Ge
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; (Y.G.); (M.R.M.J.)
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (J.L.); (J.Z.); (A.A.F.d.V.)
| | - Anke M. Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
| | - Jia Liu
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (J.L.); (J.Z.); (A.A.F.d.V.)
- Central Laboratory, Longgang District People’s Hospital of Shenzhen & The Third Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Juan Zhang
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (J.L.); (J.Z.); (A.A.F.d.V.)
| | - Thomas J. van Brakel
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands;
| | - Marie José T. H. Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
| | - Monique R. M. Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; (Y.G.); (M.R.M.J.)
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (J.L.); (J.Z.); (A.A.F.d.V.)
| | - Antoine A. F. de Vries
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (J.L.); (J.Z.); (A.A.F.d.V.)
| |
Collapse
|
21
|
Sahm A, Koch P, Horvath S, Hoffmann S. An analysis of methylome evolution in primates. Mol Biol Evol 2021; 38:4700-4714. [PMID: 34175932 PMCID: PMC8557466 DOI: 10.1093/molbev/msab189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although the investigation of the epigenome becomes increasingly important, still little is known about the long-term evolution of epigenetic marks and systematic investigation strategies are still lacking. Here, we systematically demonstrate the transfer of classic phylogenetic methods such as maximum likelihood based on substitution models, parsimony, and distance-based to interval-scaled epigenetic data. Using a great apes blood data set, we demonstrate that DNA methylation is evolutionarily conserved at the level of individual CpGs in promotors, enhancers, and genic regions. Our analysis also reveals that this epigenomic conservation is significantly correlated with its transcription factor binding density. Binding sites for transcription factors involved in neuron differentiation and components of AP-1 evolve at a significantly higher rate at methylation than at the nucleotide level. Moreover, our models suggest an accelerated epigenomic evolution at binding sites of BRCA1, chromobox homolog protein 2, and factors of the polycomb repressor 2 complex in humans. For most genomic regions, the methylation-based reconstruction of phylogenetic trees is at par with sequence-based reconstruction. Most strikingly, phylogenetic reconstruction using methylation rates in enhancer regions was ineffective independently of the chosen model. We identify a set of phylogenetically uninformative CpG sites enriched in enhancers controlling immune-related genes.
Collapse
Affiliation(s)
- Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Philipp Koch
- Core Facility Life Science Computing, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
22
|
Roth DM, Baddam P, Lin H, Vidal-García M, Aponte JD, De Souza ST, Godziuk D, Watson AES, Footz T, Schachter NF, Egan SE, Hallgrímsson B, Graf D, Voronova A. The Chromatin Regulator Ankrd11 Controls Palate and Cranial Bone Development. Front Cell Dev Biol 2021; 9:645386. [PMID: 33996804 PMCID: PMC8117352 DOI: 10.3389/fcell.2021.645386] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 11/19/2022] Open
Abstract
Epigenetic and chromatin regulation of craniofacial development remains poorly understood. Ankyrin Repeat Domain 11 (ANKRD11) is a chromatin regulator that has previously been shown to control neural stem cell fates via modulation of histone acetylation. ANKRD11 gene variants, or microdeletions of the 16q24.3 chromosomal region encompassing the ANKRD11 gene, cause KBG syndrome, a rare autosomal dominant congenital disorder with variable neurodevelopmental and craniofacial involvement. Craniofacial abnormalities include a distinct facial gestalt, delayed bone age, tooth abnormalities, delayed fontanelle closure, and frequently cleft or submucosal palate. Despite this, the dramatic phenotype and precise role of ANKRD11 in embryonic craniofacial development remain unexplored. Quantitative analysis of 3D images of KBG syndromic subjects shows an overall reduction in the size of the middle and lower face. Here, we report that mice with heterozygous deletion of Ankrd11 in neural crest cells (Ankrd11nchet) display a mild midfacial hypoplasia including reduced midfacial width and a persistent open fontanelle, both of which mirror KBG syndrome patient facial phenotypes. Mice with a homozygous Ankrd11 deletion in neural crest cells (Ankrd11ncko) die at birth. They show increased severity of several clinical manifestations described for KBG syndrome, such as cleft palate, retrognathia, midfacial hypoplasia, and reduced calvarial growth. At E14.5, Ankrd11 expression in the craniofacial complex is closely associated with developing bony structures, while expression at birth is markedly decreased. Conditional deletion of Ankrd11 leads to a reduction in ossification of midfacial bones, with several ossification centers failing to expand and/or fuse. Intramembranous bones show features of delayed maturation, with bone remodeling severely curtailed at birth. Palatal shelves remain hypoplastic at all developmental stages, with a local reduction in proliferation at E13.5. Our study identifies Ankrd11 as a critical regulator of intramembranous ossification and palate development and suggests that Ankrd11nchet and Ankrd11ncko mice may serve as pre-clinical models for KBG syndrome in humans.
Collapse
Affiliation(s)
- Daniela Marta Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Pranidhi Baddam
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Haiming Lin
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jose David Aponte
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah-Thea De Souza
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Devyn Godziuk
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Adrianne Eve Scovil Watson
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nathan F. Schachter
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E. Egan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Pal D, Riester SM, Hasan B, Tufa SF, Dudakovic A, Keene DR, van Wijnen AJ, Schweitzer R. Ezh2 Is Essential for Patterning of Multiple Musculoskeletal Tissues but Dispensable for Tendon Differentiation. Stem Cells Dev 2021; 30:601-609. [PMID: 33757300 DOI: 10.1089/scd.2020.0209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An efficient musculoskeletal system depends on the precise assembly and coordinated growth and function of muscles, skeleton, and tendons. However, the mechanisms that drive integrated musculoskeletal development and coordinated growth and differentiation of each of these tissues are still being uncovered. Epigenetic modifiers have emerged as critical regulators of cell fate differentiation, but so far almost nothing is known about their roles in tendon biology. Previous studies have shown that epigenetic modifications driven by Enhancer of zeste homolog 2 (EZH2), a major histone methyltransferase, have significant roles in vertebrate development including skeletal patterning and bone formation. We now find that targeting Ezh2 through the limb mesenchyme also has significant effects on tendon and muscle patterning, likely reflecting the essential roles of early mesenchymal cues mediated by Ezh2 for coordinated patterning and development of all tissues of the musculoskeletal system. Conversely, loss of Ezh2 in the tendon cells did not disrupt overall tendon structure or collagen organization suggesting that tendon differentiation and maturation are independent of Ezh2 signaling.
