1
|
Palmer JE, Wilson N, Son SM, Obrocki P, Wrobel L, Rob M, Takla M, Korolchuk VI, Rubinsztein DC. Autophagy, aging, and age-related neurodegeneration. Neuron 2025; 113:29-48. [PMID: 39406236 DOI: 10.1016/j.neuron.2024.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 01/11/2025]
Abstract
Autophagy is a conserved mechanism that degrades damaged or superfluous cellular contents and enables nutrient recycling under starvation conditions. Many neurodegeneration-associated proteins are autophagy substrates, and autophagy upregulation ameliorates disease in many animal models of neurodegeneration by enhancing the clearance of toxic proteins, proinflammatory molecules, and dysfunctional organelles. Autophagy inhibition also induces neuronal and glial senescence, a phenomenon that occurs with increasing age in non-diseased brains as well as in response to neurodegeneration-associated stresses. However, aging and many neurodegeneration-associated proteins and mutations impair autophagy. This creates a potentially detrimental feedback loop whereby the accumulation of these disease-associated proteins impairs their autophagic clearance, facilitating their further accumulation and aggregation. Thus, understanding how autophagy interacts with aging, senescence, and neurodegenerative diseases in a temporal, cellular, and genetic context is important for the future clinical application of autophagy-modulating therapies in aging and neurodegeneration.
Collapse
Affiliation(s)
- Jennifer E Palmer
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Niall Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Sung Min Son
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Pawel Obrocki
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Lidia Wrobel
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Matea Rob
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Michael Takla
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
2
|
Holloway K, Neherin K, Song Y, Sato K, Houston A, Chen F, Ding L, Zhang H. Elevated p16Ink4a Expression Enhances Tau Phosphorylation in Neurons Differentiated From Human-Induced Pluripotent Stem Cells. Aging Cell 2025:e14472. [PMID: 39757785 DOI: 10.1111/acel.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Increased expression of the cyclin-dependent kinase inhibitor p16Ink4a (p16) is detected in neurons of human Alzheimer's disease (AD) brains and during normal aging. Importantly, selective eliminating p16-expressing cells in AD mouse models attenuates tau pathologies and improves cognition. But whether and how p16 contributes to AD pathogenesis remains unclear. To address this question, we tested whether induction of p16 expression in neurons exacerbates AD pathologies. We created a doxycycline-inducible system to trigger p16 up-regulation in human-induced pluripotent stem cells (iPSCs) and neurons differentiated from iPSCs. We demonstrated that up-regulated p16 expression in iPSCs reduces cell proliferation, down-regulates cell cycle genes, and up-regulates genes involved in focal adhesion, interferon α response and PI3K-Akt signaling. Our approach enables temporal control of p16 induction upon differentiation from iPSCs to neurons. In differentiated cortical neurons, we found that up-regulation of p16 increases tau phosphorylation at Ser202/Thr205 and Thr231 in a cell-autonomous manner, while amyloid beta secretion is not affected. These data suggest a critical role of p16 in regulating tau phosphorylation in neurons, and thereby contributing to pathological progression of AD. As pathological tau tangles have been shown to induce p16 expression, our studies suggest a positive feedback loop between p16 and tau to exacerbate tau pathologies.
Collapse
Affiliation(s)
- Kristopher Holloway
- Department of Pediatrics, 3 NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Kashfia Neherin
- Department of Pediatrics, 3 NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Yingduo Song
- Department of Medicine, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kazuhito Sato
- Department of Medicine, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew Houston
- Department of Medicine, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Feng Chen
- Department of Medicine, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Li Ding
- Department of Medicine, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hong Zhang
- Department of Pediatrics, 3 NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Yan YC, Su L, Zhao WB, Fan Y, Koprich JB, Xiao BG, Song B, Wang J, Yu WB. Bidirectional interaction between IL and 17A/IL-17RA pathway dysregulation and α-synuclein in the pathogenesis of Parkinson's disease. Brain Behav Immun 2025; 123:1114-1126. [PMID: 39461385 DOI: 10.1016/j.bbi.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024] Open
Abstract
Parkinson's disease (PD) pathogenesis is characterized by α-synuclein (α-syn) pathology, which is influenced by various factors such as neuroinflammation and senescence. Increasing evidence has suggested a pivotal role for Interleukin-17A(IL-17A) and Interleukin-17 Receptor A (IL-17RA) in PD, yet the trigger and impact of IL-17A/IL-17RA activation in PD remains elusive. This study observed an age-related increase in IL-17A and IL-17RA in the human central nervous system, accompanied by increased α-syn and senescence biomarkers. Interestingly, both levels of IL-17A and IL-17RA in PD patients were significantly elevated compared to age-matched controls, wherein the IL-17A was mainly present in neurons. This abnormal neuronal IL-17A activation in the PD brain was recapitulated in α-syn mouse models. Correspondingly, administration of recombinant IL-17A exacerbated pathological α-syn in both neuron and mouse models. Furthermore, IL-17A/IL-17RA pathway interventions via blocking antibody or shRNA-mediated knockdown can mitigate the effects of pathological α-syn. This study reveals an interplay between dysregulation of the IL-17A/IL-17RA pathway and α-syn, suggesting that regulating the IL-17A/IL-17RA pathway could modify PD progression by disrupting the detrimental cycle.
Collapse
Affiliation(s)
- Yu-Chen Yan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lu Su
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wan-Bing Zhao
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yun Fan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - James B Koprich
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Bin Song
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Shanghai 200032, China; Fudan University, Shanghai 200032, China; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wen-Bo Yu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
4
|
McHugh D, Durán I, Gil J. Senescence as a therapeutic target in cancer and age-related diseases. Nat Rev Drug Discov 2025; 24:57-71. [PMID: 39548312 DOI: 10.1038/s41573-024-01074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Cellular senescence is a stress response that restrains the growth of aged, damaged or abnormal cells. Thus, senescence has a crucial role in development, tissue maintenance and cancer prevention. However, lingering senescent cells fuel chronic inflammation through the acquisition of a senescence-associated secretory phenotype (SASP), which contributes to cancer and age-related tissue dysfunction. Recent progress in understanding senescence has spurred interest in the development of approaches to target senescent cells, known as senotherapies. In this Review, we evaluate the status of various types of senotherapies, including senolytics that eliminate senescent cells, senomorphics that suppress the SASP, interventions that mitigate senescence and strategies that harness the immune system to clear senescent cells. We also summarize how these approaches can be combined with cancer therapies, and we discuss the challenges and opportunities in moving senotherapies into clinical practice. Such therapies have the potential to address root causes of age-related diseases and thus open new avenues for preventive therapies and treating multimorbidities.
Collapse
Affiliation(s)
- Domhnall McHugh
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Imanol Durán
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Jesús Gil
- Senescence Group, MRC Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
5
|
Tian Y, Li W, Zhang Y. 3-N-Butylphthalide alleviate Aβ-induced cellular senescence through the CDK2-pRB1-Caspase3 axis. Brain Res 2024; 1849:149435. [PMID: 39736372 DOI: 10.1016/j.brainres.2024.149435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/17/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ) and leading to cellular senescence and cognitive deficits. Cellular senescence contributes significantly to the pathogenesis of AD through the senescence-associated secretory phenotype (SASP), exacerbating Aβ deposition. This study investigates the protective effects of 3-N-Butylphthalide (NBP), a compound derived from Apium graveolens Linn (Chinese celery), on Aβ-induced cellular senescence in U87 cells. Using RNA-sequencing and biochemical assays, we demonstrate that NBP ameliorate Aβ oligomer-induced cellular senescence and apoptosis, and regulated the expression of cyclin-dependent kinase inhibitor 2A (CDKN2A) and components of the cyclin-dependent kinase 2 (CDK2)- phosphorylated retinoblastoma 1 (pRB1)-Caspase3 pathway. Moreover, NBP was shown to suppress the expression of SASP-related genes. These findings suggest that NBP rescues U87 cells from Aβ oligomer-induced senescence and apoptosis through modulating the CDK2-pRB1-Caspase3 axis and SASP expression. Our results underscore the potential of NBP as a senostatic agent for AD which have not been reported in previous studies, offering insights into its mechanisms of action and paving the way for future studies on its efficacy in vivo and in clinical settings. Thus, we contribute to growing evidence supporting the use of senolytic and senostatic agents in the treatment of AD.
Collapse
Affiliation(s)
- Yuanruhua Tian
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
6
|
Xu Y, Liu S, Zhou Z, Qin H, Zhang Y, Zhang G, Ma H, Han X, Liu H, Liu Z. Integrated multi-omics analysis revealed the molecular networks and potential targets of cellular senescence in Alzheimer's disease. Hum Mol Genet 2024:ddae189. [PMID: 39690817 DOI: 10.1093/hmg/ddae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
Cellular senescence (CS) is a hallmark of Alzheimer's disease (AD). However, the mechanisms through which CS contributes to AD pathogenesis remain poorly understood. We found that CS level in AD was higher compared with the healthy control group. Transcriptome-based differential expression analysis identified 113 CS-related genes in blood and 410 in brain tissue as potential candidate genes involved in AD. To further explore the causal role of these genes, an integrative mendelian randomization analysis was conducted, combining AD genome-wide association study summary statistics with expression quantitative trait loci (eQTL) and DNA methylation quantitative trait loci (mQTL) data from blood samples, which identified five putative AD-causal genes (CENPW, EXOSC9, HSPB11, SLC44A2, and SLFN12) and 18 corresponding DNA methylation probes. Additionally, integrative analysis between eQTLs and mQTLs from blood uncovered two genes and 12 corresponding regulatory elements involved in AD. Furthermore, two genes (CDKN2B and ITGAV) were prioritized as putative causal genes in brain tissue and were validated through in vitro experiments. The multi-omics integration study revealed the potential role and underlying biological mechanisms of CS driven by genetic predisposition in AD. This study contributed to fundamental understanding of CS in AD pathogenesis and facilitated the identification of potential therapeutic targets for AD prevention and treatment.
Collapse
Affiliation(s)
- Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Zhaokai Zhou
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Hongzhuo Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Hongxuan Ma
- Department of Kidney Transportation, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Huimin Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan 450052, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China
| |
Collapse
|
7
|
Lyu W, Gao T, Shi C, Lu D, Chen Y, Qin H, Yu R, Zhang H, Zhou X, Qiang B, Chen Q, Liu Y, Song S, Chen Q, Zhang L, Liu Z. Design, synthesis, and pharmacological characterization of sulfonylurea-based NLRP3 inhibitors: Towards an effective therapeutic strategy for Alzheimer's disease. Eur J Med Chem 2024; 280:116993. [PMID: 39471709 DOI: 10.1016/j.ejmech.2024.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that severely diminishes the quality of life for millions. The NLRP3 inflammasome, a critical mediator of inflammation, has emerged as a promising therapeutic target for AD. In this study, we report the development and optimization of a novel series of sulfonylurea-based NLRP3 inhibitors, with a focus on compound MC1 for the treatment of AD. Utilizing the co-crystal structure of MCC950 in complex with NLRP3 as a guide, we employed a hybrid approach of computer-aided drug design and traditional medicinal chemistry to perform two iterative optimization cycles. This strategy led to the synthesis and evaluation of 40 sulfonylurea derivatives, culminating in the identification of MC1 as the lead candidate. MC1 exhibited enhanced NLRP3 inhibitory activity and demonstrated high binding affinity to NLRP3, effectively blocking NLRP3 activation induced by diverse stimuli such as ATP and Nigericin, without perturbing upstream processes like reactive oxygen species (ROS) generation. In vivo experiments in AD mouse models revealed that MC1 significantly ameliorated cognitive deficits, surpassing the performance of MCC950. Importantly, MC1 showed no signs of hepatotoxicity or adverse effects on the central nervous system. These findings suggest that MC1 holds strong potential as a lead compound for further development in AD therapy, providing a new scaffold for NLRP3 inhibition with improved safety and efficacy profiles.
