1
|
Catalbas K, Pattnaik T, Congdon S, Nelson C, Villano LC, Sweeney P. Hypothalamic AgRP neurons regulate the hyperphagia of lactation. Mol Metab 2024; 86:101975. [PMID: 38925247 PMCID: PMC11268337 DOI: 10.1016/j.molmet.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE The lactational period is associated with profound hyperphagia to accommodate the energy demands of nursing. These changes are important for the long-term metabolic health of the mother and children as altered feeding during lactation increases the risk of mothers and offspring developing metabolic disorders later in life. However, the specific behavioral mechanisms and neural circuitry mediating the hyperphagia of lactation are incompletely understood. METHODS Here, we utilized home cage feeding devices to characterize the dynamics of feeding behavior in lactating mice. A combination of pharmacological and behavioral assays were utilized to determine how lactation alters meal structure, circadian aspects of feeding, hedonic feeding, and sensitivity to hunger and satiety signals in lactating mice. Finally, we utilized chemogenetic, immunohistochemical, and in vivo imaging approaches to characterize the role of hypothalamic agouti-related peptide (AgRP) neurons in lactational-hyperphagia. RESULTS The lactational period is associated with increased meal size, altered circadian patterns of feeding, reduced sensitivity to gut-brain satiety signals, and enhanced sensitivity to negative energy balance. Hypothalamic AgRP neurons display increased sensitivity to negative energy balance and altered in vivo activity during the lactational state. Further, using in vivo imaging approaches we demonstrate that AgRP neurons are directly activated by lactation. Chemogenetic inhibition of AgRP neurons acutely reduces feeding in lactating mice, demonstrating an important role for these neurons in lactational-hyperphagia. CONCLUSIONS Together, these results show that lactation collectively alters multiple components of feeding behavior and position AgRP neurons as an important cellular substrate mediating the hyperphagia of lactation.
Collapse
Affiliation(s)
- Kerem Catalbas
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA; University of Illinois Urbana-Champaign Neuroscience Program, USA
| | - Tanya Pattnaik
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Samuel Congdon
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Christina Nelson
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Lara C Villano
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Patrick Sweeney
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA; University of Illinois Urbana-Champaign Neuroscience Program, USA.
| |
Collapse
|
2
|
Zhao Z, Yang Y, Liu P, Yan T, Li R, Pan C, Li Y, Lan X. A Critical Functional Missense Mutation (T117M) in Sheep MC4R Gene Significantly Leads to Gain-of-Function. Animals (Basel) 2024; 14:2207. [PMID: 39123733 PMCID: PMC11311007 DOI: 10.3390/ani14152207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
The melanocortin 4 receptor (MC4R) gene plays a central role in regulating energy homeostasis and food intake in livestock, thereby affecting their economic worth and growth. In a previous study, the p.T117M mutation in the sheep MC4R gene, which leads to the transition of threonine to methionine, was found to affect the body weight at six months and the average daily gain in Hu sheep. However, there are still limited studies on the frequency of the sheep p.T117M missense mutation globally, and the underlying cellular mechanism remains elusive. Therefore, this study first used WGS to investigate the distribution of the MC4R gene p.T117M mutation in 652 individuals across 22 breeds worldwide. The results showed that the mutation frequency was higher in European breeds compared with Chinese sheep breeds, particularly in Poll Dorset sheep (mutation frequency > 0.5). The p.T117M mutation occurs in the first extracellular loop of MC4R. Mechanistically, the basal activity of the mutated receptor is significantly increased. Specifically, upon treatment with α-MSH and ACTH ligands, the cAMP and MAPK/ERK signaling activation of M117 MC4R is enhanced. These results indicate that the T117M mutation may change the function of the gene by increasing the constitutive activity and signaling activation of cAMP and MAPK/ERK, and, thus, may regulate the growth traits of sheep. In conclusion, this study delved into the global distribution and underlying cellular mechanisms of the T117M mutation of the MC4R gene, establishing a scientific foundation for breeding sheep with superior growth, thereby contributing to the advancement of the sheep industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Z.Z.); (Y.Y.); (P.L.); (T.Y.); (R.L.); (C.P.)
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (Z.Z.); (Y.Y.); (P.L.); (T.Y.); (R.L.); (C.P.)
| |
Collapse
|
3
|
Tschöp MH, Friedman JM. Seeking satiety: From signals to solutions. Sci Transl Med 2023; 15:eadh4453. [PMID: 37992155 DOI: 10.1126/scitranslmed.adh4453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Remedies for the treatment of obesity date to Hippocrates, when patients with obesity were directed to "reduce food and avoid drinking to fullness" and begin "running during the night." Similar recommendations have been repeated ever since, despite the fact that they are largely ineffective. Recently, highly effective therapeutics were developed that may soon enable physicians to manage body weight in patients with obesity in a manner similar to the way that blood pressure is controlled in patients with hypertension. These medicines have grown out of a revolution in our understanding of the molecular and neural control of appetite and body weight, reviewed here.
Collapse
Affiliation(s)
- Matthias H Tschöp
- Helmholtz Munich and Technical University Munich, Munich, 85758 Germany
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
4
|
Cho D, O'Berry K, Possa-Paranhos IC, Butts J, Palanikumar N, Sweeney P. Paraventricular Thalamic MC3R Circuits Link Energy Homeostasis with Anxiety-Related Behavior. J Neurosci 2023; 43:6280-6296. [PMID: 37591737 PMCID: PMC10490510 DOI: 10.1523/jneurosci.0704-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
The hypothalamic melanocortin system is critically involved in sensing stored energy and communicating this information throughout the brain, including to brain regions controlling motivation and emotion. This system consists of first-order agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) neurons located in the hypothalamic arcuate nucleus and downstream neurons containing the melanocortin-3 (MC3R) and melanocortin-4 receptor (MC4R). Although extensive work has characterized the function of downstream MC4R neurons, the identity and function of MC3R-containing neurons are poorly understood. Here, we used neuroanatomical and circuit manipulation approaches in mice to identify a novel pathway linking hypothalamic melanocortin neurons to melanocortin-3 receptor neurons located in the paraventricular thalamus (PVT) in male and female mice. MC3R neurons in PVT are innervated by hypothalamic AgRP and POMC neurons and are activated by anorexigenic and aversive stimuli. Consistently, chemogenetic activation of PVT MC3R neurons increases anxiety-related behavior and reduces feeding in hungry mice, whereas inhibition of PVT MC3R neurons reduces anxiety-related behavior. These studies position PVT MC3R neurons as important cellular substrates linking energy status with neural circuitry regulating anxiety-related behavior and represent a promising potential target for diseases at the intersection of metabolism and anxiety-related behavior such as anorexia nervosa.SIGNIFICANCE STATEMENT Animals must constantly adapt their behavior to changing internal and external challenges, and impairments in appropriately responding to these challenges are a hallmark of many neuropsychiatric disorders. Here, we demonstrate that paraventricular thalamic neurons containing the melanocortin-3 receptor respond to energy-state-related information and external challenges to regulate anxiety-related behavior in mice. Thus, these neurons represent a potential target for understanding the neurobiology of disorders at the intersection of metabolism and psychiatry such as anorexia nervosa.
Collapse
Affiliation(s)
- Dajin Cho
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Kyle O'Berry
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Ingrid Camila Possa-Paranhos
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Jared Butts
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Naraen Palanikumar
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Patrick Sweeney
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
5
|
Zhang SX, Kim A, Madara JC, Zhu PK, Christenson LF, Lutas A, Kalugin PN, Jin Y, Pal A, Tian L, Lowell BB, Andermann ML. Competition between stochastic neuropeptide signals calibrates the rate of satiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548551. [PMID: 37503012 PMCID: PMC10369917 DOI: 10.1101/2023.07.11.548551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We investigated how transmission of hunger- and satiety-promoting neuropeptides, NPY and αMSH, is integrated at the level of intracellular signaling to control feeding. Receptors for these peptides use the second messenger cAMP, but the messenger's spatiotemporal dynamics and role in energy balance are controversial. We show that AgRP axon stimulation in the paraventricular hypothalamus evokes probabilistic and spatially restricted NPY release that triggers stochastic cAMP decrements in downstream MC4R-expressing neurons (PVH MC4R ). Meanwhile, POMC axon stimulation triggers stochastic, αMSH-dependent cAMP increments. NPY and αMSH competitively control cAMP, as reflected by hunger-state-dependent differences in the amplitude and persistence of cAMP transients evoked by each peptide. During feeding bouts, elevated αMSH release and suppressed NPY release cooperatively sustain elevated cAMP in PVH MC4R neurons, thereby potentiating feeding-related excitatory inputs and promoting satiation across minutes. Our findings highlight how state-dependent integration of opposing, quantal peptidergic events by a common biochemical target calibrates energy intake.
Collapse
|
6
|
Zhong QQ, Zhu F. Genetic loci, rs17817449 and rs6567160, known for obesity and the risk of stroke events among middle-aged and older Chinese people. Front Neurol 2022; 13:1036750. [PMID: 36530622 PMCID: PMC9755202 DOI: 10.3389/fneur.2022.1036750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Fat Mass and Obesity-Associated (FTO) and the Melanocortin-4 Receptor (MC4R) genes are strongly associated with obesity, an established risk factor for stroke. We aimed to assess the associations between rs17817449 at the FTO and rs6567160 at the MC4R and the risk of stroke events in middle-aged and older Chinese people. MATERIALS AND METHODS Study data were obtained from the Guangzhou Biobank Cohort Study; a total of 148 participants with a self-reported history of stroke and an equal volume of age- and sex-matched participants were selected as the cases and the controls in a case-control study; a total of 13,967 participants at the first follow-up and all participants with fatal stroke (up to April 2021) were included in a retrospective cohort study. Conditional logistic regression and the Cox proportional hazards regression analyses were used to assess the associations of the two genetic loci with the risk of stroke events. RESULTS After adjusting for age, sex, education, job, smoking, alcohol consumption, body mass index, physical activity, hypertension, diabetes, and dyslipidemia, rs17817449 and rs6567160 shared minor alleles G and C, respectively, in the case-control analyses. The genotypes GG+GT of rs17817449 at the FTO were significantly associated with a decreased risk of fatal stroke occurrence, with fatal all strokes having an adjusted hazard ratio (aHR) of 0.71 (95% confidence intervals (CI) 0.52-0.97, P = 0.04) and fatal ischemic stroke having an aHR of 0.64 (95% CI 0.41-1.00, P = 0.05), when the genotype TT was taken as a reference and a series of multiplicities were adjusted; the risk of fatal all strokes was lowered by dyslipidemia (aHR = 0.63, 95% CI 0.39-1.00, P = 0.05) and non-diabetes (aHR = 0.68, 95% CI 0.46-0.99, P = 0.049) in the retrospective cohort analyses. Significances were observed neither in the associations between rs6567160 and the risk of stroke events nor in an interaction between rs17817449 and rs6567160 in the two-stage analyses. CONCLUSION The G allele of rs17817449 at the FTO, not rs6567160 at the MC4R, was associated with a decreased risk of fatal stroke occurrence; its functional role in stroke should be explored in relatively healthy middle-aged to older Chinese people.
