1
|
Fooks C, Niebuhr O. Effects of Vibroacoustic Stimulation on Psychological, Physiological, and Cognitive Stress. SENSORS (BASEL, SWITZERLAND) 2024; 24:5924. [PMID: 39338668 PMCID: PMC11436230 DOI: 10.3390/s24185924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024]
Abstract
Global stress is widespread in today's post-pandemic world of political and economic uncertainty. Vibroacoustic technology is a vibrotactile intervention with multiple uses, but its impact on stress lacks interpretation. This research assessed if the vibroacoustic technology of a Vibroacoustic Sound Massage (VSM) can reduce psychological, physiological, and cognitive stress. The Perceived Stress Scale (PSS-10) and electrocardiogram (ECG) and electroencephalogram (EEG) biosignals were used to quantify results. Participants were divided into Low-Stress and High-Stress groups. The ECG results show VSM increased parasympathetic activity for all participants, with the Low-Stress group being more affected. The EEG results indicate increased concentration, reduced arousal, and increased relaxation, with participant well-being non-significantly affected, though variability in this metric was homogenised after VSM. Together, these results validate VSM as an effective support tool for stress management; however, further research is required.
Collapse
Affiliation(s)
- Charlotte Fooks
- Centre for Industrial Electronics, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Oliver Niebuhr
- Centre for Industrial Electronics, University of Southern Denmark, 6400 Sønderborg, Denmark
| |
Collapse
|
2
|
Leinen M, Grandy EF, Gebel LMU, Santana TM, Rodriguez AL, Singh SK, Fernandez MI, Dalugdug JC, Garcia-Colon EM, Lybeshari K, Alexander DR, Maura MI, Gonzalez MDC, De Paula Cunha Almeida C, Anyaso-Samuel S, Datta S, Schiefer MA. Bilateral Subdiaphragmatic Vagal Nerve Stimulation Using a Novel Waveform Decreases Body Weight, Food Consumption, Adiposity, and Activity in Obesity-Prone Rats. Obes Surg 2024; 34:1-14. [PMID: 38040984 PMCID: PMC10781827 DOI: 10.1007/s11695-023-06957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
INTRODUCTION Obesity affects millions of Americans. The vagal nerves convey the degree of stomach fullness to the brain via afferent visceral fibers. Studies have found that vagal nerve stimulation (VNS) promotes reduced food intake, causes weight loss, and reduces cravings and appetite. METHODS Here, we evaluate the efficacy of a novel stimulus waveform applied bilaterally to the subdiaphragmatic vagal nerve stimulation (sVNS) for almost 13 weeks. A stimulating cuff electrode was implanted in obesity-prone Sprague Dawley rats maintained on a high-fat diet. Body weight, food consumption, and daily movement were tracked over time and compared against three control groups: sham rats on a high-fat diet that were implanted with non-operational cuffs, rats on a high-fat diet that were not implanted, and rats on a standard diet that were not implanted. RESULTS Results showed that rats on a high-fat diet that received sVNS attained a similar weight to rats on a standard diet due primarily to a reduction in daily caloric intake. Rats on a high-fat diet that received sVNS had significantly less body fat than other high-fat controls. Rats receiving sVNS also began moving a similar amount to rats on the standard diet. CONCLUSION Results from this study suggest that bilateral subdiaphragmatic vagal nerve stimulation can alter the rate of growth of rats maintained on a high-fat diet through a reduction in daily caloric intake, returning their body weight to that which is similar to rats on a standard diet over approximately 13 weeks.
Collapse
Affiliation(s)
- Monique Leinen
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Elise F Grandy
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Lourdes M Ubeira Gebel
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Tahimi Machin Santana
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Amanda L Rodriguez
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Sundip K Singh
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Michael I Fernandez
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Justin C Dalugdug
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Elaine M Garcia-Colon
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Kamela Lybeshari
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Daniel R Alexander
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Maria I Maura
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | - Maria D Cabrera Gonzalez
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA
| | | | - Samuel Anyaso-Samuel
- Department of Biostatistics, University of Florida, 2004 Mowry Rd, 5Th Fl, Gainesville, FL, 32603, USA
| | - Somnath Datta
- Department of Biostatistics, University of Florida, 2004 Mowry Rd, 5Th Fl, Gainesville, FL, 32603, USA
| | - Matthew A Schiefer
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, 1601 SW Archer Rd, Gainesville, FL, 32608, USA.
- Department of Biomedical Engineering, University of Florida, 1275 Center Dr, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Mylavarapu RV, Kanumuri VV, de Rivero Vaccari JP, Misra A, McMillan DW, Ganzer PD. Importance of timing optimization for closed-loop applications of vagus nerve stimulation. Bioelectron Med 2023; 9:8. [PMID: 37101239 PMCID: PMC10134677 DOI: 10.1186/s42234-023-00110-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
In recent decades, vagus nerve stimulation (VNS) therapy has become widely used for clinical applications including epilepsy, depression, and enhancing the effects of rehabilitation. However, several questions remain regarding optimization of this therapy to maximize clinical outcomes. Although stimulation parameters such as pulse width, amplitude, and frequency are well studied, the timing of stimulation delivery both acutely (with respect to disease events) and chronically (over the timeline of a disease's progression) has generally received less attention. Leveraging such information would provide a framework for the implementation of next generation closed-loop VNS therapies. In this mini-review, we summarize a number of VNS therapies and discuss (1) general timing considerations for these applications and (2) open questions that could lead to further therapy optimization.
Collapse
Affiliation(s)
| | - Vivek V Kanumuri
- Department of Otolaryngology, University of Miami, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Amrit Misra
- Newton Wellesley Neurology Associates, Newton, MA, USA
| | - David W McMillan
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Patrick D Ganzer
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA.
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA.
| |
Collapse
|
4
|
Goggins E, Mitani S, Tanaka S. Clinical perspectives on vagus nerve stimulation: present and future. Clin Sci (Lond) 2022; 136:695-709. [PMID: 35536161 PMCID: PMC9093220 DOI: 10.1042/cs20210507] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022]
Abstract
The vagus nerve, the great wanderer, is involved in numerous processes throughout the body and vagus nerve stimulation (VNS) has the potential to modulate many of these functions. This wide-reaching capability has generated much interest across a range of disciplines resulting in several clinical trials and studies into the mechanistic basis of VNS. This review discusses current preclinical and clinical evidence supporting the efficacy of VNS in different diseases and highlights recent advancements. Studies that provide insights into the mechanism of VNS are considered.
Collapse
Affiliation(s)
- Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, U.S.A
| | - Shuhei Mitani
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Loper H, Leinen M, Bassoff L, Sample J, Romero-Ortega M, Gustafson KJ, Taylor DM, Schiefer MA. Both high fat and high carbohydrate diets impair vagus nerve signaling of satiety. Sci Rep 2021; 11:10394. [PMID: 34001925 PMCID: PMC8128917 DOI: 10.1038/s41598-021-89465-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Obesity remains prevalent in the US. One potential treatment is vagus nerve stimulation (VNS), which activates the sensory afferents innervating the stomach that convey stomach volume and establish satiety. However, current VNS approaches and stimulus optimization could benefit from additional understanding of the underlying neural response to stomach distension. In this study, obesity-prone Sprague Dawley rats consumed a standard, high-carbohydrate, or high-fat diet for several months, leading to diet-induced obesity in the latter two groups. Under anesthesia, the neural activity in the vagus nerve was recorded with a penetrating microelectrode array while the stomach was distended with an implanted balloon. Vagal tone during distension was compared to baseline tone prior to distension. Responses were strongly correlated with stomach distension, but the sensitivity to distension was significantly lower in animals that had been fed the nonstandard diets. The results indicate that both high fat and high carbohydrate diets impair vagus activity.