Collapse
Affiliation(s)
- Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tongfei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Dehua Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yanming Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haoming Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ruohan Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Huiying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaonan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bo Qiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qixuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yiqiao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qing Chen
- Apeloa Pharmaceutical Co., Ltd., Dongyang, Zhejiang, 322118, China.
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
8
|
Huang Z, Xu P, Hess DC, Zhang Q. Cellular senescence as a key contributor to secondary neurodegeneration in traumatic brain injury and stroke. Transl Neurodegener 2024; 13:61. [PMID: 39668354 PMCID: PMC11636056 DOI: 10.1186/s40035-024-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Traumatic brain injury (TBI) and stroke pose major health challenges, impacting millions of individuals globally. Once considered solely acute events, these neurological conditions are now recognized as enduring pathological processes with long-term consequences, including an increased susceptibility to neurodegeneration. However, effective strategies to counteract their devastating consequences are still lacking. Cellular senescence, marked by irreversible cell-cycle arrest, is emerging as a crucial factor in various neurodegenerative diseases. Recent research further reveals that cellular senescence may be a potential driver for secondary neurodegeneration following brain injury. Herein, we synthesize emerging evidence that TBI and stroke drive the accumulation of senescent cells in the brain. The rationale for targeting senescent cells as a therapeutic approach to combat neurodegeneration following TBI/stroke is outlined. From a translational perspective, we emphasize current knowledge and future directions of senolytic therapy for these neurological conditions.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC, 29208, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
9
|
Niu Q, Li D, Zhang J, Piao Z, Xu B, Xi Y, Mohamed Kamal NNSN, Lim V, Li P, Yin Y. The new perspective of Alzheimer's Disease Research: Mechanism and therapeutic strategy of neuronal senescence. Ageing Res Rev 2024; 102:102593. [PMID: 39566741 DOI: 10.1016/j.arr.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Alzheimer's disease (AD), commonly known as senile dementia, is a neurodegenerative disease with insidious onset and gradually worsening course. The brain is particularly sensitive to senescence, and neuronal senescence is an important risk factor for the occurrence of AD. However, the exact pathogenesis between neuronal senescence and AD has not been fully elucidated so far. Neuronal senescence is characterized by the permanent stagnation of the cell cycle, and the changes in its structure, function, and microenvironment are closely related to the pathogenesis and progression of AD. In recent years, studies such as the Aβ cascade hypothesis and Tau protein phosphorylation have provided new strategies for the therapy of AD, but due to the complexity of the etiology of AD, there are still no effective treatment measures. This article aims to deeply analyze the pathogenesis between AD and neuronal senescence, and sort out various existing therapeutic methods, to provide new ideas and references for the clinical treatment of AD.
Collapse
Affiliation(s)
- Qianqian Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Danjie Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Jiayin Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Zhengji Piao
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Bo Xu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Yuting Xi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Nik Nur Syazni Nik Mohamed Kamal
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia; Dementia Multidisciplinary Research Program of IPPT (DMR-IPPT), Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Vuanghao Lim
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China.
| | - Yaling Yin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
10
|
Hudson HR, Riessland M, Orr ME. Defining and characterizing neuronal senescence, 'neurescence', as G X arrested cells. Trends Neurosci 2024; 47:971-984. [PMID: 39389805 DOI: 10.1016/j.tins.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Cellular senescence is a cell state characterized by resistance to apoptosis and stable cell cycle arrest. Senescence was first observed in mitotic cells in vitro. Recent evidence from in vivo studies and human tissue indicates that postmitotic cells, including neurons, may also become senescent. The quiescent cell state of neurons and inconsistent descriptions of neuronal senescence across studies, however, have caused confusion in this burgeoning field. We summarize evidence demonstrating that exit from G0 quiescence may protect neurons against apoptosis and predispose them toward senescence. Additionally, we propose the term 'neurescent' for senescent neurons and introduce the cell state, GX, to describe cell cycle arrest achieved by passing through G0 quiescence. Criteria are provided to identify neurescent cells, distinguish them from G0 quiescent neurons, and compare neurescent phenotypes with classic replicative senescence.
Collapse
Affiliation(s)
- Hannah R Hudson
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Miranda E Orr
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
11
|
Gabitto MI, Travaglini KJ, Rachleff VM, Kaplan ES, Long B, Ariza J, Ding Y, Mahoney JT, Dee N, Goldy J, Melief EJ, Agrawal A, Kana O, Zhen X, Barlow ST, Brouner K, Campos J, Campos J, Carr AJ, Casper T, Chakrabarty R, Clark M, Cool J, Dalley R, Darvas M, Ding SL, Dolbeare T, Egdorf T, Esposito L, Ferrer R, Fleckenstein LE, Gala R, Gary A, Gelfand E, Gloe J, Guilford N, Guzman J, Hirschstein D, Ho W, Hupp M, Jarsky T, Johansen N, Kalmbach BE, Keene LM, Khawand S, Kilgore MD, Kirkland A, Kunst M, Lee BR, Leytze M, Mac Donald CL, Malone J, Maltzer Z, Martin N, McCue R, McMillen D, Mena G, Meyerdierks E, Meyers KP, Mollenkopf T, Montine M, Nolan AL, Nyhus JK, Olsen PA, Pacleb M, Pagan CM, Peña N, Pham T, Pom CA, Postupna N, Rimorin C, Ruiz A, Saldi GA, Schantz AM, Shapovalova NV, Sorensen SA, Staats B, Sullivan M, Sunkin SM, Thompson C, Tieu M, Ting JT, Torkelson A, Tran T, Valera Cuevas NJ, Walling-Bell S, Wang MQ, Waters J, Wilson AM, Xiao M, Haynor D, Gatto NM, Jayadev S, Mufti S, Ng L, Mukherjee S, Crane PK, Latimer CS, Levi BP, Smith KA, Close JL, Miller JA, Hodge RD, Larson EB, Grabowski TJ, Hawrylycz M, Keene CD, Lein ES. Integrated multimodal cell atlas of Alzheimer's disease. Nat Neurosci 2024; 27:2366-2383. [PMID: 39402379 PMCID: PMC11614693 DOI: 10.1038/s41593-024-01774-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults. Although AD progression is characterized by stereotyped accumulation of proteinopathies, the affected cellular populations remain understudied. Here we use multiomics, spatial genomics and reference atlases from the BRAIN Initiative to study middle temporal gyrus cell types in 84 donors with varying AD pathologies. This cohort includes 33 male donors and 51 female donors, with an average age at time of death of 88 years. We used quantitative neuropathology to place donors along a disease pseudoprogression score. Pseudoprogression analysis revealed two disease phases: an early phase with a slow increase in pathology, presence of inflammatory microglia, reactive astrocytes, loss of somatostatin+ inhibitory neurons, and a remyelination response by oligodendrocyte precursor cells; and a later phase with exponential increase in pathology, loss of excitatory neurons and Pvalb+ and Vip+ inhibitory neuron subtypes. These findings were replicated in other major AD studies.
Collapse
Affiliation(s)
- Mariano I Gabitto
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | - Victoria M Rachleff
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeanelle Ariza
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Yi Ding
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Erica J Melief
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Anamika Agrawal
- Center for Data-Driven Discovery for Biology, Allen Institute, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Omar Kana
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - John Campos
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Jonah Cool
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | | | - Martin Darvas
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tom Egdorf
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Rohan Gala
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Madison Hupp
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Jarsky
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Brian E Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Lisa M Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sarah Khawand
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Mitchell D Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amanda Kirkland
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Naomi Martin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Gonzalo Mena
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Kelly P Meyers
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | | | - Mark Montine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Paul A Olsen
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Maiya Pacleb
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | - Aimee M Schantz
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Brian Staats
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Tracy Tran
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Angela M Wilson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ming Xiao
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David Haynor
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Nicole M Gatto
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas J Grabowski
- Department of Radiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
12
|
Dziewa M, Złotek M, Herbet M, Piątkowska-Chmiel I. Molecular and Cellular Foundations of Aging of the Brain: Anti-aging Strategies in Alzheimer's Disease. Cell Mol Neurobiol 2024; 44:80. [PMID: 39607636 PMCID: PMC11604688 DOI: 10.1007/s10571-024-01514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease (AD) is a condition characterized by the gradual degeneration of the nervous system that poses significant challenges to cognitive function and overall mental health. Given the increasing global life expectancy, there is an urgent need for effective strategies to prevent and manage Alzheimer's disease, with a particular focus on anti-aging interventions. Recent scientific advancements have unveiled several promising strategies for combating Alzheimer's disease (AD), ranging from lifestyle interventions to cutting-edge pharmacological treatments and therapies targeting the underlying biological processes of aging and AD. Regular physical exercise, cognitive engagement, a balanced diet, and social interaction serve as key pillars in maintaining brain health. At the same time, therapies target key pathological mechanisms of AD, such as amyloid-beta accumulation, tau abnormalities, neuroinflammation, mitochondrial dysfunction, and synaptic loss, offering potential breakthroughs in treatment. Moreover, cutting-edge innovations such as gene therapy, stem cell transplantation, and novel drug delivery systems are emerging as potential game-changers in the fight against AD. This review critically evaluates the latest research on anti-aging interventions and their potential in preventing and treating Alzheimer's disease (AD) by exploring the connections between aging mechanisms and AD pathogenesis. It provides a comprehensive analysis of both well-established and emerging strategies, while also identifying key gaps in current knowledge to guide future research efforts.
Collapse
Affiliation(s)
- Magdalena Dziewa
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Magdalena Złotek
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland.
| |
Collapse
|
13
|
Tangavelou K, Bhaskar K. The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer's Disease. Int J Mol Sci 2024; 25:12335. [PMID: 39596399 PMCID: PMC11595124 DOI: 10.3390/ijms252212335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In Alzheimer's disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin-proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD.