Collapse
Affiliation(s)
- Deepanwita Pal
- Research Division, Shriners Hospital for Children, Portland, Oregon, USA
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Bashar Hasan
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sara F Tufa
- Research Division, Shriners Hospital for Children, Portland, Oregon, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Douglas R Keene
- Research Division, Shriners Hospital for Children, Portland, Oregon, USA.,Department of Orthopedics, Oregon Health & Science University, Portland, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, Oregon, USA.,Department of Orthopedics, Oregon Health & Science University, Portland, USA
| |
Collapse
|
24
|
Lehle JD, McCarrey JR. Differential susceptibility to endocrine disruptor-induced epimutagenesis. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa016. [PMID: 33324495 PMCID: PMC7722801 DOI: 10.1093/eep/dvaa016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 05/08/2023]
Abstract
There is now considerable evidence indicating the potential for endocrine disrupting chemicals to alter the epigenome and for subsets of these epigenomic changes or "epimutations" to be heritably transmitted to offspring in subsequent generations. While there have been many studies indicating how exposure to endocrine disrupting chemicals can disrupt various organs associated with the body's endocrine systems, there is relatively limited information regarding the relative susceptibility of different specific organs, tissues, or cell types to endocrine disrupting chemical-induced epimutagenesis. Here we review available information about different organs, tissues, cell types, and/or cell lines which have been shown to be susceptible to specific endocrine disrupting chemical-induced epimutations. In addition, we discuss possible mechanisms that may be involved, or impacted by this tissue- or cell type-specific, differential susceptibility to different endocrine disrupting chemicals. Finally, we summarize available information indicating that certain periods of development display elevated susceptibility to endocrine disrupting chemical exposure and we describe how this may affect the extent to which germline epimutations can be transmitted inter- or transgenerationally. We conclude that cell type-specific differential susceptibility to endocrine disrupting chemical-induced epimutagenesis is likely to directly impact the extent to, or manner in, which endocrine disrupting chemical exposure initially induces epigenetic changes to DNA methylation and/or histone modifications, and how these endocrine disrupting chemical-induced epimutations can then subsequently impact gene expression, potentially leading to the development of heritable disease states.
Collapse
Affiliation(s)
- Jake D Lehle
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
25
|
Thiele D, La Gruta NL, Nguyen A, Hussain T. Hiding in Plain Sight: Virtually Unrecognizable Memory Phenotype CD8 + T cells. Int J Mol Sci 2020; 21:ijms21228626. [PMID: 33207648 PMCID: PMC7698292 DOI: 10.3390/ijms21228626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Virtual memory T (TVM) cells are a recently described population of conventional CD8+ T cells that, in spite of their antigen inexperience, express markers of T cell activation. TVM cells exhibit rapid responsiveness to both antigen-specific and innate stimuli in youth but acquire intrinsic antigen-specific response defects in the elderly. In this article, we review how the identification of TVM cells necessitates a re-evaluation of accepted paradigms for conventional memory T (TMEM) cells, the potential for heterogeneity within the TVM population, and the defining characteristics of TVM cells. Further, we highlight recent literature documenting the development of TVM cells as a distinct CD8+ T cell lineage as well their biological significance in the context of disease.
Collapse
|
26
|
Aguilar R, Bustos FJ, Nardocci G, van Zundert B, Montecino M. Epigenetic silencing of the osteoblast-lineage gene program during hippocampal maturation. J Cell Biochem 2020; 122:367-384. [PMID: 33135214 DOI: 10.1002/jcb.29865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence indicates that epigenetic control of gene expression plays a significant role during cell lineage commitment and subsequent cell fate maintenance. Here, we assess epigenetic mechanisms operating in the rat brain that mediate silencing of genes that are expressed during early and late stages of osteogenesis. We report that repression of the osteoblast master regulator Sp7 in embryonic (E18) hippocampus is mainly mediated through the Polycomb complex PRC2 and its enzymatic product H3K27me3. During early postnatal (P10), juvenile (P30), and adult (P90) hippocampal stages, the repressive H3K27me3 mark is progressively replaced by nucleosome enrichment and increased CpG DNA methylation at the Sp7 gene promoter. In contrast, silencing of the late bone phenotypic Bglap gene in the hippocampus is PRC2-independent and accompanied by strong CpG methylation from E18 through postnatal and adult stages. Forced ectopic expression of the primary master regulator of osteogenesis Runx2 in embryonic hippocampal neurons activates the expression of its downstream target Sp7 gene. Moreover, transcriptomic analyses show that several genes associated with the mesenchymal-osteogenic lineages are transcriptionally activated in these hippocampal cells that express Runx2 and Sp7. This effect is accompanied by a loss in neuronal properties, including a significant reduction in secondary processes at the dendritic arbor and reduced expression of critical postsynaptic genes like PSD95. Together, our results reveal a developmental progression in epigenetic control mechanisms that repress the expression of the osteogenic program in hippocampal neurons at embryonic, postnatal, and adult stages.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando J Bustos
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Gino Nardocci
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Boon R, Silveira GG, Mostoslavsky R. Nuclear metabolism and the regulation of the epigenome. Nat Metab 2020; 2:1190-1203. [PMID: 33046909 DOI: 10.1038/s42255-020-00285-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
Cellular metabolism has emerged as a major biological node governing cellular behaviour. Metabolic pathways fuel cellular energy needs, providing basic chemical molecules to sustain cellular homeostasis, proliferation and function. Changes in nutrient consumption or availability therefore can result in complete reprogramming of cellular metabolism towards stabilizing core metabolite pools, such as ATP, S-adenosyl methionine, acetyl-CoA, NAD/NADP and α-ketoglutarate. Because these metabolites underlie a variety of essential metabolic reactions, metabolism has evolved to operate in separate subcellular compartments through diversification of metabolic enzyme complexes, oscillating metabolic activity and physical separation of metabolite pools. Given that these same core metabolites are also consumed by chromatin modifiers in the establishment of epigenetic signatures, metabolite consumption on and release from chromatin directly influence cellular metabolism and gene expression. In this Review, we highlight recent studies describing the mechanisms determining nuclear metabolism and governing the redistribution of metabolites between the nuclear and non-nuclear compartments.