Collapse
Affiliation(s)
- Hailley Loper
- Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Monique Leinen
- Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Logan Bassoff
- Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Jack Sample
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,College of Medicine & Life Sciences, University of Toledo, Toledo, OH, USA
| | - Mario Romero-Ortega
- Departments of Biomedical Engineering and Biomedical Sciences, University of Houston, Houston, TX, USA
| | - Kenneth J Gustafson
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Dawn M Taylor
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Neurosciences, The Cleveland Clinic, Cleveland, OH, USA
| | - Matthew A Schiefer
- Malcom Randall VA Medical Center, Gainesville, FL, USA. .,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Malbert CH. Vagally Mediated Gut-Brain Relationships in Appetite Control-Insights from Porcine Studies. Nutrients 2021; 13:nu13020467. [PMID: 33573329 PMCID: PMC7911705 DOI: 10.3390/nu13020467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/07/2023] Open
Abstract
Signals arising from the upper part of the gut are essential for the regulation of food intake, particularly satiation. This information is supplied to the brain partly by vagal nervous afferents. The porcine model, because of its sizeable gyrencephalic brain, omnivorous regimen, and comparative anatomy of the proximal part of the gut to that of humans, has provided several important insights relating to the relevance of vagally mediated gut-brain relationships to the regulation of food intake. Furthermore, its large size combined with the capacity to become obese while overeating a western diet makes it a pivotal addition to existing murine models, especially for translational studies relating to obesity. How gastric, proximal intestinal, and portal information relating to meal arrival and transit are encoded by vagal afferents and their further processing by primary and secondary brain projections are reviewed. Their peripheral and central plasticities in the context of obesity are emphasized. We also present recent insights derived from chronic stimulation of the abdominal vagi with specific reference to the modulation of mesolimbic structures and their role in the restoration of insulin sensitivity in the obese miniature pig model.
Collapse
Affiliation(s)
- Charles-Henri Malbert
- Aniscan Unit, INRAE, Saint-Gilles, 35590 Paris, France;
- National Academy of Medicine, 75000 Paris, France
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
7
|
Xie H, Yepuri N, Meng Q, Dhawan R, Leech CA, Chepurny OG, Holz GG, Cooney RN. Therapeutic potential of α7 nicotinic acetylcholine receptor agonists to combat obesity, diabetes, and inflammation. Rev Endocr Metab Disord 2020; 21:431-447. [PMID: 32851581 PMCID: PMC7572644 DOI: 10.1007/s11154-020-09584-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
The cholinergic anti-inflammatory reflex (CAIR) represents an important homeostatic regulatory mechanism for sensing and controlling the body's response to inflammatory stimuli. Vagovagal reflexes are an integral component of CAIR whose anti-inflammatory effects are mediated by acetylcholine (ACh) acting at α7 nicotinic acetylcholine receptors (α7nAChR) located on cells of the immune system. Recently, it is appreciated that CAIR and α7nAChR also participate in the control of metabolic homeostasis. This has led to the understanding that defective vagovagal reflex circuitry underlying CAIR might explain the coexistence of obesity, diabetes, and inflammation in the metabolic syndrome. Thus, there is renewed interest in the α7nAChR that mediates CAIR, particularly from the standpoint of therapeutics. Of special note is the recent finding that α7nAChR agonist GTS-21 acts at L-cells of the distal intestine to stimulate the release of two glucoregulatory and anorexigenic hormones: glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Furthermore, α7nAChR agonist PNU 282987 exerts trophic factor-like actions to support pancreatic β-cell survival under conditions of stress resembling diabetes. This review provides an overview of α7nAChR function as it pertains to CAIR, vagovagal reflexes, and metabolic homeostasis. We also consider the possible usefulness of α7nAChR agonists for treatment of obesity, diabetes, and inflammation.
Collapse
Affiliation(s)
- Han Xie
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Natesh Yepuri
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Qinghe Meng
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Ravi Dhawan
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Colin A Leech
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Oleg G Chepurny
- Departments of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - George G Holz
- Departments of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Robert N Cooney
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA.
| |
Collapse
|
8
|
Alkan I, Altunkaynak BZ, Kivrak EG, Kaplan AA, Arslan G. Is vagal stimulation or inhibition benefit on the regulation of the stomach brain axis in obesity? Nutr Neurosci 2020; 25:758-770. [PMID: 33034260 DOI: 10.1080/1028415x.2020.1809875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objective: Possible effects of the vagus inhibition and stimulation on the hypothalamic nuclei, myenteric plexes and the vagus nerve were investigated.Methods: The female rats divided to the inhibition (INH), stimulation (STI) and, sham (SHAM) groups were fed with high fat diet (including 40% of energy from animal fat). After nine weeks, the rats were allowed to recover for 4 weeks in INH group. In STI group, the left vagus nerve stimulated (30 Hz/500 msn/30 sec.) starting 2nd post operative day for 5 minutes during 4 weeks. Healthy female rats used as control (CONT). Then, tissue samples were analyzed by biochemical, histological and stereological methods.Results: The mean number of the neurons in the arcuate nucleus of the INH group was significantly less; but, that is significantly more in the STI group compared to the other groups. The neuronal density of ventromedial nucleus in the STI group was higher; while the density in the INH group was lower than the other groups. In the dorsomedial nucleus, neuron density of the INH group was lower than the other groups. In terms of the myenteric plexus volumes, that of the INH group was lowest. The myelinated axon number in the INH group was significantly highest. The myelin sheath thickness and axon area of the INH group was significantly lower than the other groups.Discussion: The results of the study show that the vagal inhibition is more effective than the vagal stimulation on the weight loss in the obesity.
Collapse
Affiliation(s)
- Işınsu Alkan
- Department of Histology and Embryology, Faculty of Medicine, İstanbul Okan University, İstanbul, Turkey
| | - Berrin Zuhal Altunkaynak
- Department of Histology and Embryology, Faculty of Medicine, İstanbul Okan University, İstanbul, Turkey
| | - Elfide Gizem Kivrak
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Medipol University, Istanbul, Turkey
| | - Gülay Arslan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
9
|
Obst MA, Heldmann M, Alicart H, Tittgemeyer M, Münte TF. Effect of Short-Term Transcutaneous Vagus Nerve Stimulation (tVNS) on Brain Processing of Food Cues: An Electrophysiological Study. Front Hum Neurosci 2020; 14:206. [PMID: 32625072 PMCID: PMC7314996 DOI: 10.3389/fnhum.2020.00206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Background: The vagus nerve plays an important role in the regulation of food intake. Modulating vagal activity via electrical stimulation (VNS) in patients and animal studies caused changes in food intake, energy metabolism, and body weight. However, the moderating impact of cognitive processes on VNS effects on eating behavior has not been investigated so far. Hypothesis: We hypothesized that transcutaneous VNS (tVNS) affects food intake by altering cognitive functions relevant to the processing of food-related information. Methods: Using a repeated-measurement design, we applied tVNS and a sham stimulation for 2 h on two different days in normal-weight subjects. We recorded standard scalp EEG while subjects watched food and object pictures presented in an oddball task. We analyzed the event-related potentials (ERPs) P1, P2, N2, and LPP and also examined the amount of consumed food and eating duration in a free-choice test meal. Results: Significant differences between stimulations were observed for the P1, P2, and N2 amplitudes. However, we found no tVNS-dependent modulation of food intake nor a specific food-related stimulation effect on the ERPs. Further analyses revealed a negative relationship between P2 amplitude and food intake for the sham stimulation. Significant effects are additionally confirmed by Bayesian statistics. Conclusion: Our study demonstrates tVNS’ impact on visual processing. Since the effects were similar between food and object stimuli, a general effect on visual perceptual processing can be assumed. More detailed investigations of these effects and their relationship with food intake and metabolism seem reasonable for future studies.