Collapse
Affiliation(s)
- Karthikeyan Tangavelou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
14
|
Lyons CE, Pallais JP, McGonigle S, Mansk RP, Collinge CW, Yousefzadeh MJ, Baker DJ, Schrank PR, Williams JW, Niedernhofer LJ, van Deursen JM, Razzoli M, Bartolomucci A. Chronic social stress induces p16-mediated senescent cell accumulation in mice. NATURE AGING 2024:10.1038/s43587-024-00743-8. [PMID: 39528642 DOI: 10.1038/s43587-024-00743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Life stress can shorten lifespan and increase risk for aging-related diseases, but the biology underlying this phenomenon remains unclear. Here we assessed the effect of chronic stress on cellular senescence-a hallmark of aging. Exposure to restraint stress, a psychological non-social stress model, increased p21Cip1 exclusively in the brains of male, but not female mice, and in a p16Ink4a-independent manner. Conversely, exposure to chronic subordination stress (only males were tested) increased key senescent cell markers in peripheral blood mononuclear cells, adipose tissue and brain, in a p16Ink4a-dependent manner. p16Ink4a-positive cells in the brain of chronic subordination stress-exposed mice were primarily hippocampal and cortical neurons with evidence of DNA damage that could be reduced by p16Ink4a cell clearance. Clearance of p16Ink4a-positive cells was not sufficient to ameliorate the adverse effects of social stress on measured metrics of healthspan. Overall, our findings indicate that social stress induces an organ-specific and p16Ink4a-dependent accumulation of senescent cells, illuminating a fundamental way by which the social environment can contribute to aging.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Seth McGonigle
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Rachel P Mansk
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Charles W Collinge
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Matthew J Yousefzadeh
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Paul F. Glenn Center for the Biology of Aging, Mayo Clinic, Rochester, MN, USA
| | - Patricia R Schrank
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Jesse W Williams
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Ionescu RB, Nicaise AM, Reisz JA, Williams EC, Prasad P, Willis CM, Simões-Abade MBC, Sbarro L, Dzieciatkowska M, Stephenson D, Suarez Cubero M, Rizzi S, Pirvan L, Peruzzotti-Jametti L, Fossati V, Edenhofer F, Leonardi T, Frezza C, Mohorianu I, D'Alessandro A, Pluchino S. Increased cholesterol synthesis drives neurotoxicity in patient stem cell-derived model of multiple sclerosis. Cell Stem Cell 2024; 31:1574-1590.e11. [PMID: 39437792 DOI: 10.1016/j.stem.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/01/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Senescent neural progenitor cells have been identified in brain lesions of people with progressive multiple sclerosis (PMS). However, their role in disease pathobiology and contribution to the lesion environment remains unclear. By establishing directly induced neural stem/progenitor cell (iNSC) lines from PMS patient fibroblasts, we studied their senescent phenotype in vitro. Senescence was strongly associated with inflammatory signaling, hypermetabolism, and the senescence-associated secretory phenotype (SASP). PMS-derived iNSCs displayed increased glucose-dependent fatty acid and cholesterol synthesis, which resulted in the accumulation of lipid droplets. A 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase (HMGCR)-mediated lipogenic state was found to induce a SASP in PMS iNSCs via cholesterol-dependent transcription factors. SASP from PMS iNSC lines induced neurotoxicity in mature neurons, and treatment with the HMGCR inhibitor simvastatin altered the PMS iNSC SASP, promoting cytoprotective qualities and reducing neurotoxicity. Our findings suggest a disease-associated, cholesterol-related, hypermetabolic phenotype of PMS iNSCs that leads to neurotoxic signaling and is rescuable pharmacologically.
Collapse
Affiliation(s)
- Rosana-Bristena Ionescu
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Alexandra M Nicaise
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eleanor C Williams
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Pranathi Prasad
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Cory M Willis
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Madalena B C Simões-Abade
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Linda Sbarro
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Marta Suarez Cubero
- Genomics, Stem Cell Biology and Regenerative Medicine Group, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, Innsbruck 6020, Austria
| | - Sandra Rizzi
- Genomics, Stem Cell Biology and Regenerative Medicine Group, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, Innsbruck 6020, Austria
| | - Liviu Pirvan
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Frank Edenhofer
- Genomics, Stem Cell Biology and Regenerative Medicine Group, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, Innsbruck 6020, Austria
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Instituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Christian Frezza
- Institute for Metabolomics in Ageing, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne 50931, Germany; Institute of Genetics, Faculty of Mathematics and Natural Sciences, Faculty of Medicine, University of Cologne, Cologne 50674, Germany
| | - Irina Mohorianu
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0AH, UK.
| |
Collapse
|
16
|
Riessland M, Ximerakis M, Jarjour AA, Zhang B, Orr ME. Therapeutic targeting of senescent cells in the CNS. Nat Rev Drug Discov 2024; 23:817-837. [PMID: 39349637 DOI: 10.1038/s41573-024-01033-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 11/01/2024]
Abstract
Senescent cells accumulate throughout the body with advanced age, diseases and chronic conditions. They negatively impact health and function of multiple systems, including the central nervous system (CNS). Therapies that target senescent cells, broadly referred to as senotherapeutics, recently emerged as potentially important treatment strategies for the CNS. Promising therapeutic approaches involve clearing senescent cells by disarming their pro-survival pathways with 'senolytics'; or dampening their toxic senescence-associated secretory phenotype (SASP) using 'senomorphics'. Following the pioneering discovery of first-generation senolytics dasatinib and quercetin, dozens of additional therapies have been identified, and several promising targets are under investigation. Although potentially transformative, senotherapies are still in early stages and require thorough testing to ensure reliable target engagement, specificity, safety and efficacy. The limited brain penetrance and potential toxic side effects of CNS-acting senotherapeutics pose challenges for drug development and translation to the clinic. This Review assesses the potential impact of senotherapeutics for neurological conditions by summarizing preclinical evidence, innovative methods for target and biomarker identification, academic and industry drug development pipelines and progress in clinical trials.
Collapse
Affiliation(s)
- Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
17
|
Weng M, Jauch R. Advancements in personalized stem cell models for aging-related neurodegenerative disorders. Neural Regen Res 2024; 19:2333-2334. [PMID: 38526261 PMCID: PMC11090431 DOI: 10.4103/nrr.nrr-d-23-01793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 03/26/2024] Open
Affiliation(s)
- Mingxi Weng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Center for Translational Stem Cell Biology, Hong Kong Special Administrative Region, China
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Center for Translational Stem Cell Biology, Hong Kong Special Administrative Region, China
| |
Collapse
|
18
|
Noh SG, Kim HW, Kim S, Chung KW, Jung YS, Yoon JH, Yu BP, Lee J, Chung HY. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res Rev 2024; 101:102503. [PMID: 39284417 DOI: 10.1016/j.arr.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Woo Kim
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jaewon Lee
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
19
|
Wu B, Xiao Q, Zhu L, Tang H, Peng W. Icariin targets p53 to protect against ceramide-induced neuronal senescence: Implication in Alzheimer's disease. Free Radic Biol Med 2024; 224:204-219. [PMID: 39197597 DOI: 10.1016/j.freeradbiomed.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a leading cause of dementia. The aging brain is particularly vulnerable to various stressors, including increased levels of ceramide. However, the role of ceramide in neuronal cell senescence and AD progression and whether icariin, a natural flavonoid glucoside, could reverse neuronal senescence remain inadequately understood. AIM In this study, we explore the role of ceramide in neuronal senescence and AD, and whether icariin can counteract these effects. METHODS We pretreated HT-22 cells with icariin and then induced senescence with ceramide. Various assays were employed to assess cell senescence, such as reactive oxygen species (ROS) production, cell cycle progression, β-galactosidase staining, and expression of senescence-associated proteins. In vivo studies utilized APP/PS1 mice and C57BL/6J mice injected with ceramide to evaluate behavioral changes, histopathological alterations, and senescence-associated protein expression. Transcriptomics, molecular docking, molecular dynamics simulations, and cellular thermal shift assays were employed to verify the interaction between icariin and P53. The specificity of icariin targeting of P53 was further confirmed through rescue experiments utilizing the P53 activator Navtemadlin. RESULTS Our data demonstrated that ceramide could induce neuronal senescence and AD-related pathologies, which were reversed by icariin. Moreover, molecular studies revealed that icariin directly targeted P53, and its neuroprotective effects were attenuated by P53 activation, providing evidence for the role of P53 in icariin-mediated neuroprotection. CONCLUSION Icariin demonstrates a protective effect against ceramide-induced neuronal senescence by inhibiting the P53 pathway. This identifies a novel mechanism of action for icariin, offering a novel therapeutic approach for AD and other age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Qiao Xiao
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Lemei Zhu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Hanfen Tang
- Department of Nutrition, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
20
|
Kraskovskaya N, Linkova N, Sakhenberg E, Krieger D, Polyakova V, Medvedev D, Krasichkov A, Khotin M, Ryzhak G. Short Peptides Protect Fibroblast-Derived Induced Neurons from Age-Related Changes. Int J Mol Sci 2024; 25:11363. [PMID: 39518916 PMCID: PMC11546785 DOI: 10.3390/ijms252111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Neurons become more vulnerable to stress factors with age, which leads to increased oxidative DNA damage, decreased activity of mitochondria and lysosomes, increased levels of p16, decreased LaminB1 proteins, and the depletion of the dendritic tree. These changes are exacerbated in vulnerable neuronal populations during the development of neurodegenerative diseases. Glu-Asp-Arg (EDR) and Lys-Glu-Asp (KED), and Ala-Glu-Asp-Gly (AEDG) peptides have previously demonstrated neuroprotective effects in various models of Alzheimer's disease. In this study, we investigated the influence of EDR, KED, and AEDG peptides on the aging of fibroblast-derived induced neurons. We used a new in vitro cellular model of human neuronal aging based on the transdifferentiation of aged dermal fibroblasts from elderly donors into induced cortical neurons. All peptides promote the arborization of the dendritic tree, increasing both the number of primary processes and the total length of dendrites. Tripeptides have no effect on the activity of mitochondria and lysosomes and the level of p16 protein in induced neurons. EDR peptide reduces oxidative DNA damage in induced neurons derived from elderly donor fibroblasts. Short peptides partially protect induced neurons from age-related changes and stimulate dendritogenesis in neurons. They can be recommended for use as neuroprotective agents.
Collapse
Affiliation(s)
- Nina Kraskovskaya
- Institute of Cytology RAS, Tikhoretski Pr., 4, St. Petersburg 194064, Russia; (N.K.); (E.S.); (D.K.); (M.K.)
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Pr., 2−4, St. Petersburg 191036, Russia;
| | - Elena Sakhenberg
- Institute of Cytology RAS, Tikhoretski Pr., 4, St. Petersburg 194064, Russia; (N.K.); (E.S.); (D.K.); (M.K.)
| | - Daria Krieger
- Institute of Cytology RAS, Tikhoretski Pr., 4, St. Petersburg 194064, Russia; (N.K.); (E.S.); (D.K.); (M.K.)
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Pr., 2−4, St. Petersburg 191036, Russia;
| | - Dmitrii Medvedev
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia; (D.M.); (G.R.)
