1
|
Galigniana NM, Ruiz MC, Piwien-Pilipuk G. FK506 binding protein 51: Its role in the adipose organ and beyond. J Cell Biochem 2024; 125:e30351. [PMID: 36502528 DOI: 10.1002/jcb.30351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 02/17/2024]
Abstract
There is a great body of evidence that the adipose organ plays a central role in the control not only of energy balance, but importantly, in the maintenance of metabolic homeostasis. Interest in the study of different aspects of its physiology grew in the last decades due to the pandemic of obesity and the consequences of metabolic syndrome. It was not until recently that the first evidence for the role of the high molecular weight immunophilin FK506 binding protein (FKBP) 51 in the process of adipocyte differentiation have been described. Since then, many new facets have been discovered of this stress-responsive FKBP51 as a central node for precise coordination of many cell functions, as shown for nuclear steroid receptors, autophagy, signaling pathways as Akt, p38 MAPK, and GSK3, as well as for insulin signaling and the control of glucose homeostasis. Thus, the aim of this review is to integrate and discuss the recent advances in the understanding of the many roles of FKBP51 in the adipose organ.
Collapse
Affiliation(s)
- Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marina C Ruiz
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Helvaci N, Yildiz BO. Polycystic ovary syndrome as a metabolic disease. Nat Rev Endocrinol 2024:10.1038/s41574-024-01057-w. [PMID: 39609634 DOI: 10.1038/s41574-024-01057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous familial disorder affecting up to one in five women. The aetiology remains unclear, but available evidence suggests it is a polygenic disorder with epigenetic, developmental, and environmental components. The diagnostic criteria for PCOS are based on reproductive features, and the syndrome is categorized into several phenotypes that can vary by race and ethnicity. Insulin resistance and metabolic dysfunction have a crucial role in the pathogenesis of the syndrome and contribute to many adverse metabolic outcomes that place a substantial burden on the health of women with PCOS across their lifespan. Metabolic abnormalities like those identified in women with PCOS are also present in their female and male first-degree relatives. Overall, more emphasis is required on defining PCOS as a metabolic disorder in addition to a reproductive one. This approach could affect the management and future treatment options for the syndrome. The rationale of the current review is to identify and analyse existing evidence for PCOS as a metabolic, as well as a reproductive, disease.
Collapse
Affiliation(s)
- Nafiye Helvaci
- Division of Endocrinology and Metabolism, Ankara Ataturk Sanatoryum Training and Research Hospital, Ankara, Turkey
| | - Bulent Okan Yildiz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey.
| |
Collapse
|
3
|
Siegel KR, Murray BR, Gearhart J, Kassotis CD. In vitro endocrine and cardiometabolic toxicity associated with artificial turf materials. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104562. [PMID: 39245243 PMCID: PMC11499011 DOI: 10.1016/j.etap.2024.104562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Artificial turf, a consumer product growing in usage in the United States, contains diverse chemicals, some of which are endocrine disruptive. Endocrine effects from turf material extracts have been primarily limited to one component, crumb rubber, of these multi-material products. We present in vitro bioactivities from non-weathered and weathered turf sample extracts, including multiple turf components. All weathered samples were collected from real-world turf fields. Non-weathered versus weathered differentially affected the androgen (AR), estrogen (ER), glucocorticoid (GR), and thyroid receptors (TR) in reporter bioassays. While weathered extracts more efficaciously activated peroxisome proliferator activated receptor γ (PPARγ), this did not translate to greater in vitro adipogenic potential. All turf extracts activated the aryl hydrocarbon receptor (AhR). High AhR-efficacy extracts induced modest rat cardiomyoblast toxicity in an AhR-dependent manner. Our data demonstrate potential endocrine and cardiometabolic effects from artificial turf material extracts, warranting further investigation into potential exposures and human health effects.
Collapse
Affiliation(s)
- Kyle R Siegel
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Brooklynn R Murray
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Jeff Gearhart
- Research Director, Ecology Center, Ann Arbor, MI 48104, United States
| | - Christopher D Kassotis
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
4
|
Dumesic DA, Rasouli MA, Katz JD, Lu GG, Dharanipragada D, Turcu AF, Grogan TR, Flores KE, Magyar CE, Abbott DH, Chazenbalk GD. The Subcutaneous Adipose Microenvironment as a Determinant of Body Fat Development in Polycystic Ovary Syndrome. J Endocr Soc 2024; 8:bvae162. [PMID: 39345868 PMCID: PMC11424691 DOI: 10.1210/jendso/bvae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
Context Adipose steroid metabolism modifies body fat development in polycystic ovary syndrome (PCOS). Objective To determine whether subcutaneous (SC) abdominal adipose aldo-keto reductase 1C3 (AKR1C3; a marker of testosterone generation) is increased in normal-weight women with PCOS vs age- and body mass index (BMI)-matched normoandrogenic ovulatory women (controls) and is related to SC abdominal adipose activator protein-1 (AP-1; a marker of adipocyte differentiation) and/or androgen receptor (AR) protein expression in predicting fat accretion. Design Prospective cohort study. Setting Academic center. Patients Eighteen normal-weight PCOS women; 17 age- and BMI-matched controls. Interventions Circulating hormone/metabolic determinations, intravenous glucose tolerance testing, total body dual-energy x-ray absorptiometry, SC abdominal fat biopsy, immunohistochemistry. Main Outcome Measures Clinical characteristics, hormonal concentrations, body fat distribution, SC adipose AKR1C3, AR, and AP-1 protein expression. Results Women with PCOS had significantly higher serum androgen levels and greater android/gynoid fat mass ratios than controls. SC adipose AKR1C3, AR, and AP-1 protein expressions were comparable between the study groups, but groups differed in correlations. In PCOS women vs controls, SC adipose AKR1C3 protein expression correlated positively with android and gynoid fat masses and negatively with SC adipose AP-1 protein expression. SC adipose AR protein expression correlated negatively with fasting serum free fatty acid and high-density lipoprotein levels. In both study groups, SC adipose AKR1C3 protein expression negatively correlated with serum cortisol levels. Conclusion In normal-weight PCOS women, SC abdominal adipose AKR1C3 protein expression, in combination with intra-adipose AP-1 and AR-dependent events, predicts fat accretion in the presence of physiological cortisol levels.
Collapse
Affiliation(s)
- Daniel A Dumesic
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Melody A Rasouli
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jessica D Katz
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gwyneth G Lu
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Devyani Dharanipragada
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, Nutrition and Diabetes, University of Michigan, Ann Arbor, MI 48103, USA
| | - Tristan R Grogan
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Kimberly E Flores
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Clara E Magyar
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Madison, WI 53715, USA
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Bathina S, Colleluori G, Villareal DT, Aguirre L, Chen R, Armamento-Villareal R. A PRDM16-driven signal regulates body composition in testosterone-treated hypogonadal men. Front Endocrinol (Lausanne) 2024; 15:1426175. [PMID: 39286266 PMCID: PMC11402695 DOI: 10.3389/fendo.2024.1426175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Background Testosterone (T) therapy increases lean mass and reduces total body and truncal fat mass in hypogonadal men. However, the underlying molecular mechanisms for the reciprocal changes in fat and lean mass in humans are not entirely clear. Methods Secondary analysis of specimens obtained from a single-arm, open-label clinical trial on pharmacogenetics of response to T therapy in men with late-onset hypogonadism, conducted between 2011 and 2016 involving 105 men (40-74 years old), who were given intramuscular T cypionate 200 mg every 2 weeks for 18 months. Subcutaneous fat (SCF), peripheral blood mononuclear cells (PBMC) and serum were obtained from the participants at different time points of the study. We measured transcription factors for adipogenesis and myogenesis in the SCF, and PBMC, respectively, by real-time quantitative PCR at baseline and 6 months. Serum levels of FOLLISTATIN, PAX7, MYOSTATIN, ADIPSIN, and PRDM16 were measured by ELISA. Results As expected, there was a significant increase in T and estradiol levels after 6 months of T therapy. There was also a reduction in fat mass and an increase in lean mass after 6 months of T therapy. Gene-protein studies showed a significant reduction in the expression of the adipogenic markers PPARγ in SCF and ADIPSIN levels in the serum, together with a concomitant significant increase in the expression of myogenic markers, MYOD in PBMC and PAX7 and FOLLISTATIN levels in the serum after 6 months of T therapy compared to baseline. Interestingly, there was a significant increase in the adipo-myogenic switch, PRDM16, expression in SCF and PBMC, and in circulating protein levels in the serum after 6 months of T therapy, which is likely from increased estradiol. Conclusion Our study supports that molecular shift from the adipogenic to the myogenic pathway in men with hypogonadism treated with T could be mediated directly or indirectly by enhanced PRDM16 activity, in turn a result from increased estradiol level. This might have led to the reduction in body fat and increase in lean mass commonly seen in hypogonadal men treated with T.
Collapse
Affiliation(s)
- Siresha Bathina
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Georgia Colleluori
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
| | - Dennis T. Villareal
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Lina Aguirre
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Department of Medicine, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Rui Chen
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| | - Reina Armamento-Villareal
- Division of Endocrinology Diabetes and Metabolism at Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey Veterans Affairs (VA) Medical Center, Houston, TX, United States
| |
Collapse
|
6
|
Pal P, Maranon RO, Rivera Gonzales OJ, Speed JS, Janorkar AV. Sexual Dimorphism's impact on adipogenesis: A three-dimensional in vitro model treated with 17β-estradiol and testosterone. Mol Cell Endocrinol 2024; 589:112249. [PMID: 38604550 PMCID: PMC11144096 DOI: 10.1016/j.mce.2024.112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Using a three-dimensional (3-D) in vitro culture model, we report the dose dependent effect of 17β-estradiol and testosterone on the adipogenic differentiation and maturation of human adipose derived stem cells (hASCs) obtained from female and male patients. Considering sexual dimorphism, we expected male and female adipocytes to respond differently to the sex steroids. Both male and female hASC spheroids were exposed to 100 nM and 500 nM of 17β-estradiol and testosterone either at the beginning of the adipogenic maturation (Phase I) to discourage intracellular triglyceride accumulation or exposed after adipogenic maturation (Phase II) to reduce the intracellular triglyceride accumulation. The results show that 17β-estradiol leads to a dose dependent reduction in intracellular triglyceride accumulation in female hASC spheroids compared to the both untreated and testosterone-treated cells. Affirming our hypothesis, 17β-estradiol prevented intracellular triglyceride accumulation during Phase I, while it stimulated lipolysis during Phase II. PPAR-γ and adiponectin gene expression also reduced upon 17β-estradiol treatment in female cells. Interestingly, 17β-estradiol and testosterone had only a modest effect on the male hASC spheroids. Collectively, our findings suggest that 17β-estradiol can prevent fat accumulation in adipocytes during early and late stages of maturation in females.
Collapse
Affiliation(s)
- Pallabi Pal
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Rodrigo O Maranon
- Department of Physiology, Faculty of Medicine, Universidad Nacional de Tucuman, San Miguel de Tucumán, Argentina; National Council on Scientific and Technical Research (CONICET), Tucuman, Argentina
| | - Osvaldo J Rivera Gonzales
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Joshua S Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Amol V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA.
| |
Collapse
|
7
|
Huang MC, Chen PL, Hsu CL. Transcriptome Analysis of Mesenchymal Progenitor Cells Revealed Molecular Insights into Metabolic Dysfunction and Inflammation in Polycystic Ovary Syndrome. Int J Mol Sci 2024; 25:7948. [PMID: 39063189 PMCID: PMC11276887 DOI: 10.3390/ijms25147948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a female endocrine disorder with metabolic issues. Hyperandrogenism combined with hyperinsulinemia exacerbates the reproductive, metabolic, and inflammatory problems in PCOS patients. The etiology of PCOS is unclear. Patient-specific induced pluripotent stem cells (iPSCs) offer a promising model for studying disease mechanisms and conducting drug screening. Here, we aim to use mesenchymal progenitor cells (MPCs) derived from PCOS iPSCs to explore the mechanism of PCOS. We compared the transcriptome profiles of PCOS and healthy control (HC) iPSC-derived MPCs (iPSCMs). Moreover, we assess the impact of androgens on iPSCMs. In the comparison between PCOS and HC, the expression levels of 1026 genes were significantly different. A gene set enrichment analysis (GSEA) revealed that adipogenesis- and metabolism-related genes were downregulated, whereas inflammation-related genes were upregulated in the PCOS iPSCMs. Dysregulation of the TGF-β1 and Wnt signaling pathways was observed in the PCOS iPSCMs. Furthermore, there was impaired adipogenesis and decreased lipolysis in the PCOS iPSCMs-derived adipocytes. With testosterone treatment, genes related to metabolism were upregulated in the HC iPSCMs but downregulated in the PCOS iPSCMs. The impact of testosterone varied among HCs and PCOS iPSCMs, possibly because of a genetic predisposition toward PCOS. This study found specific signaling pathways that could serve as therapeutic targets for PCOS.