Collapse
Affiliation(s)
- Qiong-Qiong Zhong
- Department of Science and Education, Guangzhou Twelfth People's Hospital, Guangzhou, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Feng Zhu
- Department of Science and Education, Guangzhou Twelfth People's Hospital, Guangzhou, China
| |
Collapse
|
7
|
Bedenbaugh MN, Brener SC, Maldonado J, Lippert RN, Sweeney P, Cone RD, Simerly RB. Organization of neural systems expressing melanocortin-3 receptors in the mouse brain: Evidence for sexual dimorphism. J Comp Neurol 2022; 530:2835-2851. [PMID: 35770983 PMCID: PMC9724692 DOI: 10.1002/cne.25379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Abstract
The central melanocortin system is fundamentally important for controlling food intake and energy homeostasis. Melanocortin-3 receptor (MC3R) is one of two major receptors of the melanocortin system found in the brain. In contrast to the well-characterized melanocortin-4 receptor (MC4R), little is known regarding the organization of MC3R-expressing neural circuits. To increase our understanding of the intrinsic organization of MC3R neural circuits, identify specific differences between males and females, and gain a neural systems level perspective of this circuitry, we conducted a brain-wide mapping of neurons labeled for MC3R and characterized the distribution of their projections. Analysis revealed MC3R neuronal and terminal labeling in multiple brain regions that control a diverse range of physiological functions and behavioral processes. Notably, dense labeling was observed in the hypothalamus, as well as areas that share considerable connections with the hypothalamus, including the cortex, amygdala, thalamus, and brainstem. Additionally, MC3R neuronal labeling was sexually dimorphic in several areas, including the anteroventral periventricular area, arcuate nucleus, principal nucleus of the bed nucleus of the stria terminalis, and ventral premammillary region. Altogether, anatomical evidence reported here suggests that MC3R has the potential to influence several different classes of motivated behavior that are essential for survival, including ingestive, reproductive, defensive, and arousal behaviors, and is likely to modulate these behaviors differently in males and females.
Collapse
Affiliation(s)
- Michelle N. Bedenbaugh
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Samantha C. Brener
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Rachel N. Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
| | - Patrick Sweeney
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger D. Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard B. Simerly
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Anhê GF, Bordin S. The adaptation of maternal energy metabolism to lactation and its underlying mechanisms. Mol Cell Endocrinol 2022; 553:111697. [PMID: 35690287 DOI: 10.1016/j.mce.2022.111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Maternal energy metabolism undergoes a singular adaptation during lactation that allows for the caloric enrichment of milk. Changes in the mammary gland, changes in the white adipose tissue, brown adipose tissue, liver, skeletal muscles and endocrine pancreas are pivotal for this adaptation. The present review details the landmark studies describing the enzymatic modulation and the endocrine signals behind these metabolic changes. We will also update this perspective with data from recent studies showing transcriptional and post-transcriptional mechanisms that mediate the adaptation of the maternal metabolism to lactation. The present text will also bring experimental and observational data that describe the long-term consequences that short periods of lactation impose to maternal metabolism.
Collapse
Affiliation(s)
- Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil.
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Fatima MT, Ahmed I, Fakhro KA, Akil ASA. Melanocortin-4 receptor complexity in energy homeostasis,obesity and drug development strategies. Diabetes Obes Metab 2022; 24:583-598. [PMID: 34882941 PMCID: PMC9302617 DOI: 10.1111/dom.14618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022]
Abstract
The melanocortin-4 receptor (MC4R) has been critically investigated for the past two decades, and novel findings regarding MC4R signalling and its potential exploitation in weight loss therapy have lately been emphasized. An association between MC4R and obesity is well established, with disease-causing mutations affecting 1% to 6% of obese patients. More than 200 MC4R variants have been reported, although conflicting results as to their effects have been found in different cohorts. Most notably, some MC4R gain-of-function variants seem to rescue obesity and related complications via specific pathways such as beta-arrestin (ß-arrestin) recruitment. Broadly speaking, however, dysfunctional MC4R dysregulates satiety and induces hyperphagia. The picture at the mechanistic level is complicated as, in addition to the canonical G stimulatory pathway, the ß-arrestin signalling pathway and ions (particularly calcium) seem to interact with MC4R signalling to contribute to or alleviate obesity pathogenesis. Thus, the overall complexity of the MC4R signalling spectra has broadened considerably, indicating there is great potential for the development of new drugs to manage obesity and its related complications. Alpha-melanocyte-stimulating hormone is the major endogenous MC4R agonist, but structure-based ligand discovery studies have identified possible superior and selective agonists that can improve MC4R function. However, some of these agonists characterized in vitro and in vivo confer adverse effects in patients, as demonstrated in clinical trials. In this review, we provide a comprehensive insight into the genetics, function and regulation of MC4R and its contribution to obesity. We also outline new approaches in drug development and emerging drug candidates to treat obesity.
Collapse
Affiliation(s)
- Munazza Tamkeen Fatima
- Department of Human Genetics, Translational Medicine DivisionResearch Branch, Sidra MedicineDohaQatar
| | - Ikhlak Ahmed
- Department of Human Genetics, Translational Medicine DivisionResearch Branch, Sidra MedicineDohaQatar
| | - Khalid Adnan Fakhro
- Department of Human Genetics, Translational Medicine DivisionResearch Branch, Sidra MedicineDohaQatar
- Department of Genetic MedicineWeill Cornell MedicineDohaQatar
- College of Health and Life SciencesHamad Bin Khalifa UniversityDohaQatar
| | | |
Collapse
|
10
|
Akinci A, Kara A, Özgür A, Turkkahraman D, Aksu S. Genomic analysis to screen potential genes and mutations in children with non-syndromic early onset severe obesity: a multicentre study in Turkey. Mol Biol Rep 2021; 49:1883-1893. [PMID: 34850337 DOI: 10.1007/s11033-021-06999-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/19/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Obesity is a complex genetic-based pediatric disorder which triggers life-threatening conditions. Therefore, the understanding the molecular mechanisms of obesity has been a significant approach in medicine. Computational methods allow rapid and comprehensive pathway analysis, which is important for generation of diagnosis and treatment of obesity. METHODS AND RESULTS Aims of our study are to comprehensively investigate genetic characteristics of obesity in children with non-syndromic, early-onset (< 7 years), and severe obesity (BMI-SDS > 3) through computational approaches. First, the mutational analyses of 41 of obesity-related genes in 126 children with non-syndromic early-onset severe obesity and 76 healthy non-obese controls were performed using the next generation sequencing (NGS) technique, and the NGS data analyzed by using bioinformatics methods. Then, the relationship between pathogenic variants and anthropometric/biochemical parameters was further evaluated. Obtained results demonstrated that the 15 genes (ADIPOQ, ADRB2, ADRB3, IRS1, LEPR, NPY, POMC, PPARG, PPARGC1A, PPARGC1B, PTPN1, SLC22A1, SLC2A4, SREBF1 and UCP1) which directly related to obesity found linked together via biological pathways and/or functions. Among these genes, IRS1, PPARGC1A, and SLC2A4 stand out as the most central ones. Furthermore, 12 of non-synonymous pathogenic variants, including six novels, were detected on ADIPOQ (G90S and D242G), ADRB2 (V87M), PPARGC1A (E680G, A477T, and R656H), UCP1 (Q44R), and IRS1 (R302Q, R301H, R301C, H250P, and H250N) genes. CONCLUSION We propose that 12 of non-synonymous pathogenic variations detected on ADIPOQ, ADRB2, PPARGC1A, UCP1, and IRS1 genes might have a cumulative effect on the development and progression of obesity.
Collapse
Affiliation(s)
- Aysehan Akinci
- Pediatric Endocrinology and Diabetes Department, Medical Faculty, Inonu University, Malatya, Turkey.
| | - Altan Kara
- Genetic Engineering and Bioinformatic Department, TUBITAK Marmara Research Center, Gebze, Turkey.
| | - Aykut Özgür
- Laboratory and Veterinary Health Program, Department of Veterinary Medicine, Artova Vocational School, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Doga Turkkahraman
- Pediatric Endocrinology Department, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Turkey
| | - Soner Aksu
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Health and Technology University, İstanbul, Turkey
| |
Collapse
|
11
|
Therapeutic Effect of α-MSH in Primary Cultured Orbital Fibroblasts Obtained from Patients with Thyroid Eye Disease. Int J Mol Sci 2021; 22:ijms222011225. [PMID: 34681884 PMCID: PMC8537628 DOI: 10.3390/ijms222011225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Inflammation, hyaluronan production, and adipogenesis are the main pathological events leading to thyroid eye disease (TED). α-Melanocytemelanocyte-stimulating hormone (α-MSH) is a well-known tridecapeptidetreatment for several inflammatory disorders including sepsis syndrome, acute respiratory distress syndrome, rheumatoid arthritis, and encephalitis. Here, we investigated the effect of α-MSH treatment on TED. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Lactate Dehydrogenase (LDH) assays were performed to analyze the effect of α-MSH on cell viability and it's toxicity. Using primary cultures of orbital fibroblasts from TED patients and non-TED as control, we examined the effects of α-MSH on proinflammatory cytokine production induced by interleukin (IL)-1β, further analyzed by real-time reverse transcription-polymerase chain reaction (qPCR) and western blotting. Immunofluorescence staining assay and qPCR were performed to examine proopiomelanocortin (POMC) expression, the upstream neuropeptide of α-MSH in TED patients and non-TED control. Treatment with non-cytotoxic concentrations of α-MSH resulted in the dose-dependent inhibition of mRNA and protein levels (p < 0.05) for IL-1β-induced inflammatory cytokines: IL-6, IL-8, MCP-1, ICAM-1, and COX-2. The expression of POMC mRNA and protein were significantly higher in TED patients compared to non-TED control (p < 0.05). Our data show significant inhibitory effects of α-MSH on inflammation, POMC production in orbital fibroblasts. At present, this is the first in vitro preclinical evidence of α-MSH therapeutic effect on TED. These findings indicate that POMC and α-MSH may play a role in the immune regulation of TED and can be a potential therapeutic target.
Collapse
|
12
|
Zubiaur P, Soria-Chacartegui P, Villapalos-García G, Gordillo-Perdomo JJ, Abad-Santos F. The pharmacogenetics of treatment with olanzapine. Pharmacogenomics 2021; 22:939-958. [PMID: 34528455 DOI: 10.2217/pgs-2021-0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetic polymorphism in olanzapine-metabolizing enzymes, transporters and drug targets is associated with alterations in safety and efficacy. The aim of this systematic review is to describe all clinically relevant pharmacogenetic information on olanzapine and to propose clinically actionable variants. Two hundred and eighty-four studies were screened; 76 complied with the inclusion criteria and presented significant associations. DRD2 Taq1A (rs1800497) *A1, LEP -2548 (rs7799039) G and CYP1A2*1F alleles were related to olanzapine effectiveness and safety variability in several studies, with a high level of evidence. DRD2 -141 (rs1799732) Ins, A-241G (rs1799978) G, DRD3 Ser9Gly (rs6280) Gly, HTR2A rs7997012 A, ABCB1 C3435T (rs1045642) T and G2677T/A (rs2032582) T and UGT1A4*3 alleles were related to safety, effectiveness and/or pharmacokinetic variability with moderated level of evidence.
Collapse
Affiliation(s)
- Pablo Zubiaur
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Paula Soria-Chacartegui
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Gonzalo Villapalos-García
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Juan J Gordillo-Perdomo
- Department of Clinical Analysis, Hospital Universitario de La Princesa, Madrid, 28006, Spain
| | - Francisco Abad-Santos
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28006, Spain
| |
Collapse
|
13
|
Deng Y, Deng G, Grobe JL, Cui H. Hypothalamic GPCR Signaling Pathways in Cardiometabolic Control. Front Physiol 2021; 12:691226. [PMID: 34262481 PMCID: PMC8274634 DOI: 10.3389/fphys.2021.691226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
Obesity is commonly associated with sympathetic overdrive, which is one of the major risk factors for the development of cardiovascular diseases, such as hypertension and heart failure. Over the past few decades, there has been a growing understanding of molecular mechanisms underlying obesity development with central origin; however, the relative contribution of these molecular changes to the regulation of cardiovascular function remains vague. A variety of G-protein coupled receptors (GPCRs) and their downstream signaling pathways activated in distinct hypothalamic neurons by different metabolic hormones, neuropeptides and monoamine neurotransmitters are crucial not only for the regulation of appetite and metabolic homeostasis but also for the sympathetic control of cardiovascular function. In this review, we will highlight the main GPCRs and associated hypothalamic nuclei that are important for both metabolic homeostasis and cardiovascular function. The potential downstream molecular mediators of these GPCRs will also be discussed.