Collapse
Affiliation(s)
- Ruben Boon
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Giorgia G Silveira
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Raul Mostoslavsky
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
28
|
Paoli C, Carrer A. Organotypic Culture of Acinar Cells for the Study of Pancreatic Cancer Initiation. Cancers (Basel) 2020; 12:E2606. [PMID: 32932616 PMCID: PMC7564199 DOI: 10.3390/cancers12092606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022] Open
Abstract
The carcinogenesis of pancreatic ductal adenocarcinoma (PDA) progresses according to multi-step evolution, whereby the disease acquires increasingly aggressive pathological features. On the other hand, disease inception is poorly investigated. Decoding the cascade of events that leads to oncogenic transformation is crucial to design strategies for early diagnosis as well as to tackle tumor onset. Lineage-tracing experiments demonstrated that pancreatic cancerous lesions originate from acinar cells, a highly specialized cell type in the pancreatic epithelium. Primary acinar cells can survive in vitro as organoid-like 3D spheroids, which can transdifferentiate into cells with a clear ductal morphology in response to different cell- and non-cell-autonomous stimuli. This event, termed acinar-to-ductal metaplasia, recapitulates the histological and molecular features of disease initiation. Here, we will discuss the isolation and culture of primary pancreatic acinar cells, providing a historical and technical perspective. The impact of pancreatic cancer research will also be debated. In particular, we will dissect the roles of transcriptional, epigenetic, and metabolic reprogramming for tumor initiation and we will show how that can be modeled using ex vivo acinar cell cultures. Finally, mechanisms of PDA initiation described using organotypical cultures will be reviewed.
Collapse
Affiliation(s)
- Carlotta Paoli
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy;
- Department of Biology, University of Padova, 35129 Padova, Italy
| | - Alessandro Carrer
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy;
- Department of Biology, University of Padova, 35129 Padova, Italy
| |
Collapse
|
29
|
Tacconi C, He Y, Ducoli L, Detmar M. Epigenetic regulation of the lineage specificity of primary human dermal lymphatic and blood vascular endothelial cells. Angiogenesis 2020; 24:67-82. [PMID: 32918672 PMCID: PMC7921079 DOI: 10.1007/s10456-020-09743-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
Abstract
Lymphatic and blood vascular endothelial cells (ECs) share several molecular and developmental features. However, these two cell types possess distinct phenotypic signatures, reflecting their different biological functions. Despite significant advances in elucidating how the specification of lymphatic and blood vascular ECs is regulated at the transcriptional level during development, the key molecular mechanisms governing their lineage identity under physiological or pathological conditions remain poorly understood. To explore the epigenomic signatures in the maintenance of EC lineage specificity, we compared the transcriptomic landscapes, histone composition (H3K4me3 and H3K27me3) and DNA methylomes of cultured matched human primary dermal lymphatic and blood vascular ECs. Our findings reveal that blood vascular lineage genes manifest a more ‘repressed’ histone composition in lymphatic ECs, whereas DNA methylation at promoters is less linked to the differential transcriptomes of lymphatic versus blood vascular ECs. Meta-analyses identified two transcriptional regulators, BCL6 and MEF2C, which potentially govern endothelial lineage specificity. Notably, the blood vascular endothelial lineage markers CD34, ESAM and FLT1 and the lymphatic endothelial lineage markers PROX1, PDPN and FLT4 exhibited highly differential epigenetic profiles and responded in distinct manners to epigenetic drug treatments. The perturbation of histone and DNA methylation selectively promoted the expression of blood vascular endothelial markers in lymphatic endothelial cells, but not vice versa. Overall, our study reveals that the fine regulation of lymphatic and blood vascular endothelial transcriptomes is maintained via several epigenetic mechanisms, which are crucial to the maintenance of endothelial cell identity.
Collapse
Affiliation(s)
- Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, HCI H303, 8093, Zurich, Switzerland
| | - Yuliang He
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, HCI H303, 8093, Zurich, Switzerland
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, HCI H303, 8093, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, HCI H303, 8093, Zurich, Switzerland.
| |
Collapse
|
30
|
Raxwal VK, Ghosh S, Singh S, Katiyar-Agarwal S, Goel S, Jagannath A, Kumar A, Scaria V, Agarwal M. Abiotic stress-mediated modulation of the chromatin landscape in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5280-5293. [PMID: 32526034 DOI: 10.1093/jxb/eraa286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/10/2020] [Indexed: 05/18/2023]
Abstract
Limited information is available on abiotic stress-mediated alterations of chromatin conformation influencing gene expression in plants. In order to characterize the effect of abiotic stresses on changes in chromatin conformation, we employed FAIRE-seq (formaldehyde-assisted isolation of regulatory element sequencing) and DNase-seq to isolate accessible regions of chromatin from Arabidopsis thaliana seedlings exposed to either heat, cold, salt, or drought stress. Approximately 25% of regions in the Arabidopsis genome were captured as open chromatin, the majority of which included promoters and exons. A large proportion of chromatin regions apparently did not change their conformation in response to any of the four stresses. Digital footprints present within these regions had differential enrichment of motifs for binding of 43 different transcription factors. Further, in contrast to drought and salt stress, both high and low temperature treatments resulted in increased accessibility of the chromatin. Also, pseudogenes attained increased chromatin accessibility in response to cold and drought stresses. The highly accessible and inaccessible chromatin regions of seedlings exposed to drought stress correlated with the Ser/Thr protein kinases (MLK1 and MLK2)-mediated reduction and increase in H3 phosphorylation (H3T3Ph), respectively. The presented results provide a deeper understanding of abiotic stress-mediated chromatin modulation in plants.