Collapse
Affiliation(s)
- Mei-Chi Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chia-Lang Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| |
Collapse
|
8
|
Rezq S, Huffman AM, Basnet J, Alsemeh AE, do Carmo JM, Yanes Cardozo LL, Romero DG. MicroRNA-21 modulates brown adipose tissue adipogenesis and thermogenesis in a mouse model of polycystic ovary syndrome. Biol Sex Differ 2024; 15:53. [PMID: 38987854 PMCID: PMC11238487 DOI: 10.1186/s13293-024-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with increased obesity, hyperandrogenism, and altered brown adipose tissue (BAT) thermogenesis. MicroRNAs play critical functions in brown adipocyte differentiation and maintenance. We aim to study the role of microRNA-21 (miR-21) in altered energy homeostasis and BAT thermogenesis in a PCOS mouse model of peripubertal androgen exposure. METHODS Three-week-old miR-21 knockout (miR21KO) or wild-type (WT) female mice were treated with dihydrotestosterone (DHT) or vehicle for 90 days. Body composition was determined by EchoMRI. Energy expenditure (EE), oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured by indirect calorimetry. Androgen receptor (AR), and markers of adipogenesis, de novo lipogenesis, angiogenesis, extracellular matrix remodeling, and thermogenesis were quantified by RT-qPCR and/or Western-blot. RESULTS MiR-21 ablation attenuated DHT-mediated increase in body weight while having no effect on fat or BAT mass. MiR-21 ablation attenuated DHT-mediated BAT AR upregulation. MiR-21 ablation did not alter EE; however, miR21KO DHT-treated mice have reduced VO2, VCO2, and RER. MiR-21 ablation reversed DHT-mediated decrease in food intake and increase in sleep time. MiR-21 ablation decreased some adipogenesis (Adipoq, Pparγ, and Cebpβ) and extracellular matrix remodeling (Mmp-9 and Timp-1) markers expression in DHT-treated mice. MiR-21 ablation abolished DHT-mediated increases in thermogenesis markers Cpt1a and Cpt1b, while decreasing CIDE-A expression. CONCLUSIONS Our findings suggest that BAT miR-21 may play a role in regulating DHT-mediated thermogenic dysfunction in PCOS. Modulation of BAT miR-21 levels could be a novel therapeutic approach for the treatment of PCOS-associated metabolic derangements.
Collapse
Affiliation(s)
- Samar Rezq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| | - Alexandra M Huffman
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Jelina Basnet
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Amira E Alsemeh
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Licy L Yanes Cardozo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Medicine, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Damian G Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
9
|
Weng C, Shao Z, Xiao M, Song M, Zhao Y, Li A, Pang Y, Huang T, Yu C, Lv J, Li L, Sun D. Association of sex hormones with non-alcoholic fatty liver disease: An observational and Mendelian randomization study. Liver Int 2024; 44:1154-1166. [PMID: 38345150 DOI: 10.1111/liv.15866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/20/2024] [Accepted: 01/28/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND AND AIMS Sex-specific associations of sex hormone-binding globulin (SHBG) and bioavailable testosterone (BAT) with NAFLD remain indeterminate. We aimed to explore observational and genetically determined relationships between each hormone and NAFLD. METHODS We included 187 395 men and 170 193 women from the UK Biobank. Linear and nonlinear Cox regression models and Mendelian randomization (MR) analysis were used to test the associations. RESULTS During 12.49 years of follow-up, 2209 male and 1886 female NAFLD cases were documented. Elevated SHBG levels were linearly associated with a lower risk of NAFLD in women (HR (95% CI), .71 (.63, .79)), but not in men (a "U" shape, pnon-linear < .001). Higher BAT levels were associated with a lower NAFLD risk in men (HR (95% CI), .81 (.71, .93)) but a higher risk in women (HR (95% CI): 1.25 (1.15, 1.36)). Genetically determined SHBG and BAT levels were linearly associated with NAFLD risk in women (OR (95% CI): .57 (.38, .87) and 2.21 (1.41, 3.26) respectively); in men, an "L-shaped" MR association between SHBG levels and NAFLD risk was found (pnon-linear = .016). The bidirectional MR analysis further revealed the effect of NAFLD on SHBG and BAT levels in both sexes. CONCLUSIONS Consistently, linear associations of lower SHBG and higher BAT levels with increased NAFLD risk were both conventionally and genetically found in women, while in men, SHBG acts in a nonlinear manner. In addition, NAFLD may affect SHBG and BAT levels.
Collapse
Affiliation(s)
- Chenghao Weng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zilun Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Meng Xiao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Mingyu Song
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yuxuan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Aolin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
10
|
Stener-Victorin E, Teede H, Norman RJ, Legro R, Goodarzi MO, Dokras A, Laven J, Hoeger K, Piltonen TT. Polycystic ovary syndrome. Nat Rev Dis Primers 2024; 10:27. [PMID: 38637590 DOI: 10.1038/s41572-024-00511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Despite affecting ~11-13% of women globally, polycystic ovary syndrome (PCOS) is a substantially understudied condition. PCOS, possibly extending to men's health, imposes a considerable health and economic burden worldwide. Diagnosis in adults follows the International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome, requiring two out of three criteria - clinical or biochemical hyperandrogenism, ovulatory dysfunction, and/or specific ovarian morphological characteristics or elevated anti-Müllerian hormone. However, diagnosing adolescents omits ovarian morphology and anti-Müllerian hormone considerations. PCOS, marked by insulin resistance and hyperandrogenism, strongly contributes to early-onset type 2 diabetes, with increased odds for cardiovascular diseases. Reproduction-related implications include irregular menstrual cycles, anovulatory infertility, heightened risks of pregnancy complications and endometrial cancer. Beyond physiological manifestations, PCOS is associated with anxiety, depression, eating disorders, psychosexual dysfunction and negative body image, collectively contributing to diminished health-related quality of life in patients. Despite its high prevalence persisting into menopause, diagnosing PCOS often involves extended timelines and multiple health-care visits. Treatment remains ad hoc owing to limited understanding of underlying mechanisms, highlighting the need for research delineating the aetiology and pathophysiology of the syndrome. Identifying factors contributing to PCOS will pave the way for personalized medicine approaches. Additionally, exploring novel biomarkers, refining diagnostic criteria and advancing treatment modalities will be crucial in enhancing the precision and efficacy of interventions that will positively impact the lives of patients.
Collapse
Affiliation(s)
| | - Helena Teede
- Monash Centre for Health Research and Implementation, Monash Health and Monash University, Melbourne, Victoria, Australia
| | - Robert J Norman
- Robinson Research Institute, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Richard Legro
- Department of Obstetrics and Gynecology, Penn State College of Medicine, Hershey, PA, USA
- Department of Public Health Science, Penn State College of Medicine, Hershey, PA, USA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anuja Dokras
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joop Laven
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, Netherlands
| | - Kathleen Hoeger
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
11
|
Abbasi K, Zarezadeh R, Valizadeh A, Mehdizadeh A, Hamishehkar H, Nouri M, Darabi M. White-brown adipose tissue interplay in polycystic ovary syndrome: Therapeutic avenues. Biochem Pharmacol 2024; 220:116012. [PMID: 38159686 DOI: 10.1016/j.bcp.2023.116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
This study highlights the therapeutic potential of activating brown adipose tissue (BAT) for managing polycystic ovary syndrome (PCOS), a prevalent endocrine disorder associated with metabolic and reproductive abnormalities. BAT plays a crucial role in regulating energy expenditure and systemic insulin sensitivity, making it an attractive target for the treatment of obesity and metabolic diseases. Recent research suggests that impaired BAT function and mass may contribute to the link between metabolic disturbances and reproductive issues in PCOS. Additionally, abnormal white adipose tissue (WAT) can exacerbate these conditions by releasing adipokines and nonesterified fatty acids. In this review, we explored the impact of WAT changes on BAT function in PCOS and discussed the potential of BAT activation as a therapeutic strategy to improve PCOS symptoms. We propose that BAT activation holds promise for managing PCOS; however, further research is needed to confirm its efficacy and to develop clinically feasible methods for BAT activation.
Collapse
Affiliation(s)
- Khadijeh Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany.
| |
Collapse
|
12
|
Khatun M, Lundin K, Naillat F, Loog L, Saarela U, Tuuri T, Salumets A, Piltonen TT, Tapanainen JS. Induced Pluripotent Stem Cells as a Possible Approach for Exploring the Pathophysiology of Polycystic Ovary Syndrome (PCOS). Stem Cell Rev Rep 2024; 20:67-87. [PMID: 37768523 PMCID: PMC10799779 DOI: 10.1007/s12015-023-10627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine condition among women with pleiotropic sequelae possessing reproductive, metabolic, and psychological characteristics. Although the exact origin of PCOS is elusive, it is known to be a complex multigenic disorder with a genetic, epigenetic, and environmental background. However, the pathogenesis of PCOS, and the role of genetic variants in increasing the risk of the condition, are still unknown due to the lack of an appropriate study model. Since the debut of induced pluripotent stem cell (iPSC) technology, the ability of reprogrammed somatic cells to self-renew and their potential for multidirectional differentiation have made them excellent tools to study different disease mechanisms. Recently, researchers have succeeded in establishing human in vitro PCOS disease models utilizing iPSC lines from heterogeneous PCOS patient groups (iPSCPCOS). The current review sets out to summarize, for the first time, our current knowledge of the implications and challenges of iPSC technology in comprehending PCOS pathogenesis and tissue-specific disease mechanisms. Additionally, we suggest that the analysis of polygenic risk prediction based on genome-wide association studies (GWAS) could, theoretically, be utilized when creating iPSC lines as an additional research tool to identify women who are genetically susceptible to PCOS. Taken together, iPSCPCOS may provide a new paradigm for the exploration of PCOS tissue-specific disease mechanisms.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland.
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Florence Naillat
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Liisa Loog
- Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Ulla Saarela
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, 50406, Estonia
- Competence Centre of Health Technologies, Tartu, 50411, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, 14186, Sweden
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
- Department of Obstetrics and Gynecology, HFR - Cantonal Hospital of Fribourg and University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
13
|
Bril F, Ezeh U, Amiri M, Hatoum S, Pace L, Chen YH, Bertrand F, Gower B, Azziz R. Adipose Tissue Dysfunction in Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2023; 109:10-24. [PMID: 37329216 PMCID: PMC10735305 DOI: 10.1210/clinem/dgad356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is a complex genetic trait and the most common endocrine disorder of women, clinically evident in 5% to 15% of reproductive-aged women globally, with associated cardiometabolic dysfunction. Adipose tissue (AT) dysfunction appears to play an important role in the pathophysiology of PCOS even in patients who do not have excess adiposity. METHODS We undertook a systematic review concerning AT dysfunction in PCOS, and prioritized studies that assessed AT function directly. We also explored therapies that targeted AT dysfunction for the treatment of PCOS. RESULTS Various mechanisms of AT dysfunction in PCOS were identified including dysregulation in storage capacity, hypoxia, and hyperplasia; impaired adipogenesis; impaired insulin signaling and glucose transport; dysregulated lipolysis and nonesterified free fatty acids (NEFAs) kinetics; adipokine and cytokine dysregulation and subacute inflammation; epigenetic dysregulation; and mitochondrial dysfunction and endoplasmic reticulum and oxidative stress. Decreased glucose transporter-4 expression and content in adipocytes, leading to decreased insulin-mediated glucose transport in AT, was a consistent abnormality despite no alterations in insulin binding or in IRS/PI3K/Akt signaling. Adiponectin secretion in response to cytokines/chemokines is affected in PCOS compared to controls. Interestingly, epigenetic modulation via DNA methylation and microRNA regulation appears to be important mechanisms underlying AT dysfunction in PCOS. CONCLUSION AT dysfunction, more than AT distribution and excess adiposity, contributes to the metabolic and inflammation abnormalities of PCOS. Nonetheless, many studies provided contradictory, unclear, or limited data, highlighting the urgent need for additional research in this important field.