Collapse
Affiliation(s)
- Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- FOE Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
14
|
Whole-brain activation signatures of weight-lowering drugs. Mol Metab 2021; 47:101171. [PMID: 33529728 PMCID: PMC7895844 DOI: 10.1016/j.molmet.2021.101171] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The development of effective anti-obesity therapeutics relies heavily on the ability to target specific brain homeostatic and hedonic mechanisms controlling body weight. To obtain further insight into neurocircuits recruited by anti-obesity drug treatment, the present study aimed to determine whole-brain activation signatures of six different weight-lowering drug classes. METHODS Chow-fed C57BL/6J mice (n = 8 per group) received acute treatment with lorcaserin (7 mg/kg; i.p.), rimonabant (10 mg/kg; i.p.), bromocriptine (10 mg/kg; i.p.), sibutramine (10 mg/kg; p.o.), semaglutide (0.04 mg/kg; s.c.) or setmelanotide (4 mg/kg; s.c.). Brains were sampled two hours post-dosing and whole-brain neuronal activation patterns were analysed at single-cell resolution using c-Fos immunohistochemistry and automated quantitative three-dimensional (3D) imaging. RESULTS The whole-brain analysis comprised 308 atlas-defined mouse brain areas. To enable fast and efficient data mining, a web-based 3D imaging data viewer was developed. All weight-lowering drugs demonstrated brain-wide responses with notable similarities in c-Fos expression signatures. Overlapping c-Fos responses were detected in discrete homeostatic and non-homeostatic feeding centres located in the dorsal vagal complex and hypothalamus with concurrent activation of several limbic structures as well as the dopaminergic system. CONCLUSIONS Whole-brain c-Fos expression signatures of various weight-lowering drug classes point to a discrete set of brain regions and neurocircuits which could represent key neuroanatomical targets for future anti-obesity therapeutics.
Collapse
|
15
|
Wallis N, Raffan E. The Genetic Basis of Obesity and Related Metabolic Diseases in Humans and Companion Animals. Genes (Basel) 2020; 11:E1378. [PMID: 33233816 PMCID: PMC7699880 DOI: 10.3390/genes11111378] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is one of the most prevalent health conditions in humans and companion animals globally. It is associated with premature mortality, metabolic dysfunction, and multiple health conditions across species. Obesity is, therefore, of importance in the fields of medicine and veterinary medicine. The regulation of adiposity is a homeostatic process vulnerable to disruption by a multitude of genetic and environmental factors. It is well established that the heritability of obesity is high in humans and laboratory animals, with ample evidence that the same is true in companion animals. In this review, we provide an overview of how genes link to obesity in humans, drawing on a wealth of information from laboratory animal models, and summarise the mechanisms by which obesity causes related disease. Throughout, we focus on how large-scale human studies and niche investigations of rare mutations in severely affected patients have improved our understanding of obesity biology and can inform our ability to interpret results of animal studies. For dogs, cats, and horses, we compare the similarities in obesity pathophysiology to humans and review the genetic studies that have been previously reported in those species. Finally, we discuss how veterinary genetics may learn from humans about studying precise, nuanced phenotypes and implementing large-scale studies, but also how veterinary studies may be able to look past clinical findings to mechanistic ones and demonstrate translational benefits to human research.
Collapse
Affiliation(s)
- Natalie Wallis
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Eleanor Raffan
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
16
|
Masi T, Patel BM. Altered glucose metabolism and insulin resistance in cancer-induced cachexia: a sweet poison. Pharmacol Rep 2020; 73:17-30. [PMID: 33141425 DOI: 10.1007/s43440-020-00179-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Cancer cachexia is a wasting disorder characterised by specific skeletal muscle and adipose tissue loss. Cancer cachexia is also driven by inflammation, altered metabolic changes such as increased energy expenditure, elevated plasma glucose, insulin resistance and excess catabolism. In cachexia, host-tumor interaction causes release of the lactate and inflammatory cytokines. Lactate released by tumor cells takes part in hepatic glucose production with the help of gluconeogenic enzymes. Thus, Cori cycle between organs and cancerous cells contributes to increased glucose production and energy expenditure. A high amount of blood glucose leads to increased production of insulin. Overproduction of insulin causes inactivation of PI3K/Akt/m-TOR pathway and finally results in insulin resistance. Insulin is involved in maintaining the vitality of organs and regulate the metabolism of glucose, protein and lipids. Insulin insensitivity decreases the uptake of glucose in the organs and results in loss of skeletal muscles and adipose tissues. However, looking into the complexity of this metabolic syndrome, it is impossible to rely on a single variable to treat patients having cancer cachexia. Hence, it becomes greater a challenge to produce a clinically effective treatment for this metabolic syndrome. Thus, the present paper aims to provide an understanding of pathogenesis and mechanism underlining the altered glucose metabolism and insulin resistance and its contribution to the progression of skeletal muscle wasting and lipolysis, providing future direction of research to develop new pharmacological treatment in cancer cachexia.
Collapse
Affiliation(s)
- Tamhida Masi
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
17
|
|
18
|
Aylwin CF, Lomniczi A. Sirtuin (SIRT)-1: At the crossroads of puberty and metabolism. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 14:65-72. [PMID: 32905232 PMCID: PMC7467505 DOI: 10.1016/j.coemr.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the arcuate nucleus (ARC) of the hypothalamus reside two neuronal systems in charge of regulating feeding control and reproductive development. The melanocortin system responds to metabolic fluctuations adjusting food intake, whereas kisspeptin neurons are in charge of the excitatory control of Gonadotropin Hormone Releasing Hormone (GnRH) neurons. While it is known that the melanocortin system regulates GnRH neuronal activity, it was recently demonstrated that kisspeptin neurons not only innervate melanocortin neurons, but also play an active role in the control of metabolism. These two neuronal systems are intricately interconnected forming loops of stimulation and inhibition according to metabolic status. Furthermore, intracellular and epigenetic pathways respond to external environmental signals by changing DNA conformation and gene expression. Here we review the role of Silent mating type Information Regulation 2 homologue 1 (Sirt1), a class III NAD+ dependent protein deacetylase, in the ARC control of pubertal development and feeding behavior.
Collapse
Affiliation(s)
- Carlos F Aylwin
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| |
Collapse
|
19
|
Drokhlyansky E, Smillie CS, Van Wittenberghe N, Ericsson M, Griffin GK, Eraslan G, Dionne D, Cuoco MS, Goder-Reiser MN, Sharova T, Kuksenko O, Aguirre AJ, Boland GM, Graham D, Rozenblatt-Rosen O, Xavier RJ, Regev A. The Human and Mouse Enteric Nervous System at Single-Cell Resolution. Cell 2020; 182:1606-1622.e23. [PMID: 32888429 PMCID: PMC8358727 DOI: 10.1016/j.cell.2020.08.003] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/15/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
The enteric nervous system (ENS) coordinates diverse functions in the intestine but has eluded comprehensive molecular characterization because of the rarity and diversity of cells. Here we develop two methods to profile the ENS of adult mice and humans at single-cell resolution: RAISIN RNA-seq for profiling intact nuclei with ribosome-bound mRNA and MIRACL-seq for label-free enrichment of rare cell types by droplet-based profiling. The 1,187,535 nuclei in our mouse atlas include 5,068 neurons from the ileum and colon, revealing extraordinary neuron diversity. We highlight circadian expression changes in enteric neurons, show that disease-related genes are dysregulated with aging, and identify differences between the ileum and proximal/distal colon. In humans, we profile 436,202 nuclei, recovering 1,445 neurons, and identify conserved and species-specific transcriptional programs and putative neuro-epithelial, neuro-stromal, and neuro-immune interactions. The human ENS expresses risk genes for neuropathic, inflammatory, and extra-intestinal diseases, suggesting neuronal contributions to disease.
Collapse
MESH Headings
- Aging/genetics
- Aging/metabolism
- Animals
- Circadian Clocks/genetics
- Colon/cytology
- Colon/metabolism
- Endoplasmic Reticulum, Rough/genetics
- Endoplasmic Reticulum, Rough/metabolism
- Endoplasmic Reticulum, Rough/ultrastructure
- Enteric Nervous System/cytology
- Enteric Nervous System/metabolism
- Epithelial Cells/metabolism
- Female
- Gene Expression Regulation, Developmental/genetics
- Genetic Predisposition to Disease/genetics
- Humans
- Ileum/cytology
- Ileum/metabolism
- Inflammation/genetics
- Inflammation/metabolism
- Intestinal Diseases/genetics
- Intestinal Diseases/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Nervous System Diseases/genetics
- Nervous System Diseases/metabolism
- Neuroglia/cytology
- Neuroglia/metabolism
- Neurons/cytology
- Neurons/metabolism
- Nissl Bodies/genetics
- Nissl Bodies/metabolism
- Nissl Bodies/ultrastructure
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Seq
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Single-Cell Analysis/methods
- Stromal Cells/metabolism
Collapse
Affiliation(s)
- Eugene Drokhlyansky
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Gabriel K Griffin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Gokcen Eraslan
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael S Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Olena Kuksenko
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew J Aguirre
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Genevieve M Boland
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA
| | | | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Zhu X, Callahan MF, Gruber KA, Szumowski M, Marks DL. Melanocortin-4 receptor antagonist TCMCB07 ameliorates cancer- and chronic kidney disease-associated cachexia. J Clin Invest 2020; 130:4921-4934. [PMID: 32544087 PMCID: PMC7456235 DOI: 10.1172/jci138392] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Cachexia, a devastating wasting syndrome characterized by severe weight loss with specific losses of muscle and adipose tissue, is driven by reduced food intake, increased energy expenditure, excess catabolism, and inflammation. Cachexia is associated with poor prognosis and high mortality and frequently occurs in patients with cancer, chronic kidney disease, infection, and many other illnesses. There is no effective treatment for this condition. Hypothalamic melanocortins have a potent and long-lasting inhibitory effect on feeding and anabolism, and pathophysiological processes increase melanocortin signaling tone, leading to anorexia, metabolic changes, and eventual cachexia. We used 3 rat models of anorexia and cachexia (LPS, methylcholanthrene sarcoma, and 5/6 subtotal nephrectomy) to evaluate efficacy of TCMCB07, a synthetic antagonist of the melanocortin-4 receptor. Our data show that peripheral treatment using TCMCB07 with intraperitoneal, subcutaneous, and oral administration increased food intake and body weight and preserved fat mass and lean mass during cachexia and LPS-induced anorexia. Furthermore, administration of TCMCB07 diminished hypothalamic inflammatory gene expression in cancer cachexia. These results suggest that peripheral TCMCB07 treatment effectively inhibits central melanocortin signaling and therefore stimulates appetite and enhances anabolism, indicating that TCMCB07 is a promising drug candidate for treating cachexia.
