1
|
Francis EA, Rangamani P. Computational modeling establishes mechanotransduction as a potent modulator of the mammalian circadian clock. J Cell Sci 2024; 137:jcs261782. [PMID: 39140137 PMCID: PMC11423814 DOI: 10.1242/jcs.261782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Mechanotransduction, which is the integration of mechanical signals from the external environment of a cell to changes in intracellular signaling, governs many cellular functions. Recent studies have shown that the mechanical state of the cell is also coupled to the cellular circadian clock. To investigate possible interactions between circadian rhythms and cellular mechanotransduction, we have developed a computational model that integrates the two pathways. We postulated that translocation of the transcriptional regulators MRTF (herein referring to both MRTF-A and MRTF-B), YAP and TAZ (also known as YAP1 and WWTR1, respectively; collectively denoted YAP/TAZ) into the nucleus leads to altered expression of circadian proteins. Simulations from our model predict that lower levels of cytoskeletal activity are associated with longer circadian oscillation periods and higher oscillation amplitudes, which is consistent with recent experimental observations. Furthermore, accumulation of YAP/TAZ and MRTF in the nucleus causes circadian oscillations to decay in our model. These effects hold both at the single-cell level and within a population-level framework. Finally, we investigated the effects of mutations in YAP or lamin A, the latter of which result in a class of diseases known as laminopathies. In silico, oscillations in circadian proteins are substantially weaker in populations of cells with mutations in YAP or lamin A, suggesting that defects in mechanotransduction can disrupt the circadian clock in certain disease states; however, reducing substrate stiffness in the model restores normal oscillatory behavior, suggesting a possible compensatory mechanism. Thus, our study identifies that mechanotransduction could be a potent modulatory cue for cellular clocks and that this crosstalk can be leveraged to rescue the circadian clock in disease states.
Collapse
Affiliation(s)
- Emmet A. Francis
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Soliz-Rueda JR, Cuesta-Marti C, O'Mahony SM, Clarke G, Schellekens H, Muguerza B. Gut microbiota and eating behaviour in circadian syndrome. Trends Endocrinol Metab 2024:S1043-2760(24)00189-9. [PMID: 39095231 DOI: 10.1016/j.tem.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Eating behaviour and circadian rhythms are closely related. The type, timing, and quantity of food consumed, and host circadian rhythms, directly influence the intestinal microbiota, which in turn impacts host circadian rhythms and regulates food intake beyond homeostatic eating. This Opinion discusses the impact of food intake and circadian disruptions induced by an obesogenic environment on gut-brain axis signalling. We also explore potential mechanisms underlying the effects of altered gut microbiota on food intake behaviour and circadian rhythmicity. Understanding the crosstalk between gut microbiota, circadian rhythms, and unhealthy eating behaviour is crucial to addressing the obesity epidemic, which remains one of the biggest societal challenges of our time.
Collapse
Affiliation(s)
- Jorge R Soliz-Rueda
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira I Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| | - Cristina Cuesta-Marti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland.
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira I Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| |
Collapse
|
3
|
Tavsanli N, Erözden AA, Çalışkan M. Evaluation of small-molecule modulators of the circadian clock: promising therapeutic approach to cancer. Mol Biol Rep 2024; 51:848. [PMID: 39046562 DOI: 10.1007/s11033-024-09813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 07/25/2024]
Abstract
The circadian clock is an important regulator of human homeostasis. Circadian rhythms are closely related to cell fate because they are necessary for regulating the cell cycle, cellular proliferation, and apoptosis. Clock dysfunction can result in the development of diseases such as cancer. Although certain tumors have been shown to have a malfunctioning clock, which may affect prognosis or treatment, this has been postulated but not proven in many types of cancer. Recently, important information has emerged about the basic characteristics that underpin the overt circadian rhythm and its influence on physiological outputs. This information implies that the circadian rhythm may be managed by using particular small molecules. Small-molecule clock modulators target clock components or different physiological pathways that influence the clock. Identifying new small-molecule modulators will improve our understanding of critical regulatory nodes in the circadian network and cancer. Pharmacological manipulation of the clock may be valuable for treating cancer. The discoveries of small-molecule clock modulators and their possible application in cancer treatment are examined in this review.
Collapse
Affiliation(s)
- Nalan Tavsanli
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
- Program of Biotechnology, Biology Department, Institute of Graduate Studies in Sciences, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Ahmet Arıhan Erözden
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
- Program of Biotechnology, Biology Department, Institute of Graduate Studies in Sciences, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Mahmut Çalışkan
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey.
| |
Collapse
|
4
|
Luo B, Song J, Zhang J, Han J, Zhou X, Chen L. The contribution of circadian clock to the biological processes. Front Mol Biosci 2024; 11:1387576. [PMID: 38903177 PMCID: PMC11187296 DOI: 10.3389/fmolb.2024.1387576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
All organisms have various circadian, behavioral, and physiological 24-h periodic rhythms, which are controlled by the circadian clock. The circadian clock controls various behavioral and physiological rhythms. In mammals, the primary circadian clock is present in the suprachiasmatic nucleus of the hypothalamus. The rhythm of the circadian clock is controlled by the interaction between negative and positive feedback loops, consisting of crucial clock regulators (including Bmal1 and Clock), three cycles (mPer1, mPer2, and mPer3), and two cryptochromes (Cry1 and Cry2). The development of early mammalian embryos is an ordered and complex biological process that includes stages from fertilized eggs to blastocysts and undergoes important morphological changes, such as blastocyst formation, cell multiplication, and compaction. The circadian clock affects the onset and timing of embryonic development. The circadian clock affects many biological processes, including eating time, immune function, sleep, energy metabolism, and endocrinology, therefore, it is also crucial for overall health, growth and development after birth. This review summarized the effects of the circadian clock in the body's physiological activities. A new strategy is proposed for the prevention of malformations or diseases by regulating the circadian clock or changing circadian rhythms.
Collapse
Affiliation(s)
- Beibei Luo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiangyuan Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiaqi Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jun Han
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xin Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
5
|
Mercadante S, Bellastella A. Chrono-Endocrinology in Clinical Practice: A Journey from Pathophysiological to Therapeutic Aspects. Life (Basel) 2024; 14:546. [PMID: 38792568 PMCID: PMC11121809 DOI: 10.3390/life14050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
This review was aimed at collecting the knowledge on the pathophysiological and clinical aspects of endocrine rhythms and their implications in clinical practice, derived from the published literature and from some personal experiences on this topic. We chose to review, according to the PRISMA guidelines, the results of original and observational studies, reviews, meta-analyses and case reports published up to March 2024. Thus, after summarizing the general aspects of biological rhythms, we will describe the characteristics of several endocrine rhythms and the consequences of their disruption, paying particular attention to the implications in clinical practice. Rhythmic endocrine secretions, like other physiological rhythms, are genetically determined and regulated by a central hypothalamic CLOCK located in the suprachiasmatic nucleus, which links the timing of the rhythms to independent clocks, in a hierarchical organization for the regulation of physiology and behavior. However, some environmental factors, such as daily cycles of light/darkness, sleep/wake, and timing of food intake, may influence the rhythm characteristics. Endocrine rhythms are involved in important physiological processes and their disruption may cause several disorders and also cancer. Thus, it is very important to prevent disruptions of endocrine rhythms and to restore a previously altered rhythm by an early corrective chronotherapy.