Collapse
Affiliation(s)
- Martina A Obst
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Helena Alicart
- Cognition and Brain Plasticity Group, University of Barcelona, Barcelona, Spain
| | - Marc Tittgemeyer
- Max-Planck-Institute for Metabolism Research, Cologne, Germany.,Cluster of Excellence in Cellular Aging and Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Yin J, Ji F, Gharibani P, Chen JD. Vagal Nerve Stimulation for Glycemic Control in a Rodent Model of Type 2 Diabetes. Obes Surg 2019; 29:2869-2877. [PMID: 31222497 PMCID: PMC10461220 DOI: 10.1007/s11695-019-03901-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Vagal nerve stimulation (VNS) has been reported to reduce body weight and improve sympathovagal imbalance in both basic and clinical studies. Its effects on glycemic control were however unclear. The aims of this study were to investigate the effects of VNS with various parameters on blood glucose and its possible mechanisms in rats. METHODS A hyperglycemic rodent model induced by glucagon was used initially to optimize the VNS parameters; then, a type 2 diabetic rodent model induced by high-fat diet combined with streptozotocin was used to validate the VNS method. The VNS electrodes were implanted at the dorsal subdiaphragmatic vagus; three subcutaneous electrodes were implanted at the chest area for recording electrocardiogram in rats induced by glucagon. RESULTS (1) VNS with short pulse width of 0.3 ms but not 3 ms reduced blood glucose during an oral glucose tolerance test (OGTT), with a 38.4% reduction at 15 min and 26.9% at 30 min (P < 0.05, vs. sham-VNS respectively). (2) VNS at low frequency of 5 Hz but not 14 Hz or 40 Hz reduced blood glucose during the OGTT (P < 0.05, vs. sham-VNS). (3) Intermittent VNS was more potent than continuous VNS (P < 0.01). (4) No difference was found between unilateral VNS and bilateral VNS. (5) VNS enhanced vagal activity (P = 0.005). (6) The hypoglycemic effect of VNS was blocked by glucagon-like peptide-1 (GLP-1) antagonist exendin-4. CONCLUSIONS VNS at 5 Hz reduces blood glucose in diabetic rats by enhancing vagal efferent activity and the release of GLP-1.
Collapse
Affiliation(s)
- Jieyun Yin
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
- Transtimulation Research, Inc, Oklahoma City, OK, USA.
| | - Feng Ji
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Payam Gharibani
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Jiande Dz Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| |
Collapse
|
11
|
Morais T, Patrício B, Pereira SS, Andrade S, Carreira M, Casanueva FF, Monteiro MP. GLP‐1 induces alpha cell proliferation and overrides leptin suppression induced by negative energy balance in vagotomized rats. J Cell Biochem 2019; 120:14573-14584. [DOI: 10.1002/jcb.28719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Tiago Morais
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB) University of Porto Porto Portugal
- Department of Anatomy Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto Porto Portugal
| | - Barbara Patrício
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB) University of Porto Porto Portugal
- Department of Anatomy Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto Porto Portugal
| | - Sofia Silva Pereira
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB) University of Porto Porto Portugal
- Department of Anatomy Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto Porto Portugal
| | - Sara Andrade
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB) University of Porto Porto Portugal
- Department of Anatomy Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto Porto Portugal
- CIBER de Fisiopatologia Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III Santiago de Compostela Spain
| | - Marcos Carreira
- CIBER de Fisiopatologia Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III Santiago de Compostela Spain
| | - Felipe F. Casanueva
- CIBER de Fisiopatologia Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III Santiago de Compostela Spain
- Department of Medicine USC University Hospital Complex, University of Santiago de Compostela Santiago de Compostela Spain
| | - Mariana P. Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB) University of Porto Porto Portugal
- Department of Anatomy Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto Porto Portugal
| |
Collapse
|
12
|
Pelot NA, Grill WM. Effects of vagal neuromodulation on feeding behavior. Brain Res 2018; 1693:180-187. [PMID: 29425906 PMCID: PMC6003853 DOI: 10.1016/j.brainres.2018.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Implanted vagus nerve stimulation (VNS) for obesity was recently approved by the FDA. However, its efficacy and mechanisms of action remain unclear. Herein, we synthesize clinical and preclinical effects of VNS on feeding behavior and energy balance and discuss engineering considerations for understanding and improving the therapy. Clinical cervical VNS (≤30 Hz) to treat epilepsy or depression has produced mixed effects on weight loss as a side effect, albeit in uncontrolled, retrospective studies. Conversely, preclinical studies (cervical and subdiaphragmatic VNS) mostly report decreased food intake and either decreased weight gain or weight loss. More recent clinical studies report weight loss in response to kilohertz frequency VNS applied to the subdiaphragmatic vagi, albeit with a large placebo effect. Rather than eliciting neural activity, this therapy putatively blocks conduction in the vagus nerves. Overall, stimulation parameters lack systematic exploration, optimization, and justification based on target nerve fibers and therapeutic outcomes. The vagus nerve transduces, transmits, and integrates important neural (efferent and afferent), humoral, energetic, and inflammatory information between the gut and brain. Thus, improved understanding of the biophysics, electrophysiology, and (patho)physiology has the potential to advance VNS as an effective therapy for a wide range of diseases.
Collapse
Affiliation(s)
- Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Room 130, Hudson Hall, Campus Box 90291, Durham, NC, USA; Department of Neurobiology, Duke University, Room 101B, Bryan Research Building, 311 Research Drive, Campus Box 3209, Durham, NC, USA; Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
Andrew CA, Umashanker D, Aronne LJ, Shukla AP. Intestinal and Gastric Origins for Diabetes Resolution After Bariatric Surgery. Curr Obes Rep 2018; 7:139-146. [PMID: 29637413 DOI: 10.1007/s13679-018-0302-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This paper will review the intestinal and gastric origins for diabetes resolution after bariatric surgery. RECENT FINDINGS In addition to the known metabolic effects of changes in the gut hormonal milieu, more recent studies investigating the role of the microbiome and bile acids and changes in nutrient sensing mechanisms have been shown to have glycemic effects in human and animal models. Independent of weight loss, there are multiple mechanisms that may lead to amelioration or resolution of diabetes following bariatric surgery. There is abundant evidence pointing to changes in gut hormones, bile acids, gut microbiome, and intestinal nutrient sensing; more research is needed to clearly delineate their role in regulating energy and glucose homeostasis after bariatric surgery.