Collapse
MESH Headings
- Animals
- Appetite/drug effects
- Cachexia/drug therapy
- Cachexia/etiology
- Cachexia/metabolism
- Cachexia/pathology
- Male
- Rats
- Rats, Sprague-Dawley
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/metabolism
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Sarcoma, Experimental/complications
- Sarcoma, Experimental/drug therapy
- Sarcoma, Experimental/metabolism
- Sarcoma, Experimental/pathology
Collapse
Affiliation(s)
- Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Michael F. Callahan
- Tensive Controls Inc., MU Life Sciences Business Incubator at Monsanto Place, Columbia, Missouri, USA
| | - Kenneth A. Gruber
- Tensive Controls Inc., MU Life Sciences Business Incubator at Monsanto Place, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center and
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Marek Szumowski
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute and
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
21
|
Effects of metabolic state on the regulation of melanocortin circuits. Physiol Behav 2020; 224:113039. [PMID: 32610101 PMCID: PMC7387173 DOI: 10.1016/j.physbeh.2020.113039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/01/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Dysfunction in neurophysiological systems that regulate food intake and metabolism are at least partly responsible for obesity and related comorbidities. An important component of this process is the hypothalamic melanocortin system, where an imbalance can result in severe obesity and deficits in glucose metabolism. Exercise offers many health benefits related to cardiovascular improvements, hunger control, and blood glucose homeostasis. However, the molecular mechanism underlying the exercise-induced improvements to the melanocortin system remain undefined. Here, we review the role of the melanocortin system to sense hormonal, nutrient, and neuronal signals of energy status. This information is then relayed onto secondary neurons in order to regulate physiological parameters, which promote proper energy and glucose balance. We also provide an overview on the effects of physical exercise to induce biophysical changes in the melanocortin circuit which may regulate food intake, glucose metabolism and improve overall metabolic health.
Collapse
|
22
|
Mohammadi M, Khodarahmi M, Kahroba H, Farhangi MA, Vajdi M. The interaction between dietary Non-Enzymatic Antioxidant Capacity (NEAC) with variants of Melanocortin-4 receptor (MC4R) 18q21.23-rs17782313 locus on hypothalamic hormones and cardio-metabolic risk factors in obese individuals from Iran. Nutr Neurosci 2020; 23:824-837. [PMID: 32558632 DOI: 10.1080/1028415x.2020.1780738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: In the current study, we aimed to evaluate the interaction between dietary Non-Enzymatic Antioxidant Capacity (NEAC) and rs17782313 polymorphism on hypothalamic hormones and cardio-metabolic risk factors. Methods: A total of 287 subjects (aged 20-50 years, 147 males and 140 females) enrolled in the cross-sectional study. Dietary NEAC was assessed using databases of NEAC measurements compiled from outcomes for three different analyses: oxygen radical absorbance capacity (ORAC), ferric reducing-antioxidant power (FRAP), and total radical-trapping antioxidant parameter (TRAP) and genotyping for the near MC4R rs17782313 was carried out by Polymerase chain reaction-restriction fragments length polymorphism (PCR-RFLP) method. Results: The significant interactions were found between adherence to the dietary NEAC and MC4R rs17782313 in relation to high-density lipoprotein-cholesterol (HDL-C), glucose, α-melanocyte stimulating hormone (α-MSH), insulin and quantitative insulin sensitivity check index (QUICKI) (P Interaction = 0.03, 0.01, 0.04, 0.04 and 0.04, respectively). In homozygous subjects for the minor allele, the serum insulin level and QUICKI in participants with the highest adherence to TRAP were significantly higher than those with the lowest adherence (p < 0.001). There was a significant inverse association between high ORAC score and risk of metabolic syndrome even after adjusting for potential confounders (OR: 0.33; 95%CI:0.13-0.81) and also a significant inverse association between high NEAC (ORAC, FRAP and TRAP assays) score and high triglyceride (TG) level was found in obese adults. Conclusion: In conclusion, our study found for the first time that the NEAC significantly interacts with the rs17782313 genotypes to influence several metabolic risk factors in obesity.
Collapse
Affiliation(s)
| | - Mahdieh Khodarahmi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Vajdi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Georgescu T, Lyons D, Doslikova B, Garcia AP, Marston O, Burke LK, Chianese R, Lam BYH, Yeo GSH, Rochford JJ, Garfield AS, Heisler LK. Neurochemical Characterization of Brainstem Pro-Opiomelanocortin Cells. Endocrinology 2020; 161:bqaa032. [PMID: 32166324 PMCID: PMC7102873 DOI: 10.1210/endocr/bqaa032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/10/2020] [Indexed: 02/08/2023]
Abstract
Genetic research has revealed pro-opiomelanocortin (POMC) to be a fundamental regulator of energy balance and body weight in mammals. Within the brain, POMC is primarily expressed in the arcuate nucleus of the hypothalamus (ARC), while a smaller population exists in the brainstem nucleus of the solitary tract (POMCNTS). We performed a neurochemical characterization of this understudied population of POMC cells using transgenic mice expressing green fluorescent protein (eGFP) under the control of a POMC promoter/enhancer (PomceGFP). Expression of endogenous Pomc mRNA in the nucleus of the solitary tract (NTS) PomceGFP cells was confirmed using fluorescence-activating cell sorting (FACS) followed by quantitative PCR. In situ hybridization histochemistry of endogenous Pomc mRNA and immunohistochemical analysis of eGFP revealed that POMC is primarily localized within the caudal NTS. Neurochemical analysis indicated that POMCNTS is not co-expressed with tyrosine hydroxylase (TH), glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), brain-derived neurotrophic factor (BDNF), nesfatin, nitric oxide synthase 1 (nNOS), seipin, or choline acetyltransferase (ChAT) cells, whereas 100% of POMCNTS is co-expressed with transcription factor paired-like homeobox2b (Phox2b). We observed that 20% of POMCNTS cells express receptors for adipocyte hormone leptin (LepRbs) using a PomceGFP:LepRbCre:tdTOM double-reporter line. Elevations in endogenous or exogenous leptin levels increased the in vivo activity (c-FOS) of a small subset of POMCNTS cells. Using ex vivo slice electrophysiology, we observed that this effect of leptin on POMCNTS cell activity is postsynaptic. These findings reveal that a subset of POMCNTS cells are responsive to both changes in energy status and the adipocyte hormone leptin, findings of relevance to the neurobiology of obesity.
Collapse
Affiliation(s)
- Teodora Georgescu
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Centre for Neuroendocrinology & Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - David Lyons
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | | - Ana Paula Garcia
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Oliver Marston
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Luke K Burke
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Brian Y H Lam
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | | | | | - Lora K Heisler
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Duque-Díaz E, Alvarez-Ojeda O, Coveñas R. Enkephalins and ACTH in the mammalian nervous system. VITAMINS AND HORMONES 2019; 111:147-193. [PMID: 31421699 DOI: 10.1016/bs.vh.2019.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pentapeptides methionine-enkephalin and leucine-enkephalin belong to the opioid family of peptides, and the non-opiate peptide adrenocorticotropin hormone (ACTH) to the melanocortin peptide family. Enkephalins/ACTH are derived from pro-enkephalin, pro-dynorphin or pro-opiomelanocortin precursors and, via opioid and melanocortin receptors, are responsible for many biological activities. Enkephalins exhibit the highest affinity for the δ receptor, followed by the μ and κ receptors, whereas ACTH binds to the five subtypes of melanocortin receptor, and is the only member of the melanocortin family of peptides that binds to the melanocortin-receptor 2 (ACTH receptor). Enkephalins/ACTH and their receptors exhibit a widespread anatomical distribution. Enkephalins are involved in analgesia, angiogenesis, blood pressure, embryonic development, emotional behavior, feeding, hypoxia, limbic system modulation, neuroprotection, peristalsis, and wound repair; as well as in hepatoprotective, motor, neuroendocrine and respiratory mechanisms. ACTH plays a role in acetylcholine release, aggressive behavior, blood pressure, bone maintenance, hyperalgesia, feeding, fever, grooming, learning, lipolysis, memory, nerve injury repair, neuroprotection, sexual behavior, sleep, social behavior, tissue growth and stimulates the synthesis and secretion of glucocorticoids. Enkephalins/ACTH are also involved in many pathologies. Enkephalins are implicated in alcoholism, cancer, colitis, depression, heart failure, Huntington's disease, influenza A virus infection, ischemia, multiple sclerosis, and stress. ACTH plays a role in Addison's disease, alcoholism, cancer, Cushing's disease, dermatitis, encephalitis, epilepsy, Graves' disease, Guillain-Barré syndrome, multiple sclerosis, podocytopathies, and stress. In this review, we provide an updated description of the enkephalinergic and ACTH systems.
Collapse
Affiliation(s)
- Ewing Duque-Díaz
- Universidad de Santander UDES, Laboratory of Neurosciences, School of Medicine, Bucaramanga, Colombia.
| | - Olga Alvarez-Ojeda
- Universidad Industrial de Santander, Department of Pathology, School of Medicine, Bucaramanga, Colombia
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| |
Collapse
|
25
|
Chen S, Zuo Y, Huang L, Sherchan P, Zhang J, Yu Z, Peng J, Zhang J, Zhao L, Doycheva D, Liu F, Zhang JH, Xia Y, Tang J. The MC 4 receptor agonist RO27-3225 inhibits NLRP1-dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage. Br J Pharmacol 2019; 176:1341-1356. [PMID: 30811584 DOI: 10.1111/bph.14639] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/07/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Inflammasome-mediated pyroptosis is an important neuronal cell death mechanism. Previous studies reported that activation of melanocortin MC4 receptor exerted neuroprotection in several neurological diseases. Here, we have investigated the role of MC4 receptor activation with RO27-3225 in suppressing neuronal pyroptosis after experimental intracerebral haemorrhage (ICH) and the underlying mechanism. EXPERIMENTAL APPROACH One hundred and sixty-nine male CD1 mice were used. ICH was induced by injection of bacterial collagenase into the right-side basal ganglia. RO27-3225, a selective agonist of MC4 receptor, was injected intraperitoneally at 1 hr after ICH. To elucidate the underlying mechanism, we used the specific MC4 receptor antagonist HS024 and NQDI-1, a specific inhibitor of the apoptosis signalling-regulating kinase 1 (ASK1). Neurological tests, Western blot, Fluoro-Jade C, TUNEL, and immunofluorescence staining were conducted. KEY RESULTS Expression of MC4 receptor and the NOD-like receptor family, pyrin domain containing 1 (NLRP1) inflammasome in brain were increased after ICH. RO27-3225 treatment decreased neuronal pyroptosis and neurobehavioural deficits at 24 and 72 hr after ICH. RO27-3225 reduced the expression of p-ASK1, p-JNK, p-p38 MAPK, NLRP1 inflammasome, cleaved caspase-1, and IL-1β after ICH. HS024 pretreatment prevented the effects of RO27-3225. Similar to RO27-3225, NQDI-1 alone improved neurological functions and down-regulated ASK1/JNK/p38MAPK expression after ICH. CONCLUSIONS AND IMPLICATIONS RO27-3225 suppressed NLRP1-dependent neuronal pyroptosis and improved neurological function, possibly mediated by activation of MC4 receptor and inhibition of ASK1/JNK/p38 MAPK signalling pathways, after experimental ICH in mice. The MC4 receptor may be a promising therapeutic target for the management of ICH.
Collapse
Affiliation(s)
- Shengpan Chen
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China.,Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Yuchun Zuo
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lei Huang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Prativa Sherchan
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jian Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhengtao Yu
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| | - Jianhua Peng
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junyi Zhang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Lianhua Zhao
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Desislava Doycheva
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - John H Zhang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| | - Jiping Tang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
26
|
Pei H, Patterson CM, Sutton AK, Burnett KH, Myers MG, Olson DP. Lateral Hypothalamic Mc3R-Expressing Neurons Modulate Locomotor Activity, Energy Expenditure, and Adiposity in Male Mice. Endocrinology 2019; 160:343-358. [PMID: 30541071 PMCID: PMC6937456 DOI: 10.1210/en.2018-00747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023]
Abstract
The central melanocortin system plays a crucial role in the control of energy balance. Although the decreased energy expenditure and increased adiposity of melanocortin-3 receptor (Mc3R)-null mice suggest the importance of Mc3R-regulated neurons in energy homeostasis, the roles for specific subsets of Mc3R neurons in energy balance have yet to be determined. Because the lateral hypothalamic area (LHA) contributes to the control of energy expenditure and feeding, we generated Mc3rcre mice to determine the roles of LHA Mc3R (Mc3RLHA) neurons in energy homeostasis. We found that Mc3RLHA neurons overlap extensively with LHA neuron markers that contribute to the control of energy balance (neurotensin, galanin, and leptin receptor) and project to brain areas involved in the control of feeding, locomotion, and energy expenditure, consistent with potential roles for Mc3RLHA neurons in these processes. Indeed, selective chemogenetic activation of Mc3RLHA neurons increased locomotor activity and augmented refeeding after a fast. Although the ablation of Mc3RLHA neurons did not alter food intake, mice lacking Mc3RLHA neurons displayed decreased energy expenditure and locomotor activity, along with increased body mass and adiposity. Thus, Mc3R neurons lie within LHA neurocircuitry that modulates locomotor activity and energy expenditure and contribute to energy balance control.