Collapse
Affiliation(s)
| | - Antonio Bellastella
- Department of Cardiothoracic and Respiratory Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| |
Collapse
|
6
|
Peters B, Vahlhaus J, Pivovarova-Ramich O. Meal timing and its role in obesity and associated diseases. Front Endocrinol (Lausanne) 2024; 15:1359772. [PMID: 38586455 PMCID: PMC10995378 DOI: 10.3389/fendo.2024.1359772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Meal timing emerges as a crucial factor influencing metabolic health that can be explained by the tight interaction between the endogenous circadian clock and metabolic homeostasis. Mistimed food intake, such as delayed or nighttime consumption, leads to desynchronization of the internal circadian clock and is associated with an increased risk for obesity and associated metabolic disturbances such as type 2 diabetes and cardiovascular diseases. Conversely, meal timing aligned with cellular rhythms can optimize the performance of tissues and organs. In this review, we provide an overview of the metabolic effects of meal timing and discuss the underlying mechanisms. Additionally, we explore factors influencing meal timing, including internal determinants such as chronotype and genetics, as well as external influences like social factors, cultural aspects, and work schedules. This review could contribute to defining meal-timing-based recommendations for public health initiatives and developing guidelines for effective lifestyle modifications targeting the prevention and treatment of obesity and associated metabolic diseases. Furthermore, it sheds light on crucial factors that must be considered in the design of future food timing intervention trials.
Collapse
Affiliation(s)
- Beeke Peters
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Janna Vahlhaus
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Lübeck, Lübeck, Germany
| | - Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Lübeck, Lübeck, Germany
- Department of Endocrinology and Metabolism, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Gubin D, Danilenko K, Stefani O, Kolomeichuk S, Markov A, Petrov I, Voronin K, Mezhakova M, Borisenkov M, Shigabaeva A, Yuzhakova N, Lobkina S, Weinert D, Cornelissen G. Blue Light and Temperature Actigraphy Measures Predicting Metabolic Health Are Linked to Melatonin Receptor Polymorphism. BIOLOGY 2023; 13:22. [PMID: 38248453 PMCID: PMC10813279 DOI: 10.3390/biology13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
This study explores the relationship between the light features of the Arctic spring equinox and circadian rhythms, sleep and metabolic health. Residents (N = 62) provided week-long actigraphy measures, including light exposure, which were related to body mass index (BMI), leptin and cortisol. Lower wrist temperature (wT) and higher evening blue light exposure (BLE), expressed as a novel index, the nocturnal excess index (NEIbl), were the most sensitive actigraphy measures associated with BMI. A higher BMI was linked to nocturnal BLE within distinct time windows. These associations were present specifically in carriers of the MTNR1B rs10830963 G-allele. A larger wake-after-sleep onset (WASO), smaller 24 h amplitude and earlier phase of the activity rhythm were associated with higher leptin. Higher cortisol was associated with an earlier M10 onset of BLE and with our other novel index, the Daylight Deficit Index of blue light, DDIbl. We also found sex-, age- and population-dependent differences in the parametric and non-parametric indices of BLE, wT and physical activity, while there were no differences in any sleep characteristics. Overall, this study determined sensitive actigraphy markers of light exposure and wT predictive of metabolic health and showed that these markers are linked to melatonin receptor polymorphism.
Collapse
Affiliation(s)
- Denis Gubin
- Department of Biology, Tyumen Medical University, 625023 Tyumen, Russia
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Konstantin Danilenko
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
- Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Oliver Stefani
- Department Engineering and Architecture, Institute of Building Technology and Energy, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland;
| | - Sergey Kolomeichuk
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
- Laboratory of Genetics, Institute of Biology of the Karelian Science Center, Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Alexander Markov
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Ivan Petrov
- Department of Biological & Medical Physics UNESCO, Medical University, 625023 Tyumen, Russia
| | - Kirill Voronin
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Marina Mezhakova
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Mikhail Borisenkov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of the Federal Research Centre Komi Science Centre, Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Aislu Shigabaeva
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
| | - Natalya Yuzhakova
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Svetlana Lobkina
- Healthcare Institution of Yamalo-Nenets Autonomous Okrug “Tarko-Sale Central District Hospital”, 629850 Urengoy, Russia;
| | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, 06108 Halle-Wittenberg, Germany;
| | - Germaine Cornelissen
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
8
|
Harmsen JF, Kotte M, Habets I, Bosschee F, Frenken K, Jorgensen JA, de Kam S, Moonen-Kornips E, Cissen J, Doligkeit D, van de Weijer T, Erazo-Tapia E, Buitinga M, Hoeks J, Schrauwen P. Exercise training modifies skeletal muscle clock gene expression but not 24-hour rhythmicity in substrate metabolism of men with insulin resistance. J Physiol 2023. [PMID: 38051503 DOI: 10.1113/jp285523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Twenty-four hour rhythmicity in whole-body substrate metabolism, skeletal muscle clock gene expression and mitochondrial respiration is compromised upon insulin resistance. With exercise training known to ameliorate insulin resistance, our objective was to test if exercise training can reinforce diurnal variation in whole-body and skeletal muscle metabolism in men with insulin resistance. In a single-arm longitudinal design, 10 overweight and obese men with insulin resistance performed 12 weeks of high-intensity interval training recurrently in the afternoon (between 14.00 and 18.00 h) and were tested pre- and post-exercise training, while staying in a metabolic research unit for 2 days under free-living conditions with regular meals. On the second days, indirect calorimetry was performed at 08.00, 13.00, 18.00, 23.00 and 04.00 h, muscle biopsies were taken from the vastus lateralis at 08.30, 13.30 and 23.30 h, and blood was drawn at least bi-hourly over 24 h. Participants did not lose body weight over 12 weeks, but improved body composition and exercise capacity. Exercise training resulted in reduced 24-h plasma glucose levels, but did not modify free fatty acid and triacylglycerol levels. Diurnal variation of muscle clock gene expression was modified by exercise training with period genes showing an interaction (time × exercise) effect and reduced mRNA levels at 13.00 h. Exercise training increased mitochondrial respiration without inducing diurnal variation. Twenty-four-hour substrate metabolism and energy expenditure remained unchanged. Future studies should investigate alternative exercise strategies or types of interventions (e.g. diet or drugs aiming at improving insulin sensitivity) for their capacity to reinforce diurnal variation in substrate metabolism and mitochondrial respiration. KEY POINTS: Insulin resistance is associated with blunted 24-h flexibility in whole-body substrate metabolism and skeletal muscle mitochondrial respiration, and disruptions in the skeletal muscle molecular circadian clock. We hypothesized that exercise training modifies 24-h rhythmicity in whole-body substrate metabolism and diurnal variation in skeletal muscle molecular clock and mitochondrial respiration in men with insulin resistance. We found that metabolic inflexibility over 24 h persisted after exercise training, whereas mitochondrial respiration increased independent of time of day. Gene expression of Per1-3 and Rorα in skeletal muscle changed particularly close to the time of day at which exercise training was performed. These results provide the rationale to further investigate the differential metabolic impact of differently timed exercise to treat metabolic defects of insulin resistance that manifest at a particular time of day.