- The Department of Social Rehabilitation and Occupational Therapy, St. Petersburg Medical and Social Institute, Kondratievsky St., 72A, St. Petersburg 195271, Russia
| | - Alexander Krasichkov
- Department of Radio Engineering Systems, Saint Petersburg Electrotechnical University ‘LETI’, 5F Prof. Popova St., St. Petersburg 197376, Russia;
| | - Mikhail Khotin
- Institute of Cytology RAS, Tikhoretski Pr., 4, St. Petersburg 194064, Russia; (N.K.); (E.S.); (D.K.); (M.K.)
| | - Galina Ryzhak
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia; (D.M.); (G.R.)
| |
Collapse
|
21
|
Ostermann PN, Wu Y, Bowler SA, Siddiqui MA, Herrera A, Sidharta M, Ramnarine K, Martínez-Meza S, St. Bernard LA, Nixon DF, Jones RB, Yamashita M, Ndhlovu LC, Zhou T, Evering TH. A Transcriptional Signature of Induced Neurons Differentiates Virologically Suppressed People Living With HIV from People Without HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619617. [PMID: 39484396 PMCID: PMC11526917 DOI: 10.1101/2024.10.22.619617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Neurocognitive impairment is a prevalent and important co-morbidity in virologically suppressed people living with HIV (PLWH), yet the underlying mechanisms remain elusive and treatments lacking. Here, we explored for the first time, use of participant-derived directly induced neurons (iNs) to model neuronal biology and injury in PLWH. iNs retain age- and disease-related features of the donors, providing unique opportunities to reveal novel aspects of neurological disorders. We obtained primary dermal fibroblasts from six virologically suppressed PLWH (range: 27 - 64 years, median: 53); 83% Male; 50% White) and seven matched people without HIV (PWOH) (range: 27 - 66, median: 55); 71% Male; 57% White). iNs were generated using transcription factors NGN2 and ASCL1, and validated by immunocytochemistry and single-cell-RNAseq. Transcriptomic analysis using bulk-RNAseq identified 29 significantly differentially expressed genes between iNs from PLWH and PWOH. Of these, 16 genes were downregulated and 13 upregulated in PLWH iNs. Protein-protein interaction network mapping indicates that iNs from PLWH exhibit differences in extracellular matrix organization and synaptic transmission. IFI27 was upregulated in iNs from PLWH, which complements independent post-mortem studies demonstrating elevated IFI27 expression in PLWH-derived brain tissue, indicating that iN generation reconstitutes this pathway. Finally, we observed that expression of the FOXL2NB-FOXL2-LINC01391 genome locus is reduced in iNs from PLWH and negatively correlates with neurocognitive impairment. Thus, we have identified an iN gene signature of HIV through direct reprogramming of skin fibroblasts into neurons revealing novel mechanisms of neurocognitive impairment in PLWH.
Collapse
Affiliation(s)
- Philipp N. Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Youjun Wu
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Scott A. Bowler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mohammad Adnan Siddiqui
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY. 10032, USA
| | - Alberto Herrera
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mega Sidharta
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Kiran Ramnarine
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Samuel Martínez-Meza
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Leslie Ann St. Bernard
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Masahiro Yamashita
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY. 10032, USA
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ting Zhou
- The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Teresa H. Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
22
|
Lei SY, Qu Y, Yang YQ, Liu JC, Zhang YF, Zhou SY, He QY, Jin H, Yang Y, Guo ZN. Cellular senescence: A novel therapeutic target for central nervous system diseases. Biomed Pharmacother 2024; 179:117311. [PMID: 39182322 DOI: 10.1016/j.biopha.2024.117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
The underlying mechanisms of diseases affecting the central nervous system (CNS) remain unclear, limiting the development of effective therapeutic strategies. Remarkably, cellular senescence, a biological phenomenon observed in cultured fibroblasts in vitro, is a crucial intrinsic mechanism that influences homeostasis of the brain microenvironment and contributes to the onset and progression of CNS diseases. Cellular senescence has been observed in disease models established in vitro and in vivo and in bodily fluids or tissue components from patients with CNS diseases. These findings highlight cellular senescence as a promising target for preventing and treating CNS diseases. Consequently, emerging novel therapies targeting senescent cells have exhibited promising therapeutic effects in preclinical and clinical studies on aging-related diseases. These innovative therapies can potentially delay brain cell loss and functional changes, improve the prognosis of CNS diseases, and provide alternative treatments for patients. In this study, we examined the relevant advancements in this field, particularly focusing on the targeting of senescent cells in the brain for the treatment of chronic neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis) and acute neurotraumatic insults (e.g., ischemic stroke, spinal cord injury, and traumatic brain injury).
Collapse
Affiliation(s)
- Shuang-Yin Lei
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yu-Qian Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Jia-Cheng Liu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yi-Fei Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Hang Jin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China; Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
23
|
Jiao L, Shao W, Quan W, Xu L, Liu P, Yang J, Peng X. iPLA2β loss leads to age-related cognitive decline and neuroinflammation by disrupting neuronal mitophagy. J Neuroinflammation 2024; 21:228. [PMID: 39294744 PMCID: PMC11409585 DOI: 10.1186/s12974-024-03219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND During brain aging, disturbances in neuronal phospholipid metabolism result in impaired cognitive function and dysregulation of neurological processes. Mutations in iPLA2β are associated with neurodegenerative conditions that significantly impact brain phospholipids. iPLA2β deficiency exacerbates mitochondrial dysfunction and abnormal mitochondrial accumulation. We hypothesized that iPLA2β contributes to age-related cognitive decline by disrupting neuronal mitophagy. METHODOLOGY We used aged wild-type (WT) mice and iPLA2β-/- mice as natural aging models to assess cognitive performance, iPLA2β expression in the cortex, levels of chemokines and inflammatory cytokines, and mitochondrial dysfunction, with a specific focus on mitophagy and the mitochondrial phospholipid profile. To further elucidate the role of iPLA2β, we employed adeno-associated virus (AAV)-mediated iPLA2β overexpression in aged mice and re-evaluated these parameters. RESULTS Our findings revealed a significant reduction in iPLA2β levels in the prefrontal cortex of aged brains. Notably, iPLA2β-deficient mice exhibited impaired learning and memory. Loss of iPLA2β in the PFC of aged mice led to increased levels of chemokines and inflammatory cytokines. This damage was associated with altered mitochondrial morphology, reduced ATP levels due to dysregulation of the parkin-independent mitophagy pathway, and changes in the mitochondrial phospholipid profile. AAV-mediated overexpression of iPLA2β alleviated age-related parkin-independent mitophagy pathway dysregulation in primary neurons and the PFC of aged mice, reduced inflammation, and improved cognitive function. CONCLUSIONS Our study suggests that age-related iPLA2β loss in the PFC leads to cognitive decline through the disruption of mitophagy. These findings highlight the potential of targeting iPLA2β to ameliorate age-related neurocognitive disorders.
Collapse
Affiliation(s)
- Li Jiao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Wenxin Shao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Wenqi Quan
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Longjiang Xu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Penghui Liu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Jinling Yang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China
| | - Xiaozhong Peng
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Innovation for Animal Model, Institute of Laboratory Animal Sciences, National Center of Technology, CAMS & PUMC, Beijing, 100021, China.
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China.
| |
Collapse
|
24
|
Ore A, Angelastro JM, Giulivi C. Integrating Mitochondrial Biology into Innovative Cell Therapies for Neurodegenerative Diseases. Brain Sci 2024; 14:899. [PMID: 39335395 PMCID: PMC11429837 DOI: 10.3390/brainsci14090899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The role of mitochondria in neurodegenerative diseases is crucial, and recent developments have highlighted its significance in cell therapy. Mitochondrial dysfunction has been implicated in various neurodegenerative disorders, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and Huntington's diseases. Understanding the impact of mitochondrial biology on these conditions can provide valuable insights for developing targeted cell therapies. This mini-review refocuses on mitochondria and emphasizes the potential of therapies leveraging mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, stem cell-derived secretions, and extracellular vesicles. Mesenchymal stem cell-mediated mitochondria transfer is highlighted for restoring mitochondrial health in cells with dysfunctional mitochondria. Additionally, attention is paid to gene-editing techniques such as mito-CRISPR, mitoTALENs, mito-ZNFs, and DdCBEs to ensure the safety and efficacy of stem cell treatments. Challenges and future directions are also discussed, including the possible tumorigenic effects of stem cells, off-target effects, disease targeting, immune rejection, and ethical issues.
Collapse
Affiliation(s)
- Adaleiz Ore
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
- Department of Chemical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James M. Angelastro
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (A.O.); (J.M.A.)
- University of California Medical Investigations of Neurodevelopmental Disorders Institute (MIND Institute), University of California Health, Sacramento, CA 95817, USA
| |
Collapse
|
25
|
Feng H, Li J, Wang H, Wei Z, Feng S. Senescence- and Immunity-Related Changes in the Central Nervous System: A Comprehensive Review. Aging Dis 2024:AD.2024.0755. [PMID: 39325939 DOI: 10.14336/ad.2024.0755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Senescence is a cellular state characterized by an irreversible halt in the cell cycle, accompanied by alterations in cell morphology, function, and secretion. Senescent cells release a plethora of inflammatory and growth factors, extracellular matrix proteins, and other bioactive substances, collectively known as the senescence-associated secretory phenotype (SASP). These excreted substances serve as crucial mediators of senescent tissues, while the secretion of SASP by senescent neurons and glial cells in the central nervous system modulates the activity of immune cells. Senescent immune cells also influence the physiological activities of various cells in the central nervous system. Further, the interaction between cellular senescence and immune regulation collectively affects the physiological and pathological processes of the central nervous system. Herein, we explore the role of senescence in the physiological and pathological processes underlying embryonic development, aging, degeneration, and injury of the central nervous system, through the immune response. Further, we elucidate the role of senescence in the physiological and pathological processes of the central nervous system, proposing a new theoretical foundation for treating central nervous system diseases.
Collapse
Affiliation(s)
- Haiwen Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Junjin Li
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Hongda Wang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Zhijian Wei
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
26
|
Sun S, Jiang M, Ma S, Ren J, Liu GH. Exploring the heterogeneous targets of metabolic aging at single-cell resolution. Trends Endocrinol Metab 2024:S1043-2760(24)00190-5. [PMID: 39181730 DOI: 10.1016/j.tem.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024]
Abstract
Our limited understanding of metabolic aging poses major challenges to comprehending the diverse cellular alterations that contribute to age-related decline, and to devising targeted interventions. This review provides insights into the heterogeneous nature of cellular metabolism during aging and its response to interventions, with a specific focus on cellular heterogeneity and its implications. By synthesizing recent findings using single-cell approaches, we explored the vulnerabilities of distinct cell types and key metabolic pathways. Delving into the cell type-specific alterations underlying the efficacy of systemic interventions, we also discuss the complexity of integrating single-cell data and advocate for leveraging computational tools and artificial intelligence to harness the full potential of these data, develop effective strategies against metabolic aging, and promote healthy aging.
Collapse
Affiliation(s)
- Shuhui Sun
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China.
| | - Mengmeng Jiang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium, Beijing 100101, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium, Beijing 100101, China; Key Laboratory of RNA Innovation, Science and Engineering, China National Center for Bioinformation, Beijing 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
27
|
Fernandes S, Revanna J, Pratt J, Hayes N, Marchetto MC, Gage FH. Modeling Alzheimer's disease using human cell derived brain organoids and 3D models. Front Neurosci 2024; 18:1434945. [PMID: 39156632 PMCID: PMC11328153 DOI: 10.3389/fnins.2024.1434945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Age-related neurodegenerative diseases, like Alzheimer's disease (AD), are challenging diseases for those affected with no cure and limited treatment options. Functional, human derived brain tissues that represent the diverse genetic background and cellular subtypes contributing to sporadic AD (sAD) are limited. Human stem cell derived brain organoids recapitulate some features of human brain cytoarchitecture and AD-like pathology, providing a tool for illuminating the relationship between AD pathology and neural cell dysregulation leading to cognitive decline. In this review, we explore current strategies for implementing brain organoids in the study of AD as well as the challenges associated with investigating age-related brain diseases using organoid models.