Collapse
Affiliation(s)
- Fernando Bril
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Uche Ezeh
- California IVF Fertility Center, Sacramento, CA 95833, USA
- Department of Obstetrics & Gynecology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
| | - Mina Amiri
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| | - Sana Hatoum
- Foundation for Research and Education Excellence, Vestavia, AL 35243, USA
| | - Lauren Pace
- Department of Obstetrics & Gynecology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
| | - Yen-Hao Chen
- Department of Research, Biomere-West, Richmond, CA 94806, USA
| | - Fred Bertrand
- Department of Clinical and Diagnostic Sciences, School of Health Professions, UAB, Birmingham, AL 35294, USA
| | - Barbara Gower
- Department of Nutrition Sciences, School of Health Professions, UAB, Birmingham, AL 35294, USA
| | - Ricardo Azziz
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
- Department of Obstetrics & Gynecology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
- Department of Healthcare Organization and Policy, School of Public Health, UAB, Birmingham, AL 35233, USA
- Department of Health Policy, Management and Behavior, School of Public Health, University at Albany, SUNY, Rensselaer, NY 12144, USA
| |
Collapse
|
14
|
Rizk J, Sahu R, Duteil D. An overview on androgen-mediated actions in skeletal muscle and adipose tissue. Steroids 2023; 199:109306. [PMID: 37634653 DOI: 10.1016/j.steroids.2023.109306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Androgens are a class of steroid hormones primarily associated with male sexual development and physiology, but exert pleiotropic effects in either sex. They have a crucial role in various physiological processes, including the regulation of skeletal muscle and adipose tissue homeostasis. The effects of androgens are mainly mediated through the androgen receptor (AR), a ligand-activated nuclear receptor expressed in both tissues. In skeletal muscle, androgens via AR exert a multitude of effects, ranging from increased muscle mass and strength, to the regulation of muscle fiber type composition, contraction and metabolic functions. In adipose tissue, androgens influence several processes including proliferation, fat distribution, and metabolism but they display depot-specific and organism-specific effects which differ in certain context. This review further explores the potential mechanisms underlying androgen-AR signaling in skeletal muscle and adipose tissue. Understanding the roles of androgens and their receptor in skeletal muscle and adipose tissue is essential for elucidating their contributions to physiological processes, disease conditions, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Joe Rizk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Rajesh Sahu
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Delphine Duteil
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France.
| |
Collapse
|
15
|
Dumesic DA, Abbott DH, Chazenbalk GD. An Evolutionary Model for the Ancient Origins of Polycystic Ovary Syndrome. J Clin Med 2023; 12:6120. [PMID: 37834765 PMCID: PMC10573644 DOI: 10.3390/jcm12196120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy of reproductive-aged women, characterized by hyperandrogenism, oligo-anovulation and insulin resistance and closely linked with preferential abdominal fat accumulation. As an ancestral primate trait, PCOS was likely further selected in humans when scarcity of food in hunter-gatherers of the late Pleistocene additionally programmed for enhanced fat storage to meet the metabolic demands of reproduction in later life. As an evolutionary model for PCOS, healthy normal-weight women with hyperandrogenic PCOS have subcutaneous (SC) abdominal adipose stem cells that favor fat storage through exaggerated lipid accumulation during development to adipocytes in vitro. In turn, fat storage is counterbalanced by reduced insulin sensitivity and preferential accumulation of highly lipolytic intra-abdominal fat in vivo. This metabolic adaptation in PCOS balances energy storage with glucose availability and fatty acid oxidation for optimal energy use during reproduction; its accompanying oligo-anovulation allowed PCOS women from antiquity sufficient time and strength for childrearing of fewer offspring with a greater likelihood of childhood survival. Heritable PCOS characteristics are affected by today's contemporary environment through epigenetic events that predispose women to lipotoxicity, with excess weight gain and pregnancy complications, calling for an emphasis on preventive healthcare to optimize the long-term, endocrine-metabolic health of PCOS women in today's obesogenic environment.
Collapse
Affiliation(s)
- Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| | - David H. Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715, USA;
| | - Gregorio D. Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| |
Collapse
|
16
|
Hahn AW, Siddiqui BA, Leo J, Dondossola E, Basham KJ, Miranti CK, Frigo DE. Cancer Cell-Extrinsic Roles for the Androgen Receptor in Prostate Cancer. Endocrinology 2023; 164:bqad078. [PMID: 37192413 PMCID: PMC10413433 DOI: 10.1210/endocr/bqad078] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
Given the central role of the androgen receptor (AR) in prostate cancer cell biology, AR-targeted therapies have been the backbone of prostate cancer treatment for over 50 years. New data indicate that AR is expressed in additional cell types within the tumor microenvironment. Moreover, targeting AR for the treatment of prostate cancer has established side effects such as bone complications and an increased risk of developing cardiometabolic disease, indicating broader roles for AR. With the advent of novel technologies, such as single-cell approaches and advances in preclinical modeling, AR has been identified to have clinically significant functions in other cell types. In this mini-review, we describe new cancer cell-extrinsic roles for AR within the tumor microenvironment as well as systemic effects that collectively impact prostate cancer progression and patient outcomes.
Collapse
Affiliation(s)
- Andrew W Hahn
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bilal A Siddiqui
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Javier Leo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Cindy K Miranti
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Daniel E Frigo
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
17
|
Kuryłowicz A. Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines 2023; 11:biomedicines11030690. [PMID: 36979669 PMCID: PMC10045924 DOI: 10.3390/biomedicines11030690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Menopause-related decline in estrogen levels is accompanied by a change in adipose tissue distribution from a gynoid to an android and an increased prevalence of obesity in women. These unfavorable phenomena can be partially restored by hormone replacement therapy, suggesting a significant role for estrogen in the regulation of adipocytes' function. Indeed, preclinical studies proved the involvement of these hormones in adipose tissue development, metabolism, and inflammatory activity. However, the relationship between estrogen and obesity is bidirectional. On the one hand-their deficiency leads to excessive fat accumulation and impairs adipocyte function, on the other-adipose tissue of obese individuals is characterized by altered expression of estrogen receptors and key enzymes involved in their synthesis. This narrative review aims to summarize the role of estrogen in adipose tissue development, physiology, and in obesity-related dysfunction. Firstly, the estrogen classification, synthesis, and modes of action are presented. Next, their role in regulating adipogenesis and adipose tissue activity in health and the course of obesity is described. Finally, the potential therapeutic applications of estrogen and its derivates in obesity treatment are discussed.
Collapse
Affiliation(s)
- Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland
- Department of General Medicine and Geriatric Cardiology, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland
| |
Collapse
|
18
|
Zheng R, Shen H, Li J, Zhao J, Lu L, Hu M, Lin Z, Ma H, Tan H, Hu M, Li J. Qi Gong Wan ameliorates adipocyte hypertrophy and inflammation in adipose tissue in a PCOS mouse model through the Nrf2/HO-1/Cyp1b1 pathway: Integrating network pharmacology and experimental validation in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115824. [PMID: 36273747 DOI: 10.1016/j.jep.2022.115824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Initially recorded in Yifang Jijie (an ancient Chinese text), Qi Gong Wan (QGW) is used to treat obese women with infertility. QGW can help promote follicular development and maturation, regulate the balance of serum hormones between testosterone and estradiol, enhance endometrial receptivity, improve waist circumference, and ameliorate insulin resistance. It contains eight herbs: Pinellia ternata (Thunb.) Makino (Banxia), Citrus maxima (Burm.) (Juhong), Poria cocos (Schw.) Wolf. (Fuling), Atractylodes macrocephala Koidz (Baizhu), Cyperus rotundus L. (Xiangfu), Conioselinum anthriscoides 'Chuanxiong' (Chuanxiong), Massa Medicata Fermentata (Shenqu), and Glycyrrhiza uralensis Fisch. ex DC. (Gancao). However, the underlying mechanism of how QGW affects women with PCOS remains unclear. AIM OF THE STUDY QGW has been widely used to treat PCOS patients with obesity clinically. This study was designed to identify its chemical and pharmacological properties. MATERIALS AND METHODS Network pharmacology was used to predict the active compounds, potential targets, and pathways of QGW. Female C57BL/6J mice were injected with letrozole and fed a high-fat diet to establish a PCOS-insulin resistance (PCOS-IR) model. Body weight, estrous cycles, ovarian pathology, and serum insulin resistance were measured. qRT-PCR was used to examine the inflammation-related and steroid hormone biosynthesis-related mRNA expression in adipose tissue. Western blotting was used to determine the protein levels of Nrf2, HO-1, and Cyp1b1 in adipose tissue. Molecular docking was used to reveal the key chemical compounds of QGW. RESULTS Network pharmacology revealed a total of 91 active ingredients in QGW that were associated with 167 targets. QGW could potentially treat PCOS-IR via nitrogen metabolism, steroid hormone biosynthesis, and ovarian steroidogenesis pathways. In the PCOS-IR mouse model, we found that QGW decreased the mean diameter of adipocytes and the total adipocyte area. Furthermore, QGW was found to significantly lower the expression of inflammation-related genes including Tnfɑ and C4a/b and the steroid hormone biosynthesis-related gene Cyp1b1. QGW showed a tendency to improve cystic follicles, fasting insulin, and HOMA-IR index in the PCOS-IR mouse model. Combining these findings with the results of KEGG analysis, we conclude that QGW promotes the Nrf2/HO-1/Cyp1b1 pathway to protect adipose tissue under conditions of PCOS. Molecular docking revealed that rutin, nicotiflorin, and baicalein may be the key chemical compounds of QGW through which it improves adipocyte hypertrophy and inflammation. CONCLUSIONS QGW improved adipocyte hypertrophy and inflammation in the PCOS-IR mouse model by activating the Nrf2/HO-1/Cyp1b1 pathway to protect adipose tissue. Our work thus provides a new research avenue for the study of traditional Chinese medicine in the treatment of PCOS.
Collapse
Affiliation(s)
- Ruqun Zheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haoran Shen
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jie Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiansen Zhao
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Lingjing Lu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mianhao Hu
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Zixin Lin
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Hongxia Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiyan Tan
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Khamoshina MB, Artemenko YS, Bayramova AA, Ryabova VA, Orazov MR. Polycystic ovary syndrome and obesity: a modern paradigm. RUDN JOURNAL OF MEDICINE 2022. [DOI: 10.22363/2313-0245-2022-26-4-382-395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Polycystic ovary syndrome is a heterogeneous endocrine disease that affects women of childbearing age. The pathogenesis of polycystic ovary syndrome has not been fully studied to date, its paradigm considers the genetic determinism of the manifestation of hormonal and metabolic disorders, which are considered to be criteria for the verification of the disease (hyperandrogenism, oligo/anovulation and/or polycystic ovarian transformation during ultrasound examination (ultrasound). This review discusses the main ways of interaction between hyperandrogenism, insulin resistance and obesity and their role in the pathogenesis of polycystic ovary syndrome, as well as possible methods of treatment for this category of patients. The review analyzes the role of hyperandrogenism and insulin resistance in the implementation of the genetic scenario of polycystic ovary syndrome and finds out the reasons why women with polycystic ovary syndrome often demonstrate the presence of a «metabolic trio» - hyperinsulinemia, insulin resistance and type 2 diabetes mellitus. It is noted that obesity is not included in the criteria for the diagnosis of polycystic ovary syndrome, but epidemiological data confirm the existence of a relationship between these diseases. Obesity, especially visceral, which is often found in women with polycystic ovary syndrome, enhances and worsens metabolic and reproductive outcomes with polycystic ovary syndrome, as well as increases insulin resistance and compensatory hyperinsulinemia, which, in turn, stimulates adipogenesis and suppresses lipolysis. Obesity increases the sensitivity of tech cells to luteinizing hormone stimulation and enhances functional hyperandrogenism of the ovaries, increasing the production of androgens by the ovaries. Excess body weight is associated with a large number of inflammatory adipokines, which, in turn, contribute to the growth of insulin resistance and adipogenesis. Obesity and insulin resistance exacerbate the symptoms of hyperandrogenism, forming a vicious circle that contributes to the development of polycystic ovary syndrome. These data allow us to conclude that bariatric surgery can become an alternative to drugs (metformin, thiazolidinedione analogs of glucagon-like peptide-1), which has shown positive results in the treatment of patients with polycystic ovary syndrome and obesity.