Collapse
Affiliation(s)
- Jan-Frieder Harmsen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marit Kotte
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ivo Habets
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frederieke Bosschee
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Koen Frenken
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johanna A Jorgensen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Soraya de Kam
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Esther Moonen-Kornips
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jochem Cissen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel Doligkeit
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tineke van de Weijer
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Edmundo Erazo-Tapia
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mijke Buitinga
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
9
|
Balogun O, Nejak-Bowen K. The Hepatic Porphyrias: Revealing the Complexities of a Rare Disease. Semin Liver Dis 2023; 43:446-459. [PMID: 37973028 PMCID: PMC11256094 DOI: 10.1055/s-0043-1776760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The porphyrias are a group of metabolic disorders that are caused by defects in heme biosynthesis pathway enzymes. The result is accumulation of heme precursors, which can cause neurovisceral and/or cutaneous photosensitivity. Liver is commonly either a source or target of excess porphyrins, and porphyria-associated hepatic dysfunction ranges from minor abnormalities to liver failure. In this review, the first of a three-part series, we describe the defects commonly found in each of the eight enzymes involved in heme biosynthesis. We also discuss the pathophysiology of the hepatic porphyrias in detail, covering epidemiology, histopathology, diagnosis, and complications. Cellular consequences of porphyrin accumulation are discussed, with an emphasis on oxidative stress, protein aggregation, hepatocellular cancer, and endothelial dysfunction. Finally, we review current therapies to treat and manage symptoms of hepatic porphyria.
Collapse
Affiliation(s)
- Oluwashanu Balogun
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Kari Nejak-Bowen
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Liver Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
10
|
Zong W, Seney ML, Ketchesin KD, Gorczyca MT, Liu AC, Esser KA, Tseng GC, McClung CA, Huo Z. Experimental design and power calculation in omics circadian rhythmicity detection using the cosinor model. Stat Med 2023; 42:3236-3258. [PMID: 37265194 PMCID: PMC10425922 DOI: 10.1002/sim.9803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Circadian clocks are 24-h endogenous oscillators in physiological and behavioral processes. Though recent transcriptomic studies have been successful in revealing the circadian rhythmicity in gene expression, the power calculation for omics circadian analysis have not been fully explored. In this paper, we develop a statistical method, namely CircaPower, to perform power calculation for circadian pattern detection. Our theoretical framework is determined by three key factors in circadian gene detection: sample size, intrinsic effect size and sampling design. Via simulations, we systematically investigate the impact of these key factors on circadian power calculation. We not only demonstrate that CircaPower is fast and accurate, but also show its underlying cosinor model is robust against variety of violations of model assumptions. In real applications, we demonstrate the performance of CircaPower using mouse pan-tissue data and human post-mortem brain data, and illustrate how to perform circadian power calculation using mouse skeleton muscle RNA-Seq pilot as case study. Our method CircaPower has been implemented in an R package, which is made publicly available on GitHub ( https://github.com/circaPower/circaPower).
Collapse
Affiliation(s)
- Wei Zong
- Department of Biostatistics, University of Pittsburgh, PA, USA
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Michael T. Gorczyca
- Department of Computational and Systems Biology, University of Pittsburgh, PA, USA
| | - Andrew C. Liu
- Department of Physiology and Aging, University of Florida, FL, USA
| | - Karyn A. Esser
- Department of Physiology and Aging, University of Florida, FL, USA
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, PA, USA
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, FL, USA
| |
Collapse
|
11
|
Makris KC, Heibati B, Narui SZ. Chrono-modulated effects of external stressors on oxidative stress and damage in humans: A scoping review on night shift work. ENVIRONMENT INTERNATIONAL 2023; 178:108048. [PMID: 37463540 DOI: 10.1016/j.envint.2023.108048] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Oxidative stress and tissue damage (OSD) play a pivotal role as an early-stage process in chronic disease pathogenesis. However, there has been little research to better understand the temporal (χρόνος[chronos]) dimensions of OSD process associated with environmental (non-genetic, including behaviors/lifestyle) and/or occupational stressors, like night shift work. OSD processes have recently attracted attention in relation to time-resolved external stressor trajectories in personalized medicine (prevention) initiatives, as they seem to interact with circadian clock systems towards the improved delineation of the early stages of (chronic) disease process. OBJECTIVES This work critically reviewed human studies targeting the temporal dynamics of OSD and circadian clock system's activity in response to environmental/occupational stressors; the case of night shift work was examined. METHODS Being a key stressor influencing OSD processes and circadian rhythm, night shift work was evaluated as part of a scoping review of research in OSD, including inflammatory and metabolic processes to determine the extent of OSD research undertaken in human populations, methodologies, tools and biomarkers used and the extent that the temporal dimensions of exposure and biological effect(s) were accounted for. Online databases were searched for papers published from 2000 onwards, resulting in the selection of 53 original publications. RESULTS AND DISCUSSION The majority of studies (n = 41) took place in occupational settings, while the rest were conducted in the general population or patient groups. Most occupational studies targeted outcomes of oxidative stress/damage (n = 19), followed by the combination of OSD with inflammatory response (n = 10), and studies focused on metabolic outcomes (n = 12). Only a minor fraction of the studies measured biomarkers related to circadian rhythm, such as, melatonin, its metabolite, or cortisol. Night shift work was associated with select biomarkers of OSD and inflammation, albeit with mixed results. Although much progress in delineating the biological mechanisms of OSD process has been made, an equally thorough investigation on the temporal trajectory of OSD processes as triggered by environmental/occupational stressors in human studies has yet to fully evolve.