Collapse
Affiliation(s)
- Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Jasmin Revanna
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joshua Pratt
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Nicholas Hayes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, California State University, San Marcos, CA, United States
| | - Maria C. Marchetto
- Department of Anthropology, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, United States
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
28
|
Terao R, Sohn BS, Yamamoto T, Lee TJ, Colasanti J, Pfeifer CW, Lin JB, Santeford A, Yamaguchi S, Yoshida M, Apte RS. Cholesterol Accumulation Promotes Photoreceptor Senescence and Retinal Degeneration. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 39167399 PMCID: PMC11343002 DOI: 10.1167/iovs.65.10.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose Dysregulated cholesterol metabolism is critical in the pathogenesis of AMD. Cellular senescence contributes to the development of numerous age-associated diseases. In this study, we investigated the link between cholesterol burden and the cellular senescence of photoreceptors. Methods Retinas from rod-specific ATP binding cassette subfamily A member 1 (Abca1) and G member 1 (Abcg1) (Abca1/g1-rod/-rod) knockout mice fed with a high-fat diet were analyzed for the signs of cellular senescence. Real-time quantitative PCR and immunofluorescence were used to characterize the senescence profile of the retina and cholesterol-treated photoreceptor cell line (661W). Inducible elimination of p16(Ink4a)-positive senescent cells (INK-ATTAC) mice or the administration of senolytic drugs (dasatinib and quercetin: D&Q) were used to examine the impact of senolytics on AMD-like phenotypes in Abca1/g1-rod/-rod retina. Results Increased accumulation of senescent cells as measured by markers of cellular senescence was found in Abca1/g1-rod/-rod retina. Exogenous cholesterol also induced cellular senescence in 661W cells. Selective elimination of senescent cells in Abca1/g1-rod/-rod;INK-ATTAC mice or by administration of D&Q improved visual function, lipid accumulation in retinal pigment epithelium, and Bruch's membrane thickening. Conclusions Cholesterol accumulation promotes cellular senescence in photoreceptors. Eliminating senescent photoreceptors improves visual function in a model of retinal neurodegeneration, and senotherapy offers a novel therapeutic avenue for further investigation.
Collapse
Affiliation(s)
- Ryo Terao
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Brian S. Sohn
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Taku Yamamoto
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Tae Jun Lee
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jason Colasanti
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Charles W. Pfeifer
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Joseph B. Lin
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Andrea Santeford
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Shinobu Yamaguchi
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mitsukuni Yoshida
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
29
|
Wang Y, Kuca K, You L, Nepovimova E, Heger Z, Valko M, Adam V, Wu Q, Jomova K. The role of cellular senescence in neurodegenerative diseases. Arch Toxicol 2024; 98:2393-2408. [PMID: 38744709 PMCID: PMC11272704 DOI: 10.1007/s00204-024-03768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Increasing evidence has revealed that cellular senescence drives NDs, including Alzheimer's disease (AD) and Parkinson's disease. Different senescent cell populations secrete senescence-associated secretory phenotypes (SASP), including matrix metalloproteinase-3, interleukin (IL)-1α, IL-6, and IL-8, which can harm adjacent microglia. Moreover, these cells possess high expression levels of senescence hallmarks (p16 and p21) and elevated senescence-associated β-galactosidase activity in in vitro and in vivo ND models. These senescence phenotypes contribute to the deposition of β-amyloid and tau-protein tangles. Selective clearance of senescent cells and SASP regulation by inhibiting p38/mitogen-activated protein kinase and nuclear factor kappa B signaling attenuate β-amyloid load and prevent tau-protein tangle deposition, thereby improving cognitive performance in AD mouse models. In addition, telomere shortening, a cellular senescence biomarker, is associated with increased ND risks. Telomere dysfunction causes cellular senescence, stimulating IL-6, tumor necrosis factor-α, and IL-1β secretions. The forced expression of telomerase activators prevents cellular senescence, yielding considerable neuroprotective effects. This review elucidates the mechanism of cellular senescence in ND pathogenesis, suggesting strategies to eliminate or restore senescent cells to a normal phenotype for treating such diseases.
Collapse
Affiliation(s)
- Yating Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, 401520, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74, Nitra, Slovakia.
| |
Collapse
|
30
|
Saurat N, Minotti AP, Rahman MT, Sikder T, Zhang C, Cornacchia D, Jungverdorben J, Ciceri G, Betel D, Studer L. Genome-wide CRISPR screen identifies neddylation as a regulator of neuronal aging and AD neurodegeneration. Cell Stem Cell 2024; 31:1162-1174.e8. [PMID: 38917806 PMCID: PMC11405001 DOI: 10.1016/j.stem.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Aging is the biggest risk factor for the development of Alzheimer's disease (AD). Here, we performed a whole-genome CRISPR screen to identify regulators of neuronal age and show that the neddylation pathway regulates both cellular age and AD neurodegeneration in a human stem cell model. Specifically, we demonstrate that blocking neddylation increased cellular hallmarks of aging and led to an increase in Tau aggregation and phosphorylation in neurons carrying the APPswe/swe mutation. Aged APPswe/swe but not isogenic control neurons also showed a progressive decrease in viability. Selective neuronal loss upon neddylation inhibition was similarly observed in other isogenic AD and in Parkinson's disease (PD) models, including PSENM146V/M146V cortical and LRRK2G2019S/G2019S midbrain dopamine neurons, respectively. This study indicates that cellular aging can reveal late-onset disease phenotypes, identifies new potential targets to modulate AD progression, and describes a strategy to program age-associated phenotypes into stem cell models of disease.
Collapse
Affiliation(s)
- Nathalie Saurat
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Andrew P Minotti
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Maliha T Rahman
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Trisha Sikder
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Daniela Cornacchia
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Johannes Jungverdorben
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Gabriele Ciceri
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
31
|
Sillau SH, Coughlan C, Ahmed MM, Nair K, Araya P, Galbraith MD, Bettcher BM, Espinosa JM, Chial HJ, Epperson N, Boyd TD, Potter H. Neuron loss in the brain starts in childhood, increases exponentially with age and is halted by GM-CSF treatment in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.14.24310223. [PMID: 39072024 PMCID: PMC11275665 DOI: 10.1101/2024.07.14.24310223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Aging increases the risk of neurodegeneration, cognitive decline, and Alzheimer's disease (AD). Currently no means exist to measure neuronal cell death during life or to prevent it. Here we show that cross-sectional measures of human plasma proteins released from dying/damaged neurons (ubiquitin C-terminal hydrolase-L1/UCH-L1 and neurofilament light/NfL) become exponentially higher from age 2-85; UCH-L1 rises faster in females. Glial fibrillary acidic protein (GFAP) concentrations, indicating astrogliosis/inflammation, increase exponentially after age 40. Treatment with human granulocyte-macrophage colony-stimulating factor (GM-CSF/sargramostim) halted neuronal cell death, as evidenced by reduced plasma UCH-L1 concentrations, in AD participants to levels equivalent to those of five-year-old healthy controls. The ability of GM-CSF treatment to reduce neuronal apoptosis was confirmed in a rat model of AD. These findings suggest that the exponential increase in neurodegeneration with age, accelerated by neuroinflammation, may underlie the contribution of aging to cognitive decline and AD and can be halted by GM-CSF/sargramostim treatment.
Collapse
|
32
|
Charou D, Rogdakis T, Latorrata A, Valcarcel M, Papadogiannis V, Athanasiou C, Tsengenes A, Papadopoulou MA, Lypitkas D, Lavigne MD, Katsila T, Wade RC, Cader MZ, Calogeropoulou T, Gravanis A, Charalampopoulos I. Comprehensive characterization of the neurogenic and neuroprotective action of a novel TrkB agonist using mouse and human stem cell models of Alzheimer's disease. Stem Cell Res Ther 2024; 15:200. [PMID: 38971770 PMCID: PMC11227723 DOI: 10.1186/s13287-024-03818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Neural stem cell (NSC) proliferation and differentiation in the mammalian brain decreases to minimal levels postnatally. Nevertheless, neurogenic niches persist in the adult cortex and hippocampus in rodents, primates and humans, with adult NSC differentiation sharing key regulatory mechanisms with development. Adult neurogenesis impairments have been linked to Alzheimer's disease (AD) pathology. Addressing these impairments by using neurotrophic factors is a promising new avenue for therapeutic intervention based on neurogenesis. However, this possibility has been hindered by technical difficulties of using in-vivo models to conduct screens, including working with scarce NSCs in the adult brain and differences between human and mouse models or ethical limitations. METHODS Here, we use a combination of mouse and human stem cell models for comprehensive in-vitro characterization of a novel neurogenic compound, focusing on the brain-derived neurotrophic factor (BDNF) pathway. The ability of ENT-A011, a steroidal dehydroepiandrosterone derivative, to activate the tyrosine receptor kinase B (TrkB) receptor was tested through western blotting in NIH-3T3 cells and its neurogenic and neuroprotective action were assessed through proliferation, cell death and Amyloid-β (Aβ) toxicity assays in mouse primary adult hippocampal NSCs, mouse embryonic cortical NSCs and neural progenitor cells (NPCs) differentiated from three human induced pluripotent stem cell lines from healthy and AD donors. RNA-seq profiling was used to assess if the compound acts through the same gene network as BDNF in human NPCs. RESULTS ENT-A011 was able to increase proliferation of mouse primary adult hippocampal NSCs and embryonic cortical NSCs, in the absence of EGF/FGF, while reducing Aβ-induced cell death, acting selectively through TrkB activation. The compound was able to increase astrocytic gene markers involved in NSC maintenance, protect hippocampal neurons from Αβ toxicity and prevent synapse loss after Aβ treatment. ENT-A011 successfully induces proliferation and prevents cell death after Aβ toxicity in human NPCs, acting through a core gene network shared with BDNF as shown through RNA-seq. CONCLUSIONS Our work characterizes a novel BDNF mimetic with preferable pharmacological properties and neurogenic and neuroprotective actions in Alzheimer's disease via stem cell-based screening, demonstrating the promise of stem cell systems for short-listing competitive candidates for further testing.
Collapse
Affiliation(s)
- Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Thanasis Rogdakis
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Alessia Latorrata
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Maria Valcarcel
- Innovative Technologies in Biological Systems SL (INNOPROT), 48160, Derio, Bizkaia, Spain
| | - Vasileios Papadogiannis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece
| | - Christina Athanasiou
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120, Heidelberg, Germany
| | - Alexandros Tsengenes
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120, Heidelberg, Germany
| | - Maria Anna Papadopoulou
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Dimitrios Lypitkas
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Matthieu D Lavigne
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120, Heidelberg, Germany
| | - M Zameel Cader
- Translational Molecular Neuroscience Group, Dorothy Crowfoot Hodgkin Building, Kavli Institute for Nanoscience, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71003, Heraklion, Greece.