Collapse
|
20
|
Rosato E, Sciarra F, Anastasiadou E, Lenzi A, Venneri MA. Revisiting the physiological role of androgens in women. Expert Rev Endocrinol Metab 2022; 17:547-561. [PMID: 36352537 DOI: 10.1080/17446651.2022.2144834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Extensive research underlines the critical functions of androgens in females. Nevertheless, the precise mechanisms of their action are poorly understood. Here, we review the existing literature regarding the physiological role of androgens in women throughout life. AREAS COVERED Several studies show that androgen receptors (ARs) are broadly expressed in numerous female tissues. They are essential for many physiological processes, including reproductive, sexual, cardiovascular, bone, muscle, and brain health. They are also involved in adipose tissue and liver function. Androgen levels change with the menstrual cycle and decrease in the first decades of life, independently of menopause. EXPERT OPINION To date, studies are limited by including small numbers of women, the difficulty of dosing androgens, and their cyclical variations. In particular, whether androgens play any significant role in regulating the establishment of pregnancy is poorly understood. The neural functions of ARs have also been investigated less thoroughly, although it is expressed at high levels in brain structures. Moreover, the mechanism underlying the decline of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) with age is unclear. Other factors, including estrogen's effect on adrenal androgen production, reciprocal regulation of ARs, and non-classical effects of androgens, remain to be determined.
Collapse
Affiliation(s)
- Elena Rosato
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
21
|
Mićić B, Teofilović A, Djordjevic A, Veličković N, Macut D, Vojnović Milutinović D. AMPK Activation Is Important for the Preservation of Insulin Sensitivity in Visceral, but Not in Subcutaneous Adipose Tissue of Postnatally Overfed Rat Model of Polycystic Ovary Syndrome. Int J Mol Sci 2022; 23:ijms23168942. [PMID: 36012206 PMCID: PMC9408918 DOI: 10.3390/ijms23168942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/07/2022] [Accepted: 08/07/2022] [Indexed: 12/04/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a well-known reproductive syndrome usually associated with obesity, insulin resistance, and hyperinsulinemia. Although the first signs of PCOS begin early in adolescence, it is underexplored whether peripubertal obesity predisposes women to PCOS metabolic disturbances. To highlight that, we examined the impact of postnatal overfeeding-induced obesity, achieved by litter size reduction during the suckling period, on metabolic disturbances associated with visceral and subcutaneous adipose tissue (VAT and SAT) function in the 5α-dihydrotestosterone (5α-DHT)-induced animal model of PCOS. We analyzed markers of insulin signaling, lipid metabolism, and energy sensing in the VAT and SAT. Our results showed that postnatally overfed DHT-treated Wistar rats had increased VAT mass with hypertrophic adipocytes, together with hyperinsulinemia and increased HOMA index. In the VAT of these animals, insulin signaling remained unchanged while lipogenic markers decreased, which was accompanied by increased AMPK activation. In the SAT of the same animals, markers of lipogenesis and lipolysis increased, while the activity of AMPK decreased. Taken together, obtained results showed that postnatal overfeeding predisposes development of PCOS systemic insulin resistance, most likely as a result of worsened metabolic function of SAT, while VAT preserved its tissue insulin sensitivity through increased activity of AMPK.
Collapse
Affiliation(s)
- Bojana Mićić
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Ana Teofilović
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Djuro Macut
- Clinic for Endocrinology, Diabetes and Metabolic Diseases University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Doktora Subotića 13, 11000 Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-207-8303
| |
Collapse
|
22
|
Ostinelli G, Laforest S, Denham SG, Gauthier MF, Drolet-Labelle V, Scott E, Hould FS, Marceau S, Homer NZM, Bégin C, Andrew R, Tchernof A. Increased Adipose Tissue Indices of Androgen Catabolism and Aromatization in Women With Metabolic Dysfunction. J Clin Endocrinol Metab 2022; 107:e3330-e3342. [PMID: 35511873 PMCID: PMC9282357 DOI: 10.1210/clinem/dgac261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 02/02/2023]
Abstract
CONTEXT Body fat distribution is a risk factor for obesity-associated comorbidities, and adipose tissue dysfunction plays a role in this association. In humans, there is a sex difference in body fat distribution, and steroid hormones are known to regulate several cellular processes within adipose tissue. OBJECTIVE Our aim was to investigate if intra-adipose steroid concentration and expression or activity of steroidogenic enzymes were associated with features of adipose tissue dysfunction in individuals with severe obesity. METHODS Samples from 40 bariatric candidates (31 women, 9 men) were included in the study. Visceral (VAT) and subcutaneous adipose tissue (SAT) were collected during surgery. Adipose tissue morphology was measured by a combination of histological staining and semi-automated quantification. Following extraction, intra-adipose and plasma steroid concentrations were determined by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Aromatase activity was estimated using product over substrate ratio, while AKR1C2 activity was measured directly by fluorogenic probe. Gene expression was measured by quantitative PCR. RESULTS VAT aromatase activity was positively associated with VAT adipocyte hypertrophy (P valueadj < 0.01) and negatively with plasma high-density lipoprotein (HDL)-cholesterol (P valueadj < 0.01), while SAT aromatase activity predicted dyslipidemia in women even after adjustment for waist circumference, age, and hormonal contraceptive use. We additionally compared women with high and low visceral adiposity index (VAI) and found that VAT excess is characterized by adipose tissue dysfunction, increased androgen catabolism mirrored by increased AKR1C2 activity, and higher aromatase expression and activity indices. CONCLUSION In women, increased androgen catabolism or aromatization is associated with visceral adiposity and adipose tissue dysfunction.
Collapse
Affiliation(s)
- Giada Ostinelli
- Centre de recherche de l’Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, Québec City, QC G1V 4G5, Canada
- École de nutrition, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sofia Laforest
- Centre de recherche de l’Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, Québec City, QC G1V 4G5, Canada
- École de nutrition, Université Laval, Québec City, QC G1V 0A6, Canada
- University of Strathclyde, Glasgow G1 1XQ, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF, Cardiovascular Sciences, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Scott G Denham
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF, Cardiovascular Sciences, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Marie-Frederique Gauthier
- Centre de recherche de l’Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, Québec City, QC G1V 4G5, Canada
| | | | - Emma Scott
- Faculté de médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Frédéric-Simon Hould
- Centre de recherche de l’Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, Québec City, QC G1V 4G5, Canada
- Faculté de médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Simon Marceau
- Centre de recherche de l’Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, Québec City, QC G1V 4G5, Canada
- Faculté de médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF, Cardiovascular Sciences, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Catherine Bégin
- Centre de recherche de l’Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, Québec City, QC G1V 4G5, Canada
- École de psychologie, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Ruth Andrew
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University/BHF, Cardiovascular Sciences, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, EH16 4TJ, UK
- BHF/CVS, Queen’s Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - André Tchernof
- Correspondence: Andre Tchernof, PhD, Quebec Heart and Lung Institute, School of Nutrition, Laval University, 2725 Chemin Sainte-Foy (Y-4212), Québec, QC G1V 4G5, Canada.
| |
Collapse
|
23
|
Liu X, Bai Y, Cui R, He S, Ling Y, Wu C, Fang M. Integrated Analysis of the ceRNA Network and M-7474 Function in Testosterone-Mediated Fat Deposition in Pigs. Genes (Basel) 2022; 13:genes13040668. [PMID: 35456474 PMCID: PMC9032878 DOI: 10.3390/genes13040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Castration can significantly enhance fat deposition in pigs, and the molecular mechanism of fat deposition caused by castration and its influence on fat deposition in different parts of pigs remain unclear. RNA-seq was performed on adipose tissue from different parts of castrated and intact Yorkshire pigs. Different ceRNA networks were constructed for different fat parts. GO and KEGG pathway annotations suggested that testosterone elevates cell migration and affects differentiation and apoptosis in back fat, while it predisposes animals to glycolipid metabolism disorders and increases the expression of inflammatory cytokines in abdominal fat. The interaction between M-7474, novel_miR_243 and SGK1 was verified by dual fluorescence experiments. This ceRNA relationship has also been demonstrated in porcine preadipocytes. Overexpression of M-7474 significantly inhibited the differentiation of preadipocytes compared to the control group. When 100 nM testosterone was added during preadipocyte differentiation, the expression of M-7474 was increased, and preadipocyte differentiation was significantly inhibited. Testosterone can affect preadipocyte differentiation by upregulating the expression of M-7474, sponging novel-miR-243, and regulating the expression of genes such as SGK1. At the same time, HSD11B1 and SLC2A4 may also be regulated by the corresponding lncRNA and miRNA, which ultimately affects glucose uptake by adipocytes and leads to obesity.
Collapse
Affiliation(s)
- Ximing Liu
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (R.C.); (S.H.); (Y.L.); (C.W.)
| | - Ying Bai
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, China;
| | - Ran Cui
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (R.C.); (S.H.); (Y.L.); (C.W.)
| | - Shuaihan He
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (R.C.); (S.H.); (Y.L.); (C.W.)
| | - Yao Ling
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (R.C.); (S.H.); (Y.L.); (C.W.)
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (R.C.); (S.H.); (Y.L.); (C.W.)
| | - Meiying Fang
- National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.); (R.C.); (S.H.); (Y.L.); (C.W.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Correspondence: ; Tel.: +86-10-62734943; Fax: +86-10-62734943
| |
Collapse
|
24
|
Lustig RH, Collier D, Kassotis C, Roepke TA, Ji Kim M, Blanc E, Barouki R, Bansal A, Cave MC, Chatterjee S, Choudhury M, Gilbertson M, Lagadic-Gossmann D, Howard S, Lind L, Tomlinson CR, Vondracek J, Heindel JJ. Obesity I: Overview and molecular and biochemical mechanisms. Biochem Pharmacol 2022; 199:115012. [PMID: 35393120 PMCID: PMC9050949 DOI: 10.1016/j.bcp.2022.115012] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.
Collapse
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California, San Francisco, CA 94143, United States
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Christopher Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States
| | - Troy A Roepke
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Min Ji Kim
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Etienne Blanc
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Robert Barouki
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, United States
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, United States
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Dominique Lagadic-Gossmann
- Research Institute for Environmental and Occupational Health, University of Rennes, INSERM, EHESP, Rennes, France
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Lars Lind
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States.
| |
Collapse
|
25
|
Jensterle M, Kravos NA, Dolžan V, Goričar K, Herman R, Rizzo M, Janež A. Glucose transporter 4 mRNA expression in subcutaneous adipose tissue of women with PCOS remains unchanged despite metformin withdrawal: is there a cellular metabolic treatment legacy effect? Endocrine 2022; 75:804-813. [PMID: 34761355 DOI: 10.1007/s12020-021-02934-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Metformin induces GLUT-4 mRNA expression in insulin target tissues in PCOS. It is unclear how long this impact is sustained after withdrawal of metformin. We aimed to compare the effect of metformin withdrawal on GLUT-4 mRNA expression in subcutaneous adipose tissue after prior short (ST, 1 year, N = 11) and long term (LT, at least 3 years, N = 13) treatment in obese PCOS women. METHODS At baseline and 6 months after withdrawal, biopsy of subcutaneous adipose tissue followed by quantitative PCR analysis was performed to determine GLUT-4 mRNA expression. RESULTS We found no time/effect differences in GLUT-4 mRNA expression in ST (2-dCt at baseline 0.42 (0.16-0.48) vs 2-dCt after 6 months 0.31 (0.22-0.56), p = 0.594) and no time/effect difference in LT group (2-dCt at baseline 0.24 (0.14-0.39) vs 2-dCt after 6 months 0.25 (0.20-0.38), p = 0.382). There was also no difference in GLUT-4 mRNA expression between both groups at baseline and after 6 months. CONCLUSIONS In summary, 6 months after metformin withdrawal, GLUT-4 mRNA expression in subcutaneous adipose tissue remained stable, regardless of the prior treatment duration.
Collapse
Affiliation(s)
- Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, 1000, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Nika Aleksandra Kravos
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, 1000, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Rok Herman
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, 1000, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, 90133, Italy
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, 1000, Slovenia.