Collapse
Affiliation(s)
- Hongjuan Pei
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
| | | | - Amy K Sutton
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Korri H Burnett
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
| | - Martin G Myers
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - David P Olson
- Division of Endocrinology, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan
- Molecular and Integrative Physiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
- Correspondence: David P. Olson, MD, PhD, University of Michigan, 1000 Wall Street, Brehm Tower 6329, Ann Arbor, Michigan 48105. E-mail:
| |
Collapse
|
27
|
de Oliveira M, Rodrigues BM, Olimpio RMC, Graceli JB, Gonçalves BM, Costa SMB, da Silva TM, De Sibio MT, Moretto FCF, Mathias LS, Cardoso DBM, Tilli HP, Freitas-Lima LC, Nogueira CR. Disruptive Effect of Organotin on Thyroid Gland Function Might Contribute to Hypothyroidism. Int J Endocrinol 2019; 2019:7396716. [PMID: 31178910 PMCID: PMC6501155 DOI: 10.1155/2019/7396716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 12/05/2022] Open
Abstract
A considerable increase in endocrine abnormalities has been reported over the last few decades worldwide. A growing exposure to endocrine-disrupting chemicals (EDCs) can be one of the causes of endocrine disorders in populations, and these disorders are not only restricted to the metabolic hormone system but can also cause abnormal functions. Thyroid hormone (TH) disruption is defined as an abnormal change in TH production, transport, function, or metabolism, which results in some degree of impairment in body homeostasis. Many EDCs, including organotin compounds (OTCs), are environmental contaminants that are commonly found in antifouling paints used on ships and in several other industrial procedures. OTCs are obesogenic and can disrupt TH metabolism; however, abnormalities in thyroid function resulting from OTC exposure are less well understood. OTCs, one of the most prevalent EDCs that are encountered on a daily basis, modulate the thyroid axis. In most toxicology studies, it has been reported that OTCs might contribute to hypothyroidism.
Collapse
Affiliation(s)
- Miriane de Oliveira
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | - Bruna Moretto Rodrigues
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | | | | | - Bianca Mariani Gonçalves
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | - Sarah Maria Barneze Costa
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | - Tabata Marinda da Silva
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | - Maria Teresa De Sibio
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | | | - Lucas Solla Mathias
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | | | - Helena Paim Tilli
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| | | | - Celia Regina Nogueira
- Department of Internal Clinic, São Paulo State University (UNESP), Medical School, Botucatu, SP, Brazil
| |
Collapse
|
28
|
Yoon YR, Lee TG, Choi MH, Shin SW, Ko YG, Rhyu IJ, Kim DH, Seong JK, Baik JH. Glucose-regulated protein 78 binds to and regulates the melanocortin-4 receptor. Exp Mol Med 2018; 50:1-14. [PMID: 30209265 PMCID: PMC6135830 DOI: 10.1038/s12276-018-0144-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/10/2018] [Accepted: 06/01/2018] [Indexed: 11/09/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) belongs to the G protein-coupled receptor (GPCR) family and plays an essential role in the control of energy homeostasis. Here, we identified a novel MC4R-interacting protein, glucose-regulated protein 78 (GRP78), from a pulldown assay using hypothalamic protein extracts and the third intracellular loop of MC4R. We found that MC4R interacted with GRP78 in both the cytosol and at the cell surface and that this interaction increased when MC4R was internalized in the presence of the agonist melanotan-II (MTII). Downregulation of GRP78 using a short interfering RNA approach attenuated MTII-mediated receptor internalization. Reduction in GRP78 expression during tunicamycin-induced endoplasmic reticulum stress also suppressed MTII-mediated internalization of MC4R and cAMP-mediated transcriptional activity. Furthermore, lentiviral-mediated short hairpin RNA knockdown of endogenous GRP78 in the paraventricular nucleus (PVN) of the hypothalamus resulted in an increase in body weight in mice fed a high-fat diet. These results suggest that GRP78 in the PVN binds to MC4R and may have a chaperone-like role in the regulation of MC4R trafficking and signaling.
Collapse
Affiliation(s)
- Ye Ran Yoon
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Tae-Gul Lee
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Mi-Hyun Choi
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Seung Woo Shin
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Young-Gyu Ko
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea.,Department of Medical Sciences, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Dong-Hoon Kim
- Department of Medical Sciences, College of Medicine, Korea University, Seoul, 02841, South Korea.,Department of Pharmacology, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Institute for Veterinary Science, and BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea.,Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, and Bio MAX Institute, Seoul National University, Seoul, South Korea
| | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea. .,Department of Medical Sciences, College of Medicine, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
29
|
Autophagic cell death participates in POMC-induced melanoma suppression. Cell Death Discov 2018; 4:11. [PMID: 30062060 PMCID: PMC6060113 DOI: 10.1038/s41420-018-0070-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/02/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
Hypoxia in tumors is known to trigger the pro-survival pathways such as autophagy. Systemic proopiomelanocortin (POMC) gene therapy suppresses melanoma through apoptosis induction and neovascularization blockage. In this study, we investigated the crosstalk between autophagic and apoptotic signaling in POMC-mediated melanoma suppression. By histological and immunoblot analysis, it was shown that POMC-treated melanoma tissues exhibited the prominent LC3 immunostaining, which was correlated with reduced CD31-positive tumor vascularization. Such autophagy induction could be recapitulated in melanoma cells receiving POMC gene delivery and hypoxia-mimicking agent cobalt chloride (CoCl2). We then utilized the POMC-derived peptide α-MSH with CoCl2 to elicit the autophagy as well as apoptosis in cultured melanoma cells. To delineate the role of autophagy during cell death, application of autophagy-inducer rapamycin enhanced, whereas autophagy inhibitor 3-MA attenuated, the α-MSH-induced apoptosis in melanoma cells. Genetic silencing of ATG5, an autophagy regulator, by RNA interference perturbed the α-MSH-induced apoptosis in melanoma cells. Finally, it was delineated that α-MSH stimulated the HIF-1α signaling as well as the expression of BNIP3/BNIP3L, thereby promoting the autophagy and apoptosis in melanoma cells. Therefore, the present study unveiled a unique function of autophagy in promoting cell death during POMC-mediated melanoma suppression via α-MSH/HIF-1α/BNIP3/BNIP3L signaling pathway.
Collapse
|
30
|
Avendaño MS, Vazquez MJ, Tena-Sempere M. Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty. Hum Reprod Update 2018; 23:737-763. [PMID: 28961976 DOI: 10.1093/humupd/dmx025] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Puberty is a complex developmental event, controlled by sophisticated regulatory networks that integrate peripheral and internal cues and impinge at the brain centers driving the reproductive axis. The tempo of puberty is genetically determined but is also sensitive to numerous modifiers, from metabolic and sex steroid signals to environmental factors. Recent epidemiological evidence suggests that the onset of puberty is advancing in humans, through as yet unknown mechanisms. In fact, while much knowledge has been gleaned recently on the mechanisms responsible for the control of mammalian puberty, fundamental questions regarding the intimate molecular and neuroendocrine pathways responsible for the precise timing of puberty and its deviations remain unsolved. OBJECTIVE AND RATIONALE By combining data from suitable model species and humans, we aim to provide a comprehensive summary of our current understanding of the neuroendocrine mechanisms governing puberty, with particular focus on its central regulatory pathways, underlying molecular basis and mechanisms for metabolic control. SEARCH METHODS A comprehensive MEDLINE search of articles published mostly from 2003 to 2017 has been carried out. Data from cellular and animal models (including our own results) as well as clinical studies focusing on the pathophysiology of puberty in mammals were considered and cross-referenced with terms related with central neuroendocrine mechanisms, metabolic control and epigenetic/miRNA regulation. OUTCOMES Studies conducted during the last decade have revealed the essential role of novel central neuroendocrine pathways in the control of puberty, with a prominent role of kisspeptins in the precise regulation of the pubertal activation of GnRH neurosecretory activity. In addition, different transmitters, including neurokinin-B (NKB) and, possibly, melanocortins, have been shown to interplay with kisspeptins in tuning puberty onset. Alike, recent studies have documented the role of epigenetic mechanisms, involving mainly modulation of repressors that target kisspeptins and NKB pathways, as well as microRNAs and the related binding protein, Lin28B, in the central control of puberty. These novel pathways provide the molecular and neuroendocrine basis for the modulation of puberty by different endogenous and environmental cues, including nutritional and metabolic factors, such as leptin, ghrelin and insulin, which are known to play an important role in pubertal timing. WIDER IMPLICATIONS Despite recent advancements, our understanding of the basis of mammalian puberty remains incomplete. Complete elucidation of the novel neuropeptidergic and molecular mechanisms summarized in this review will not only expand our knowledge of the intimate mechanisms responsible for puberty onset in humans, but might also provide new tools and targets for better prevention and management of pubertal deviations in the clinical setting.
Collapse
Affiliation(s)
- M S Avendaño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - M J Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - M Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| |
Collapse
|
31
|
Gonçalves JPL, Palmer D, Meldal M. MC4R Agonists: Structural Overview on Antiobesity Therapeutics. Trends Pharmacol Sci 2018; 39:402-423. [PMID: 29478721 DOI: 10.1016/j.tips.2018.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023]
Abstract
The melanocortin-4 receptor (MC4R) regulates adipose tissue formation and energy homeostasis, and is believed to be a monogenic target for novel antiobesity therapeutics. Several research efforts targeting this receptor have identified potent and selective agonists. While viable agonists have been characterized in vitro, undesirable side effects frequently appeared during clinical trials. The most promising candidates have diverse structures, including linear peptides, cyclic peptides, and small molecules. Herein, we present a compilation of potent MC4R agonists and discuss the pivotal structural differences within those molecules that resulted in good selectivity for MC4R over other melanocortins. We provide insight on recent progress in the field and reflect on directions for development of new agonists.