- Foundation for Research and Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology and Biotechnology, 70013, Heraklion, Greece.
| |
Collapse
|
33
|
Qian B, Li TY, Zheng ZX, Zhang HY, Xu WQ, Mo SM, Cui JJ, Chen WJ, Lin YC, Lin ZN. The involvement of SigmaR1 K142 degradation mediated by ERAD in neural senescence linked with CdCl 2 exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134466. [PMID: 38718507 DOI: 10.1016/j.jhazmat.2024.134466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/30/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Due to its uncertain pathogenesis, there is currently no treatment available for AD. Increasing evidences have linked cellular senescence to AD, although the mechanism triggering cellular senescence in AD requires further exploration. To investigate the involvement of cellular senescence in AD, we explored the effects of cadmium chloride (CdCl2) exposure, one of the potential environmental risk factors for AD, on neuron senescence in vivo and in vitro. β-amyloid (Aβ) and tubulin-associated protein (tau) pathologies were found to be enhanced by CdCl2 exposure in the in vitro models, while p53/p21/Rb cascade-related neuronal senescence pathways were activated. Conversely, the use of melatonin, a cellular senescence inhibitor, or a cadmium ion chelator suppressed CdCl2-induced neuron senescence, along with the Aβ and tau pathologies. Mechanistically, CdCl2 exposure activated the suppressor enhancer Lin-12/Notch 1-like (SEL1L)/HMG-CoA reductase degradation 1 (HRD1)-regulated endoplasmic reticulum-associated degradation (ERAD), which enhanced the ubiquitin degradation of sigma-1 receptor (SigmaR1) by specifically recognizing its K142 site, resulting in the activation of the p53/p21/Rb pathway via the induction of Ca2+ dyshomeostasis and mitochondrial dysfunction. In the in vivo models, the administration of the SigmaR1 agonist ANAVEX2-73 rescues neurobehavioral inhibition and alleviates cellular senescence and AD-like pathology in the brain tissue of CdCl2-exposed mice. Consequently, the present study revealed a novel senescence-associated regulatory route for the SEL1L/HRD1/SigmaR1 axis that affects the pathological progression of CdCl2 exposure-associated AD. CdCl2 exposure activated SEL1L/HRD1-mediated ERAD and promoted the ubiquitinated degradation of SigmaR1, activating p53/p21/Rb pathway-regulated neuronal senescence. The results of the present study suggest that SigmaR1 may function as a neuroprotective biomarker of neuronal senescence, and pharmacological activation of SigmaR1 could be a promising intervention strategy for AD therapy.
Collapse
Affiliation(s)
- Bo Qian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ting-Yu Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhao-Xuan Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Han-Yu Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wen-Qi Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Su-Min Mo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jia-Jia Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei-Jie Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu-Chun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Zhong-Ning Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
34
|
Duarte LF, Villalobos V, Farías MA, Rangel-Ramírez MA, González-Madrid E, Navarro AJ, Carbone-Schellman J, Domínguez A, Alvarez A, Riedel CA, Bueno SM, Kalergis AM, Cáceres M, González PA. Asymptomatic herpes simplex virus brain infection elicits cellular senescence phenotypes in the central nervous system of mice suffering multiple sclerosis-like disease. Commun Biol 2024; 7:811. [PMID: 38965360 PMCID: PMC11224417 DOI: 10.1038/s42003-024-06486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease affecting the central nervous system (CNS) in animals that parallels several clinical and molecular traits of multiple sclerosis in humans. Herpes simplex virus type 1 (HSV-1) infection mainly causes cold sores and eye diseases, yet eventually, it can also reach the CNS, leading to acute encephalitis. Notably, a significant proportion of healthy individuals are likely to have asymptomatic HSV-1 brain infection with chronic brain inflammation due to persistent latent infection in neurons. Because cellular senescence is suggested as a potential factor contributing to the development of various neurodegenerative disorders, including multiple sclerosis, and viral infections may induce a premature senescence state in the CNS, potentially increasing susceptibility to such disorders, here we examine the presence of senescence-related markers in the brains and spinal cords of mice with asymptomatic HSV-1 brain infection, EAE, and both conditions. Across all scenarios, we find a significant increases of senescence biomarkers in the CNS with some differences depending on the analyzed group. Notably, some senescence biomarkers are exclusively observed in mice with the combined conditions. These results indicate that asymptomatic HSV-1 brain infection and EAE associate with a significant expression of senescence biomarkers in the CNS.
Collapse
MESH Headings
- Animals
- Cellular Senescence
- Mice
- Brain/virology
- Brain/pathology
- Brain/metabolism
- Multiple Sclerosis/virology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/metabolism
- Herpesvirus 1, Human/physiology
- Herpesvirus 1, Human/pathogenicity
- Herpes Simplex/virology
- Herpes Simplex/pathology
- Female
- Mice, Inbred C57BL
- Encephalomyelitis, Autoimmune, Experimental/virology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Phenotype
- Central Nervous System/virology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Spinal Cord/virology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Biomarkers/metabolism
- Encephalitis, Herpes Simplex/virology
- Encephalitis, Herpes Simplex/pathology
- Encephalitis, Herpes Simplex/metabolism
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Verónica Villalobos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ma Andreina Rangel-Ramírez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Enrique González-Madrid
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Areli J Navarro
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Carbone-Schellman
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica Domínguez
- Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Alvarez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
35
|
Herdy JR, Mertens J, Gage FH. Neuronal senescence may drive brain aging. Science 2024; 384:1404-1406. [PMID: 38935713 DOI: 10.1126/science.adi3450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Senescence of postmitotic neurons presents challenges and opportunities to modify brain aging.
Collapse
Affiliation(s)
- Joseph R Herdy
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jerome Mertens
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
36
|
Qu W, Lam M, McInvale JJ, Mares JA, Kwon S, Humala N, Mahajan A, Nguyen T, Jakubiak KA, Mun JY, Tedesco TG, Al-Dalahmah O, Hussaini SA, Sproul AA, Siegelin MD, De Jager PL, Canoll P, Menon V, Hargus G. Xenografted human iPSC-derived neurons with the familial Alzheimer's disease APP V717I mutation reveal dysregulated transcriptome signatures linked to synaptic function and implicate LINGO2 as a disease signaling mediator. Acta Neuropathol 2024; 147:107. [PMID: 38918213 PMCID: PMC11199265 DOI: 10.1007/s00401-024-02755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and disease mechanisms are still not fully understood. Here, we explored pathological changes in human induced pluripotent stem cell (iPSC)-derived neurons carrying the familial AD APPV717I mutation after cell injection into the mouse forebrain. APPV717I mutant iPSCs and isogenic controls were differentiated into neurons revealing enhanced Aβ42 production, elevated phospho-tau, and impaired neurite outgrowth in APPV717I neurons. Two months after transplantation, APPV717I and control neural cells showed robust engraftment but at 12 months post-injection, APPV717I grafts were smaller and demonstrated impaired neurite outgrowth compared to controls, while plaque and tangle pathology were not seen. Single-nucleus RNA-sequencing of micro-dissected grafts, performed 2 months after cell injection, identified significantly altered transcriptome signatures in APPV717I iPSC-derived neurons pointing towards dysregulated synaptic function and axon guidance. Interestingly, APPV717I neurons showed an increased expression of genes, many of which are also upregulated in postmortem neurons of AD patients including the transmembrane protein LINGO2. Downregulation of LINGO2 in cultured APPV717I neurons rescued neurite outgrowth deficits and reversed key AD-associated transcriptional changes related but not limited to synaptic function, apoptosis and cellular senescence. These results provide important insights into transcriptional dysregulation in xenografted APPV717I neurons linked to synaptic function, and they indicate that LINGO2 may represent a potential therapeutic target in AD.
Collapse
Affiliation(s)
- Wenhui Qu
- Department of Pathology and Cell Biology, Presbyterian Hospital, Columbia University, 650W 168th Street, New York, NY, USA
| | - Matti Lam
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Neurological Institute, Columbia University, 710 West 168th Street, New York, NY, USA
| | - Julie J McInvale
- Department of Pathology and Cell Biology, Presbyterian Hospital, Columbia University, 650W 168th Street, New York, NY, USA
| | - Jason A Mares
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Neurological Institute, Columbia University, 710 West 168th Street, New York, NY, USA
| | - Sam Kwon
- Department of Pathology and Cell Biology, Presbyterian Hospital, Columbia University, 650W 168th Street, New York, NY, USA
| | - Nelson Humala
- Department of Neurosurgery, Columbia University, New York, NY, USA
| | - Aayushi Mahajan
- Department of Neurosurgery, Columbia University, New York, NY, USA
| | - Trang Nguyen
- Department of Pathology and Cell Biology, Presbyterian Hospital, Columbia University, 650W 168th Street, New York, NY, USA
| | - Kelly A Jakubiak
- Department of Pathology and Cell Biology, Presbyterian Hospital, Columbia University, 650W 168th Street, New York, NY, USA
| | - Jeong-Yeon Mun
- Department of Pathology and Cell Biology, Presbyterian Hospital, Columbia University, 650W 168th Street, New York, NY, USA
| | - Thomas G Tedesco
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Presbyterian Hospital, Columbia University, 650W 168th Street, New York, NY, USA
| | - Syed A Hussaini
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Andrew A Sproul
- Department of Pathology and Cell Biology, Presbyterian Hospital, Columbia University, 650W 168th Street, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Presbyterian Hospital, Columbia University, 650W 168th Street, New York, NY, USA
| | - Philip L De Jager
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Neurological Institute, Columbia University, 710 West 168th Street, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Presbyterian Hospital, Columbia University, 650W 168th Street, New York, NY, USA
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Neurological Institute, Columbia University, 710 West 168th Street, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Presbyterian Hospital, Columbia University, 650W 168th Street, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| |
Collapse
|
37
|
Chou CC, Vest R, Prado MA, Wilson-Grady J, Paulo JA, Shibuya Y, Moran-Losada P, Lee TT, Luo J, Gygi SP, Kelly JW, Finley D, Wernig M, Wyss-Coray T, Frydman J. Human tNeurons reveal aging-linked proteostasis deficits driving Alzheimer's phenotypes. RESEARCH SQUARE 2024:rs.3.rs-4407236. [PMID: 38853828 PMCID: PMC11160905 DOI: 10.21203/rs.3.rs-4407236/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Aging is a prominent risk factor for Alzheimer's disease (AD), but the cellular mechanisms underlying neuronal phenotypes remain elusive. Both accumulation of amyloid plaques and neurofibrillary tangles in the brain1 and age-linked organelle deficits2-7 are proposed as causes of AD phenotypes but the relationship between these events is unclear. Here, we address this question using a transdifferentiated neuron (tNeuron) model directly from human dermal fibroblasts. Patient-derived tNeurons retain aging hallmarks and exhibit AD-linked deficits. Quantitative tNeuron proteomic analyses identify aging and AD-linked deficits in proteostasis and organelle homeostasis, particularly affecting endosome-lysosomal components. The proteostasis and lysosomal homeostasis deficits in aged tNeurons are exacerbated in sporadic and familial AD tNeurons, promoting constitutive lysosomal damage and defects in ESCRT-mediated repair. We find deficits in neuronal lysosomal homeostasis lead to inflammatory cytokine secretion, cell death and spontaneous development of Aß and phospho-Tau deposits. These proteotoxic inclusions co-localize with lysosomes and damage markers and resemble inclusions in brain tissue from AD patients and APP-transgenic mice. Supporting the centrality of lysosomal deficits driving AD phenotypes, lysosome-function enhancing compounds reduce AD-associated cytokine secretion and Aβ deposits. We conclude that proteostasis and organelle deficits are upstream initiating factors leading to neuronal aging and AD phenotypes.