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
26
|
Schuh K, Häussler S, Sadri H, Prehn C, Lintelmann J, Adamski J, Koch C, Frieten D, Ghaffari MH, Dusel G, Sauerwein H. Blood and adipose tissue steroid metabolomics and mRNA expression of steroidogenic enzymes in periparturient dairy cows differing in body condition. Sci Rep 2022; 12:2297. [PMID: 35145150 PMCID: PMC8831572 DOI: 10.1038/s41598-022-06014-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
In high-yielding dairy cows, the rapidly increasing milk production after parturition can result in a negative nutrient balance, since feed intake is insufficient to cover the needs for lactation. Mobilizing body reserves, mainly adipose tissue (AT), might affect steroid metabolism. We hypothesized, that cows differing in the extent of periparturient lipomobilization, will have divergent steroid profiles measured in serum and subcutaneous (sc)AT by a targeted metabolomics approach and steroidogenic enzyme profiles in scAT and liver. Fifteen weeks antepartum, 38 multiparous Holstein cows were allocated to a high (HBCS) or normal body condition (NBCS) group fed differently until week 7 antepartum to either increase (HBCS BCS: 3.8 ± 0.1 and BFT: 2.0 ± 0.1 cm; mean ± SEM) or maintain BCS (NBCS BCS: 3.0 ± 0.1 and BFT: 0.9 ± 0.1 cm). Blood samples, liver, and scAT biopsies were collected at week -7, 1, 3, and 12 relative to parturition. Greater serum concentrations of progesterone, androsterone, and aldosterone in HBCS compared to NBCS cows after parturition, might be attributed to the increased mobilization of AT. Greater glucocorticoid concentrations in scAT after parturition in NBCS cows might either influence local lipogenesis by differentiation of preadipocytes into mature adipocytes and/or inflammatory response.
Collapse
Affiliation(s)
- K Schuh
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115, Bonn, Germany
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411, Bingen am Rhein, Germany
| | - S Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115, Bonn, Germany.
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471, Tabriz, Iran
| | - C Prehn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Metabolomics and Proteomics Core, 85764, Neuherberg, Germany
| | - J Lintelmann
- Helmholtz Zentrum München, German Research Center for Environmental Health, Metabolomics and Proteomics Core, 85764, Neuherberg, Germany
| | - J Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728, Muenchweiler an der Alsenz, Germany
| | - D Frieten
- Thünen Institute of Organic Farming, 23847, Westerau, Germany
| | - M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115, Bonn, Germany
| | - G Dusel
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411, Bingen am Rhein, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
27
|
Dumesic DA, Padmanabhan V, Chazenbalk GD, Abbott DH. Polycystic ovary syndrome as a plausible evolutionary outcome of metabolic adaptation. Reprod Biol Endocrinol 2022; 20:12. [PMID: 35012577 PMCID: PMC8744313 DOI: 10.1186/s12958-021-00878-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
As a common endocrinopathy of reproductive-aged women, polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology. It is linked with insulin resistance through preferential abdominal fat accumulation that is worsened by obesity. Over the past two millennia, menstrual irregularity, male-type habitus and sub-infertility have been described in women and confirm that these clinical features of PCOS were common in antiquity. Recent findings in normal-weight hyperandrogenic PCOS women show that exaggerated lipid accumulation by subcutaneous (SC) abdominal stem cells during development to adipocytes in vitro occurs in combination with reduced insulin sensitivity and preferential accumulation of highly-lipolytic intra-abdominal fat in vivo. This PCOS phenotype may be an evolutionary metabolic adaptation to balance energy storage with glucose availability and fatty acid oxidation for optimal energy use during reproduction. This review integrates fundamental endocrine-metabolic changes in healthy, normal-weight PCOS women with similar PCOS-like traits present in animal models in which tissue differentiation is completed during fetal life as in humans to support the evolutionary concept that PCOS has common ancestral and developmental origins.
Collapse
Affiliation(s)
- Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Room 22-178 CHS, Los Angeles, CA 90095 USA
| | | | - Gregorio D. Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Room 22-178 CHS, Los Angeles, CA 90095 USA
| | - David H. Abbott
- Department of Obstetrics and Gynecology, University of Wisconsin and Wisconsin National Primate Research Center, 1223 Capitol Court, Madison, WI 53715 USA
| |
Collapse
|
28
|
Varghese M, Griffin C, Abrishami S, Eter L, Lanzetta N, Hak L, Clemente J, Agarwal D, Lerner A, Westerhoff M, Patel R, Bowers E, Islam M, Subbaiah P, Singer K. Sex hormones regulate metainflammation in diet-induced obesity in mice. J Biol Chem 2021; 297:101229. [PMID: 34599964 PMCID: PMC8526779 DOI: 10.1016/j.jbc.2021.101229] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Men have a statistically higher risk of metabolic and cardiovascular disease than premenopausal women, but the mechanisms mediating these differences are elusive. Chronic inflammation during obesity contributes to disease risk and is significantly more robust in males. Prior work demonstrated that compared with obese males, obese females have reduced proinflammatory adipose tissue macrophages (ATMs). Given the paucity of data on how sex hormones contribute to macrophage responses in obesity, we sought to understand the role of sex hormones in promoting obesity-induced myeloid inflammation. We used gonadectomy, estrogen receptor-deficient alpha chimeras, and androgen-insensitive mice to model sex hormone deficiency. These models were evaluated in diet-induced obesity conditions (high-fat diet [HFD]) and in vitro myeloid assays. We found that ovariectomy increased weight gain and adiposity. Ovariectomized females had increased ATMs and bone marrow myeloid colonies compared with sham-gonadectomized females. In addition, castrated males exposed to HFD had improved glucose tolerance, insulin sensitivity, and adiposity with fewer Ly6chi monocytes and bone marrow myeloid colonies compared with sham-gonadectomized males, although local adipose inflammation was enhanced. Similar findings were observed in androgen-insensitive mice; however, these mice had fewer CD11c+ ATMs, implying a developmental role for androgens in myelopoiesis and adipose inflammation. We concluded that gonadectomy results in convergence of metabolic and inflammatory responses to HFD between the sexes, and that myeloid estrogen receptor alpha contributes minimally to diet-induced inflammatory responses, whereas loss of androgen-receptor signaling improves metabolic and inflammatory outcomes. These studies demonstrate that sex hormones play a critical role in sex differences in obesity, metabolic dysfunction, and myeloid inflammation.
Collapse
Affiliation(s)
- Mita Varghese
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Cameron Griffin
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Simin Abrishami
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Leila Eter
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas Lanzetta
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Layla Hak
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeremy Clemente
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Devyani Agarwal
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Arianna Lerner
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Maria Westerhoff
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ravi Patel
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Bowers
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammed Islam
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Perla Subbaiah
- Department of Mathematics and Statistics, Oakland University, Rochester, Michigan, USA
| | - Kanakadurga Singer
- Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
29
|
Gheorghe GS, Hodorogea AS, Ciobanu A, Nanea IT, Gheorghe ACD. Androgen Deprivation Therapy, Hypogonadism and Cardiovascular Toxicity in Men with Advanced Prostate Cancer. ACTA ACUST UNITED AC 2021; 28:3331-3346. [PMID: 34590590 PMCID: PMC8482210 DOI: 10.3390/curroncol28050289] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023]
Abstract
Androgen deprivation therapy (ADT) is successfully used in patients with advanced prostatic cancer, but there are many concerns about its systemic side effects, especially due to advanced age and frequent comorbidities in most patients. In patients treated with ADT there are metabolic changes involving the glycaemic control and lipid metabolism, increased thrombotic risk, an increased risk of myocardial infarction, severe arrhythmia and sudden cardiac death. Still, these adverse effects can be also due to the subsequent hypogonadism. Men with heart failure or coronary artery disease have a lower level of serum testosterone than normal men of the same age, and hypogonadism is related to higher cardiovascular mortality. Many clinical studies compared the cardiovascular effects of hypogonadism post orchiectomy or radiotherapy with those of ADT but their results are controversial. However, current data suggest that more intensive treatment of cardiovascular risk factors and closer cardiological follow-up of older patients under ADT might be beneficial. Our paper is a narrative review of the literature data in this field.
Collapse
Affiliation(s)
- Gabriela Silvia Gheorghe
- Faculty of Medicine, Department 4, Cardio-Thoracic Pathology, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania; (G.S.G.); (A.C.); (I.T.N.); (A.C.D.G.)
- Department of Internal Medicine and Cardiology, Theodor Burghele Clinical Hospital, 050653 Bucharest, Romania
| | - Andreea Simona Hodorogea
- Faculty of Medicine, Department 4, Cardio-Thoracic Pathology, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania; (G.S.G.); (A.C.); (I.T.N.); (A.C.D.G.)
- Department of Internal Medicine and Cardiology, Theodor Burghele Clinical Hospital, 050653 Bucharest, Romania
- Correspondence: ; Tel.: +40-726-315872
| | - Ana Ciobanu
- Faculty of Medicine, Department 4, Cardio-Thoracic Pathology, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania; (G.S.G.); (A.C.); (I.T.N.); (A.C.D.G.)
- Department of Internal Medicine and Cardiology, Theodor Burghele Clinical Hospital, 050653 Bucharest, Romania
| | - Ioan Tiberiu Nanea
- Faculty of Medicine, Department 4, Cardio-Thoracic Pathology, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania; (G.S.G.); (A.C.); (I.T.N.); (A.C.D.G.)
- Department of Internal Medicine and Cardiology, Theodor Burghele Clinical Hospital, 050653 Bucharest, Romania
| | - Andrei Cristian Dan Gheorghe
- Faculty of Medicine, Department 4, Cardio-Thoracic Pathology, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania; (G.S.G.); (A.C.); (I.T.N.); (A.C.D.G.)
- Department of Internal Medicine and Cardiology, Theodor Burghele Clinical Hospital, 050653 Bucharest, Romania
| |
Collapse
|
30
|
Fukuhara S, Mori J, Nakajima H. Klinefelter syndrome in an adolescent with severe obesity, insulin resistance, and hyperlipidemia, successfully treated with testosterone replacement therapy. Clin Pediatr Endocrinol 2021; 30:127-132. [PMID: 34285454 PMCID: PMC8267554 DOI: 10.1297/cpe.30.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/05/2021] [Indexed: 11/26/2022] Open
Abstract
Klinefelter syndrome (KS) is a sex chromosome disorder characterized by the presence of
one or more extra X chromosomes. KS is well known by the common karyotype 47, XXY and
presents as male infertility with hypogonadism in adults. Pediatric patients with KS
commonly show neurodevelopmental disorders and cryptorchidism. We have reported a case of
a 14-yr-old boy with KS and severe obesity (body mass index, 38.1 kg/m2),
insulin (IRI) resistance (homeostatic model assessment 1 IRI resistance, 9.26),
hyperlipidemia (serum low-density lipoprotein cholesterol level, 192 mg/dL; serum
triglyceride level, 239 mg/dL), hypergonadotropic hypogonadism, and learning difficulties.
The karyotype was 47, XXY, t(4;5) (q21.2;q32). Initially, he was unwilling to accept
dietary restrictions and perform physical exercise against obesity. Testosterone
replacement therapy was initiated at 16 years of age, which successfully improved the body
composition, IRI resistance, and hyperlipidemia and increased the serum testosterone
levels. Additionally, he adhered to recommendations for exercise and dietary restrictions.
Patients with KS have risks of obesity and metabolic syndrome with sarcopenic conditions
due to hypergonadotropic hypogonadism. Pediatricians should be aware of KS as a primary
disease causing obesity. Testosterone replacement therapy could help ameliorate obesity
and its comorbidities in patients with obesity and KS.
Collapse
Affiliation(s)
- Shota Fukuhara
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Mori
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hisakazu Nakajima
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
31
|
Bianchi VE, Bresciani E, Meanti R, Rizzi L, Omeljaniuk RJ, Torsello A. The role of androgens in women's health and wellbeing. Pharmacol Res 2021; 171:105758. [PMID: 34242799 DOI: 10.1016/j.phrs.2021.105758] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022]
Abstract
Androgens in women, as well as in men, are intrinsic to maintenance of (i) reproductive competency, (ii) cardiac health, (iii) appropriate bone remodeling and mass retention, (iii) muscle tone and mass, and (iv) brain function, in part, through their mitigation of neurodegenerative disease effects. In recognition of the pluripotency of endogenous androgens, exogenous androgens, and selected congeners, have been prescribed off-label for several decades to treat low libido and sexual dysfunction in menopausal women, as well as, to improve physical performance. However, long-term safety and efficacy of androgen administration has yet to be fully elucidated. Side effects often observed include (i) hirsutism, (ii) acne, (iii) deepening of the voice, and (iv) weight gain but are associated most frequently with supra-physiological doses. By contrast, short-term clinical trials suggest that the use of low-dose testosterone therapy in women appears to be effective, safe and economical. There are, however, few clinical studies, which have focused on effects of androgen therapy on pre- and post-menopausal women; moreover, androgen mechanisms of action have not yet been thoroughly explained in these subjects. This review considers clinical effects of androgens on women's health in order to prevent chronic diseases and reduce cancer risk in gynecological tissues.