Collapse
Affiliation(s)
- Vivek Kumar Raxwal
- Department of Botany, University of Delhi, Delhi, India
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Sourav Ghosh
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi, India
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Somya Singh
- Department of Botany, University of Delhi, Delhi, India
| | | | | | | | - Amar Kumar
- Department of Botany, University of Delhi, Delhi, India
| | - Vinod Scaria
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi, India
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
31
|
Filho DM, de Carvalho Ribeiro P, Oliveira LF, Dos Santos ALRT, Parreira RC, Pinto MCX, Resende RR. Enhancing the Therapeutic Potential of Mesenchymal Stem Cells with the CRISPR-Cas System. Stem Cell Rev Rep 2020; 15:463-473. [PMID: 31147819 DOI: 10.1007/s12015-019-09897-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mesenchymal stem cells (MSCs), also known as multipotent mesenchymal stromal stem cells, are found in the perivascular space of several tissues. These cells have been subject of intense research in the last decade due to their low teratogenicity, as well as their ability to differentiate into mature cells and to secrete immunomodulatory and trophic factors. However, they usually promote only a modest benefit when transplanted in experimental disease models, one of the limitations for their clinical application. The CRISPR-Cas system, in turn, is highlighted as a simple and effective tool for genetic engineering. This system was tested in clinical trials over a relatively short period of time after establishing its applicability to the edition of the mammalian cell genome. Similar to the research evolution in MSCs, the CRISPR-Cas system demonstrated inconsistencies that limited its clinical application. In this review, we outline the evolution of MSC research and its applicability, and the progress of the CRISPR-Cas system from its discovery to the most recent clinical trials. We also propose perspectives on how the CRISPR-Cas system may improve the therapeutic potential of MSCs, making it more beneficial and long lasting.
Collapse
Affiliation(s)
- Daniel Mendes Filho
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Patrícia de Carvalho Ribeiro
- Laboratory of Immunology and Experimental Transplantation, São José do Rio Preto Medical School, São José do Rio Preto, São Paulo, Brazil.,Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Lucas Felipe Oliveira
- Department of Physiology, Biological and Natural Sciences Institute, Triangulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA-CNPq), Rio de Janeiro, RJ, Brazil.,Minas Gerais Network for Tissue Engineering and Cell Therapy (REMETTECFAPEMIG), Belo Horizonte, MG, Brazil
| | | | - Ricardo Cambraia Parreira
- Department of Pharmacology, Biological Sciences Institute, Goias Federal University, Goiania, Goias, Brazil.
| | - Mauro Cunha Xavier Pinto
- Department of Pharmacology, Biological Sciences Institute, Goias Federal University, Goiania, Goias, Brazil
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
32
|
Omony J, Nussbaumer T, Gutzat R. DNA methylation analysis in plants: review of computational tools and future perspectives. Brief Bioinform 2020; 21:906-918. [PMID: 31220217 DOI: 10.1093/bib/bbz039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
Genome-wide DNA methylation studies have quickly expanded due to advances in next-generation sequencing techniques along with a wealth of computational tools to analyze the data. Most of our knowledge about DNA methylation profiles, epigenetic heritability and the function of DNA methylation in plants derives from the model species Arabidopsis thaliana. There are increasingly many studies on DNA methylation in plants-uncovering methylation profiles and explaining variations in different plant tissues. Additionally, DNA methylation comparisons of different plant tissue types and dynamics during development processes are only slowly emerging but are crucial for understanding developmental and regulatory decisions. Translating this knowledge from plant model species to commercial crops could allow the establishment of new varieties with increased stress resilience and improved yield. In this review, we provide an overview of the most commonly applied bioinformatics tools for the analysis of DNA methylation data (particularly bisulfite sequencing data). The performances of a selection of the tools are analyzed for computational time and agreement in predicted methylated sites for A. thaliana, which has a smaller genome compared to the hexaploid bread wheat. The performance of the tools was benchmarked on five plant genomes. We give examples of applications of DNA methylation data analysis in crops (with a focus on cereals) and an outlook for future developments for DNA methylation status manipulations and data integration.
Collapse
Affiliation(s)
- Jimmy Omony
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Nussbaumer
- Institute of Network Biology, Department of Environmental Science, Helmholtz Center Munich, Neuherberg, Germany.,Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Augsburg, Germany; CK CARE Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
33
|
Kuchay RAH. New insights into the molecular basis of lactase non-persistence/persistence: a brief review. Drug Discov Ther 2020; 14:1-7. [PMID: 32101819 DOI: 10.5582/ddt.2019.01079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lactose, a disaccharide and main carbohydrate in milk, requires hydrolysis in the intestinal tract to release its monosaccharides galactose and glucose for use as energy source by enterocytes. This hydrolysis is catalyzed by the enzyme lactase, a β-galactosidase located in the brush border membrane of small intestinal enterocytes. In most mammals, lactase activity declines after the weaning, a condition known as lactase non-persistence (LNP). Lactase persistence (LP) is an autosomal dominant trait enabling the continued production of the enzyme lactase throughout adult life. Non-persistence or persistence of lactase expression into adult life being a polymorphic trait has been attributed to various single nucleotide polymorphisms in the enhancer region surrounding lactase gene (LCT). However, latest research has pointed to 'genetic-epigenetic interactions' as key to regulation of lactase expression. LNP and LP DNA haplotypes have demonstrated markedly different epigenetic aging as genetic factors contribute to gradual accumulation of epigenetic changes with age to affect lactase expression. This review will attempt to present an overview of latest insights into molecular basis of LNP/LP including the crucial role of 'genetic-epigenetic interactions' in regulating lactase expression.