Collapse
Affiliation(s)
- Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus.
| | - Behzad Heibati
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus; Department of Research, Cancer Registry Norway, Oslo, Norway
| | | |
Collapse
|
12
|
Sato S, Hishida T, Kinouchi K, Hatanaka F, Li Y, Nguyen Q, Chen Y, Wang PH, Kessenbrock K, Li W, Izpisua Belmonte JC, Sassone-Corsi P. The circadian clock CRY1 regulates pluripotent stem cell identity and somatic cell reprogramming. Cell Rep 2023; 42:112590. [PMID: 37261952 DOI: 10.1016/j.celrep.2023.112590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Distinct metabolic conditions rewire circadian-clock-controlled signaling pathways leading to the de novo construction of signal transduction networks. However, it remains unclear whether metabolic hallmarks unique to pluripotent stem cells (PSCs) are connected to clock functions. Reprogramming somatic cells to a pluripotent state, here we highlighted non-canonical functions of the circadian repressor CRY1 specific to PSCs. Metabolic reprogramming, including AMPK inactivation and SREBP1 activation, was coupled with the accumulation of CRY1 in PSCs. Functional assays verified that CRY1 is required for the maintenance of self-renewal capacity, colony organization, and metabolic signatures. Genome-wide occupancy of CRY1 identified CRY1-regulatory genes enriched in development and differentiation in PSCs, albeit not somatic cells. Last, cells lacking CRY1 exhibit differential gene expression profiles during induced PSC (iPSC) reprogramming, resulting in impaired iPSC reprogramming efficiency. Collectively, these results suggest the functional implication of CRY1 in pluripotent reprogramming and ontogenesis, thereby dictating PSC identity.
Collapse
Affiliation(s)
- Shogo Sato
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA; Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, USA.
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Kenichiro Kinouchi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Fumiaki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Altos Labs, San Diego, CA, USA
| | - Yumei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yumay Chen
- UC Irvine Diabetes Center, Sue and Bill Gross Stem Cell Research Center, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ping H Wang
- UC Irvine Diabetes Center, Sue and Bill Gross Stem Cell Research Center, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Altos Labs, San Diego, CA, USA.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
13
|
Zhang Y, Pan J, Liu Y, Zhang X, Cheng K. Effects of Ficus pandurata Hance var. angustifolia Cheng Flavonoids on Intestinal Barrier and Cognitive Function by Regulating Intestinal Microbiota. Foods 2023; 12:foods12081682. [PMID: 37107477 PMCID: PMC10137925 DOI: 10.3390/foods12081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/25/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
More and more evidence has supported the interaction between circadian rhythms and intestinal microbes, which provides new insights into how dietary nutrition can improve host health. Our research showed that Ficus pandurata Hance var. angustifolia Cheng flavonoids (FCF) ameliorated the pathological damage of colon and abnormal intestinal microflora structure in mice with circadian clock disorder and improved their exploration and memory behaviors. Mechanism studies have shown that FCF is involved in regulating metabolic pathways and related metabolites, regulating the expression of related tight junction proteins in the colon and the levels of Aβ and inflammatory factors in the hippocampus. Further analysis found that these metabolites showed a certain correlation with intestinal flora and played a certain role in alleviating intestinal physiological damage and cognitive decline.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Junjie Pan
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Kejun Cheng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
| |
Collapse
|
14
|
Marciniak M, Sato M, Rutkowski R, Zawada A, Juchacz A, Mahadea D, Grzymisławski M, Dobrowolska A, Kawka E, Korybalska K, Bręborowicz A, Witowski J, Kanikowska D. Effect of the one-day fasting on cortisol and DHEA daily rhythm regarding sex, chronotype, and age among obese adults. Front Nutr 2023; 10:1078508. [PMID: 36814510 PMCID: PMC9940638 DOI: 10.3389/fnut.2023.1078508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Physiological and biochemical processes in the human body occur in a specific order and show rhythmic variability. Time dependence characterizes the secretion of cortisol and dehydroepiandrosterone (DHEA). One-day fasting implies alternating fasting days and eating days. The study aimed to determine how 24-h fasting affects the daily rhythm of cortisol and DHEA levels in obese people while taking into account gender and chronotype. Methods Forty-nine obese patients (BMI 32.2-67.1 kg/m2; 25 women and 24 men) underwent a 3-week hospital-controlled calorie restriction diet to reduce body weight. During hospitalization, patients fasted for 1 day, during which only water could be consumed. Samples of whole mixed unstimulated saliva were collected at 2-3-h intervals over a 64-h period and analyzed for cortisol and DHEA by immunoassays. The individual chronotypes were assessed by the morning and evening questionnaire, according to Horne and Östberg. Three components of daily rhythm were evaluated: amplitude, acrophase, and the so-called MESOR. Results Cortisol rhythm showed differences in amplitude (p = 0.0127) and acrophase (p = 0.0005). The amplitude on the fasting day was 11% higher (p = 0.224) than the day after. The acrophase advanced on the day of fasting, 48 min earlier than the day before (p = 0.0064), and by 39 min to the day after fasting (p = 0.0005). In the rhythm of DHEA, differences were found in the MESOR (p = 0.0381). The MESOR on the fasting day increased. Discussion Our results obtained during 64 consecutive hours of saliva sampling suggest that one-day fasting may affect three components of cortisol and DHEA daily rhythm. Additionally, no differences were found in the daily rhythm between the morning and evening chronotypes and between females and males. Although aging did not influence daily cortisol rhythm, DHEA amplitude, MESOR, and acrophase changed with age. To the best of our knowledge, this is the first presentation of changes in DHEA rhythm during one-day fasting.