Collapse
Affiliation(s)
- Juliana Pereira Lopes Gonçalves
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
| | - Daniel Palmer
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Morten Meldal
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
| |
Collapse
|
32
|
Rana S, Rahmani S, Mirza S. MC4R variant rs17782313 and manifestation of obese phenotype in Pakistani females. RSC Adv 2018; 8:16957-16972. [PMID: 35540528 PMCID: PMC9080305 DOI: 10.1039/c8ra00695d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/30/2018] [Indexed: 11/21/2022] Open
Abstract
MC4R represents a key player involved in melanocortin-mediated control of energy balance. Recently identified near MC4R variant rs17782313 (T > C) can serve as a contributing factor for obese phenotype but its association with obesity has never been sought in a sample of the Pakistani population. The role of genetic variants as causal factors varies across populations. Association studies in a specific population can help us to distinguish global from local gene–gene and gene–environment interactions. This is the first study that investigated the association of rs17782313 with obesity and various obesity-linked anthropometric, metabolic, physical, and behavioural traits in Pakistani subjects including 306 OW/OB (overweight and obese) and 300 NW (normal weight) individuals. The comparison of various aforementioned obesity-linked continuous and categorical variables between OW/OB and NW subjects revealed that almost all variables were found significantly aberrant (p < 0.05) in OW/OB subjects as compared to their age- and gender-matched NW controls indicating greater risk of developing various cardio-metabolic disorders. The genotyping of rs17782313 showed significant association of this variant with obesity and obesity-linked anthropometric traits in females suggesting the gender-specific effect of this variant in our population. The minor allele C increased the risk of obesity by 1.55 times (95% CI = 1.1–2.18, p = 0.01) whereas homozygous CC genotype increased the risk by 2.43 times (95% CI = 1.19–4.96, p = 0.015) in females. However, no association of rs17782313 was observed with any of the obesity-linked metabolic, physical, and behavioural traits except random eating timings. In conclusion, the current study significantly contributes to the knowledge of the genetic proneness to obesity in Pakistani females. This could also be helpful for forthcoming meta-analysis studies elucidating which variants are truly associated with the susceptibility to develop an obese phenotype. The current study significantly contributes to the knowledge of the genetic proneness to obesity in Pakistani females and could also be helpful for forthcoming meta-analysis studies.![]()
Collapse
Affiliation(s)
- Sobia Rana
- Molecular Biology and Human Genetics Laboratory
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD)
- International Center for Chemical and Biological Sciences (ICCBS)
- University of Karachi
- Karachi-75270
| | - Soma Rahmani
- Molecular Biology and Human Genetics Laboratory
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD)
- International Center for Chemical and Biological Sciences (ICCBS)
- University of Karachi
- Karachi-75270
| | - Saad Mirza
- Molecular Biology and Human Genetics Laboratory
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD)
- International Center for Chemical and Biological Sciences (ICCBS)
- University of Karachi
- Karachi-75270
| |
Collapse
|
33
|
Burke LK, Ogunnowo-Bada E, Georgescu T, Cristiano C, de Morentin PBM, Valencia Torres L, D'Agostino G, Riches C, Heeley N, Ruan Y, Rubinstein M, Low MJ, Myers MG, Rochford JJ, Evans ML, Heisler LK. Lorcaserin improves glycemic control via a melanocortin neurocircuit. Mol Metab 2017; 6:1092-1102. [PMID: 29031711 PMCID: PMC5641625 DOI: 10.1016/j.molmet.2017.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Objective The increasing prevalence of type 2 diabetes (T2D) and associated morbidity and mortality emphasizes the need for a more complete understanding of the mechanisms mediating glucose homeostasis to accelerate the identification of new medications. Recent reports indicate that the obesity medication lorcaserin, a 5-hydroxytryptamine (5-HT, serotonin) 2C receptor (5-HT2CR) agonist, improves glycemic control in association with weight loss in obese patients with T2D. Here we evaluate whether lorcaserin has an effect on glycemia without body weight loss and how this effect is achieved. Methods Murine models of common and genetic T2D were utilized to probe the direct effect of lorcaserin on glycemic control. Results Lorcaserin dose-dependently improves glycemic control in mouse models of T2D in the absence of reductions in food intake or body weight. Examining the mechanism of this effect, we reveal a necessary and sufficient neurochemical mediator of lorcaserin's glucoregulatory effects, brain pro-opiomelanocortin (POMC) peptides. To clarify further lorcaserin's therapeutic brain circuit, we examined the receptor target of POMC peptides. We demonstrate that lorcaserin requires functional melanocortin4 receptors on cholinergic preganglionic neurons (MC4RChAT) to exert its effects on glucose homeostasis. In contrast, MC4RChAT signaling did not impact lorcaserin's effects on feeding, indicating a divergence in the neurocircuitry underpinning lorcaserin's therapeutic glycemic and anorectic effects. Hyperinsulinemic-euglycemic clamp studies reveal that lorcaserin reduces hepatic glucose production, increases glucose disposal and improves insulin sensitivity. Conclusions These data suggest that lorcaserin's action within the brain represents a mechanistically novel treatment for T2D: findings of significance to a prevalent global disease. Obesity medication lorcaserin directly improves glycemic control without altering energy balance or body weight. Unlike current frontline type 2 diabetes medications, lorcaserin acts within the brain to improve glycemic control. Brain Pro-opiomelanocortin (POMC) peptides are a neurochemical mediator of lorcaserin's glucoregulatory effects. Lorcaserin increases insulin sensitivity, reduces hepatic glucose production and increases glucose disposal.
Collapse
Affiliation(s)
- Luke K Burke
- Department of Pharmacology, University of Cambridge, Cambridge, UK; Department of Medicine and Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Emmanuel Ogunnowo-Bada
- Department of Medicine and Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | | | | | - Lourdes Valencia Torres
- Department of Pharmacology, University of Cambridge, Cambridge, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Giuseppe D'Agostino
- Department of Pharmacology, University of Cambridge, Cambridge, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Christine Riches
- Department of Medicine and Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Nicholas Heeley
- Department of Medicine and Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Yue Ruan
- Department of Medicine and Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin G Myers
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Mark L Evans
- Department of Medicine and Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Lora K Heisler
- Department of Pharmacology, University of Cambridge, Cambridge, UK; The Rowett Institute, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
34
|
Zhao J, Li SW, Gong QQ, Ding LC, Jin YC, Zhang J, Gao JG, Sun XY. A disputed evidence on obesity: comparison of the effects of Rcan2(-/-) and Rps6kb1(-/-) mutations on growth and body weight in C57BL/6J mice. J Zhejiang Univ Sci B 2017; 17:657-71. [PMID: 27604858 DOI: 10.1631/jzus.b1600276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is widely accepted that body weight and adipose mass are tightly regulated by homeostatic mechanisms, in which leptin plays a critical role through hypothalamic pathways, and obesity is a result of homeostatic disorder. However, in C57BL/6J mice, we found that Rcan2 increases food intake and plays an important role in the development of age- and diet-induced obesity through a leptin-independent mechanism. RCAN2 was initially identified as a thyroid hormone (T3)-responsive gene in human fibroblasts. Expression of RCAN2 is regulated by T3 through the PI3K-Akt/PKB-mTOR-Rps6kb1 signaling pathway. Intriguingly, both Rcan2(-/-) and Rps6kb1(-/-) mutations were reported to result in lean phenotypes in mice. In this study we compared the effects of these two mutations on growth and body weight in C57BL/6J mice. We observed reduced body weight and lower fat mass in both Rcan2(-/-) and Rps6kb1(-/-) mice compared to the wild-type mice, and we reported other differences unique to either the Rcan2(-/-) or Rps6kb1(-/-) mice. Firstly, loss of Rcan2 does not directly alter body length; however, Rcan2(-/-) mice exhibit reduced food intake. In contrast, Rps6kb1(-/-) mice exhibit abnormal embryonic development, which leads to smaller body size and reduced food intake in adulthood. Secondly, when fed a normal chow diet, Rcan2(-/-) mice weigh significantly more than Rps6kb1(-/-) mice, but both Rcan2(-/-) and Rps6kb1(-/-) mice develop similar amounts of epididymal fat. On a high-fat diet, Rcan2(-/-) mice gain body weight and fat mass at slower rates than Rps6kb1(-/-) mice. Finally, using the double-knockout mice (Rcan2(-/-) Rps6kb1(-/-)), we demonstrate that concurrent loss of Rcan2 and Rps6kb1 has an additive effect on body weight reduction in C57BL/6J mice. Our data suggest that Rcan2 and Rps6kb1 mutations both affect growth and body weight of mice, though likely through different mechanisms.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Shi-Wei Li
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Qian-Qian Gong
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Ling-Cui Ding
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Ye-Cheng Jin
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jian Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jian-Gang Gao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiao-Yang Sun
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| |
Collapse
|
35
|
Melanocortin neurons: Multiple routes to regulation of metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2477-2485. [PMID: 28499988 DOI: 10.1016/j.bbadis.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
Abstract
The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
|
36
|
Balcázar-Hernández L, Vargas-Ortega G, Valverde-García Y, Mendoza-Zubieta V, González-Virla B. Anorexia-cachexia syndrome-like hypothalamic neuroendocrine dysfunction in a patient with a papillary craniopharyngioma. Endocrinol Diabetes Metab Case Rep 2017; 2017:EDM170018. [PMID: 28469924 PMCID: PMC5409936 DOI: 10.1530/edm-17-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
The craniopharyngiomas are solid cystic suprasellar tumors that can present extension to adjacent structures, conditioning pituitary and hypothalamic dysfunction. Within hypothalamic neuroendocrine dysfunction, we can find obesity, behavioral changes, disturbed circadian rhythm and sleep irregularities, imbalances in the regulation of body temperature, thirst, heart rate and/or blood pressure and alterations in dietary intake (like anorexia). We present a rare case of anorexia–cachexia syndrome like a manifestation of neuroendocrine dysfunction in a patient with a papillary craniopharyngioma. Anorexia–cachexia syndrome is a complex metabolic process associated with underlying illness and characterized by loss of muscle with or without loss of fat mass and can occur in a number of diseases like cancer neoplasm, non-cancer neoplasm, chronic disease or immunodeficiency states like HIV/AIDS. The role of cytokines and anorexigenic and orexigenic peptides are important in the etiology. The anorexia–cachexia syndrome is a clinical entity rarely described in the literature and it leads to important function limitation, comorbidities and worsening prognosis.
Collapse
Affiliation(s)
| | | | - Yelitza Valverde-García
- Anatomic Pathology Department, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Colonia Doctores, Mexico CityMexico
| | | | | |
Collapse
|
37
|
Melanocortin 4 receptor ligands modulate energy homeostasis through urocortin 1 neurons of the centrally projecting Edinger-Westphal nucleus. Neuropharmacology 2017; 118:26-37. [DOI: 10.1016/j.neuropharm.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2017] [Accepted: 03/02/2017] [Indexed: 11/24/2022]
|
38
|
Dorfman MD, Krull JE, Scarlett JM, Guyenet SJ, Sajan MP, Damian V, Nguyen HT, Leitges M, Morton GJ, Farese RV, Schwartz MW, Thaler JP. Deletion of Protein Kinase C λ in POMC Neurons Predisposes to Diet-Induced Obesity. Diabetes 2017; 66:920-934. [PMID: 28073831 PMCID: PMC5360303 DOI: 10.2337/db16-0482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 01/02/2017] [Indexed: 12/16/2022]
Abstract
Effectors of the phosphoinositide 3-kinase (PI3K) signal transduction pathway contribute to the hypothalamic regulation of energy and glucose homeostasis in divergent ways. Here we show that central nervous system (CNS) action of the PI3K signaling intermediate atypical protein kinase C (aPKC) constrains food intake, weight gain, and glucose intolerance in both rats and mice. Pharmacological inhibition of CNS aPKC activity acutely increases food intake and worsens glucose tolerance in chow-fed rodents and causes excess weight gain during high-fat diet (HFD) feeding. Similarly, selective deletion of the aPKC isoform Pkc-λ in proopiomelanocortin (POMC) neurons disrupts leptin action, reduces melanocortin content in the paraventricular nucleus, and markedly increases susceptibility to obesity, glucose intolerance, and insulin resistance specifically in HFD-fed male mice. These data implicate aPKC as a novel regulator of energy and glucose homeostasis downstream of the leptin-PI3K pathway in POMC neurons.