Collapse
|
34
|
Facciotto C, Casado J, Turunen L, Leivonen SK, Tumiati M, Rantanen V, Kauppi L, Lehtonen R, Leppä S, Wennerberg K, Hautaniemi S. Drug screening approach combines epigenetic sensitization with immunochemotherapy in cancer. Clin Epigenetics 2019; 11:192. [PMID: 31829282 PMCID: PMC6907220 DOI: 10.1186/s13148-019-0781-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The epigenome plays a key role in cancer heterogeneity and drug resistance. Hence, a number of epigenetic inhibitors have been developed and tested in cancers. The major focus of most studies so far has been on the cytotoxic effect of these compounds, and only few have investigated the ability to revert the resistant phenotype in cancer cells. Hence, there is a need for a systematic methodology to unravel the mechanisms behind epigenetic sensitization. RESULTS We have developed a high-throughput protocol to screen non-simultaneous drug combinations, and used it to investigate the reprogramming potential of epigenetic inhibitors. We demonstrated the effectiveness of our protocol by screening 60 epigenetic compounds on diffuse large B-cell lymphoma (DLBCL) cells. We identified several histone deacetylase (HDAC) and histone methyltransferase (HMT) inhibitors that acted synergistically with doxorubicin and rituximab. These two classes of epigenetic inhibitors achieved sensitization by disrupting DNA repair, cell cycle, and apoptotic signaling. The data used to perform these analyses are easily browsable through our Results Explorer. Additionally, we showed that these inhibitors achieve sensitization at lower doses than those required to induce cytotoxicity. CONCLUSIONS Our drug screening approach provides a systematic framework to test non-simultaneous drug combinations. This methodology identified HDAC and HMT inhibitors as successful sensitizing compounds in treatment-resistant DLBCL. Further investigation into the mechanisms behind successful epigenetic sensitization highlighted DNA repair, cell cycle, and apoptosis as the most dysregulated pathways. Altogether, our method adds supporting evidence in the use of epigenetic inhibitors as sensitizing agents in clinical settings.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Cell Cycle/drug effects
- Cell Line, Tumor
- DNA Repair/drug effects
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Screening Assays, Antitumor
- Drug Synergism
- Enzyme Inhibitors/pharmacology
- Epigenesis, Genetic/drug effects
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- High-Throughput Screening Assays
- Histone Deacetylase Inhibitors/pharmacology
- Histone Methyltransferases/antagonists & inhibitors
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Rituximab/pharmacology
Collapse
Affiliation(s)
- Chiara Facciotto
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, PO Box 63, Helsinki, Finland
| | - Julia Casado
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, PO Box 63, Helsinki, Finland
| | - Laura Turunen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Suvi-Katri Leivonen
- Department of Oncology, Helsinki University Hospital Cancer Center, Helsinki, Finland
- Research Program in Applied Tumor Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Manuela Tumiati
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, PO Box 63, Helsinki, Finland
| | - Ville Rantanen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, PO Box 63, Helsinki, Finland
| | - Liisa Kauppi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, PO Box 63, Helsinki, Finland
| | - Rainer Lehtonen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, PO Box 63, Helsinki, Finland
| | - Sirpa Leppä
- Department of Oncology, Helsinki University Hospital Cancer Center, Helsinki, Finland
- Research Program in Applied Tumor Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, PO Box 63, Helsinki, Finland
| |
Collapse
|
35
|
Jalan-Sakrikar N, De Assuncao TM, Shi G, Aseem S, Chi C, Shah VH, Huebert RC. Proteasomal Degradation of Enhancer of Zeste Homologue 2 in Cholangiocytes Promotes Biliary Fibrosis. Hepatology 2019; 70:1674-1689. [PMID: 31070797 PMCID: PMC6819212 DOI: 10.1002/hep.30706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
During biliary disease, cholangiocytes become activated by various pathological stimuli, including transforming growth factor β (TGF-β). The result is an epigenetically regulated transcriptional program leading to a pro-fibrogenic microenvironment, activation of hepatic stellate cells (HSCs), and progression of biliary fibrosis. This study evaluated how TGF-β signaling intersects with epigenetic machinery in cholangiocytes to support fibrogenic gene transcription. We performed RNA sequencing in cholangiocytes with or without TGF-β. Ingenuity pathway analysis identified "HSC Activation" as the highly up-regulated pathway, including overexpression of fibronectin 1 (FN), connective tissue growth factor, and other genes. Bioinformatics identified enhancer of zeste homologue 2 (EZH2) as an epigenetic regulator of the cholangiocyte TGF-β response. EZH2 overexpression suppressed TGF-β-induced FN protein in vitro, suggesting FN as a direct target of EZH2-based repression. Chromatin immunoprecipitation assays identified an FN promoter element in which EZH2-mediated tri-methylation of lysine 27 on histone 3 is diminished by TGF-β. TGF-β also caused a 50% reduction in EZH2 protein levels. Proteasome inhibition rescued EZH2 protein and led to reduced FN production. Immunoprecipitation followed by mass spectrometry identified ubiquitin protein ligase E3 component N-recognin 4 in complex with EZH2, which was validated by western blotting in vitro. Ubiquitin mutation studies suggested K63-based ubiquitin linkage and chain elongation on EZH2 in response to TGF-β. A deletion mutant of EZH2, lacking its N-terminal domain, abrogates both TGF-β-stimulated EZH2 degradation and FN release. In vivo, cholangiocyte-selective knockout of EZH2 exacerbates bile duct ligation-induced fibrosis whereas MDR2-/- mice are protected from fibrosis by the proteasome inhibitor bortezomib. Conclusion: TGF-β regulates proteasomal degradation of EZH2 through N-terminal, K63-linked ubiquitination in cholangiocytes and activates transcription of a fibrogenic gene program that supports biliary fibrosis.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Thiago M. De Assuncao
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Guang Shi
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - SayedObaidullah Aseem
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Cheng Chi
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN.,Center for Cell Signaling in Gastroenterology; Mayo Clinic and Foundation, Rochester, MN
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, MN.,Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, MN.,Center for Cell Signaling in Gastroenterology; Mayo Clinic and Foundation, Rochester, MN
| |
Collapse
|
36
|
Hematopoietic stem and progenitor cell proliferation and differentiation requires the trithorax protein Ash2l. Sci Rep 2019; 9:8262. [PMID: 31164666 PMCID: PMC6547667 DOI: 10.1038/s41598-019-44720-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Post-translational modifications of core histones participate in controlling the expression of genes. Methylation of lysine 4 of histone H3 (H3K4), together with acetylation of H3K27, is closely associated with open chromatin and gene transcription. H3K4 methylation is catalyzed by KMT2 lysine methyltransferases that include the mixed-lineage leukemia 1–4 (MLL1-4) and SET1A and B enzymes. For efficient catalysis, all six require a core complex of four proteins, WDR5, RBBP5, ASH2L, and DPY30. We report that targeted disruption of Ash2l in the murine hematopoietic system results in the death of the mice due to a rapid loss of mature hematopoietic cells. However, lin−Sca1+Kit+ (LSK) cells, which are highly enriched in hematopoietic stem and multi-potent progenitor cells, accumulated in the bone marrow. The loss of Ash2l resulted in global reduction of H3K4 methylation and deregulated gene expression, including down-regulation of many mitosis-associated genes. As a consequence, LSK cells accumulated in the G2-phase of the cell cycle and were unable to proliferate and differentiate. In conclusion, Ash2l is essential for balanced gene expression and for hematopoietic stem and multi-potent progenitor cell physiology.