Collapse
Affiliation(s)
- Martyna Marciniak
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland,Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Science, Poznan, Poland
| | - Maki Sato
- Institutional Research, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Rafał Rutkowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Science, Poznan, Poland
| | - Aldona Juchacz
- Greater Poland Center of Pulmonology and Thoracic Surgery of Eugenia and Janusz Zeyland, Poznan, Poland
| | - Dagmara Mahadea
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Science, Poznan, Poland
| | - Marian Grzymisławski
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Science, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Science, Poznan, Poland
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Korybalska
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Bręborowicz
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland,Collegium Medicum, Zielona Góra University, Zielona Góra, Poland
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominika Kanikowska
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland,*Correspondence: Dominika Kanikowska,
| |
Collapse
|
15
|
Teoh AN, Kaur S, Shafie SR, Mohd Shukri NH, Ahmad Bustami N, Takahashi M, Shibata S. Chrononutrition is associated with melatonin and cortisol rhythm during pregnancy: Findings from MY-CARE cohort study. Front Nutr 2023; 9:1078086. [PMID: 36687684 PMCID: PMC9852999 DOI: 10.3389/fnut.2022.1078086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Chrononutrition has been suggested to have an entrainment effect on circadian rhythm which is crucial for metabolic health. Investigating how chrononutrition affects maternal circadian rhythm can shed light on its role during pregnancy. This study aims to determine chrononutrition characteristics of healthy primigravida during pregnancy and its association with melatonin and cortisol rhythm across gestation. A total of 70 healthy primigravidas were recruited from ten randomly selected government maternal and child clinics in Kuala Lumpur, Malaysia. During the second and third trimesters, chrononutrition characteristics including meal timing, frequency, eating window, breakfast skipping, and late-night eating were determined using a 3-day food record. Pregnant women provided salivary samples at five time-points over a 24 h period for melatonin and cortisol assay. Consistently across the second and third trimesters, both melatonin and cortisol showed a rhythmic change over the day. Melatonin levels displayed an increment toward the night whilst cortisol levels declined over the day. Majority observed a shorter eating window (≤12 h) during the second and third trimesters (66 and 55%, respectively). Results showed 23 and 28% skipped breakfast whereas 45 and 37% ate within 2 h pre-bedtime. During the third trimester, a longer eating window was associated with lower melatonin mean (β = -0.40, p = 0.006), peak (β = -0.42, p = 0.006), and AUCG (β = -0.44, p = 0.003). During both trimesters, a lower awakening cortisol level was observed in pregnant women who skipped breakfast (β = -0.33, p = 0.029; β = -0.29, p = 0.044). Only during the second trimester, breakfast-skipping was significantly associated with a greater cortisol amplitude (β = 0.43, p = 0.003). Findings suggest that certain chrononutrition components, particularly eating window and breakfast skipping have a significant influence on maternal melatonin and cortisol rhythm. Dietary intervention targeting these characteristics may be useful in maintaining maternal circadian rhythm.
Collapse
Affiliation(s)
- Ai Ni Teoh
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Satvinder Kaur
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia,*Correspondence: Satvinder Kaur,
| | - Siti Raihanah Shafie
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurul Husna Mohd Shukri
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Normina Ahmad Bustami
- Faculty of Medicine and Health Sciences, School of Healthy Aging, Medical Aesthetics and Regenerative Medicine, UCSI University, Kuala Lumpur, Malaysia
| | - Masaki Takahashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Tokyo, Japan
| | - Shigenobu Shibata
- Department of Electrical Engineering and Biosciences, School of Advanced Engineering and Sciences, Waseda University, Tokyo, Japan
| |
Collapse
|
16
|
Kamat PK, Khan MB, Smith C, Siddiqui S, Baban B, Dhandapani K, Hess DC. The time dimension to stroke: Circadian effects on stroke outcomes and mechanisms. Neurochem Int 2023; 162:105457. [PMID: 36442686 PMCID: PMC9839555 DOI: 10.1016/j.neuint.2022.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
The circadian system is widely involved in the various pathological outcomes affected by time dimension changes. In the brain, the master circadian clock, also known as the "pacemaker," is present in the hypothalamus's suprachiasmatic nucleus (SCN). The SCN consists of molecular circadian clocks that operate in each neuron and other brain cells. These circadian mechanisms are controlled by the transcription and translation of specific genes such as the clock circadian regulator (Clock) and brain and muscle ARNT-Like 1 (Bmal1). Period (Per1-3) and cryptochrome (Cry1 and 2) negatively feedback and regulate the clock genes. Variations in the circadian cycle and these clock genes can affect stroke outcomes. Studies suggest that the peak stroke occurs in the morning after patients awaken from sleep, while stroke severity and poor outcomes worsen at midnight. The main risk factor associated with stroke is high blood pressure (hypertension). Blood pressure usually dips by 15-20% during sleep, but many hypertensives do not display this normal dipping pattern and are non-dippers. A sleep blood pressure is the primary determinant of stroke risk. This article discusses the possible mechanism associated with circadian rhythm and stroke outcomes.
Collapse
Affiliation(s)
- Pradip K Kamat
- Departments of Neurology, Medical College of Georgia, Augusta University, USA.
| | | | - Cameron Smith
- Departments of Neurology, Medical College of Georgia, Augusta University, USA
| | - Shahneela Siddiqui
- Departments of Neurology, Medical College of Georgia, Augusta University, USA
| | - Babak Baban
- Departments of Oral Biology, Dental College of Georgia, Augusta University, USA
| | - Krishnan Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, USA
| | - David C Hess
- Departments of Neurology, Medical College of Georgia, Augusta University, USA
| |
Collapse
|
17
|
Manocchio F, Soliz‐Rueda JR, Ribas‐Latre A, Bravo FI, Arola‐Arnal A, Suarez M, Muguerza B. Grape Seed Proanthocyanidins Modulate the Hepatic Molecular Clock via MicroRNAs. Mol Nutr Food Res 2022; 66:e2200443. [PMID: 36189890 PMCID: PMC10078170 DOI: 10.1002/mnfr.202200443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/09/2022] [Indexed: 01/18/2023]
Abstract
SCOPE Circadian rhythm is an endogenous and self-sustained timing system, responsible for the coordination of daily processes in 24-h timescale. It is regulated by an endogenous molecular clock, which is sensitive to external cues as light and food. This study has previously shown that grape seed proanthocyanidins extract (GSPE) regulates the hepatic molecular clock. Moreover, GSPE is known to interact with some microRNAs (miRNAs). Therefore, the aim of this study is to evaluate if the activity of GSPE as modulator of hepatic clock genes can be mediated by miRNAs. METHODS AND RESULTS 250 mg kg-1 of GSPE is administered to Wistar rats before a 6-h jet lag and sacrificed at different time points. GSPE modulated both expression of Bmal1 and miR-27b-3p in the liver. Cosinor-based analysis reveals that both Bmal1 and miR-27b-3p expression follow a circadian rhythm, a negative interaction between them, and the role of GSPE adjusting the hepatic peripheral clock via miRNA. Additionally, in vitro studies show that Bmal1 is sensitive to GSPE (25 mg L-1 ). However, this effect is independent of miR-27b-3p. CONCLUSION miRNA regulation of peripheral clocks via GSPE may be part of a complex mechanism that involves the crosstalk with the central system rather than a direct effect.