Collapse
Affiliation(s)
- Vittorio E Bianchi
- Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta 42, Falciano 47891, San Marino.
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Robert J Omeljaniuk
- Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| |
Collapse
|
32
|
Evaluation of the relationship between serum ferritin and insulin resistance and visceral adiposity index (VAI) in women with polycystic ovary syndrome. Eat Weight Disord 2021; 26:1581-1593. [PMID: 32772321 DOI: 10.1007/s40519-020-00980-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023] Open
Abstract
PURPOSE There is a relationship between polycystic ovary syndrome (PCOS) and adipose tissue dysfunction (ADD), but this relationship is not clear. It has been recently shown that iron accumulation in adipose tissue is among the causes of adipose tissue dysfunction. Data on adipose tissue dysfunction in women with PCOS are insufficient. In this study, we aimed to evaluate the relationship between serum ferritin levels (iron accumulation biomarker) and visceral adiposity index (an indicator of adipose tissue dysfunction). METHODS The study is a case-control study. Women with diagnosed PCOS with 2003 Rotterdam Diagnostic Criteria (n = 40) were compared with non-PCOS group (n = 40). In this study, the cholesterol ratios, the homeostatic model evaluation index for insulin resistance (HOMA-IR) and the quantitative insulin sensitivity control index were calculated using biochemical parameters, and the visceral adiposity index (VAI) and the lipid accumulation product (LAP) were calculated using both anthropometric and biochemical parameters. In this study, insulin resistance was evaluated by HOMA-IR and adipose tissue dysfunction was evaluated by VAI index. RESULTS According to the results of this study, women with PCOS have a worse metabolic status than women without PCOS. However, this has been shown only in overweight and obese women, not in women with normal weight. CONCLUSION As a result, the presence of obesity in women with PCOS exacerbates metabolic status. LEVEL OF EVIDENCE Level V, cross-sectional descriptive study.
Collapse
|
33
|
de Medeiros SF, Rodgers RJ, Norman RJ. Adipocyte and steroidogenic cell cross-talk in polycystic ovary syndrome. Hum Reprod Update 2021; 27:771-796. [PMID: 33764457 DOI: 10.1093/humupd/dmab004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metabolic and endocrine alterations in women with polycystic ovary syndrome (PCOS) affect adipose tissue mass and distribution. PCOS is characterised by hyperandrogenism, obesity and adipocyte dysfunction. Hyperandrogenism in PCOS drives dysfunctional adipocyte secretion of potentially harmful adipocytokines. Glucocorticoids and sex-steroids modulate adipocyte development and function. For their part, adipocyte products interact with adrenal and ovarian steroidogenic cells. Currently, the relationship between adipocyte and steroidogenic cells is not clear, and for these reasons, it is important to elucidate the interrelationship between these cells in women with and without PCOS. OBJECTIVE AND RATIONALE This comprehensive review aims to assess current knowledge regarding the interrelationship between adipocytes and adrenal and ovarian steroidogenic cells in animal models and humans with or without PCOS. SEARCH METHODS We searched for articles published in English and Portuguese in PubMed. Keywords were as follows: polycystic ovary syndrome, steroidogenesis, adrenal glands, theca cells, granulosa cells, adipocytes, adipocytokines, obesity, enzyme activation, and cytochrome P450 enzymes. We expanded the search into the references from the retrieved articles. OUTCOMES Glucocorticoids and sex-steroids modulate adipocyte differentiation and function. Dysfunctional adipocyte products play important roles in the metabolic and endocrine pathways in animals and women with PCOS. Most adipokines participate in the regulation of the hypothalamic-pituitary-adrenal and ovarian axes. In animal models of PCOS, hyperinsulinemia and poor fertility are common; various adipokines modulate ovarian steroidogenesis, depending on the species. Women with PCOS secrete unbalanced levels of adipocyte products, characterised by higher levels of leptin and lower levels of adiponectin. Leptin expression positively correlates with body mass index, waist/hip ratio and levels of total cholesterol, triglyceride, luteinising hormone, oestradiol and androgens. Leptin inhibits the production of oestradiol and, in granulosa cells, may modulate 17-hydroxylase and aromatase enzyme activities. Adiponectin levels negatively correlate with fat mass, body mass index, waist-hip ratio, glucose, insulin and triglycerides, and decrease androgen production by altering expression of luteinising hormone receptor, steroidogenic acute regulatory protein, cholesterol-side-chain cleavage enzyme and 17-hydroxylase. Resistin expression positively correlates with body mass index and testosterone, and promotes the expression of 17-hydroxylase enzyme in theca cells. The potential benefits of adipokines in the treatment of women with PCOS require more investigation. WIDER IMPLICATIONS The current data regarding the relationship between adipocyte products and steroidogenic cells are conflicting in animals and humans. Polycystic ovary syndrome is an excellent model to investigate the interrelationship among adipocyte and steroidogenic cells. Women with PCOS manifest some pathological conditions associated with hyperandrogenism and adipocyte products. In animals, cross-talk between cells may vary according to species, and the current review suggests opportunities to test new medications to prevent or even reverse several harmful sequelae of PCOS in humans. Further studies are required to investigate the possible therapeutic application of adipokines in women with obese and non-obese PCOS. Meanwhile, when appropriate, metformin use alone, or associated with flutamide, may be considered for therapeutic purposes.
Collapse
Affiliation(s)
- Sebastião Freitas de Medeiros
- Department of Gynecology and Obstetrics, Medical School, Federal University of Mato Grosso; and Tropical Institute of Reproductive Medicine,Cuiabá, MT, Brazil
| | - Raymond Joseph Rodgers
- Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert John Norman
- Robinson Research Institute Adelaide Medical School, Adelaide, South Australia, Australia
| |
Collapse
|
34
|
Amiri M, Rahmati M, Hedayati M, Nahidi F, Ramezani Tehrani F. Effects of oral contraceptives on serum concentrations of adipokines and adiposity indices of women with polycystic ovary syndrome: a randomized controlled trial. J Endocrinol Invest 2021; 44:567-580. [PMID: 32681463 DOI: 10.1007/s40618-020-01349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/27/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE To compare the effects of oral contraceptives (OCs) with different progestins, including Levonorgestrel (LNG), Desogestrel (DSG), Cyproterone Acetate (CPA), and Drospirenone (DRSP) on adipokines levels and adiposity indices in women with polycystic ovary syndrome (PCOS). METHODS In this parallel randomized clinical trial, 120 women with PCOS randomly assigned to intervention with OCs containing LNG, DSG, CPA, or DRSP. Outcomes of interest, including serum concentrations of adiponectin, leptin, and resistin, and adiposity indices, i.e., body mass index (BMI), waist circumference (WC), obesity, central obesity, waist to hip ratio (WHR), waist to height ratio (WHtR), lipid accumulation product (LAP), a body shape index (ABSI), body roundness index (BRI), and visceral adiposity index (VAI), and lipid profiles were assessed at baseline, and 6 months of treatment. RESULTS This study showed no significant differences in serum concentrations of adipokines between the four study groups after 6 months of treatment. Our results also showed that patients treated with various compounds of OC for 6 months had no significant differences in their adiposity indices, except for LAP (p = 0.04), and VAI (p = 0.03). PCOS patients treated with OCs containing CPA had significantly a higher mean LAP, compared to those using products containing LNG. Besides, patients treated with OCs containing CPA had significantly a higher mean VAI, compared to those treated with OCs containing DRSP. CONCLUSION This study demonstrated that OCs with low androgenic and antiandrogenic activities had identical effects on serum concentrations of adipokines, and adiposity indices, except LAP, and VAI parameters. REGISTRATION NUMBER IRCT20080929001281N3.
Collapse
Affiliation(s)
- M Amiri
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvane Street, Yaman Street, Velenjak, Tehran, Iran
| | - M Rahmati
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvane Street, Yaman Street, Velenjak, Tehran, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - M Hedayati
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Nahidi
- Department of Midwifery and Reproductive Health, Faculty of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvane Street, Yaman Street, Velenjak, Tehran, Iran.
| |
Collapse
|
35
|
Bourgneuf C, Bailbé D, Lamazière A, Dupont C, Moldes M, Farabos D, Roblot N, Gauthier C, Mathieu d'Argent E, Cohen-Tannoudji J, Monniaux D, Fève B, Movassat J, di Clemente N, Racine C. The Goto-Kakizaki rat is a spontaneous prototypical rodent model of polycystic ovary syndrome. Nat Commun 2021; 12:1064. [PMID: 33594056 PMCID: PMC7886868 DOI: 10.1038/s41467-021-21308-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is characterized by an oligo-anovulation, hyperandrogenism and polycystic ovarian morphology combined with major metabolic disturbances. However, despite the high prevalence and the human and economic consequences of this syndrome, its etiology remains unknown. In this study, we show that female Goto-Kakizaki (GK) rats, a type 2 diabetes mellitus model, encapsulate naturally all the reproductive and metabolic hallmarks of lean women with PCOS at puberty and in adulthood. The analysis of their gestation and of their fetuses demonstrates that this PCOS-like phenotype is developmentally programmed. GK rats also develop features of ovarian hyperstimulation syndrome. Lastly, a comparison between GK rats and a cohort of women with PCOS reveals a similar reproductive signature. Thus, this spontaneous rodent model of PCOS represents an original tool for the identification of the mechanisms involved in its pathogenesis and for the development of novel strategies for its treatment.
Collapse
Affiliation(s)
- Camille Bourgneuf
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Danielle Bailbé
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Antonin Lamazière
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Saint-Antoine, Département PM2, Paris, France
| | - Charlotte Dupont
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Service de biologie de la reproduction-CECOS, Paris, France
| | - Marthe Moldes
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Dominique Farabos
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Saint-Antoine, Département PM2, Paris, France
| | - Natacha Roblot
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Camille Gauthier
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Emmanuelle Mathieu d'Argent
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Service de biologie de la reproduction-CECOS, Paris, France
| | | | | | - Bruno Fève
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Saint-Antoine, Service Endocrinologie, CRMR PRISIS, Paris, France
| | - Jamileh Movassat
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Nathalie di Clemente
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Chrystèle Racine
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
- Institut Hospitalo-Universitaire ICAN, Paris, France.
- Université de Paris, Paris, France.
| |
Collapse
|
36
|
Rosenfield RL, Cooke DW, Radovick S. Puberty in the Female and Its Disorders. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:528-626. [DOI: 10.1016/b978-0-323-62520-3.00016-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
37
|
Siemienowicz KJ, Coukan F, Franks S, Rae MT, Duncan WC. Aberrant subcutaneous adipogenesis precedes adult metabolic dysfunction in an ovine model of polycystic ovary syndrome (PCOS). Mol Cell Endocrinol 2021; 519:111042. [PMID: 33010309 DOI: 10.1016/j.mce.2020.111042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects over 10% of women. Insulin resistance, elevated free fatty acids (FFAs) and increased adiposity are key factors contributing to metabolic dysfunction in PCOS. We hypothesised that aberrant adipogenesis during adolescence, and downstream metabolic perturbations, contributes to the metabolic phenotype of adult PCOS. We used prenatally androgenised (PA) sheep as a clinically realistic model of PCOS. During adolescence, but not during fetal or early life of PA sheep, adipogenesis was decreased in subcutaneous adipose tissue (SAT) accompanied by decreased leptin, adiponectin, and increased FFAs. In adulthood, PA sheep developed adipocyte hypertrophy in SAT paralleled by increased expression of inflammatory markers, elevated FFAs and increased expression of genes linked to fat accumulation in visceral adipose tissue. This study provides better understanding into the pathophysiology of PCOS from puberty to adulthood and identifies opportunity for early clinical intervention to normalise adipogenesis and ameliorate the metabolic phenotype.