Collapse
Affiliation(s)
- Ching-Chieh Chou
- Department of Biology, Stanford University, Stanford, California, USA
| | - Ryan Vest
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
- Qinotto, Inc. San Carlos, California, USA
| | - Miguel A. Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Joshua Wilson-Grady
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yohei Shibuya
- Departments of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Patricia Moran-Losada
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Ting-Ting Lee
- Department of Biology, Stanford University, Stanford, California, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, Inc. (PAVIR), Palo Alto, California, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marius Wernig
- Departments of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Lead contact
| |
Collapse
|
38
|
Wang S, Li B, Cai Z, Hugo C, Li J, Sun Y, Qian L, Remaley AT, Tcw J, Chui HC, Bennett DA, Arvanitakis Z, Kerman B, Yassine H. Cellular senescence induced by cholesterol accumulation is mediated by lysosomal ABCA1 in APOE4 and AD. RESEARCH SQUARE 2024:rs.3.rs-4373201. [PMID: 38798644 PMCID: PMC11118681 DOI: 10.21203/rs.3.rs-4373201/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Cellular senescence is a hallmark of aging and has been implicated in Alzheimer's disease (AD) pathogenesis. Cholesterol accumulation drives cellular senescence; however, the underlying mechanisms are unclear. ATP-binding cassette transporter A1 (ABCA1) plays an important role in cholesterol homeostasis. ABCA1 expression and its trafficking is afiltered in APOE4 and AD cellular and mouse models. However, whether ABCA1 trafficking is involved in cellular senescence in APOE4 and AD remains unknown. Methods We examined the association between cellular senescence and ABCA1 expression in human postmortem brain samples using transcriptomic, histological, and biochemical analyses. An unbiased proteomic screening was performed to identify targets that mediate cellular ABCA1 trafficking. APOE4-TR mice, immortalized, primary and induced pluripotent stem cell (iPSC) models were used to examine the cholesterol-ABCA1-senescence pathways. Results Bulk and single nuclei transcriptomic profiling of the human dorsolateral prefrontal cortex from the Religious Order Study/Memory Aging Project (ROSMAP) revealed upregulation of cellular senescence transcriptome signatures in AD, which was strongly correlated with ABCA1 expression. Immunofluorescence and immunoblotting analyses confirmed increased ABCA1 expression in AD brain tissues, which was associated with lipofuscin-stained lipids and mTOR phosphorylation. Using discovery proteomics, caveolin-1, a sensor of cellular cholesterol accumulation, was identified to promote ABCA1 endolysosomal trafficking. Greater caveolin-1 expression was found in both APOE4-TR mouse models and AD human brains. Cholesterol induced mTORC1 activation was regulated by ABCA1 expression or its lysosomal trapping. Reducing cholesterol by cyclodextrin in APOE4-TR mice reduced ABCA1 lysosome trapping and increased ABCA1 recycling to efflux cholesterol to HDL particles, reducing mTORC1 activation and senescence-associated neuroinflammation. In human iPSC-derived astrocytes, the reduction of cholesterol by cyclodextrin attenuated inflammatory responses. Conclusions Cholesterol accumulation in APOE4 and AD induced caveolin-1 expression, which traps ABCA1 in lysosomes to activate mTORC1 pathways and induce cellular senescence. This study provided novel insights into how cholesterol accumulation in APOE4 and AD accelerates senescence.
Collapse
Affiliation(s)
| | | | | | | | - Jie Li
- University of Southern California
| | - Yi Sun
- University of Southern California
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jonischkies K, del Angel M, Demiray YE, Loaiza Zambrano A, Stork O. The NDR family of kinases: essential regulators of aging. Front Mol Neurosci 2024; 17:1371086. [PMID: 38803357 PMCID: PMC11129689 DOI: 10.3389/fnmol.2024.1371086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Aging is defined as a progressive decline of cognitive and physiological functions over lifetime. Since the definition of the nine hallmarks of aging in 2013 by López-Otin, numerous studies have attempted to identify the main regulators and contributors in the aging process. One interesting group of proteins whose participation has been implicated in several aging hallmarks are the nuclear DBF2-related (NDR) family of serine-threonine AGC kinases. They are one of the core components of the Hippo signaling pathway and include NDR1, NDR2, LATS1 and LATS2 in mammals, along with its highly conserved metazoan orthologs; Trc in Drosophila melanogaster, SAX-1 in Caenorhabditis elegans, CBK1, DBF20 in Saccharomyces cerevisiae and orb6 in Saccharomyces pombe. These kinases have been independently linked to the regulation of widely diverse cellular processes disrupted during aging such as the cell cycle progression, transcription, intercellular communication, nutrient homeostasis, autophagy, apoptosis, and stem cell differentiation. However, a comprehensive overview of the state-of-the-art knowledge regarding the post-translational modifications of and by NDR kinases in aging has not been conducted. In this review, we summarize the current understanding of the NDR family of kinases, focusing on their relevance to various aging hallmarks, and emphasize the growing body of evidence that suggests NDR kinases are essential regulators of aging across species.
Collapse
Affiliation(s)
- Kevin Jonischkies
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Miguel del Angel
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yunus Emre Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Allison Loaiza Zambrano
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
40
|
Ning N, Lu J, Li Q, Li M, Cai Y, Wang H, Li J. Single-sEV profiling identifies the TACSTD2 + sEV subpopulation as a factor of tumor susceptibility in the elderly. J Nanobiotechnology 2024; 22:222. [PMID: 38698420 PMCID: PMC11067244 DOI: 10.1186/s12951-024-02456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Aging is a very complex physiological phenomenon, and sEVs are involved in the regulation of this mechanism. Serum samples from healthy individuals under 30 and over 60 years of age were collected to analyze differences in sEVs proteomics. RESULTS Based on PBA analysis, we found that sEVs from the serum of elderly individuals highly express TACSTD2 and identified a subpopulation marked by TACSTD2. Using ELISA, we verified the upregulation of TACSTD2 in serum from elderly human and aged mouse. In addition, we discovered that TACSTD2 was significantly increased in samples from tumor patients and had better diagnostic value than CEA. Specifically, 9 of the 13 tumor groups exhibited elevated TACSTD2, particularly for cervical cancer, colon cancer, esophageal carcinoma, liver cancer and thyroid carcinoma. Moreover, we found that serum sEVs from the elderly (especially those with high TACSTD2 levels) promoted tumor cell (SW480, HuCCT1 and HeLa) proliferation and migration. CONCLUSION TACSTD2 was upregulated in the serum of elderly individuals and patients with tumors, and could serve as a dual biomarker for aging and tumors.
Collapse
Affiliation(s)
- Nannan Ning
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Jianying Lu
- School of Public Health, Shandong University, Jinan, China
| | - Qianpeng Li
- Department of Hematology, Weifang People's Hospital, Weifang, China
| | - Mengmeng Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanling Cai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine), The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Hongchun Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China.
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
41
|
Li S, Zhao S, Sinson JC, Bajic A, Rosenfeld JA, Neeley MB, Pena M, Worley KC, Burrage LC, Weisz-Hubshman M, Ketkar S, Craigen WJ, Clark GD, Lalani S, Bacino CA, Machol K, Chao HT, Potocki L, Emrick L, Sheppard J, Nguyen MTT, Khoramnia A, Hernandez PP, Nagamani SC, Liu Z, Eng CM, Lee B, Liu P. The clinical utility and diagnostic implementation of human subject cell transdifferentiation followed by RNA sequencing. Am J Hum Genet 2024; 111:841-862. [PMID: 38593811 PMCID: PMC11080285 DOI: 10.1016/j.ajhg.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A significant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness, turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with primary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron transcriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.
Collapse
Affiliation(s)
- Shenglan Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sen Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jefferson C Sinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Aleksandar Bajic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew B Neeley
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Mezthly Pena
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Gary D Clark
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Seema Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Keren Machol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Cain Pediatric Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, USA
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Lisa Emrick
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Jennifer Sheppard
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - My T T Nguyen
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Anahita Khoramnia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Sandesh Cs Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA.
| |
Collapse
|
42
|
Fancy NN, Smith AM, Caramello A, Tsartsalis S, Davey K, Muirhead RCJ, McGarry A, Jenkyns MH, Schneegans E, Chau V, Thomas M, Boulger S, Cheung TKD, Adair E, Papageorgopoulou M, Willumsen N, Khozoie C, Gomez-Nicola D, Jackson JS, Matthews PM. Characterisation of premature cell senescence in Alzheimer's disease using single nuclear transcriptomics. Acta Neuropathol 2024; 147:78. [PMID: 38695952 PMCID: PMC11065703 DOI: 10.1007/s00401-024-02727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024]
Abstract
Aging is associated with cell senescence and is the major risk factor for AD. We characterized premature cell senescence in postmortem brains from non-diseased controls (NDC) and donors with Alzheimer's disease (AD) using imaging mass cytometry (IMC) and single nuclear RNA (snRNA) sequencing (> 200,000 nuclei). We found increases in numbers of glia immunostaining for galactosidase beta (> fourfold) and p16INK4A (up to twofold) with AD relative to NDC. Increased glial expression of genes related to senescence was associated with greater β-amyloid load. Prematurely senescent microglia downregulated phagocytic pathways suggesting reduced capacity for β-amyloid clearance. Gene set enrichment and pseudo-time trajectories described extensive DNA double-strand breaks (DSBs), mitochondrial dysfunction and ER stress associated with increased β-amyloid leading to premature senescence in microglia. We replicated these observations with independent AD snRNA-seq datasets. Our results describe a burden of senescent glia with AD that is sufficiently high to contribute to disease progression. These findings support the hypothesis that microglia are a primary target for senolytic treatments in AD.
Collapse
Affiliation(s)
- Nurun N Fancy
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Amy M Smith
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Centre for Brain Research and Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Alessia Caramello
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Stergios Tsartsalis
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Karen Davey
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- UK Dementia Research Institute Centre, King's College London, London, UK
| | - Robert C J Muirhead
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- UK Dementia Research Institute Centre, King's College London, London, UK
| | - Aisling McGarry
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marion H Jenkyns
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eleonore Schneegans
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Vicky Chau
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Michael Thomas
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Sam Boulger
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - To Ka Dorcas Cheung
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Emily Adair
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Marianna Papageorgopoulou
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Nanet Willumsen
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Combiz Khozoie
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Johanna S Jackson
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- UK Dementia Research Institute Centre, Imperial College London, London, UK.