Collapse
MESH Headings
- Animals
- Bariatric Surgery
- Bile Acids and Salts/metabolism
- Biomarkers/blood
- Biomarkers/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/therapy
- Diet, Reducing
- Dysbiosis/complications
- Dysbiosis/etiology
- Dysbiosis/microbiology
- Dysbiosis/prevention & control
- Gastrointestinal Microbiome
- Humans
- Insulin Resistance
- Intestinal Mucosa/innervation
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/physiopathology
- Intestines/innervation
- Intestines/microbiology
- Intestines/physiopathology
- Neurons, Afferent/metabolism
- Neurons, Efferent/metabolism
- Obesity, Morbid/complications
- Obesity, Morbid/diet therapy
- Obesity, Morbid/physiopathology
- Obesity, Morbid/surgery
- Weight Loss
- Weight Reduction Programs
Collapse
Affiliation(s)
- Caroline A Andrew
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes & Metabolism, Weill Cornell Medical College, 1165 York Avenue, New York, NY, 10065, USA
| | - Devika Umashanker
- Comprehensive Medical Weight Management, Department of Bariatric Surgery, Hartford HealthCare Medical Group, Hartford, CT, USA
| | - Louis J Aronne
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes & Metabolism, Weill Cornell Medical College, 1165 York Avenue, New York, NY, 10065, USA
| | - Alpana P Shukla
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes & Metabolism, Weill Cornell Medical College, 1165 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
14
|
Abstract
BACKGROUND Recently, the US FDA has approved "vagal blocking therapy or vBLoc® therapy" as a new treatment for obesity. The aim of the present study was to study the mechanism-of-action of "VBLOC" in rat models. METHODS Rats were implanted with VBLOC, an intra-abdominal electrical device with leads placed around gastric vagal trunks through an abdominal incision and controlled by wireless device. Body weight, food intake, hunger/satiety, and metabolic parameters were monitored by a comprehensive laboratory animal monitoring system. Brain-gut responses were analyzed physiologically. RESULTS VBLOC reduced body weight and food intake, which was associated with increased satiety but not with decreased hunger. Brain activities in response to VBLOC included increased gene expression of leptin and CCKb receptors, interleukin-1β, tumor necrosis factor, and transforming growth factor β1 in the brainstem; increased CCK, somatostatin, and tyrosine hydroxylase in the hippocampus; increased NPY, AgRP, and Foxa2 in the hypothalamus; and reduced CCKb receptor, melanocortin 4 receptor, and insulin receptor in the hypothalamus. Plasma concentrations of CCK, gastrin, glucagon, GLP-1, and PYY and gastric acid secretion were unchanged in response to VBLOC. CONCLUSIONS Based on the present study, we may suggest that VBLOC induces satiety through vagal signaling, leading to reduced food intake and loss of body weight.
Collapse
|
15
|
Khan FA, Poongkunran M, Buratto B. Desensitization of stimulation-induced weight loss: A secondary finding in a patient with vagal nerve stimulator for drug-resistant epilepsy. EPILEPSY & BEHAVIOR CASE REPORTS 2017; 8:51-54. [PMID: 28879091 PMCID: PMC5577401 DOI: 10.1016/j.ebcr.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/01/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Fawad A Khan
- The International Center for Epilepsy at Ochsner, Ochsner Neuroscience Institute, Ochsner Clinic Foundation, 1514 Jefferson Highway, New Orleans, LA 70121, United States.,The University of Queensland School of Medicine, Ochsner Clinical School, 1514 Jefferson Highway, New Orleans, LA 70121, United States
| | - Mugilan Poongkunran
- The International Center for Epilepsy at Ochsner, Ochsner Neuroscience Institute, Ochsner Clinic Foundation, 1514 Jefferson Highway, New Orleans, LA 70121, United States
| | - Bonnie Buratto
- The International Center for Epilepsy at Ochsner, Ochsner Neuroscience Institute, Ochsner Clinic Foundation, 1514 Jefferson Highway, New Orleans, LA 70121, United States
| |
Collapse
|
16
|
Effects of chronic abdominal vagal stimulation of small-diameter neurons on brain metabolism and food intake. Brain Stimul 2017; 10:735-743. [PMID: 28551320 DOI: 10.1016/j.brs.2017.04.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/20/2017] [Accepted: 04/23/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Abdominal bilateral vagal stimulation reduces food intake in animals. However, the classical square wave, mA range current generator is poorly effective to evoke action potentials on A∂ and C neurons that represent the majority of vagal neurons at the abdominal level. OBJECTIVE/HYPOTHESIS METHODS: The current thresholds for pulsons (S2 & S3) and millisecond pulses (S1) required to trigger action potentials were calculated in 5 anaesthetized pigs using single fibre recording. Similar stimulation protocols were compared chronically to sham stimulation in 24 pigs. After two weeks of chronic stimulation, food intake and brain metabolism were investigated. The electrical characteristics and histology of the vagus nerve were also studied. RESULTS S3 stimulation required a lower amount of charges to trigger an action potential. Chronically applied S2 & S3 activated the dorsal vagal complex and increased the metabolism of its afferent cortical structures. They also reduced energy intake together with a reduced ingestion of high fat and high sugar diets. All these effects were not observed for the S1 group. The vagal histology for the S1, S2 and S3 groups was not different from that of the sham. CONCLUSIONS These findings demonstrate that pulsons applied bilaterally on the abdominal vagus reduced food intake as a consequence of the activation of the brainstem and higher-order brain areas.
Collapse
|
17
|
Malbert CH, Picq C, Divoux JL, Henry C, Horowitz M. Obesity-Associated Alterations in Glucose Metabolism Are Reversed by Chronic Bilateral Stimulation of the Abdominal Vagus Nerve. Diabetes 2017; 66:848-857. [PMID: 28082456 DOI: 10.2337/db16-0847] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/09/2017] [Indexed: 02/05/2023]
Abstract
Acute vagal stimulation modifies glucose and insulin metabolism, but the effect of chronic bilateral vagal stimulation is not known. Our aim was to quantify the changes in whole-body and organ-specific insulin sensitivities 12 weeks after permanent, bilateral, vagal stimulation performed at the abdominal level in adult mini-pigs. In 15 adult mini-pigs, stimulating electrodes were placed around the dorsal and ventral vagi using laparoscopy and connected to a dual-channel stimulator placed subcutaneously. Animals were divided into three groups based on stimulation and body weight (i.e., lean nonstimulated, obese nonstimulated, and obese stimulated). Twelve weeks after surgery, glucose uptake and insulin sensitivity were measured using positron emission tomography during an isoglycemic clamp. Mean whole-body insulin sensitivity was lower by 34% (P < 0.01) and the hepatic glucose uptake rate was lower by 33% (P < 0.01) in obese-nonstimulated mini-pigs but was no different in obese-stimulated compared with lean mini-pigs. An improvement in skeletal glucose uptake rate was also observed in obese-stimulated compared with obese-nonstimulated groups (P < 0.01). Vagal stimulation was associated with increased glucose metabolism in the cingulate and prefrontal brain areas. We conclude that chronic vagal stimulation improves insulin sensitivity substantially in diet-induced obesity by both peripheral and central mechanisms.