Collapse
Affiliation(s)
- Francesca Manocchio
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Jorge R. Soliz‐Rueda
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Aleix Ribas‐Latre
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
- Present address:
Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum München at the University of LeipzigUniversity Hospital LeipzigD‐04103LeipzigGermany
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Anna Arola‐Arnal
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Manuel Suarez
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Departament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliMarcel.li Domingo. 1Tarragona43007Spain
| |
Collapse
|
18
|
Raza GS, Sodum N, Kaya Y, Herzig KH. Role of Circadian Transcription Factor Rev-Erb in Metabolism and Tissue Fibrosis. Int J Mol Sci 2022; 23:12954. [PMID: 36361737 PMCID: PMC9655416 DOI: 10.3390/ijms232112954] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 09/12/2023] Open
Abstract
Circadian rhythms significantly affect metabolism, and their disruption leads to cardiometabolic diseases and fibrosis. The clock repressor Rev-Erb is mainly expressed in the liver, heart, lung, adipose tissue, skeletal muscles, and brain, recognized as a master regulator of metabolism, mitochondrial biogenesis, inflammatory response, and fibrosis. Fibrosis is the response of the body to injuries and chronic inflammation with the accumulation of extracellular matrix in tissues. Activation of myofibroblasts is a key factor in the development of organ fibrosis, initiated by hormones, growth factors, inflammatory cytokines, and mechanical stress. This review summarizes the importance of Rev-Erb in ECM remodeling and tissue fibrosis. In the heart, Rev-Erb activation has been shown to alleviate hypertrophy and increase exercise capacity. In the lung, Rev-Erb agonist reduced pulmonary fibrosis by suppressing fibroblast differentiation. In the liver, Rev-Erb inhibited inflammation and fibrosis by diminishing NF-κB activity. In adipose tissue, Rev- Erb agonists reduced fat mass. In summary, the results of multiple studies in preclinical models demonstrate that Rev-Erb is an attractive target for positively influencing dysregulated metabolism, inflammation, and fibrosis, but more specific tools and studies would be needed to increase the information base for the therapeutic potential of these substances interfering with the molecular clock.
Collapse
Affiliation(s)
- Ghulam Shere Raza
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Nalini Sodum
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Yagmur Kaya
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Marmara University, 34854 Istanbul, Turkey
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
- Oulu University Hospital, University of Oulu, 90220 Oulu, Finland
- Pediatric Gastroenterology and Metabolic Diseases, Pediatric Institute, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| |
Collapse
|
19
|
Genetic Variations within the Bovine CRY2 Gene Are Significantly Associated with Carcass Traits. Animals (Basel) 2022; 12:ani12131616. [PMID: 35804515 PMCID: PMC9264869 DOI: 10.3390/ani12131616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
As an important part of the circadian rhythm, the circadian regulation factor 2 of cryptochrome (CRY2), regulates many physiological functions. Previous studies have reported that CRY2 is involved in growth and development. However, the relationship between CRY2 gene polymorphism and cattle carcass traits remains unclear. The aim of this study was to detect the possible variations of the CRY2 gene and elucidate the association between the CRY2 gene and carcass traits in the Shandong Black Cattle Genetic Resource (SDBCGR) population (n = 705). We identified a 24-bp deletion variation (CRY2-P6) and a 6-bp insertion variation (CRY2-P7) in the bovine CRY2 gene. The frequency of the homozygous II genotype is higher than the heterozygous ID genotype in both two loci. In addition, CRY2-P6 was consistent with HWE (p > 0.05). Importantly, the CRY2-P6 variant was significantly associated with 12 carcass traits, including gross weight, ribeye, high rib, thick flank, etc. and the II was the dominant genotype. The CRY2-P7 site was also significantly correlated with five traits (gross weight, beef-tongue, etc.). Collectively, these outcomes indicated that the two Indel loci in the CRY2 gene could be used for marker-assisted selection of cattle carcass traits.
Collapse
|
20
|
Gubin D, Neroev V, Malishevskaya T, Kolomeichuk S, Weinert D, Yuzhakova N, Nelaeva A, Filippova Y, Cornelissen G. Daytime Lipid Metabolism Modulated by CLOCK Gene Is Linked to Retinal Ganglion Cells Damage in Glaucoma. APPLIED SCIENCES 2022; 12:6374. [DOI: 10.3390/app12136374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Lipid metabolism is intimately linked to circadian mechanisms and light signaling. Deteriorated photic transduction because of retinal ganglion cell (RGC) loss occurring with glaucoma progression reduces perceived light amplitude, causing circadian disruption. To investigate associations with RGCs, total cholesterol (TC), its low-density (LDL-C) and high-density (HDL-C) fractions, and triglycerides (TG) were measured, under a controlled meal regimen, during daytime hours in 114 patients diagnosed with primary open-angle glaucoma (POAG). RGC damage was assessed by high-definition optical coherence tomography (HD-OCT). Analysis of eight clock, clock-related, and melatonin receptor gene polymorphisms was performed on 19 patients. RGC loss was associated with changes in lipid metabolism in a time-dependent manner. Morning (08:00) values of HDL-C (r = 0.613, p < 0.0001) and TG (r = 0.568, p < 0.0001) correlated positively with RGC global loss, while LDL-C at 08:00 had a weak correlation (r = 0.235; p = 0.012) but showed a strong correlation in the evening (20:00) (r = 0.533, p < 0.0001). The morning–evening gradients (MEGs, changes at 20:00 versus 08:00) in TC and LDL-C changed sign from a negative to a positive association in patients exceeding the 15% two-eye mean GLV threshold. MEG (LDL-C higher in the evening than in the morning) was positive only in POAG patients with the CLOCK_3111 TT genotype.