Collapse
Affiliation(s)
- Mauricio D Dorfman
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Jordan E Krull
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Jarrad M Scarlett
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Stephan J Guyenet
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Mini P Sajan
- Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL
- Research & Internal Medicine Services, James A. Haley VA Medical Center, Tampa, FL
| | - Vincent Damian
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Hong T Nguyen
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Michael Leitges
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Gregory J Morton
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Robert V Farese
- Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL
- Research & Internal Medicine Services, James A. Haley VA Medical Center, Tampa, FL
| | - Michael W Schwartz
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| | - Joshua P Thaler
- UW Diabetes Institute and Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
39
|
Singh RK, Kumar P, Mahalingam K. Molecular genetics of human obesity: A comprehensive review. C R Biol 2017; 340:87-108. [PMID: 28089486 DOI: 10.1016/j.crvi.2016.11.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/03/2016] [Accepted: 11/10/2016] [Indexed: 12/25/2022]
Abstract
Obesity and its related health complications is a major problem worldwide. Hypothalamus and their signalling molecules play a critical role in the intervening and coordination with energy balance and homeostasis. Genetic factors play a crucial role in determining an individual's predisposition to the weight gain and being obese. In the past few years, several genetic variants were identified as monogenic forms of human obesity having success over common polygenic forms. In the context of molecular genetics, genome-wide association studies (GWAS) approach and their findings signified a number of genetic variants predisposing to obesity. However, the last couple of years, it has also been noticed that alterations in the environmental and epigenetic factors are one of the key causes of obesity. Hence, this review might be helpful in the current scenario of molecular genetics of human obesity, obesity-related health complications (ORHC), and energy homeostasis. Future work based on the clinical discoveries may play a role in the molecular dissection of genetic approaches to find more obesity-susceptible gene loci.
Collapse
Affiliation(s)
- Rajan Kumar Singh
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, 632014 Vellore, India
| | - Permendra Kumar
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, 632014 Vellore, India
| | - Kulandaivelu Mahalingam
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, 632014 Vellore, India.
| |
Collapse
|
40
|
Contribution of adaptive thermogenesis to the hypothalamic regulation of energy balance. Biochem J 2016; 473:4063-4082. [DOI: 10.1042/bcj20160012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/13/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
Obesity and its related disorders are among the most pervasive diseases in contemporary societies, and there is an urgent need for new therapies and preventive approaches. Given (i) our poor social capacity to correct unhealthy habits, and (ii) our evolutionarily genetic predisposition to store excess energy as fat, the current environment of caloric surplus makes the treatment of obesity extremely difficult. During the last few decades, an increasing number of methodological approaches have increased our knowledge of the neuroanatomical basis of the control of energy balance. Compelling evidence underlines the role of the hypothalamus as a homeostatic integrator of metabolic information and its ability to adjust energy balance. A greater understanding of the neural basis of the hypothalamic regulation of energy balance might indeed pave the way for new therapeutic targets. In this regard, it has been shown that several important peripheral signals, such as leptin, thyroid hormones, oestrogens and bone morphogenetic protein 8B, converge on common energy sensors, such as AMP-activated protein kinase to modulate sympathetic tone on brown adipose tissue. This knowledge may open new ways to counteract the chronic imbalance underlying obesity. Here, we review the current state of the art on the role of hypothalamus in the regulation of energy balance with particular focus on thermogenesis.
Collapse
|
41
|
Gavini CK, Jones WC, Novak CM. Ventromedial hypothalamic melanocortin receptor activation: regulation of activity energy expenditure and skeletal muscle thermogenesis. J Physiol 2016; 594:5285-301. [PMID: 27126579 PMCID: PMC5023712 DOI: 10.1113/jp272352] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS The ventromedial hypothalamus (VMH) and the central melanocortin system both play vital roles in regulating energy balance by modulating energy intake and utilization. Recent evidence suggests that activation of the VMH alters skeletal muscle metabolism. We show that intra-VMH melanocortin receptor activation increases energy expenditure and physical activity, switches fuel utilization to fats, and lowers work efficiency such that excess calories are dissipated by skeletal muscle as heat. We also show that intra-VMH melanocortin receptor activation increases sympathetic nervous system outflow to skeletal muscle. Intra-VMH melanocortin receptor activation also induced significant changes in the expression of mediators of energy expenditure in muscle. These results support the role of melanocortin receptors in the VMH in the modulation of skeletal muscle metabolism. ABSTRACT The ventromedial hypothalamus (VMH) and the brain melanocortin system both play vital roles in increasing energy expenditure (EE) and physical activity, decreasing appetite and modulating sympathetic nervous system (SNS) outflow. Because of recent evidence showing that VMH activation modulates skeletal muscle metabolism, we propose the existence of an axis between the VMH and skeletal muscle, modulated by brain melanocortins, modelled on the brain control of brown adipose tissue. Activation of melanocortin receptors in the VMH of rats using a non-specific agonist melanotan II (MTII), compared to vehicle, increased oxygen consumption and EE and decreased the respiratory exchange ratio. Intra-VMH MTII enhanced activity-related EE even when activity levels were held constant. MTII treatment increased gastrocnemius muscle heat dissipation during controlled activity, as well as in the home cage. Compared to vehicle-treated rats, rats with intra-VMH melanocortin receptor activation had higher skeletal muscle norepinephrine turnover, indicating an increased SNS drive to muscle. Lastly, intra-VMH MTII induced mRNA expression of muscle energetic mediators, whereas short-term changes at the protein level were primarily limited to phosphorylation events. These results support the hypothesis that melanocortin peptides act in the VMH to increase EE by lowering the economy of activity via the enhanced expression of mediators of EE in the periphery including skeletal muscle. The data are consistent with the role of melanocortins in the VMH in the modulation of skeletal muscle metabolism.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/physiology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/physiology
- Animals
- Energy Metabolism
- Hypothalamus/physiology
- Liver/drug effects
- Liver/metabolism
- Liver/physiology
- Male
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Norepinephrine/metabolism
- Peptides, Cyclic/pharmacology
- Physical Conditioning, Animal
- Rats, Sprague-Dawley
- Receptors, Melanocortin/agonists
- Receptors, Melanocortin/physiology
- Thermogenesis
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Chaitanya K Gavini
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| | - William C Jones
- Department of Exercise Science/Physiology, College of Education, Health, and Human Services, Kent State University, Kent, OH, USA
| | - Colleen M Novak
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
42
|
Manfredi-Lozano M, Roa J, Ruiz-Pino F, Piet R, Garcia-Galiano D, Pineda R, Zamora A, Leon S, Sanchez-Garrido MA, Romero-Ruiz A, Dieguez C, Vazquez MJ, Herbison AE, Pinilla L, Tena-Sempere M. Defining a novel leptin-melanocortin-kisspeptin pathway involved in the metabolic control of puberty. Mol Metab 2016; 5:844-857. [PMID: 27688998 PMCID: PMC5034608 DOI: 10.1016/j.molmet.2016.08.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 11/24/2022] Open
Abstract
Objective Puberty is a key developmental phenomenon highly sensitive to metabolic modulation. Worrying trends of changes in the timing of puberty have been reported in humans. These might be linked to the escalating prevalence of childhood obesity and could have deleterious impacts on later (cardio-metabolic) health, but their underlying mechanisms remain unsolved. The neuropeptide α-MSH, made by POMC neurons, plays a key role in energy homeostasis by mediating the actions of leptin and likely participates in the control of reproduction. However, its role in the metabolic regulation of puberty and interplay with kisspeptin, an essential puberty-regulating neuropeptide encoded by Kiss1, remain largely unknown. We aim here to unveil the potential contribution of central α-MSH signaling in the metabolic control of puberty by addressing its role in mediating the pubertal effects of leptin and its potential interaction with kisspeptin. Methods Using wild type and genetically modified rodent models, we implemented pharmacological studies, expression analyses, electrophysiological recordings, and virogenetic approaches involving DREADD technology to selectively inhibit Kiss1 neurons, in order to interrogate the physiological role of a putative leptin→α-MSH→kisspeptin pathway in the metabolic control of puberty. Results Stimulation of central α-MSH signaling robustly activated the reproductive axis in pubertal rats, whereas chronic inhibition of melanocortin receptors MC3/4R, delayed puberty, and prevented the permissive effect of leptin on puberty onset. Central blockade of MC3/4R or genetic elimination of kisspeptin receptors from POMC neurons did not affect kisspeptin effects. Conversely, congenital ablation of kisspeptin receptors or inducible, DREADD-mediated inhibition of arcuate nucleus (ARC) Kiss1 neurons resulted in markedly attenuated gonadotropic responses to MC3/4R activation. Furthermore, close appositions were observed between POMC fibers and ARC Kiss1 neurons while blockade of α-MSH signaling suppressed Kiss1 expression in the ARC of pubertal rats. Conclusions Our physiological, virogenetic, and functional genomic studies document a novel α-MSH→kisspeptin→GnRH neuronal signaling pathway involved in transmitting the permissive effects of leptin on pubertal maturation, which is relevant for the metabolic (and, eventually, pharmacological) regulation of puberty onset. Puberty is highly sensitive to metabolic modulation and disturbed by child obesity. Altered puberty is linked to adverse metabolic health outcomes via unclear mechanisms. The POMC product, α-MSH, transmit leptin-mediated metabolic regulation of puberty. A novel α-MSH→kisspeptin→GnRH signaling pathway is involved in the control of puberty This pathway is important for the metabolic (and pharmacologic) control of puberty.
Collapse
Affiliation(s)
- Maria Manfredi-Lozano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofia (HURS), 14004 Córdoba, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofia (HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain.
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofia (HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Richard Piet
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, 9054 Dunedin, New Zealand
| | - David Garcia-Galiano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | - Rafael Pineda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Aurora Zamora
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | - Silvia Leon
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | - Miguel A Sanchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Antonio Romero-Ruiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofia (HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, 9054 Dunedin, New Zealand
| | - Leonor Pinilla
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofia (HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain; Hospital Universitario Reina Sofia (HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain.
| |
Collapse
|
43
|
Dezfuli G, Kellar KJ, Dretchen KL, Tizabi Y, Sahibzada N, Gillis RA. Evidence for the role of β2* nAChR desensitization in regulating body weight in obese mice. Neuropharmacology 2016; 110:165-174. [PMID: 27444741 DOI: 10.1016/j.neuropharm.2016.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 12/24/2022]
Abstract
Nicotine's effect on food intake and body weight has been well documented; however, the relevant receptors underlying these effects have not been firmly established. The purpose of the present study was to: (1) identify the nicotinic acetylcholine receptor (nAChR) subtype involved in food intake and body weight; (2) establish whether food intake and body weight reduction produced by nicotinic drugs are due to activation or desensitization of nAChRs; and, (3) assess the role of the melanocortin system in nicotinic drug effects on food intake and body weight. To identify the nAChR, we tested the effect of sazetidine-A (SAZ-A), a relatively selective ligand of β2-containing nAChRs, on food intake and body weight in obese mice. SAZ-A (3 mg/kg; SC) administered twice-daily significantly decreased food intake and body weight. To assess whether these effects involved desensitization, SAZ-A was administered to non-obese mice via osmotic pump, which, due to its slow sustained drug delivery method, causes prolonged desensitization. SAZ-A via osmotic pump delivery significantly decreased the gain in body weight and reduced food intake. In contrast, body weight was unaffected by SAZ-A in β2(-/-) mice or in mice lacking the melanocortin 4 receptor (MC4R). These results indicate that β2 containing nAChRs are essential to SAZ-A's inhibitory effect on body weight and food intake and engage the melanocortin system.
Collapse
Affiliation(s)
- Ghazaul Dezfuli
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., USA
| | - Kenneth J Kellar
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Kenneth L Dretchen
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, Washington, D.C., USA
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA.
| | - Richard A Gillis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA.
| |
Collapse
|
44
|
Melanocortin-4 receptor-regulated energy homeostasis. Nat Neurosci 2016; 19:206-19. [PMID: 26814590 DOI: 10.1038/nn.4202] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/11/2022]
Abstract
The melanocortin system provides a conceptual blueprint for the central control of energetic state. Defined by four principal molecular components--two antagonistically acting ligands and two cognate receptors--this phylogenetically conserved system serves as a prototype for hierarchical energy balance regulation. Over the last decade the application of conditional genetic techniques has facilitated the neuroanatomical dissection of the melanocortinergic network and identified the specific neural substrates and circuits that underscore the regulation of feeding behavior, energy expenditure, glucose homeostasis and autonomic outflow. In this regard, the melanocortin-4 receptor is a critical coordinator of mammalian energy homeostasis and body weight. Drawing on recent advances in neuroscience and genetic technologies, we consider the structure and function of the melanocortin-4 receptor circuitry and its role in energy homeostasis.