Collapse
Affiliation(s)
- Charles-Henri Malbert
- Ani-Scans, Department of Nutrition, French National Institute for Agricultural Research, Saint-Gilles, France
| | | | | | | | - Michael Horowitz
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
18
|
de Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J Physiol 2016; 594:5791-5815. [PMID: 26959077 DOI: 10.1113/jp271538] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/26/2016] [Indexed: 12/21/2022] Open
Abstract
This review highlights evidence for a role of the vagus nerve in the development of obesity and how targeting the vagus nerve with neuromodulation or pharmacology can be used as a therapeutic treatment of obesity. The vagus nerve innervating the gut plays an important role in controlling metabolism. It communicates peripheral information about the volume and type of nutrients between the gut and the brain. Depending on the nutritional status, vagal afferent neurons express two different neurochemical phenotypes that can inhibit or stimulate food intake. Chronic ingestion of calorie-rich diets reduces sensitivity of vagal afferent neurons to peripheral signals and their constitutive expression of orexigenic receptors and neuropeptides. This disruption of vagal afferent signalling is sufficient to drive hyperphagia and obesity. Furthermore neuromodulation of the vagus nerve can be used in the treatment of obesity. Although the mechanisms are poorly understood, vagal nerve stimulation prevents weight gain in response to a high-fat diet. In small clinical studies, in patients with depression or epilepsy, vagal nerve stimulation has been demonstrated to promote weight loss. Vagal blockade, which inhibits the vagus nerve, results in significant weight loss. Vagal blockade is proposed to inhibit aberrant orexigenic signals arising in obesity as a putative mechanism of vagal blockade-induced weight loss. Approaches and molecular targets to develop future pharmacotherapy targeted to the vagus nerve for the treatment of obesity are proposed. In conclusion there is strong evidence that the vagus nerve is involved in the development of obesity and it is proving to be an attractive target for the treatment of obesity.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- The John B. Pierce Laboratory, New Haven, CT, USA. .,Dept Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
19
|
Bruinstroop E, Fliers E, Kalsbeek A. Hypothalamic control of hepatic lipid metabolism via the autonomic nervous system. Best Pract Res Clin Endocrinol Metab 2014; 28:673-84. [PMID: 25256763 DOI: 10.1016/j.beem.2014.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our body is well designed to store energy in times of nutrient excess, and release energy in times of food deprivation. This adaptation to the external environment is achieved by humoral factors and the autonomic nervous system. Claude Bernard, in the 19th century, showed the importance of the autonomic nervous system in the control of glucose metabolism. In the 20th century, the discovery of insulin and the development of techniques to measure hormone concentrations shifted the focus from the neural control of metabolism to the secretion of hormones, thus functionally "decapitating" the body. Just before the end of the 20th century, starting with the discovery of leptin in 1994, the control of energy metabolism went back to our heads. Since the start of 21st century, numerous studies have reported the involvement of hypothalamic pathways in the control of hepatic insulin sensitivity and glucose production. The autonomic nervous system is, therefore, acknowledged to be one of the important determinants of liver metabolism and a possible treatment target. In this chapter, we review research to date on the hypothalamic control of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Bodenlos JS, Schneider KL, Oleski J, Gordon K, Rothschild AJ, Pagoto SL. Vagus nerve stimulation and food intake: effect of body mass index. J Diabetes Sci Technol 2014; 8:590-5. [PMID: 24876624 PMCID: PMC4455432 DOI: 10.1177/1932296814525188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Animal research suggests that vagus nerve stimulation (VNS) is associated with weight loss and decreased appetite. Results from human studies are mixed; some suggest that VNS affects weight whereas others do not, and it is unclear how VNS affects eating behaviors. Baseline body mass index (BMI) and VNS device settings may moderate the effects of VNS on caloric intake. This study investigates the association among BMI, VNS device settings, and caloric intake of highly palatable foods during VNS on versus VNS off sessions in 16 adult patients (62.5% female; BMI mean = 29.11 ± 6.65) using VNS therapy for either epilepsy or depression. Participants attended 2 experimental sessions (VNS on versus off) where they were presented with 4 preferred snack foods totaling 1600 calories. At the start of the session, they either had their VNS devices turned off or left on. Caloric intake was calculated by weighing foods before and after each session. BMI category (overweight/obese and lean) was the between group factor in the analysis. After controlling for covariates, an interaction of condition and BMI category (P = .03) was found. There was an interaction of condition and device output current (P = .05) and a trend toward an interaction of condition and device on time (P = .07). Excess weight may impact how neurobiological signals from the vagus nerve affect appetite and eating. Future research is needed to further elucidate this relationship.
Collapse
Affiliation(s)
| | | | - Jessica Oleski
- University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | - Sherry L Pagoto
- University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
21
|
Malbert CH. L’axe tube digestif-cerveau : avancées récentes obtenues sur un modèle d’obésité chez le porc. BULLETIN DE L ACADEMIE NATIONALE DE MEDECINE 2013. [DOI: 10.1016/s0001-4079(19)31389-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Vijgen GHEJ, Bouvy ND, Leenen L, Rijkers K, Cornips E, Majoie M, Brans B, van Marken Lichtenbelt WD. Vagus nerve stimulation increases energy expenditure: relation to brown adipose tissue activity. PLoS One 2013; 8:e77221. [PMID: 24194874 PMCID: PMC3806746 DOI: 10.1371/journal.pone.0077221] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/30/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human brown adipose tissue (BAT) activity is inversely related to obesity and positively related to energy expenditure. BAT is highly innervated and it is suggested the vagus nerve mediates peripheral signals to the central nervous system, there connecting to sympathetic nerves that innervate BAT. Vagus nerve stimulation (VNS) is used for refractory epilepsy, but is also reported to generate weight loss. We hypothesize VNS increases energy expenditure by activating BAT. METHODS AND FINDINGS Fifteen patients with stable vns therapy (age: 45 ± 10 yrs; body mass index; 25.2 ± 3.5 kg/m(2)) were included between January 2011 and June 2012. Ten subjects were measured twice, once with active and once with inactivated VNS. Five other subjects were measured twice, once with active VNS at room temperature and once with active VNS under cold exposure in order to determine maximal cold-induced BAT activity. BAT activity was assessed by 18-Fluoro-Deoxy-Glucose-Positron-Emission-Tomography-and-Computed-Tomography. Basal metabolic rate (BMR) was significantly higher when VNS was turned on (mean change; +2.2%). Mean BAT activity was not significantly different between active VNS and inactive VNS (BAT SUV(Mean); 0.55 ± 0.25 versus 0.67 ± 0.46, P = 0.619). However, the change in energy expenditure upon VNS intervention (On-Off) was significantly correlated to the change in BAT activity (r = 0.935, P<0.001). CONCLUSIONS VNS significantly increases energy expenditure. The observed change in energy expenditure was significantly related to the change in BAT activity. This suggests a role for BAT in the VNS increase in energy expenditure. Chronic VNS may have a beneficial effect on the human energy balance that has potential application for weight management therapy. TRIAL REGISTRATION The study was registered in the Clinical Trial Register under the ClinicalTrials.gov Identifier NCT01491282.