Collapse
Affiliation(s)
- Denis Gubin
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia
- Department of Biology, Medical University, 625023 Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, 634009 Tomsk, Russia
| | - Vladimir Neroev
- Helmholtz Research Institute of Eye Diseases, 105062 Moscow, Russia
| | | | - Sergey Kolomeichuk
- Laboratory for Genomics, Metabolomics and Proteomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia
- Laboratory of Genetics, Institute of Biology of the Karelian Science Center of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Dietmar Weinert
- Department of Zoology, Institute of Biology/Zoology, Martin Luther University, 06108 Halle, Germany
| | - Natalya Yuzhakova
- Laboratory for Genomics, Metabolomics and Proteomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia
| | - Alsu Nelaeva
- Department of Endocrinology, Medical University, 625023 Tyumen, Russia
| | - Yulia Filippova
- State Autonomous Health Care Institution Tyumen Regional Ophthalmological Dispensary, 625048 Tyumen, Russia
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
PPAR-γ Agonist Pioglitazone Restored Mouse Liver mRNA Expression of Clock Genes and Inflammation-Related Genes Disrupted by Reversed Feeding. PPAR Res 2022; 2022:7537210. [PMID: 35663475 PMCID: PMC9162826 DOI: 10.1155/2022/7537210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction The master clock, which is located in the suprachiasmatic nucleus (SCN), harmonizes clock genes present in the liver to synchronize life rhythms and bioactivity with the surrounding environment. The reversed feeding disrupts the expression of clock genes in the liver. Recently, a novel role of PPAR-γ as a regulator in correlating circadian rhythm and metabolism was demonstrated. This study examined the influence of PPAR-γ agonist pioglitazone (PG) on the mRNA expression profile of principle clock genes and inflammation-related genes in the mouse liver disrupted by reverse feeding. Methods Mice were randomly assigned to daytime-feeding and nighttime-feeding groups. Mice in daytime-feeding groups received food from 7 AM to 7 PM, and mice in nighttime-feeding groups received food from 7 PM to 7 AM. PG was administered in the dose of 20 mg/kg per os as aqueous suspension 40 μl at 7 AM or 7 PM. Each group consisted of 12 animals. On day 8 of the feeding intervention, mice were sacrificed by cervical dislocation at noon (05 hours after light onset (HALO)) and midnight (HALO 17). Liver expressions of Bmal1, Clock, Rev-erb alpha, Cry1, Cry2, Per1, Per2, Cxcl5, Nrf2, and Ppar-γ were determined by quantitative reverse transcription PCR. Liver expression of PPAR-γ, pNF-κB, and IL-6 was determined by Western blotting. Glucose, ceruloplasmin, total cholesterol, triglyceride concentrations, and ALT and AST activities were measured in sera by photometric methods. The null hypothesis tested was that PG and the time of its administration have no influence on the clock gene expression impaired by reverse feeding. Results Administration of PG at 7 AM to nighttime-feeding mice did not reveal any influence on the expression of the clock or inflammation-related genes either at midnight or at noon. In the daytime-feeding group, PG intake at 7 PM led to an increase in Per2 and Rev-erb alpha mRNA at noon, an increase in Ppar-γ mRNA at midnight, and a decrease in Nfκb (p65) mRNA at noon. In general, PG administration at 7 PM slightly normalized the impaired expression of clock genes and increased anti-inflammatory potency impaired by reversed feeding. This pattern was supported by biochemical substrate levels—glucose, total cholesterol, ALT, and AST activities. The decrease in NF-κB led to the inhibition of serum ceruloplasmin levels as well as IL-6 in liver tissue. According to our data, PG intake at 7 PM exerts strong normalization of clock gene expression with a further increase in Nrf2 and, especially, Ppar-γ and PPAR-γ expression with inhibition of Nfκb and pNF-κB expression in daytime-feeding mice. These expression changes resulted in decreased hyperglycemia, hypercholesterolemia, ALT, and AST activities. Thus, PG had a potent chronopharmacological effect when administered at 7 PM to daytime-feeding mice. Conclusions Our study indicates that reversed feeding induced the disruption of mouse liver circadian expression pattern of clock genes accompanied by increasing Nfκb and pNF-κB and IL-6 expression and decreasing Nrf2 and PPAR-γ. Administration of PG restored the clock gene expression profile and decreased Nfκb, pNF-κB, and IL-6, as well as increased Nrf2, Ppar-γ, and PPAR-γ expression. PG intake at 7 PM was more effective than at 7 AM in reversed feeding mice.
Collapse
|
22
|
Sato T, Sassone-Corsi P. Nutrition, metabolism, and epigenetics: pathways of circadian reprogramming. EMBO Rep 2022; 23:e52412. [PMID: 35412705 PMCID: PMC9066069 DOI: 10.15252/embr.202152412] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 01/07/2023] Open
Abstract
Food intake profoundly affects systemic physiology. A large body of evidence has indicated a link between food intake and circadian rhythms, and ~24-h cycles are deemed essential for adapting internal homeostasis to the external environment. Circadian rhythms are controlled by the biological clock, a molecular system remarkably conserved throughout evolution. The circadian clock controls the cyclic expression of numerous genes, a regulatory program common to all mammalian cells, which may lead to various metabolic and physiological disturbances if hindered. Although the circadian clock regulates multiple metabolic pathways, metabolic states also provide feedback on the molecular clock. Therefore, a remarkable feature is reprogramming by nutritional challenges, such as a high-fat diet, fasting, ketogenic diet, and caloric restriction. In addition, various factors such as energy balance, histone modifications, and nuclear receptor activity are involved in the remodeling of the clock. Herein, we review the interaction of dietary components with the circadian system and illustrate the relationships linking the molecular clock to metabolism and critical roles in the remodeling process.
Collapse
Affiliation(s)
- Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| |
Collapse
|
23
|
Gao X, Zhang M, Lyu M, Lin S, Luo X, You W, Ke C. Role of Bmal1 in mediating the cholinergic system to regulate the behavioral rhythm of nocturnal marine molluscs. Comput Struct Biotechnol J 2022; 20:2815-2830. [PMID: 35765646 PMCID: PMC9189711 DOI: 10.1016/j.csbj.2022.05.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
The circadian differential expression of AchE was identified using TMT quantitative proteomics; It was found that the Ach concentration and the expression levels of AchE and Bmal1 exhibit circadian cosine rhythm; The full-length sequences of AchE and nAchR were obtained by cloning technique and made available for phylogenetic analysis; The movement distance and duration of abalone increased after the injection of neostigmine methylsulfate as the AchE inhibitor; Bmal1 as the core circadian clock gene was proven to bind to AchE and nAchR, thereby regulating the movement behavior of abalone.
The circadian rhythm is one of the most general and important rhythms in biological organisms. In this study, continuous 24-h video recordings showed that the cumulative movement distance and duration of the abalone, Haliotis discus hannai, reached their maximum values between 20:00–00:00, but both were significantly lower between 08:00–12:00 than at any other time of day or night (P < 0.05). To investigate the causes of these diel differences in abalone movement behavior, their cerebral ganglia were harvested at 00:00 (group D) and 12:00 (group L) to screen for differentially expressed proteins using tandem mass tagging (TMT) quantitative proteomics. Seventy-five significantly different proteins were identified in group D vs. group L. The differences in acetylcholinesterase (AchE) expression levels between day- and nighttime and the key role in the cholinergic nervous system received particular attention during the investigation. A cosine rhythm analysis found that the concentration of acetylcholine (Ach) and the expression levels of AchE tended to be low during the day and high at night, and high during the day and low at night, respectively. However, the rhythmicity of the diel expression levels of acetylcholine receptor (nAchR) appeared to be insignificant (P > 0.05). Following the injection of three different concentrations of neostigmine methylsulfate, as an AchE inhibitor, the concentration of Ach in the hemolymph, and the expression levels of nAchR in the cerebral ganglia increased significantly (P < 0.05). Four hours after drug injection, the cumulative movement distance and duration of abalones were significantly higher than those in the uninjected control group, and the group injected with saline (P < 0.05). The expression levels of the core diurnal clock Bmal1 over a 24-h period also tended to be high during the day and low at night. First, a co-immunoprecipitation assay demonstrated the binding between Bmal1 and AchE or nAchR. A dual-luciferase gene test and electrophoretic mobility shift assay showed that Bmal1 bound to the promoter regions of AchE and nAchR. Twenty-four hours after silencing the Bmal1 gene, the expression levels of AchE and nAchR decreased significantly compared to those of the dsEGFP and PBS control groups, further showing that Bmal1 mediates the cholinergic system to regulate the behavioral rhythm of abalone. These findings shed light on the endocrine mechanism regulating the rhythmic behavior of abalone, and provide a reference for understanding the life history adaptation strategies of nocturnal organisms and the proliferation and protection of bottom dwelling economically important organisms.