Collapse
|
37
|
López-Ozuna VM, Hachim IY, Hachim MY, Lebrun JJ, Ali S. Prolactin modulates TNBC aggressive phenotype limiting tumorigenesis. Endocr Relat Cancer 2019; 26:321-337. [PMID: 30640712 DOI: 10.1530/erc-18-0523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) accounts for ~20% of all breast cancer cases. The management of TNBC represents a challenge due to its aggressive phenotype, heterogeneity and lack of targeted therapy. Loss of cell differentiation and enrichment with breast cancer stem-like cells (BCSC) are features of TNBC contributing to its aggressive nature. Here, we found that treatment of TNBC cells with PRL significantly depletes the highly tumorigenic BCSC subpopulations CD44+/CD24- and ALDH+ and differentiates them to the least tumorigenic CD44-/CD24- and ALDH- phenotype with limited tumorsphere formation and self-renewal capacities. Importantly, we found PRL to induce a heterochromatin phenotype marked by histone H3 lysine 9 trimethylation (H3K9me3) and accompanied by ultra-structural cellular architecture associated with differentiation and senescence rendering the cells refractory to growth signals. Crucially, we found PRL to mediate these effects in vivo in a pre-clinical animal xenograft of TNBC controlling tumor growth. These results reveal that the lactogenic hormone PRL may exert its anti-tumorigenic effects on TNBC through cellular reprogramming indicative of differentiation resulting in the depletion of BCSCs and restricting tumorigenesis.
Collapse
Affiliation(s)
- Vanessa M López-Ozuna
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| | - Ibrahim Y Hachim
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| | - Mahmood Y Hachim
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| |
Collapse
|
38
|
den Dekker A, Davis FM, Kunkel SL, Gallagher KA. Targeting epigenetic mechanisms in diabetic wound healing. Transl Res 2019; 204:39-50. [PMID: 30392877 PMCID: PMC6331222 DOI: 10.1016/j.trsl.2018.10.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
Abstract
Impaired wound healing is a major secondary complication of type 2 diabetes that often results in limb loss and disability. Normal tissue repair progresses through discrete phases including hemostasis, inflammation, proliferation, and remodeling. In diabetes, normal progression through these phases is impaired resulting in a sustained inflammatory state and dysfunctional epithelialization in the wound. Due to their plasticity, macrophages play a critical role in the transition from the inflammation phase to the proliferation phase. Diabetes disrupts macrophage function by impairing monocyte recruitment to the wound, reducing phagocytosis, and prohibiting the transition of inflammatory macrophages to an anti-inflammatory state. Diabetes also impedes keratinocyte and fibroblast function during the later phases resulting in impaired epithelialization of the wound. Several recent studies suggest that altered epigenetic regulation of both immune and structural cells in wounds may influence cell phenotypes and healing, particularly in pathologic states, such as diabetes. Specifically, it has been shown that macrophage plasticity during wound repair is partly regulated epigenetically and that diabetes alters this epigenetic regulation and contributes to a sustained inflammatory state. Epigenetic regulation is also known to regulate keratinocyte and fibroblast function during wound repair. In this review, we provide an introduction to the epigenetic mechanisms that regulate tissue repair and highlight recent findings that demonstrate, how epigenetic events are altered during the course of diabetic wound healing.
Collapse
Affiliation(s)
- Aaron den Dekker
- Department of Surgery, University of Michigan, Ann Arbor, Michgan
| | - Frank M Davis
- Department of Surgery, University of Michigan, Ann Arbor, Michgan
| | - Steve L Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
39
|
Loo Yau H, Ettayebi I, De Carvalho DD. The Cancer Epigenome: Exploiting Its Vulnerabilities for Immunotherapy. Trends Cell Biol 2019; 29:31-43. [DOI: 10.1016/j.tcb.2018.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
|
40
|
Cigliola V, Ghila L, Thorel F, van Gurp L, Baronnier D, Oropeza D, Gupta S, Miyatsuka T, Kaneto H, Magnuson MA, Osipovich AB, Sander M, Wright CEV, Thomas MK, Furuyama K, Chera S, Herrera PL. Pancreatic islet-autonomous insulin and smoothened-mediated signalling modulate identity changes of glucagon + α-cells. Nat Cell Biol 2018; 20:1267-1277. [PMID: 30361701 PMCID: PMC6215453 DOI: 10.1038/s41556-018-0216-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
The mechanisms that restrict regeneration and maintain cell identity following injury are poorly characterized in higher vertebrates. Following β-cell loss, 1-2% of the glucagon-producing α-cells spontaneously engage in insulin production in mice. Here we explore the mechanisms inhibiting α-cell plasticity. We show that adaptive α-cell identity changes are constrained by intra-islet insulin- and Smoothened-mediated signalling, among others. The combination of β-cell loss or insulin-signalling inhibition, with Smoothened inactivation in α- or δ-cells, stimulates insulin production in more α-cells. These findings suggest that the removal of constitutive 'brake signals' is crucial to neutralize the refractoriness to adaptive cell-fate changes. It appears that the maintenance of cell identity is an active process mediated by repressive signals, which are released by neighbouring cells and curb an intrinsic trend of differentiated cells to change.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Luiza Ghila
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Science and KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léon van Gurp
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Delphine Baronnier
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Oropeza
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simone Gupta
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Graduate School of Medicine , Juntendo University , Tokyo, Japan
| | - Hideaki Kaneto
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mark A Magnuson
- Departments of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Anna B Osipovich
- Departments of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Maike Sander
- Department of Pediatrics and Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Christopher E V Wright
- Department of Cell and Developmental Biology, Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Melissa K Thomas
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Kenichiro Furuyama
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simona Chera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Science and KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
41
|
Directing neuronal cell fate in vitro : Achievements and challenges. Prog Neurobiol 2018; 168:42-68. [DOI: 10.1016/j.pneurobio.2018.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
|
42
|
|
43
|
Morena F, Argentati C, Bazzucchi M, Emiliani C, Martino S. Above the Epitranscriptome: RNA Modifications and Stem Cell Identity. Genes (Basel) 2018; 9:E329. [PMID: 29958477 PMCID: PMC6070936 DOI: 10.3390/genes9070329] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Sequence databases and transcriptome-wide mapping have revealed different reversible and dynamic chemical modifications of the nitrogen bases of RNA molecules. Modifications occur in coding RNAs and noncoding-RNAs post-transcriptionally and they can influence the RNA structure, metabolism, and function. The result is the expansion of the variety of the transcriptome. In fact, depending on the type of modification, RNA molecules enter into a specific program exerting the role of the player or/and the target in biological and pathological processes. Many research groups are exploring the role of RNA modifications (alias epitranscriptome) in cell proliferation, survival, and in more specialized activities. More recently, the role of RNA modifications has been also explored in stem cell biology. Our understanding in this context is still in its infancy. Available evidence addresses the role of RNA modifications in self-renewal, commitment, and differentiation processes of stem cells. In this review, we will focus on five epitranscriptomic marks: N6-methyladenosine, N1-methyladenosine, 5-methylcytosine, Pseudouridine (Ψ) and Adenosine-to-Inosine editing. We will provide insights into the function and the distribution of these chemical modifications in coding RNAs and noncoding-RNAs. Mainly, we will emphasize the role of epitranscriptomic mechanisms in the biology of naïve, primed, embryonic, adult, and cancer stem cells.