Collapse
Affiliation(s)
- Katarzyna J Siemienowicz
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK; School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK.
| | - Flavien Coukan
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College, London, UK
| | - Mick T Rae
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - W Colin Duncan
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
38
|
Ye W, Xie T, Song Y, Zhou L. The role of androgen and its related signals in PCOS. J Cell Mol Med 2020; 25:1825-1837. [PMID: 33369146 PMCID: PMC7882969 DOI: 10.1111/jcmm.16205] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women at reproductive age. However, the underlying pathogenic mechanisms have not been completely understood. Hyperandrogenism is an important clinic feature in patients with PCOS, suggesting its pathologic role in the development and progression of PCOS. However, the actual role of androgen and the related signals in PCOS and PCOS-related complications have not yet been clarified. In this review, we surveyed the origin and effects of androgen on PCOS and the related complications, highlighted the cellular signals affecting androgen synthesis and summarized the pathological processes caused by hyperandrogenism. Our review well reveals the important mechanisms referring the pathogenesis of PCOS and provides important clues to the clinic strategies in patients with PCOS.
Collapse
Affiliation(s)
- Wenting Ye
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yali Song
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
39
|
Dumesic DA, Tulberg A, Leung KL, Fisch SC, Grogan TR, Abbott DH, Naik R, Chazenbalk GD. Accelerated subcutaneous abdominal stem cell adipogenesis predicts insulin sensitivity in normal-weight women with polycystic ovary syndrome. Fertil Steril 2020; 116:232-242. [PMID: 33341231 DOI: 10.1016/j.fertnstert.2020.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To examine whether subcutaneous (SC) abdominal adipose stem cell differentiation into adipocytes in vitro predicts insulin sensitivity (Si) in vivo in normal-weight women with polycystic ovary syndrome (PCOS) and controls. DESIGN Prospective cohort study. SETTING Academic medical center. PATIENT(S) Eight normal-weight women with PCOS and 8 age- and body mass index-matched controls. INTERVENTION(S) Women underwent circulating hormone/metabolic determinations, intravenous glucose tolerance testing, total-body dual-energy x-ray absorptiometry, and SC abdominal fat biopsy. MAIN OUTCOME MEASURE(S) PPARγ and CEBPa gene expression and lipid content of adipocytes matured in vitro were compared between women with PCOS and control women, and correlated with patient characteristics, systemic Si, and adipose insulin resistance (adipose-IR). RESULT(S) Serum androgen levels, adipose-IR, and percentage of android fat were greater in women with PCOS than control women. Stem cell PPARγ and CEBPa gene expression increased maximally by day 12 without a female-type effect. In control cells, gene expression positively correlated with fasting serum insulin levels (both genes) and adipose-IR (CEBPa) and negatively correlated with Si (CEBPa). Conversely, CEBPa gene expression in PCOS cells negatively correlated with adipose-IR and serum free testosterone, whereas total lipid accumulation in these cells positively corelated with Si. CONCLUSION In normal-weight women with PCOS, accelerated SC abdominal adipose stem cell differentiation into adipocytes in vitro favors Si in vivo, suggesting a role for hyperandrogenism in the evolution of metabolic thrift to enhance fat storage through increased cellular glucose uptake.
Collapse
Affiliation(s)
- Daniel A Dumesic
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California.
| | - Ayli Tulberg
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Karen L Leung
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Samantha C Fisch
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Tristan R Grogan
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, California
| | - David H Abbott
- OB/GYN, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Madison, Wisconsin
| | - Rajanigandha Naik
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
40
|
Greither T, Wenzel C, Jansen J, Kraus M, Wabitsch M, Behre HM. MiR-130a in the adipogenesis of human SGBS preadipocytes and its susceptibility to androgen regulation. Adipocyte 2020; 9:197-205. [PMID: 32272867 PMCID: PMC7153545 DOI: 10.1080/21623945.2020.1750256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objectives: Adipogenesis is the differentiation process generating mature adipocytes from undifferentiated mesenchymal stem cells. The differentiation can be inhibited by androgens, although knowledge about intracellular effectors of this inhibition is scarce. Recently, androgen-regulated microRNAs were detected as interesting candidates in this context. In this study, we analyse the role of miR-130a and miR-301 in the adipogenesis of human SGBS preadipocytes and whether they are prone to androgen regulation. Materials and Methods: microRNA expression during adipogenic differentiation with or without androgen stimulation was measured by qPCR. Putative target genes of miR-130a and miR-301 were identified by target database search and validated in luciferase reporter assays. Results: miR-130a and miR-301 are both significantly downregulated on day 3 and day 5 of adipogenic differentiation in comparison to day 0. Under androgen stimulation, a significant upregulation of miR-130a was detected after 7 days of adipogenesis lasting to day 14, while miR-301 did not change significantly until day 14. Luciferase reporter assays revealed the androgen receptor (AR), adiponectin (ADIPOQ) and tumour necrosis factor alpha (TNFα) as miR-130a target genes. Conclusions: miR-130a is an androgen-regulated microRNA that is downregulated during the early phase of adipogenesis and exerts its functions by regulating AR and ADIPOQ translation. These data may help to identify new signalling pathways associated with the androgen-mediated inhibition of adipogenesis.
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carina Wenzel
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Julia Jansen
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Matthias Kraus
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Hermann M. Behre
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
41
|
Leung KL, Sanchita S, Pham CT, Davis BA, Okhovat M, Ding X, Dumesic P, Grogan TR, Williams KJ, Morselli M, Ma F, Carbone L, Li X, Pellegrini M, Dumesic DA, Chazenbalk GD. Dynamic changes in chromatin accessibility, altered adipogenic gene expression, and total versus de novo fatty acid synthesis in subcutaneous adipose stem cells of normal-weight polycystic ovary syndrome (PCOS) women during adipogenesis: evidence of cellular programming. Clin Epigenetics 2020; 12:181. [PMID: 33228780 PMCID: PMC7686698 DOI: 10.1186/s13148-020-00970-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background Normal-weight polycystic ovary syndrome (PCOS) women exhibit adipose resistance in vivo accompanied by enhanced subcutaneous (SC) abdominal adipose stem cell (ASC) development to adipocytes with accelerated lipid accumulation per cell in vitro. The present study examines chromatin accessibility, RNA expression and fatty acid (FA) synthesis during SC abdominal ASC differentiation into adipocytes in vitro of normal-weight PCOS versus age- and body mass index-matched normoandrogenic ovulatory (control) women to study epigenetic/genetic characteristics as well as functional alterations of PCOS and control ASCs during adipogenesis. Results SC abdominal ASCs from PCOS women versus controls exhibited dynamic chromatin accessibility during adipogenesis, from significantly less chromatin accessibility at day 0 to greater chromatin accessibility by day 12, with enrichment of binding motifs for transcription factors (TFs) of the AP-1 subfamily at days 0, 3, and 12. In PCOS versus control cells, expression of genes governing adipocyte differentiation (PPARγ, CEBPα, AGPAT2) and function (ADIPOQ, FABP4, LPL, PLIN1, SLC2A4) was increased two–sixfold at days 3, 7, and 12, while that involving Wnt signaling (FZD1, SFRP1, and WNT10B) was decreased. Differential gene expression in PCOS cells at these time points involved triacylglycerol synthesis, lipid oxidation, free fatty acid beta-oxidation, and oxidative phosphorylation of the TCA cycle, with TGFB1 as a significant upstream regulator. There was a broad correspondence between increased chromatin accessibility and increased RNA expression of those 12 genes involved in adipocyte differentiation and function, Wnt signaling, as well as genes involved in the triacylglycerol synthesis functional group at day 12 of adipogenesis. Total content and de novo synthesis of myristic (C14:0), palmitic (C16:0), palmitoleic (C16:1), and oleic (C18:1) acid increased from day 7 to day 12 in all cells, with total content and de novo synthesis of FAs significantly greater in PCOS than controls cells at day 12. Conclusions In normal-weight PCOS women, dynamic chromatin remodeling of SC abdominal ASCs during adipogenesis may enhance adipogenic gene expression as a programmed mechanism to promote greater fat storage.
Collapse
Affiliation(s)
- Karen L Leung
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Smriti Sanchita
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Catherine T Pham
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Brett A Davis
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Sciences University, Portland, OR, 97239, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Sciences University, Portland, OR, 97239, USA
| | - Xiangming Ding
- Technology Center for Genomics and Bioinformatics, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | | | - Tristan R Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Kevin J Williams
- UCLA Lipidomics Lab, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Sciences University, Portland, OR, 97239, USA.,Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, 97239, USA.,Department of Medical Information and Clinical Epidemiology, Oregon Health and Sciences University, Portland, OR, 97239, USA.,Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Xinmin Li
- Technology Center for Genomics and Bioinformatics, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
42
|
Dumesic DA, Hoyos LR, Chazenbalk GD, Naik R, Padmanabhan V, Abbott DH. Mechanisms of intergenerational transmission of polycystic ovary syndrome. Reproduction 2020; 159:R1-R13. [PMID: 31376813 DOI: 10.1530/rep-19-0197] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
Developmental origins of adult disease (DoHAD) refers to critical gestational ages during human fetal development and beyond when the endocrine metabolic status of the mother can permanently program the physiology and/or morphology of the fetus, modifying its susceptibility to disease after birth. The aim of this review is to address how DoHAD plays an important role in the phenotypic expression of polycystic ovary syndrome (PCOS), the most common endocrinopathy of women characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology. Clinical studies of PCOS women are integrated with findings from relevant animal models to show how intergenerational transmission of these central components of PCOS are programmed through an altered maternal endocrine-metabolic environment that adversely affects the female fetus and long-term offspring health. Prenatal testosterone treatment in monkeys and sheep have been particularly crucial in our understanding of developmental programming of PCOS because organ system differentiation in these species, as in humans, occurs during fetal life. These animal models, along with altricial rodents, produce permanent PCOS-like phenotypes variably characterized by LH hypersecretion from reduced steroid-negative feedback, hyperandrogenism, ovulatory dysfunction, increased adiposity, impaired glucose-insulin homeostasis and other metabolic abnormalities. The review concludes that DoHAD underlies the phenotypic expression of PCOS through an altered maternal endocrine-metabolic environment that can induce epigenetic modifications of fetal genetic susceptibility to PCOS after birth. It calls for improved maternal endocrine-metabolic health of PCOS women to lower their risks of pregnancy-related complications and to potentially reduce intergenerational susceptibility to PCOS and its metabolic derangements in offspring.
Collapse
Affiliation(s)
- Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Luis R Hoyos
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gregorio D Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rajanigandha Naik
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | - David H Abbott
- Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
43
|
Witchel SF, Plant TM. Intertwined reproductive endocrinology: Puberty and polycystic ovary syndrome. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 14:127-136. [PMID: 33102929 PMCID: PMC7583558 DOI: 10.1016/j.coemr.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous familial disorder often emerging during the peri-pubertal years concomitantly with the onset of gonadarche and adrenarche. Both gonadarche and PCOS reflect functional changes in the hypothalamic-pituitary-ovarian axis. During this transition, normal girls manifest features consistent with PCOS such as irregular menses, mild hyperandrogenism, and multi-follicular ovary morphology. Themes common to puberty and PCOS, neuroendocrine features, androgen exposure, and insulin sensitivity, will be considered to address the possibility that PCOS interferes with the normal pubertal transition.