Collapse
Affiliation(s)
- Guy H. E. J. Vijgen
- Department of Human Biology, School for Nutrition, Toxicology and Metabolism – NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of General Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nicole D. Bouvy
- Department of General Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Loes Leenen
- Epilepsy Center Kempenhaeghe, Heeze, The Netherlands
| | - Kim Rijkers
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Erwin Cornips
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marian Majoie
- Epilepsy Center Kempenhaeghe, Heeze, The Netherlands
| | - Boudewijn Brans
- Department of Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Wouter D. van Marken Lichtenbelt
- Department of Human Biology, School for Nutrition, Toxicology and Metabolism – NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
23
|
McClelland J, Bozhilova N, Campbell I, Schmidt U. A systematic review of the effects of neuromodulation on eating and body weight: evidence from human and animal studies. EUROPEAN EATING DISORDERS REVIEW 2013; 21:436-55. [PMID: 24155246 DOI: 10.1002/erv.2256] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 08/17/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND Eating disorders (ED) are chronic and sometimes deadly illnesses. Existing treatments have limited proven efficacy, especially in the case of adults with anorexia nervosa (AN). Emerging neural models of ED provide a rationale for more targeted, brain-directed interventions. AIMS This systematic review has examined the effects of neuromodulation techniques on eating behaviours and body weight and assessed their potential for therapeutic use in ED. METHOD All articles in PubMed, PsychInfo and Web of Knowledge were considered and screened against a priori inclusion/exclusion criteria. The effects of repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation, vagus nerve stimulation (VNS) and deep brain stimulation (DBS) were examined across studies in ED samples, other psychiatric and neurological disorders, and animal models. RESULTS Sixty studies were identified. There is evidence for ED symptom reduction following rTMS and DBS in both AN and bulimia nervosa. Findings from studies of other psychiatric and neurological disorders and from animal studies demonstrate that increases in food intake and body weight can be achieved following DBS and that VNS has potential value as a means of controlling eating and inducing weight loss. CONCLUSIONS Neuromodulation tools have potential for reducing ED symptomatology and related behaviours, and for altering food intake and body weight. In response to such findings, and emerging neural models of ED, treatment approaches are highly unlikely to remain 'brainless'. More research is required to evaluate the potential of neuromodulation procedures for improving long-term outcomes in ED.
Collapse
Affiliation(s)
- Jessica McClelland
- Section of Eating Disorders, Institute of Psychiatry, King's College London, London, UK
| | | | | | | |
Collapse
|
24
|
Bruinstroop E, la Fleur SE, Ackermans MT, Foppen E, Wortel J, Kooijman S, Berbée JFP, Rensen PCN, Fliers E, Kalsbeek A. The autonomic nervous system regulates postprandial hepatic lipid metabolism. Am J Physiol Endocrinol Metab 2013; 304:E1089-96. [PMID: 23531617 DOI: 10.1152/ajpendo.00614.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The liver is a key organ in controlling glucose and lipid metabolism during feeding and fasting. In addition to hormones and nutrients, inputs from the autonomic nervous system are also involved in fine-tuning hepatic metabolic regulation. Previously, we have shown in rats that during fasting an intact sympathetic innervation of the liver is essential to maintain the secretion of triglycerides by the liver. In the current study, we hypothesized that in the postprandial condition the parasympathetic input to the liver inhibits hepatic VLDL-TG secretion. To test our hypothesis, we determined the effect of selective surgical hepatic denervations on triglyceride metabolism after a meal in male Wistar rats. We report that postprandial plasma triglyceride concentrations were significantly elevated in parasympathetically denervated rats compared with control rats (P = 0.008), and VLDL-TG production tended to be increased (P = 0.066). Sympathetically denervated rats also showed a small rise in postprandial triglyceride concentrations (P = 0.045). On the other hand, in rats fed on a six-meals-a-day schedule for several weeks, a parasympathetic denervation resulted in >70% higher plasma triglycerides during the day (P = 0.001), whereas a sympathetic denervation had no effect. Our results show that abolishing the parasympathetic input to the liver results in increased plasma triglyceride levels during postprandial conditions.
Collapse
Affiliation(s)
- Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gastric electrical stimulation for the treatment of obesity: from entrainment to bezoars-a functional review. ISRN GASTROENTEROLOGY 2013; 2013:434706. [PMID: 23476793 PMCID: PMC3582063 DOI: 10.1155/2013/434706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/08/2013] [Indexed: 12/29/2022]
Abstract
GROWING WORLDWIDE OBESITY EPIDEMIC HAS PROMPTED THE DEVELOPMENT OF TWO MAIN TREATMENT STREAMS: (a) conservative approaches and (b) invasive techniques. However, only invasive surgical methods have delivered significant and sustainable benefits. Therefore, contemporary research exploration has focused on the development of minimally invasive gastric manipulation methods featuring a safe but reliable and long-term sustainable weight loss effect similar to the one delivered by bariatric surgeries. This antiobesity approach is based on placing external devices in the stomach ranging from electrodes for gastric electrical stimulation to temporary intraluminal bezoars for gastric volume displacement for a predetermined amount of time. The present paper examines the evolution of these techniques from invasively implantable units to completely noninvasive patient-controllable implements, from a functional, rather than from the traditional, parametric point of view. Comparative discussion over the available pilot and clinical studies related to gastric electrical stimulation outlines the promises and the fallacies of this concept as a reliable alternative anti-obesity strategy.
Collapse
|
26
|
Banni S, Carta G, Murru E, Cordeddu L, Giordano E, Marrosu F, Puligheddu M, Floris G, Asuni GP, Cappai AL, Deriu S, Follesa P. Vagus nerve stimulation reduces body weight and fat mass in rats. PLoS One 2012; 7:e44813. [PMID: 23028630 PMCID: PMC3460935 DOI: 10.1371/journal.pone.0044813] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 08/14/2012] [Indexed: 01/19/2023] Open
Abstract
Among the manifold effects of vagus nerve stimulation (VNS) delivered as an add-on treatment to patients with drug-resistant epilepsy, a moderate loss of body weight has been observed in some individuals. We have now investigated this effect in rats. Exposure of rats to VNS for 4 weeks reduced feed conversion efficiency as well as body weight gain (by ∼25%) and the amount of mesenteric adipose tissue (by ∼45%) in comparison with those in sham-operated control animals. A pair-fed experiment showed that both lower dietary intake and increase energy expenditure independently contributed to the reduction of body weight and mesenteric adipose tissue. Moreover, VNS increased the level of non-esterified fatty acids in plasma and mesenteric adipose tissue by ∼50 and 80%, respectively, without affecting that in the liver. In addition, VNS reduced the amounts of endocannabinoids and increased N-palmitoylethanolamide, an endogenous ligand of the transcription factor PPARα (peroxisome proliferator–activated receptor α) in mesenteric adipose tissue but not in the hypothalamus. These effects were accompanied by increased expression of the gene for brain-derived neurotrophic factor (BDNF) in the hypothalamus and up-regulation of the abundance of PPARα in the liver. Our results suggest that the reduction in body fat induced by VNS in rats may result from the action of both central and peripheral mediators. The reduced feed conversion efficiency associated with VNS may be mediated by hypothalamic BDNF, down-regulation of endocannabinoid tone in mesenteric adipose tissue and a PPARα-dependent increase in fatty acid oxidation in the liver, which in concerted action may account for the anorexic effect and increased energy expenditure.
Collapse
Affiliation(s)
- Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Verdam FJ, Schouten R, Greve JW, Koek GH, Bouvy ND. An update on less invasive and endoscopic techniques mimicking the effect of bariatric surgery. J Obes 2012; 2012:597871. [PMID: 22957215 PMCID: PMC3432381 DOI: 10.1155/2012/597871] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/02/2012] [Accepted: 04/30/2012] [Indexed: 12/11/2022] Open
Abstract
Obesity (BMI 30-35 kg/m(2)) and its associated disorders such as type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular disease have reached pandemic proportions worldwide. For the morbidly obese population (BMI 35-50 kg/m(2)), bariatric surgery has proven to be the most effective treatment to achieve significant and sustained weight loss, with concomitant positive effects on the metabolic syndrome. However, only a minor percentage of eligible candidates are treated by means of bariatric surgery. In addition, the expanding obesity epidemic consists mostly of relatively less obese patients who are not (yet) eligible for bariatric surgery. Hence, less invasive techniques and devices are rapidly being developed. These novel entities mimic several aspects of bariatric surgery either by gastric restriction (gastric balloons, gastric plication), by influencing gastric function (gastric botulinum injections, gastric pacing, and vagal nerve stimulation), or by partial exclusion of the small intestine (duodenal-jejunal sleeve). In the last decade, several novel less invasive techniques have been introduced and some have been abandoned again. The aim of this paper is to discuss the safety, efficacy, complications, reversibility, and long-term results of these latest developments in the treatment of obesity.