Collapse
Affiliation(s)
- Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
- CEMIN, Center of Excellence of Nanostructured Innovative Materials, University of Perugia, 06126 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
- CEMIN, Center of Excellence of Nanostructured Innovative Materials, University of Perugia, 06126 Perugia, Italy.
| |
Collapse
|
44
|
Machado L, Esteves de Lima J, Fabre O, Proux C, Legendre R, Szegedi A, Varet H, Ingerslev LR, Barrès R, Relaix F, Mourikis P. In Situ Fixation Redefines Quiescence and Early Activation of Skeletal Muscle Stem Cells. Cell Rep 2018; 21:1982-1993. [PMID: 29141227 DOI: 10.1016/j.celrep.2017.10.080] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/13/2017] [Accepted: 10/21/2017] [Indexed: 12/12/2022] Open
Abstract
State of the art techniques have been developed to isolate and analyze cells from various tissues, aiming to capture their in vivo state. However, the majority of cell isolation protocols involve lengthy mechanical and enzymatic dissociation steps followed by flow cytometry, exposing cells to stress and disrupting their physiological niche. Focusing on adult skeletal muscle stem cells, we have developed a protocol that circumvents the impact of isolation procedures and captures cells in their native quiescent state. We show that current isolation protocols induce major transcriptional changes accompanied by specific histone modifications while having negligible effects on DNA methylation. In addition to proposing a protocol to avoid isolation-induced artifacts, our study reveals previously undetected quiescence and early activation genes of potential biological interest.
Collapse
Affiliation(s)
- Léo Machado
- Biology of the Neuromuscular System, INSERM IMRB U955-E10, UPEC, ENVA, EFS, Creteil 94000, France
| | - Joana Esteves de Lima
- Biology of the Neuromuscular System, INSERM IMRB U955-E10, UPEC, ENVA, EFS, Creteil 94000, France
| | - Odile Fabre
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Proux
- Institut Pasteur, Plate-forme Transcriptome & Epigenome, Biomics, Centre d'Innovation et Recherche Technologique (Citech), Paris, France
| | - Rachel Legendre
- Institut Pasteur, Plate-forme Transcriptome & Epigenome, Biomics, Centre d'Innovation et Recherche Technologique (Citech), Paris, France; Institut Pasteur, Hub Bioinformatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756 IP CNRS), Paris, France
| | - Anikó Szegedi
- Biology of the Neuromuscular System, INSERM IMRB U955-E10, UPEC, ENVA, EFS, Creteil 94000, France
| | - Hugo Varet
- Institut Pasteur, Plate-forme Transcriptome & Epigenome, Biomics, Centre d'Innovation et Recherche Technologique (Citech), Paris, France; Institut Pasteur, Hub Bioinformatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756 IP CNRS), Paris, France
| | - Lars Roed Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frédéric Relaix
- Biology of the Neuromuscular System, INSERM IMRB U955-E10, UPEC, ENVA, EFS, Creteil 94000, France.
| | - Philippos Mourikis
- Biology of the Neuromuscular System, INSERM IMRB U955-E10, UPEC, ENVA, EFS, Creteil 94000, France
| |
Collapse
|
45
|
Russell‐Hallinan A, Watson CJ, Baugh JA. Epigenetics of Aberrant Cardiac Wound Healing. Compr Physiol 2018; 8:451-491. [DOI: 10.1002/cphy.c170029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Jasiulionis MG. Abnormal Epigenetic Regulation of Immune System during Aging. Front Immunol 2018; 9:197. [PMID: 29483913 PMCID: PMC5816044 DOI: 10.3389/fimmu.2018.00197] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Epigenetics refers to the study of mechanisms controlling the chromatin structure, which has fundamental role in the regulation of gene expression and genome stability. Epigenetic marks, such as DNA methylation and histone modifications, are established during embryonic development and epigenetic profiles are stably inherited during mitosis, ensuring cell differentiation and fate. Under the effect of intrinsic and extrinsic factors, such as metabolic profile, hormones, nutrition, drugs, smoke, and stress, epigenetic marks are actively modulated. In this sense, the lifestyle may affect significantly the epigenome, and as a result, the gene expression profile and cell function. Epigenetic alterations are a hallmark of aging and diseases, such as cancer. Among biological systems compromised with aging is the decline of immune response. Different regulators of immune response have their promoters and enhancers susceptible to the modulation by epigenetic marks, which is fundamental to the differentiation and function of immune cells. Consistent evidence has showed the regulation of innate immune cells, and T and B lymphocytes by epigenetic mechanisms. Therefore, age-dependent alterations in epigenetic marks may result in the decline of immune function and this might contribute to the increased incidence of diseases in old people. In order to maintain health, we need to better understand how to avoid epigenetic alterations related to immune aging. In this review, the contribution of epigenetic mechanisms to the loss of immune function during aging will be discussed, and the promise of new means of disease prevention and management will be pointed.