Collapse
Affiliation(s)
- Selma Feldman Witchel
- Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh/University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224 USA
| | - Tony M Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
44
|
Effect of Breast Cancer and Adjuvant Therapy on Adipose-Derived Stromal Cells: Implications for the Role of ADSCs in Regenerative Strategies for Breast Reconstruction. Stem Cell Rev Rep 2020; 17:523-538. [PMID: 32929604 DOI: 10.1007/s12015-020-10038-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Tissue engineering using Adipose Derived Stromal Cells (ADSCs) has emerged as a novel regenerative medicine approach to replace and reconstruct soft tissue damaged or lost as a result of disease process or therapeutic surgical resection. ADSCs are an attractive cell source for soft tissue regeneration due to the fact that they are easily accessible, multipotent, non-immunogenic and pro-angiogenic. ADSC based regenerative strategies have been successfully translated to the clinical setting for the treatment of Crohn's fistulae, musculoskeletal pathologies, wound healing, and cosmetic breast augmentation (fat grafting). ADSCs are particularly attractive as a source for adipose tissue engineering as they exhibit preferential differentiation to adipocytes and support maintenance of mature adipose graft volume. The potential for reconstruction with an autologous tissue sources and a natural appearance and texture is particularly appealing in the setting of breast cancer; up to 40% of patients require mastectomy for locoregional control and current approaches to post-mastectomy breast reconstruction (PMBR) are limited by the potential for complications at the donor and reconstruction sites. Despite their potential, the use of ADSCs in breast cancer patients is controversial due to concerns regarding oncological safety. These concerns relate to the regeneration of tissue at a site where a malignancy has been treated and the impact this may have on stimulating local disease recurrence or dissemination. Pre-clinical data suggest that ADSCs exhibit pro-oncogenic characteristics and are involved in stimulating progression, and growth of tumour cells. However, there have been conflicting reports on the oncologic outcome, in terms of locoregional recurrence, for breast cancer patients in whom ADSC enhanced fat grafting was utilised as an alternative to reconstruction for small volume defects. A further consideration which may impact the successful translation of ADSC based regenerative strategies for post cancer reconstruction is the potential effects of cancer therapy. This review aims to address the effect of malignant cells, adjuvant therapies and patient-specific factors that may influence the success of regenerative strategies using ADSCs for post cancer tissue regeneration.
Collapse
|
45
|
Alrabadi N, Al-Rabadi GJ, Maraqa R, Sarayrah H, Alzoubi KH, Alqudah M, Al-U'datt DG. Androgen effect on body weight and behaviour of male and female rats: novel insight on the clinical value. Andrologia 2020; 52:e13730. [PMID: 32629528 DOI: 10.1111/and.13730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/18/2020] [Accepted: 06/03/2020] [Indexed: 01/15/2023] Open
Abstract
Androgenic-anabolic steroids (AASs) are synthetic derivative forms of the hormone testosterone. Sustanon® 250 solution for injection is one of those AASs that is used for low hormone levels and is self-administered for recreational purposes. This study was conducted to investigate the effects of sustanon on the body weight of male and female rats. Animals were injected different doses of sustanon (vehicle, 1, 3.2, 10, 32 and 100 mg/kg, I.M., once/week, for 6 weeks), and the weights for each animal were obtained. The rats were observed for agitated/aggressive behaviours every other day. In the present study, sustanon injections at 1, 3.2, 10, 32 and 100 mg/kg treatments did not alter body weight in male rats compared to the control group. However, moderately high and supraphysiological doses of sustanon (3.2, 10 and 32 mg/kg) resulted in a significant increase in body weight after 1 month of weekly treatment in female rats. Aggressive/agitated behaviours were observed only in female rats at the period of weight increase. In conclusion, different doses of sustanon did not alter the body weight in male rats after 6 weeks of treatment but doses of 3.2, 10 and 32 mg/kg resulted in a significant increase in body weight of female rats.
Collapse
Affiliation(s)
- Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ghaid J Al-Rabadi
- Department of Animal Production, Faculty of Agriculture, Mutah University, Al-Karak, Jordan
| | - Rasha Maraqa
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Haneen Sarayrah
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alqudah
- Department of Physiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Doa'a G Al-U'datt
- Department of Physiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
46
|
Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020; 41:bnaa010. [PMID: 32310267 PMCID: PMC7279705 DOI: 10.1210/endrev/bnaa010] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
More than 1 out of 10 women worldwide are diagnosed with polycystic ovary syndrome (PCOS), the leading cause of female reproductive and metabolic dysfunction. Despite its high prevalence, PCOS and its accompanying morbidities are likely underdiagnosed, averaging > 2 years and 3 physicians before women are diagnosed. Although it has been intensively researched, the underlying cause(s) of PCOS have yet to be defined. In order to understand PCOS pathophysiology, its developmental origins, and how to predict and prevent PCOS onset, there is an urgent need for safe and effective markers and treatments. In this review, we detail which animal models are more suitable for contributing to our understanding of the etiology and pathophysiology of PCOS. We summarize and highlight advantages and limitations of hormonal or genetic manipulation of animal models, as well as of naturally occurring PCOS-like females.
Collapse
Affiliation(s)
| | - Vasantha Padmanabhan
- Departments of Pediatrics, Obstetrics and Gynecology, and Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Kirsty A Walters
- Fertility & Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences and Education, University of Skövde, Skövde, Sweden
| | - Paolo Giacobini
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, California
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
47
|
Ernst J, Gert K, Kraus FB, Rolle-Kampczyk UE, Wabitsch M, Dehghani F, Schaedlich K. Androstenedione changes steroidogenic activity of SGBS cells. Endocr Connect 2020; 9:587-598. [PMID: 32580160 PMCID: PMC7354720 DOI: 10.1530/ec-19-0549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022]
Abstract
The rapid increase of obesity during the last decades and its future prospects are alarming. Besides the general discussed causes of obesity, the 'Developmental Origins of Health and Disease' (DOHaD) hypothesis received more attention in recent years. This hypothesis postulates an adverse influence during early development that programs the unborn child for metabolic dysfunctions later in life. Childhood obesity - an as much increasing problem - can be predisposed by maternal overweight and diabetes. Both, obesity and hyperinsulinemia are major causes of female hyperandrogenemia. As predicted by the DOHaD hypothesis and shown in animal models, developmental androgen excess can lead to metabolic abnormalities in offspring. In this study, we investigated, if androgen exposure adversely affects the adipogenic differentiation of preadipocytes and the endocrine function of adult adipocytes. The human SGBS preadipocyte model was used to affirm the de novo biosynthesis of steroid hormones under normal adipogenesis conditions. Normal adipogenesis was paralleled by an increase of corticosteroids and androgens, whereas estrogen remained at a steady level. Treatment with androstenedione had no effect on SGBS proliferation and differentiation, but adult adipocytes exhibited a significant higher accumulation of triglycerides. Progesterone (up to 2-fold), testosterone (up to 38-fold) and cortisone (up to 1.4-fold) - but not cortisol - were elevated by androstenedione administration in adult adipocytes. Estrogen was not altered. Data suggest that androgen does not negatively influence adipogenic differentiation, but steroidogenic function of SGBS adipocytes.
Collapse
Affiliation(s)
- Jana Ernst
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse, Halle (Saale), Germany
- Correspondence should be addressed to J Ernst:
| | - Katharina Gert
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse, Halle (Saale), Germany
| | - Frank Bernhard Kraus
- Central Laboratory, University Hospital Halle (Saale), Ernst-Grube-Strasse, Halle (Saale), Germany
| | | | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse, Halle (Saale), Germany
| | - Kristina Schaedlich
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse, Halle (Saale), Germany
| |
Collapse
|
48
|
Wang S, Zhao H, Wu M, Yi X, Chen P, Liu S, Pan Y, Li Q, Tang X, Sun X. Exploring of InDel in bovine PSAP gene and their association with growth traits in different development stages. Anim Biotechnol 2020; 33:1-12. [PMID: 32367774 DOI: 10.1080/10495398.2020.1758122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PSAP (prosaposin) is widely expressed in different organs, and plays an important role in fat deposit. Insertion/Deletion (InDel) is a relatively simple and effective DNA marker. However, the association of molecular marker at different stages of animal development has not received enough attention, especially fat deposition related traits. Therefore, eight cattle breeds were used to explore novel InDels variants within bovine PSAP gene, and to evaluate their effects on growth traits in different development stages. Herein, two novel InDels (P5:NC037355.1g.27974439-27974440 ins AGTGTGGTTAATGTCAAC and P8:NC037355.1g.27980734-27980752 del GTCAAAAAATCAGGGGAAAC) within the bovine PSAP gene were found, and their association with growth traits in different development stages were analyzed. Interestingly, the dominant genotype was different in different development stages both in NY cattle and JX cattle for daily gain and body weight. PSAP Gene expression patterns were analyzed in this study, high expression in the middle stage of adipocytes differentiation suggests that it plays a certain role in fat development. It reveals that InDels could affect phenotype in different development stages, which depend on the expression pattern of the host gene and their function in different tissues. These findings could provide a new way for molecular marker studies in bovine breeding and genetics.
Collapse
Affiliation(s)
- Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haidong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mingli Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Pingbo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shirong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yun Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,College of Grassland Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
49
|
Sato T, Shibata F, Koiwai T, Akimoto N. Different regulation of lipogenesis in sebocytes and subcutaneous preadipocytes in hamsters in vitro. Biochem Biophys Rep 2020; 22:100761. [PMID: 32300663 PMCID: PMC7152706 DOI: 10.1016/j.bbrep.2020.100761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/25/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022] Open
Abstract
Sebaceous gland cells (sebocytes) differentiate to intracellularly accumulate lipid droplets – a phenomenon similar to that found in adipocytes. In the present study, we examined whether the regulation of lipogenesis in sebocytes is the same as that in preadipocytes. When sebocytes and preadipocytes, prepared from auricle and subcutaneous adipose tissues from the inguinal region of hamsters, respectively, were treated with a common differentiation inducer, insulin, intracellular lipid-droplet formation and triacyglycerol (TG) production were dose- and time-dependently augmented in both. Insulin increased the production of perilipin, a differentiation marker in both sebocytes and adipocytes. Insulin-like growth factor 1 (IGF-1) augmented the intracellular level of TG in sebocytes and preadipocytes. In addition, the action of 1α,25-dihydroxyvitamin D3 [1,25(OH2)D3] on TG production was the opposite between sebocytes and preadipocytes. Furthermore, 5α-dihydrotestosterone (5α-DHT) augmented the TG level in sebocytes, whereas it did not alter TG production in preadipocytes. Moreover, insulin-augmented TG production in sebocytes was enhanced by IGF-1 and 5α-DHT, while diminished by 1,25(OH2)D3. In preadipocytes, the insulin-augmented production of TG was decreased by IGF-1, 1,25(OH2)D3, and 5α-DHT. These results suggest that sebocytic lipogenesis is partially similar to but substantially different from adipocyte lipogenesis due to the forementioned hormones and growth factors in the skin under physiological conditions. Insulin and IGF-1 augmented lipogenesis and perilipin production in hamster preadipocytes and sebocytes. The action of 1,25(OH2)D3 and 5a-DHT on lipogenesis differed between sebocytes and preadipocytes Insulin-augmented sebaceous lipogenesis was enhanced by IGF-1 and 5α-DHT, while diminished by 1,25(OH2)D3. In preadipocytes, the insulin-augmented lipogenesis was decreased by IGF-1, 1,25(OH2)D3, and 5α-DHT. Sebocytic lipogenesis is partially similar to but substantially different from adipocyte lipogenesis.
Collapse
Key Words
- 1,25(OH)2D3, 1α,25-dihydroxyvitamin D3
- 5α-DHT, 5α-dihydrotestosterone
- DMEM/F12, Dulbecco's modified Eagle's medium/Ham's F12 medium
- Dex, dexamethasone
- FBS, fetal bovine serum
- IBMX, 3-isobutyl-1-methyl-xanthine
- IGF-1, insulin-like growth factor 1
- Lipid-droplet formation
- Lipogenesis
- PG, prostaglandin
- PPAR, peroxisome proliferation-activating receptor
- Preadipocytes
- Sebocytes
- TG, triacylglycerol
- Triacyglycerol
Collapse
Affiliation(s)
- Takashi Sato
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Fusatoshi Shibata
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Toshikazu Koiwai
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Noriko Akimoto
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
50
|
Endocrine-Metabolic Dysfunction in Polycystic Ovary Syndrome: an Evolutionary Perspective. ACTA ACUST UNITED AC 2020; 12:41-48. [PMID: 32363240 DOI: 10.1016/j.coemr.2020.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology, with metabolic dysfunction from insulin resistance and abdominal fat accumulation worsened by obesity. As ancestral traits, these features could have favored abdominal fat deposition for energy use during starvation, but have evolved into different PCOS phenotypes with variable metabolic dysfunction. Adipose dysfunction in PCOS from hyperandrogenemia and hyperinsulinemia likely constrains subcutaneous (SC) fat storage, promoting lipotoxicity through ectopic lipid accumulation and oxidative stress, insulin resistance and inflammation in non-adipose tissue. Recent findings of inherently exaggerated SC abdominal stem cell development to adipocytes in women with PCOS, and PCOS-like traits in adult female monkeys with natural hyperandrogenemia, imply common ancestral origins of PCOS in both human and nonhuman primates.
Collapse
|