Collapse
Affiliation(s)
- Froukje J. Verdam
- Department of General Surgery, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Ruben Schouten
- Department of Surgery, Bariatric Centre Lievensberg Hospital, P.O. Box 135, 4600 AC Bergen op Zoom, The Netherlands
| | - Jan Willem Greve
- Department of General Surgery, Atrium Medical Parkstad Centre, 6401 CX Heerlen, The Netherlands
| | - Ger H. Koek
- Department of Gastroenterology, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Nicole D. Bouvy
- Department of General Surgery, Maastricht University Medical Centre, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- *Nicole D. Bouvy:
| |
Collapse
|
28
|
Vergès B, Bonnard C, Renard E. Beyond glucose lowering: glucagon-like peptide-1 receptor agonists, body weight and the cardiovascular system. DIABETES & METABOLISM 2011; 37:477-88. [PMID: 21871831 DOI: 10.1016/j.diabet.2011.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/03/2011] [Accepted: 07/08/2011] [Indexed: 02/07/2023]
Abstract
AIM Glucagon-like peptide-1 (GLP-1) belongs to the incretin hormone family: in the presence of elevated blood glucose, it stimulates insulin secretion and inhibits glucagon production. In addition, GLP-1 slows gastric emptying. GLP-1 secretion has also been reported to potentially affect patients with type 2 diabetes (T2DM) compared with non-diabetics and, as enzymatic inactivation by dipeptidyl peptidase-4 (DPP-4) shortens the GLP-1 half-life to a few minutes, GLP-1 receptor agonists such as exenatide twice daily (BID) and liraglutide have been developed, and have become part of the management of patients with T2DM. This review focuses on the potential beneficial effects of these compounds beyond those associated with improvements in blood glucose control and weight loss, including changes in the cardiovascular and central nervous systems. METHODS This was a state-of-the-art review of the literature to evaluate the relationships between GLP-1, GLP-1 receptor agonists, weight and the cardiovascular system. RESULTS GLP-1 receptor agonists improve glucose control and do not significantly increase the risk of hypoglycaemia. Also, this new class of antidiabetic drugs was shown to favour weight loss. Mechanisms may involve central action, direct action by reduction of food intake and probably indirect action through slowing of gastric emptying. The relative importance of each activity remains unclear. Weight loss may improve cardiovascular outcomes in patients with T2DM, although GLP-1 receptor agonists may have other direct and indirect effects on the cardiovascular system. Reductions in myocardial infarct size and improvements in cardiac function have been seen in animal models. Beneficial changes in cardiac function were also demonstrated in patients with myocardial infarcts or heart failure. Indirect effects could involve a reduction in blood pressure and potential effects on oxidation. However, the mechanisms involved in the pleiotropic effects of GLP-1 receptor agonists have yet to be completely elucidated and require further study. CONCLUSION These compounds may play an important role in the treatment of patients with T2DM as their potential effects go beyond glucose-lowering (weight loss, potential improvement of cardiovascular risk factors). However, to better understand their place in the management of T2DM, further experimental and clinical prospective studies are required.
Collapse
Affiliation(s)
- B Vergès
- Department of Endocrinology and Diabetes, Bocage Hospital and Inserm CRI 866, CHU of Dijon, Dijon, France
| | | | | |
Collapse
|
29
|
Abstract
Numerous studies using gastric bypass rat models have been recently conducted to uncover underlying physiological mechanisms of Roux-en-Y gastric bypass. Reflecting on lessons learned from gastric bypass rat models may thus aid the development of gastric bypass models in mice and other species. This review aims to discuss technical and experimental details of published gastric bypass rat models to understand advantages and limitations of this experimental tool. The review is based on PubMed literature using the search terms 'animal model', 'rodent model', 'bariatric surgery', 'gastric bypass', and 'Roux-en-Y gastric bypass'. All studies published up until February 2011 were included. 32 studies describing 15 different rat gastric bypass models were included. Description of surgical technique differs in terms of pouch size, limb lengths, preservation of the vagal nerve, and mortality rate. Surgery was carried out exclusively in male rats of different strains and ages. Pre- and postoperative diets also varied significantly. Technical and experimental variations in published gastric bypass rat models complicate comparison and identification of potential physiological mechanisms involved in gastric bypass. In summary, there is no clear evidence that any of these models is superior, but there is an emerging need for standardization of the procedure to achieve consistent and comparable data.
Collapse
Affiliation(s)
- Florian Seyfried
- Imperial Weight Centre, Department of Investigative Medicine, Imperial College London, London, UK
- Department of Surgery, University of Würzburg, Würzburg, Germany
| | - Carel W. le Roux
- Imperial Weight Centre, Department of Investigative Medicine, Imperial College London, London, UK
| | - Marco Bueter
- Imperial Weight Centre, Department of Investigative Medicine, Imperial College London, London, UK
- Department of Surgery, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
30
|
Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs. Appetite 2010; 55:245-52. [PMID: 20600417 DOI: 10.1016/j.appet.2010.06.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/12/2010] [Accepted: 06/14/2010] [Indexed: 12/21/2022]
Abstract
Chronic vagus nerve stimulation (VNS) is known to influence food intake and body weight in animals and humans. The aim of our work was to evaluate the effects of long-term VNS in adult obese minipigs. Eight minipigs were fed ad libitum a Western diet to cause obesity, after which half of the animals were implanted with bilateral vagal electrodes connected to constant current stimulators (2mA, 30Hz, 500-μs pulse, ON 30s, OFF 5min). The other animals were implanted with sham devices. Animals were weighed weekly and their daily consumption was measured. Still 14 weeks after surgery, VNS animals (70.3±3.3kg, P>0.10) did not significantly gain weight compared to sham animals (80.6±8.0kg, P<0.05). Furthermore, food consumption decreased in VNS animals (-18%, P<0.02) compared to sham animals (+1%, P>0.10). When subjected to a three-choice meal test (high-fat vs. high-carbohydrates vs. balanced diet), VNS animals decreased their sweet-food consumption compared to sham animals (P<0.05), and increased their balanced diet consumption in comparison to pre-surgery levels. Our results showed that chronic VNS decreased weight gain, food consumption and sweet craving in adult obese minipigs, which indicates that this therapy might be used to decrease appetite in the context of morbid obesity.