Collapse
Affiliation(s)
- Miriam G Jasiulionis
- Laboratory of Ontogeny and Epigenetics, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Huynh NCN, Everts V, Ampornaramveth RS. Histone deacetylases and their roles in mineralized tissue regeneration. Bone Rep 2017; 7:33-40. [PMID: 28856178 PMCID: PMC5565747 DOI: 10.1016/j.bonr.2017.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/19/2017] [Accepted: 08/09/2017] [Indexed: 01/18/2023] Open
Abstract
Histone acetylation is an important epigenetic mechanism that controls expression of certain genes. It includes non-sequence-based changes of chromosomal regional structure that can alter the expression of genes. Acetylation of histones is controlled by the activity of two groups of enzymes: the histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs remove acetyl groups from the histone tail, which alters its charge and thus promotes compaction of DNA in the nucleosome. HDACs render the chromatin structure into a more compact form of heterochromatin, which makes the genes inaccessible for transcription. By altering the transcriptional activity of bone-associated genes, HDACs control both osteogenesis and osteoclastogenesis. This review presents an overview of the function of HDACs in the modulation of bone formation. Special attention is paid to the use of HDAC inhibitors in mineralized tissue regeneration from cells of dental origin. HDACs regulate the transcription activity of bone related genes. Inhibition of HDAC promotes osteogenic/odontogenic differentiation. HDAC inhibitors are applicable for mineral tissue regeneration therapy.
Collapse
Key Words
- ADSCs, adipose tissue-derived stem cells
- ALP, alkaline phosphatase
- BSP, bone sialoprotein
- Bone regeneration
- COL1, type I collagen
- DMP1, dentin matrix acidic phosphoprotein 1
- DPSCs, dental-derived stem cells
- DSPP, dentin sialophosphoprotein
- Dentin formation
- Epigenetic
- GSK-3, glycogen synthase kinase
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- Histone acetyltransferase
- Histone deacetylase
- MSCs, mesenchymal stem cells
- NaB, sodium butyrate
- OCN, osteocalcin
- OPN, osteopontin
- PCL/PEG, polycaprolactone/polyethylene glycol
- RUNX2, runt-related transcription factor 2
- SOST, sclerostin
- TGF-β/BMP, transforming growth factor-β/bone morphogenetic protein
- TSA, Trichostatin A
- VPA, valproic acid
- WNT/β-catenin, Wingless-int
- hPDLCs, human periodontal ligament cells
Collapse
Affiliation(s)
- Nam Cong-Nhat Huynh
- Department of Dental Basic Sciences, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | | |
Collapse
|
48
|
Ripoli C. Engrampigenetics: Epigenetics of engram memory cells. Behav Brain Res 2017; 325:297-302. [DOI: 10.1016/j.bbr.2016.11.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/24/2016] [Accepted: 11/26/2016] [Indexed: 12/21/2022]
|
49
|
De Carli MM, Baccarelli AA, Trevisi L, Pantic I, Brennan KJ, Hacker MR, Loudon H, Brunst KJ, Wright RO, Wright RJ, Just AC. Epigenome-wide cross-tissue predictive modeling and comparison of cord blood and placental methylation in a birth cohort. Epigenomics 2017; 9:231-240. [PMID: 28234020 DOI: 10.2217/epi-2016-0109] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM We compared predictive modeling approaches to estimate placental methylation using cord blood methylation. MATERIALS & METHODS We performed locus-specific methylation prediction using both linear regression and support vector machine models with 174 matched pairs of 450k arrays. RESULTS At most CpG sites, both approaches gave poor predictions in spite of a misleading improvement in array-wide correlation. CpG islands and gene promoters, but not enhancers, were the genomic contexts where the correlation between measured and predicted placental methylation levels achieved higher values. We provide a list of 714 sites where both models achieved an R2 ≥0.75. CONCLUSION The present study indicates the need for caution in interpreting cross-tissue predictions. Few methylation sites can be predicted between cord blood and placenta.
Collapse
Affiliation(s)
- Margherita M De Carli
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Letizia Trevisi
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Ivan Pantic
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA.,Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
| | - Kasey Jm Brennan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Michele R Hacker
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.,Department of Obstetrics & Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Holly Loudon
- Department of Obstetrics & Gynecology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly J Brunst
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health & Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health & Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allan C Just
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health & Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
50
|
Oh E, Jeremian R, Oh G, Groot D, Susic M, Lee K, Foy K, Laird PW, Petronis A, Labrie V. Transcriptional heterogeneity in the lactase gene within cell-type is linked to the epigenome. Sci Rep 2017; 7:41843. [PMID: 28139744 PMCID: PMC5282553 DOI: 10.1038/srep41843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/04/2017] [Indexed: 12/16/2022] Open
Abstract
Transcriptional variation in histologically- and genetically- identical cells is a widespread phenomenon in tissues, yet the processes conferring this heterogeneity are not well understood. To identify contributing factors, we analyzed epigenetic profiles associated with the in vivo transcriptional gradient of the mouse lactase gene (Lct), which occurs in enterocytes along the proximal-to-distal axis of the small intestine. We found that epigenetic signatures at enhancer and promoter elements aligns with transcriptional variation of Lct in enterocytes. Age and phenotype-specific environmental cues (lactose exposure after weaning) induced changes to epigenetic modifications and CTCF binding at select regulatory elements, which corresponded to the alterations in the intestinal Lct mRNA gradient. Thus, epigenetic modifications in combination with CTCF binding at regulatory elements account for the transcriptional gradient in Lct in cells of the same type. Epigenetic divergence within enterocytes may contribute to the functional specialization of intestinal subregions.
Collapse
Affiliation(s)
- Edward Oh
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Richie Jeremian
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Gabriel Oh
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel Groot
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Miki Susic
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - KwangHo Lee
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Kelly Foy
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Peter W. Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Arturas Petronis
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Viviane Labrie
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| |
Collapse
|