| |
Collapse
|
43
|
Podvin S, Jones J, Kang A, Goodman R, Reed P, Lietz CB, Then J, Lee KC, Eyler LT, Jeste DV, Gage FH, Hook V. Human iN neuronal model of schizophrenia displays dysregulation of chromogranin B and related neuropeptide transmitter signatures. Mol Psychiatry 2024; 29:1440-1449. [PMID: 38302561 PMCID: PMC11189816 DOI: 10.1038/s41380-024-02422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Schizophrenia (SZ) is a serious mental illness and neuropsychiatric brain disorder with behavioral symptoms that include hallucinations, delusions, disorganized behavior, and cognitive impairment. Regulation of such behaviors requires utilization of neurotransmitters released to mediate cell-cell communication which are essential to brain functions in health and disease. We hypothesized that SZ may involve dysregulation of neurotransmitters secreted from neurons. To gain an understanding of human SZ, induced neurons (iNs) were derived from SZ patients and healthy control subjects to investigate peptide neurotransmitters, known as neuropeptides, which represent the major class of transmitters. The iNs were subjected to depolarization by high KCl in the culture medium and the secreted neuropeptides were identified and quantitated by nano-LC-MS/MS tandem mass spectrometry. Several neuropeptides were identified from schizophrenia patient-derived neurons, including chromogranin B (CHGB), neurotensin, and natriuretic peptide. Focusing on the main secreted CHGB neuropeptides, results revealed differences in SZ iNs compared to control iN neurons. Lower numbers of distinct CHGB peptides were found in the SZ secretion media compared to controls. Mapping of the peptides to the CHGB precursor revealed peptides unique to either SZ or control, and peptides common to both conditions. Also, the iNs secreted neuropeptides under both KCl and basal (no KCl) conditions. These findings are consistent with reports that chromogranin B levels are reduced in the cerebrospinal fluid and specific brain regions of SZ patients. These findings suggest that iNs derived from SZ patients can model the decreased CHGB neuropeptides observed in human SZ.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Austin Kang
- Salk Institute, San Diego, La Jolla, CA, USA
| | | | | | - Christopher B Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Then
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kelly C Lee
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Dilip V Jeste
- Global Research Network on Social Determinants of Health, San Diego, La Jolla, CA, USA
| | - Fred H Gage
- Salk Institute, San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
44
|
Liu Y, Liu X, Chen X, Yang Z, Chen J, Zhu W, Li Y, Wen Y, Deng C, Gu C, Lv J, Ju R, Zhuo Y, Su W. Senolytic and senomorphic agent procyanidin C1 alleviates structural and functional decline in the aged retina. Proc Natl Acad Sci U S A 2024; 121:e2311028121. [PMID: 38657052 PMCID: PMC11067450 DOI: 10.1073/pnas.2311028121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Increased cellular senescence burden contributes in part to age-related organ dysfunction and pathologies. In our study, using mouse models of natural aging, we observed structural and functional decline in the aged retina, which was accompanied by the accumulation of senescent cells and senescence-associated secretory phenotype factors. We further validated the senolytic and senomorphic properties of procyanidin C1 (PCC1) both in vitro and in vivo, the long-term treatment of which ameliorated age-related retinal impairment. Through high-throughput single-cell RNA sequencing (scRNA-seq), we comprehensively characterized the retinal landscape after PCC1 administration and deciphered the molecular basis underlying the senescence burden increment and elimination. By exploring the scRNA-seq database of age-related retinal disorders, we revealed the role of cellular senescence and the therapeutic potential of PCC1 in these pathologies. Overall, these results indicate the therapeutic effects of PCC1 on the aged retina and its potential use for treating age-related retinal disorders.
Collapse
Affiliation(s)
- Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Xuhao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Zhenlan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Jianqi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Weining Zhu
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510060, People’s Republic of China
| | - Yangyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Yuwen Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Caibin Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| |
Collapse
|
45
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
46
|
Lee C, Friedman A. Generating PET scan patterns in Alzheimer's by a mathematical model. PLoS One 2024; 19:e0299637. [PMID: 38625863 PMCID: PMC11020767 DOI: 10.1371/journal.pone.0299637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/13/2024] [Indexed: 04/18/2024] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia. The cause of the disease is unknown, and it has no cure. Symptoms include cognitive decline, memory loss, and impairment of daily functioning. The pathological hallmarks of the disease are aggregation of plaques of amyloid-β (Aβ) and neurofibrillary tangles of tau proteins (τ), which can be detected in PET scans of the brain. The disease can remain asymptomatic for decades, while the densities of Aβ and τ continue to grow. Inflammation is considered an early event that drives the disease. In this paper, we develop a mathematical model that can produce simulated patterns of (Aβ,τ) seen in PET scans of AD patients. The model is based on the assumption that early inflammations, R and [Formula: see text], drive the growth of Aβ and τ, respectively. Recently approved drugs can slow the progression of AD in patients, provided treatment begins early, before significant damage to the brain has occurred. In line with current longitudinal studies, we used the model to demonstrate how to assess the efficacy of such drugs when given years before the disease becomes symptomatic.
Collapse
Affiliation(s)
- Chaeyoung Lee
- Department of Mathematics, Kyonggi University, Suwon, Republic of Korea
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
47
|
Reimann M, Lee S, Schmitt CA. Cellular senescence: Neither irreversible nor reversible. J Exp Med 2024; 221:e20232136. [PMID: 38385946 PMCID: PMC10883852 DOI: 10.1084/jem.20232136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Cellular senescence is a critical stress response program implicated in embryonic development, wound healing, aging, and immunity, and it backs up apoptosis as an ultimate cell-cycle exit mechanism. In analogy to replicative exhaustion of telomere-eroded cells, premature types of senescence-referring to oncogene-, therapy-, or virus-induced senescence-are widely considered irreversible growth arrest states as well. We discuss here that entry into full-featured senescence is not necessarily a permanent endpoint, but dependent on essential maintenance components, potentially transient. Unlike a binary state switch, we view senescence with its extensive epigenomic reorganization, profound cytomorphological remodeling, and distinctive metabolic rewiring rather as a journey toward a full-featured arrest condition of variable strength and depth. Senescence-underlying maintenance-essential molecular mechanisms may allow cell-cycle reentry if not continuously provided. Importantly, senescent cells that resumed proliferation fundamentally differ from those that never entered senescence, and hence would not reflect a reversion but a dynamic progression to a post-senescent state that comes with distinct functional and clinically relevant ramifications.
Collapse
Affiliation(s)
- Maurice Reimann
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
| | - Soyoung Lee
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
- Johannes Kepler University , Linz, Austria
| | - Clemens A Schmitt
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
- Johannes Kepler University , Linz, Austria
- Department of Hematology and Oncology, Kepler University Hospital, Linz, Austria
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| |
Collapse
|
48
|
Oh YM, Lee SW. Patient-derived neuron model: Capturing age-dependent adult-onset degenerative pathology in Huntington's disease. Mol Cells 2024; 47:100046. [PMID: 38492889 PMCID: PMC11021366 DOI: 10.1016/j.mocell.2024.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
MicroRNAs play a crucial role in directly reprogramming (converting) human fibroblasts into neurons. Specifically, miR-9/9* and miR-124 (miR-9/9*-124) display neurogenic and cell fate-switching activities when ectopically expressed in human fibroblasts by erasing fibroblast identity and inducing a pan-neuronal state. These converted neurons maintain the biological age of the starting fibroblasts and thus provide a human neuron-based platform to study cellular properties in aged neurons and model adult-onset neurodegenerative disorders using patient-derived cells. Furthermore, the expression of striatal-enriched transcription factors in conjunction with miR-9/9*-124 guides the identity of medium spiny neurons (MSNs), the primary targets in Huntington's disease (HD). Converted MSNs from HD patient-derived fibroblasts (HD-MSNs) can replicate HD-related phenotypes including neurodegeneration associated with age-related declines in critical cellular functions such as autophagy. Here, we review the role of microRNAs in the direct conversion of patient-derived fibroblasts into MSNs and the practical application of converted HD-MSNs as a model for studying adult-onset neuropathology in HD. We provide valuable insights into age-related, cell-intrinsic changes contributing to neurodegeneration in HD-MSNs. Ultimately, we address a comprehensive understanding of the complex molecular landscape underlying HD pathology, offering potential avenues for therapeutic application.
Collapse
Affiliation(s)
- Young Mi Oh
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA 31901, USA
| | - Seong Won Lee
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA 31901, USA
| |
Collapse
|
49
|
Jiao B, Zhang H, Jiang H, Liu S, Wang Y, Chen Y, Duan H, Niu Y, Shen M, Wang H, Dai Y. Granulysin-mediated reduction of PDZRN3 induces Cx43 gap junctions activity exacerbating skin damage in trichloroethylene hypersensitivity syndrome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116174. [PMID: 38471344 DOI: 10.1016/j.ecoenv.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Trichloroethylene (TCE)-induced hypersensitivity syndrome (THS) has been a concern for many researchers in the field of environmental and occupational health. Currently, there is no specific treatment for THS, leaving patients to contend with severe infections arising from extensive skin lesions, consequently leading to serious adverse effects. However, the pathogenesis of severe skin damage in THS remains unclear. This study aims to investigate the specific danger signals and mechanisms underlying skin damage in THS through in vivo and in vitro experiments. We identified that cell supernatant containing 15 kDa granulysin (GNLY), released from activated CD3-CD56+NK cells or CD3+CD56+NKT cells in PBMC induced by TCE or its metabolite, promoted apoptosis in HaCaT cells. The apoptosis level decreased upon neutralization of GNLY in the supernatant by a GNLY-neutralizing antibody in HaCaT cells. Subcutaneous injection of recombinant 15 kDa GNLY exacerbated skin damage in the THS mouse model and better mimicked patients' disease states. Recombinant 15 kDa GNLY could directly induce cellular communication disorders, inflammation, and apoptosis in HaCaT cells. In addition to its cytotoxic effects, GNLY released from TCE-activated NK cells and NKT cells or synthesized GNLY alone could induce aberrant expression of the E3 ubiquitin ligase PDZRN3, causing dysregulation of the ubiquitination of the cell itself. Consequently, this resulted in the persistent opening of gap junctions composed of connexin43, thereby intensifying cellular inflammation and apoptosis through the "bystander effect". This study provides experimental evidence elucidating the mechanisms of THS skin damage and offers a novel theoretical foundation for the development of effective therapies targeting severe dermatitis induced by chemicals or drugs.
Collapse
Affiliation(s)
- Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hua Zhang
- Department of Occupational disease, Qingdao Central Hospital, Shandong, China
| | - Haiqin Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences, National Center for STD and Leprosy Control, China CDC, Nanjing, China
| | - Shuai Liu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yican Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yong Niu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Meili Shen
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hongsheng Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences, National Center for STD and Leprosy Control, China CDC, Nanjing, China
| | - Yufei Dai
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
50
|
Bitencourt TC, Vargas JE, Silva AO, Fraga LR, Filippi‐Chiela E. Subcellular structure, heterogeneity, and plasticity of senescent cells. Aging Cell 2024; 23:e14154. [PMID: 38553952 PMCID: PMC11019148 DOI: 10.1111/acel.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/17/2024] Open
Abstract
Cellular senescence is a state of permanent growth arrest. It can be triggered by telomere shortening (replicative senescence) or prematurely induced by stresses such as DNA damage, oncogene overactivation, loss of tumor suppressor genes, oxidative stress, tissue factors, and others. Advances in techniques and experimental designs have provided new evidence about the biology of senescent cells (SnCs) and their importance in human health and disease. This review aims to describe the main aspects of SnCs phenotype focusing on alterations in subcellular compartments like plasma membrane, cytoskeleton, organelles, and nuclei. We also discuss the heterogeneity, dynamics, and plasticity of SnCs' phenotype, including the SASP, and pro-survival mechanisms. We advance on the multiple layers of phenotypic heterogeneity of SnCs, such as the heterogeneity between inducers, tissues and within a population of SnCs, discussing the relevance of these aspects to human health and disease. We also raise the main challenges as well alternatives to overcome them. Ultimately, we present open questions and perspectives in understanding the phenotype of SnCs from the perspective of basic and applied questions.
Collapse
Affiliation(s)
- Thais Cardoso Bitencourt
- Programa de Pós‐Graduação Em Biologia Celular e MolecularUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | | | - Andrew Oliveira Silva
- Faculdade Estácio RSPorto AlegreRio Grande do SulBrazil
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
| | - Lucas Rosa Fraga
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Programa de Pós‐Graduação Em Medicina: Ciências MédicasUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
- Departamento de Ciências MorfológicasUniversidade Federal Do Rio Grande Do SulPorto AlegreRio Grande do SulBrazil
| | - Eduardo Filippi‐Chiela
- Programa de Pós‐Graduação Em Biologia Celular e MolecularUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Departamento de Ciências MorfológicasUniversidade Federal Do Rio Grande Do SulPorto AlegreRio Grande do SulBrazil
- Centro de BiotecnologiaUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| |
Collapse
|