Collapse
|
31
|
Bosch L, Tor M, Reixach J, Estany J. Estimating intramuscular fat content and fatty acid composition in live and post-mortem samples in pigs. Meat Sci 2009; 82:432-7. [DOI: 10.1016/j.meatsci.2009.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 01/19/2009] [Accepted: 02/18/2009] [Indexed: 11/25/2022]
|
32
|
Wang Y, Liu J. Combination of Bypassing Stomach and Vagus Dissection in High-Fat Diet-Induced Obese Rats—A Long-Term Investigation. Obes Surg 2009; 20:375-9. [DOI: 10.1007/s11695-009-9862-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 05/06/2009] [Indexed: 11/29/2022]
|
33
|
Aalbers M, Rijkers K, van Winden L, Hoogland G, Vles J, Majoie H. Horner's syndrome: A complication of experimental carotid artery surgery in rats. Auton Neurosci 2009; 147:64-9. [DOI: 10.1016/j.autneu.2009.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/08/2009] [Accepted: 01/14/2009] [Indexed: 11/30/2022]
|
34
|
Hasler WL. Methods of gastric electrical stimulation and pacing: a review of their benefits and mechanisms of action in gastroparesis and obesity. Neurogastroenterol Motil 2009; 21:229-43. [PMID: 19254353 DOI: 10.1111/j.1365-2982.2009.01277.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Development of gastric electrical stimulation techniques for treatment of gastric dysmotility syndromes and obesity has been a long-standing goal of investigators and clinicians. Depending on stimulus parameters and sites of stimulation, such methods have a range of theoretical benefits including entrainment of intrinsic gastric electrical activity, eliciting propagating contractions and reducing symptomatology in patients with gastroparesis and reducing appetite and food intake in individuals with morbid obesity. Additionally, gastric stimulation parameters have extragastrointestinal effects including alteration of systemic hormonal and autonomic neural activity and modulation of afferent nerve pathways projecting to the central nervous system that may represent important mechanisms of action. Numerous case series and smaller numbers of controlled trials suggest clinical benefits in these two conditions, however better controlled trials are mandated to confirm their efficacy. Current research is focusing on novel stimulation methods to better control symptoms in gastroparesis and promote weight reduction in morbid obesity.
Collapse
Affiliation(s)
- W L Hasler
- Division of Gastroenterology, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Pardo JV, Sheikh SA, Kuskowski MA, Surerus-Johnson C, Hagen MC, Lee JT, Rittberg BR, Adson DE. Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. Int J Obes (Lond) 2007; 31:1756-9. [PMID: 17563762 PMCID: PMC2365729 DOI: 10.1038/sj.ijo.0803666] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fourteen patients were treated over 2 years with cervical vagus nerve stimulation (VNS) for adjunctive therapy of severe, treatment-resistant depression. Here, we report the serendipitous observation that this treatment was associated with highly significant, gradual weight loss despite the patients' report of not dieting or exercising. The weight loss was proportional to the initial BMI, that is, the more severe the obesity, the greater the weight loss. Weight loss did not correlate with changes in mood symptoms. The vagus nerve carries visceral information to and from the brain; modulation of its activity may alter eating behavior. Chronic cervical VNS may merit controlled study for the treatment of severe obesity.
Collapse
Affiliation(s)
- J V Pardo
- Cognitive Neuroimaging Unit (11P), Psychiatry Service, Veterans Affairs Medical Center, Minneapolis, MN 55417, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The prevalence of obesity is growing, is driving an increase in the prevalence of diabetes, and is creating a major public health crisis in the United States. Lifestyle and behavior therapy rarely give durable weight loss. There are few medications approved for the treatment of obesity. Those that exist are limited in efficacy and using them in combination does not result in greater weight loss. Surgical treatments for obesity are effective and give durable weight loss, but are accompanied by measurable morbidity and mortality. Several pacing approaches are being tried and are an outgrowth of pacing for gastroparesis. The Transcend(R) pacemaker blocks vagal efferents and delays gastric emptying, giving a 40% loss of excess body weight, if certain screening procedures are employed. The Tantulus pacemaker is still in development but increases antral muscular contractions and delays gastric emptying by stimulation during the absolute refractory period. Weight loss has been 30% of excess body weight, and glycohemoglobin decreased 1.6% in a trial of obese type 2 diabetes. Stimulation to the subdiaphragmatic sympathetics, vagal nerve stimulation with or without unilateral vagotomy, and intestinal pacing are other approaches that are still being evaluated preclinically. Clearly a safe, effective, and durable treatment for obesity is desperately needed. Electrical pacing of the gastrointestinal tract is promising therapeutically, and because pacemakers work through different mechanisms, combining pacemaker treatments may be possible. Rapid progress is being made in the field of electrical stimulation as a treatment for obesity and even greater progress can be expected in the foreseeable future.
Collapse
Affiliation(s)
- Frank Greenway
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, USA.
| | | |
Collapse
|
37
|
Bodenlos JS, Kose S, Borckardt JJ, Nahas Z, Shaw D, O'Neil PM, George MS. Vagus nerve stimulation acutely alters food craving in adults with depression. Appetite 2007; 48:145-53. [PMID: 17081655 DOI: 10.1016/j.appet.2006.07.080] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 07/17/2006] [Accepted: 07/19/2006] [Indexed: 01/11/2023]
Abstract
Vagus nerve stimulation (VNS) is now available as a treatment for epilepsy and treatment-resistant depression. The vagus nerve plays a central role in satiety and short-term regulation of food intake and research suggests a relationship between VNS and weight loss. The underlying mechanisms of this relationship are unknown. The purpose of the current study was to determine whether acute cervical VNS might temporarily alter food cravings. Thirty-three participants were recruited for three groups; depression VNS, depression non-VNS, and healthy controls. Participants viewed 22 computerized images of foods twice in one session and completed ratings for food cravings after each image. The VNS participants' devices were turned on for one viewing of an image and off for the other (randomized order). Participants were blind to VNS condition (on versus off). Acute VNS device activation was associated with a significant change in cravings-ratings for sweet foods. A significant proportion of variability in VNS-related changes in cravings was accounted for by patients' clinical VNS device settings, acute level of depression, and body mass. Further studies are warranted addressing how acute or chronic VNS might modify eating behavior and weight.
Collapse
Affiliation(s)
- Jamie S Bodenlos
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 165 Cannon Street, 3rd Floor, P.O. Box 250852, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Heller AC, Amar AP, Liu CY, Apuzzo MLJ. Surgery of the mind and mood: a mosaic of issues in time and evolution. Neurosurgery 2006; 59:720-33; discussion 733-9. [PMID: 17038938 DOI: 10.1227/01.neu.0000240227.72514.27] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The prevalence and economic burden of neuropsychiatric disease are enormous. The surgical treatment of these psychiatric disorders, although potentially valuable, remains one of the most controversial subjects in medicine, as its concept and potential reality raises thorny issues of moral, ethical, and socioeconomic consequence. This article traces the roots of concept and surgical efforts in this turbulent area from prehistory to the 21st century. The details of the late 19th and 20th century evolution of approaches to the problem of intractable psychiatric diseases with scrutiny of the persona and contributions of the key individuals Gottlieb Burckhardt, John Fulton, Egas Moniz, Walter Freeman, James Watts, and William Scoville are presented as a foundation for the later, more logically refined approaches of Lars Leksell, Peter Lindstrom, Geoffrey Knight, Jean Talaraich, and Desmond Kelly. These refinements, characterized by progressive minimalism and founded on a better comprehension of underlying pathways of normal function and disease states, have been further explored with recent advances in imaging, which have allowed the emergence of less invasive and technology driven non-ablative surgical directives toward these problematical disorders of mind and mood. The application of therapies based on imaging comprehension of pathway and relay abnormalities, along with explorations of the notion of surgical minimalism, promise to serve as an impetus for revival of an active surgical effort in this key global health and socioeconomic problem. Eventual coupling of cellular and molecular biology and nanotechnology with surgical enterprise is on the horizon.
Collapse
Affiliation(s)
- A Chris Heller
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | |
Collapse
|