Collapse
|
45
|
Garfield AS, Li C, Madara JC, Shah BP, Webber E, Steger JS, Campbell JN, Gavrilova O, Lee CE, Olson DP, Elmquist JK, Tannous BA, Krashes MJ, Lowell BB. A neural basis for melanocortin-4 receptor-regulated appetite. Nat Neurosci 2015; 18:863-71. [PMID: 25915476 PMCID: PMC4446192 DOI: 10.1038/nn.4011] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022]
Abstract
Pro-opiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons of the arcuate nucleus of the hypothalamus (ARC) are oppositely regulated by caloric depletion and coordinately stimulate and inhibit homeostatic satiety, respectively. This bimodality is principally underscored by the antagonistic actions of these ligands at downstream melanocortin-4 receptors (MC4R) in the paraventricular nucleus of the hypothalamus (PVH). Although this population is critical to energy balance, the underlying neural circuitry remains unknown. Using mice expressing Cre recombinase in MC4R neurons, we demonstrate bidirectional control of feeding following real-time activation and inhibition of PVH(MC4R) neurons and further identify these cells as a functional exponent of ARC(AgRP) neuron-driven hunger. Moreover, we reveal this function to be mediated by a PVH(MC4R)→lateral parabrachial nucleus (LPBN) pathway. Activation of this circuit encodes positive valence, but only in calorically depleted mice. Thus, the satiating and appetitive nature of PVH(MC4R)→LPBN neurons supports the principles of drive reduction and highlights this circuit as a promising target for antiobesity drug development.
Collapse
Affiliation(s)
- Alastair S Garfield
- 1] Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA. [2] Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Chia Li
- 1] Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2] National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Joseph C Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Bhavik P Shah
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily Webber
- 1] Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2] National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Jennifer S Steger
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - John N Campbell
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Charlotte E Lee
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - David P Olson
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Bakhos A Tannous
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Michael J Krashes
- 1] Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA. [2] National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Bradford B Lowell
- 1] Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA. [2] Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Burke LK, Heisler LK. 5-hydroxytryptamine medications for the treatment of obesity. J Neuroendocrinol 2015; 27:389-98. [PMID: 25925636 DOI: 10.1111/jne.12287] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
The central 5-hydroxytryptamine (5-HT; serotonin) system represents a fundamental component of the brain's control of energy homeostasis. Medications targeting the 5-HT pathway have been at the forefront of obesity treatment for the past 15 years. Pharmacological agents targeting 5-HT receptors (5-HTR), in combination with genetic models of 5-HTR manipulation, have uncovered a role for specific 5-HTRs in energy balance and reveal the 5-HT2 C R as the principal 5-HTR mediating this homeostatic process. Capitalising on this neurophysiological machinery, 5-HT2 C R agonists improve obesity and glycaemic control in patient populations. The underlying therapeutic mechanism has been probed using model systems and appears to be achieved primarily through 5-HT2 C R modulation of the brain melanocortin circuit via activation of pro-opiomelanocortin neurones signalling at melanocortin4 receptors. Thus, 5-HT2 C R agonists offer a means to improve obesity and type 2 diabetes, which are conditions that now represent global challenges to human health.
Collapse
Affiliation(s)
- L K Burke
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - L K Heisler
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
47
|
Arble DM, Holland J, Ottaway N, Sorrell J, Pressler JW, Morano R, Woods SC, Seeley RJ, Herman JP, Sandoval DA, Perez-Tilve D. The melanocortin-4 receptor integrates circadian light cues and metabolism. Endocrinology 2015; 156:1685-91. [PMID: 25730108 PMCID: PMC4398770 DOI: 10.1210/en.2014-1937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The melanocortin system directs diverse physiological functions from coat color to body weight homoeostasis. A commonality among melanocortin-mediated processes is that many animals modulate similar processes on a circannual basis in response to longer, summer days, suggesting an underlying link between circadian biology and the melanocortin system. Despite key neuroanatomical substrates shared by both circadian and melanocortin-signaling pathways, little is known about the relationship between the two. Here we identify a link between circadian disruption and the control of glucose homeostasis mediated through the melanocortin-4 receptor (Mc4r). Mc4r-deficient mice exhibit exaggerated circadian fluctuations in baseline blood glucose and glucose tolerance. Interestingly, exposure to lighting conditions that disrupt circadian rhythms improve their glucose tolerance. This improvement occurs through an increase in glucose clearance by skeletal muscle and is food intake and body weight independent. Restoring Mc4r expression to the paraventricular nucleus prevents the improvement in glucose tolerance, supporting a role for the paraventricular nucleus in the integration of circadian light cues and metabolism. Altogether these data suggest that Mc4r signaling plays a protective role in minimizing glucose fluctuations due to circadian rhythms and environmental light cues and demonstrate a previously undiscovered connection between circadian biology and glucose metabolism mediated through the melanocortin system.
Collapse
Affiliation(s)
- Deanna M Arble
- Departments of Internal Medicine (D.M.A., J.H., N.O., J.S., J.W.P., R.J.S., D.A.S., D.P.-T.) and Psychiatry (R.M., S.C.W., J.P.H.), University of Cincinnati, Cincinnati, Ohio 45237; and Department of Surgery (D.M.A., R.J.S., D.A.S.), University of Michigan, Ann Arbor, Michigan 48109
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nuzzaci D, Laderrière A, Lemoine A, Nédélec E, Pénicaud L, Rigault C, Benani A. Plasticity of the Melanocortin System: Determinants and Possible Consequences on Food Intake. Front Endocrinol (Lausanne) 2015; 6:143. [PMID: 26441833 PMCID: PMC4568417 DOI: 10.3389/fendo.2015.00143] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
The melanocortin system is one of the most important neuronal pathways involved in the regulation of food intake and is probably the best characterized. Agouti-related peptide (AgRP) and proopiomelanocortin (POMC) expressing neurons located in the arcuate nucleus of the hypothalamus are the key elements of this system. These two neuronal populations are sensitive to circulating molecules and receive many excitatory and inhibitory inputs from various brain areas. According to sensory and metabolic information they integrate, these neurons control different aspects of feeding behavior and orchestrate autonomic responses aimed at maintaining energy homeostasis. Interestingly, composition and abundance of pre-synaptic inputs onto arcuate AgRP and POMC neurons vary in the adult hypothalamus in response to changes in the metabolic state, a phenomenon that can be recapitulated by treatment with hormones, such as leptin or ghrelin. As described in other neuroendrocrine systems, glia might be determinant to shift the synaptic configuration of AgRP and POMC neurons. Here, we discuss the physiological outcome of the synaptic plasticity of the melanocortin system, and more particularly its contribution to the control of energy balance. The discovery of this attribute has changed how we view obesity and related disorders, and opens new perspectives for their management.
Collapse
Affiliation(s)
- Danaé Nuzzaci
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Amélie Laderrière
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Aleth Lemoine
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Emmanuelle Nédélec
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Luc Pénicaud
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Caroline Rigault
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
| | - Alexandre Benani
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon, France
- *Correspondence: Alexandre Benani, Centre des Sciences du Goût et de l’Alimentation (CSGA), CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, 9E Boulevard Jeanne d’Arc, Dijon 21000, France,
| |
Collapse
|
49
|
Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Transl Psychiatry 2014; 4:e458. [PMID: 25290265 PMCID: PMC4350527 DOI: 10.1038/tp.2014.98] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/13/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanisms at the origin of eating disorders (EDs), including anorexia nervosa (AN), bulimia and binge-eating disorder (BED), are currently unknown. Previous data indicated that immunoglobulins (Igs) or autoantibodies (auto-Abs) reactive with α-melanocyte-stimulating hormone (α-MSH) are involved in regulation of feeding and emotion; however, the origin of such auto-Abs is unknown. Here, using proteomics, we identified ClpB heat-shock disaggregation chaperone protein of commensal gut bacteria Escherichia coli as a conformational antigen mimetic of α-MSH. We show that ClpB-immunized mice produce anti-ClpB IgG crossreactive with α-MSH, influencing food intake, body weight, anxiety and melanocortin receptor 4 signaling. Furthermore, chronic intragastric delivery of E. coli in mice decreased food intake and stimulated formation of ClpB- and α-MSH-reactive antibodies, while ClpB-deficient E. coli did not affect food intake or antibody levels. Finally, we show that plasma levels of anti-ClpB IgG crossreactive with α-MSH are increased in patients with AN, bulimia and BED, and that the ED Inventory-2 scores in ED patients correlate with anti-ClpB IgG and IgM, which is similar to our previous findings for α-MSH auto-Abs. In conclusion, this work shows that the bacterial ClpB protein, which is present in several commensal and pathogenic microorganisms, can be responsible for the production of auto-Abs crossreactive with α-MSH, associated with altered feeding and emotion in humans with ED. Our data suggest that ClpB-expressing gut microorganisms might be involved in the etiology of EDs.
Collapse
|
50
|
Burke LK, Doslikova B, D'Agostino G, Garfield AS, Farooq G, Burdakov D, Low MJ, Rubinstein M, Evans ML, Billups B, Heisler LK. 5-HT obesity medication efficacy via POMC activation is maintained during aging. Endocrinology 2014; 155:3732-8. [PMID: 25051442 PMCID: PMC4164923 DOI: 10.1210/en.2014-1223] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The phenomenon commonly described as the middle-age spread is the result of elevated adiposity accumulation throughout adulthood until late middle-age. It is a clinical imperative to gain a greater understanding of the underpinnings of age-dependent obesity and, in turn, how these mechanisms may impact the efficacy of obesity treatments. In particular, both obesity and aging are associated with rewiring of a principal brain pathway modulating energy homeostasis, promoting reduced activity of satiety pro-opiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus (ARC). Using a selective ARC-deficient POMC mouse line, here we report that former obesity medications augmenting endogenous 5-hydroxytryptamine (5-HT) activity d-fenfluramine and sibutramine require ARC POMC neurons to elicit therapeutic appetite-suppressive effects. We next investigated whether age-related diminished ARC POMC activity therefore impacts the potency of 5-HT obesity pharmacotherapies, lorcaserin, d-fenfluramine, and sibutramine and report that all compounds reduced food intake to a comparable extent in both chow-fed young lean (3-5 months old) and middle-aged obese (12-14 months old) male and female mice. We provide a mechanism through which 5-HT anorectic potency is maintained with age, via preserved 5-HT-POMC appetitive anatomical machinery. Specifically, the abundance and signaling of the primary 5-HT receptor influencing appetite via POMC activation, the 5-HT2CR, is not perturbed with age. These data reveal that although 5-HT obesity medications require ARC POMC neurons to achieve appetitive effects, the anorectic efficacy is maintained with aging, findings of clinical significance to the global aging obese population.
Collapse
Affiliation(s)
- Luke K Burke
- Department of Pharmacology (L.K.B., B.D., G.D., A.S.G., G.F., D.B., B.B., L.K.H.) and Wellcome Trust/Medical Research Council Institute of Metabolic Science (M.L.E.), University of Cambridge, Cambridge, CB2 0QQ, United Kingdom; Rowett Institute of Nutrition and Health (G.D., L.K.H.), University of Aberdeen, Aberdeen, AB21 9SB, United Kingdom; Department of Molecular and Integrative Physiology (M.J.L., M.R.), University of Michigan Medical School, Ann Arbor, Michigan 48105; and Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|