Collapse
Affiliation(s)
- Xiaolong Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Mo Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Mingxin Lyu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Shihui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
- Corresponding author.
| |
Collapse
|
24
|
Zhang C, Tait C, Minacapelli CD, Bhurwal A, Gupta K, Amin R, Rustgi VK. The Role of Race, Sex, and Age in Circadian Disruption and Metabolic Disorders. GASTRO HEP ADVANCES 2022; 1:471-479. [PMID: 39131676 PMCID: PMC11307930 DOI: 10.1016/j.gastha.2022.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 08/13/2024]
Abstract
Circadian rhythms are 24-hour internal biological cycles that play an important role in metabolism, and their disruption has been implicated in the development of diseases such as diabetes mellitus type 2, obesity, coronary artery disease, hypertension, and metabolic syndrome. This phenomenon is illustrated by increased rates of risk factors for cardiovascular disease in night shift workers. Race, sex, and age are factors that play a role in circadian rhythms and metabolic disorders. The focus of this review article is to assess the link between circadian rhythm physiology and metabolic disorders from a race, sex, and age perspective. Black Americans were noted to have shorter free-running circadian periods, or tau, increased cortisol levels, and poorer sleep habits compared to white Americans, possibly contributing to increased rates of obesity, hypertension, and hyperlipidemia. Women were also noted to have shorter tau, increased levels of proinflammatory gut bacteria, and reduced sleep quality compared to men, possibly leading to higher rates of obesity, metabolic syndrome, hypertension (in postmenopausal women), and nonalcoholic fatty liver disease. Older people were noted to have decreased expression of anti-inflammatory clock genes compared to younger people, possibly leading to increased rates of obesity, diabetes, hyperlipidemia, and hypertension. Groups that are at a higher risk for metabolic disorders such as black Americans, women, and the elderly may have internal time keeping systems that place them at a higher risk for developing abnormal hormonal and/or inflammatory pathways.
Collapse
Affiliation(s)
- Clark Zhang
- Department of Internal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Christopher Tait
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Carlos D. Minacapelli
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Abhishek Bhurwal
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Kapil Gupta
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Rajan Amin
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Vinod K. Rustgi
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| |
Collapse
|
25
|
Greenbaum J, Lin X, Su KJ, Gong R, Shen H, Shen J, Xiao HM, Deng HW. Integration of the Human Gut Microbiome and Serum Metabolome Reveals Novel Biological Factors Involved in the Regulation of Bone Mineral Density. Front Cell Infect Microbiol 2022; 12:853499. [PMID: 35372129 PMCID: PMC8966780 DOI: 10.3389/fcimb.2022.853499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
While the gut microbiome has been reported to play a role in bone metabolism, the individual species and underlying functional mechanisms have not yet been characterized. We conducted a systematic multi-omics analysis using paired metagenomic and untargeted serum metabolomic profiles from a large sample of 499 peri- and early post-menopausal women to identify the potential crosstalk between these biological factors which may be involved in the regulation of bone mineral density (BMD). Single omics association analyses identified 22 bacteria species and 17 serum metabolites for putative association with BMD. Among the identified bacteria, Bacteroidetes and Fusobacteria were negatively associated, while Firmicutes were positively associated. Several of the identified serum metabolites including 3-phenylpropanoic acid, mainly derived from dietary polyphenols, and glycolithocholic acid, a secondary bile acid, are metabolic byproducts of the microbiota. We further conducted a supervised integrative feature selection with respect to BMD and constructed the inter-omics partial correlation network. Although still requiring replication and validation in future studies, the findings from this exploratory analysis provide novel insights into the interrelationships between the gut microbiome and serum metabolome that may potentially play a role in skeletal remodeling processes.
Collapse
Affiliation(s)
- Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kuan-Jui Su
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Rui Gong
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong-Mei Xiao
- Center of Systems Biology, Data Information and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
26
|
Zhao E, Tait C, Minacapelli CD, Catalano C, Rustgi VK. Circadian Rhythms, the Gut Microbiome, and Metabolic Disorders. GASTRO HEP ADVANCES 2022; 1:93-105. [PMID: 39129932 PMCID: PMC11307590 DOI: 10.1016/j.gastha.2021.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 08/13/2024]
Abstract
The circadian clock and gut microbiome play integral roles in preserving metabolic homeostasis. Circadian rhythms represent an endogenous time-keeping system that regulates cell and organ functions and synchronizes physiology with external cues to establish metabolic homeostasis. A variety of functions throughout the gastrointestinal tract and liver are under circadian control, including nutrient transport, processing, and detoxification. The gut microbiota also plays an essential role in host metabolism, regulating processes such as digestion, inflammatory modulation, and bile acid metabolism. Both the circadian clock and the gut microbiota influence each other in a reciprocal fashion, as gut dysbiosis can precipitate circadian asynchrony, and vice-versa. Disruption of either system impacts homeostasis in a bidirectional manner and can contribute to metabolic dysfunction. Evidence suggests such disruptions can lead to the development of metabolic diseases, including obesity, diabetes, nonalcoholic fatty liver disease, cirrhosis, and hepatocellular carcinoma. This review will provide a basic overview of the circadian and gut microbial systems, how they are intertwined, and their impact on the liver and gastrointestinal tract and in the development of metabolic disease. Particular areas of discussion include epigenetic regulation of circadian pathways as well as a mechanistic overview of microbial dysbiosis. In addition, therapeutic targets of these systems, including dietary modifications, behavioral modifications, and microbial-directed therapies, will be explored.
Collapse
Affiliation(s)
- Eric Zhao
- Department of Internal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Christopher Tait
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Carlos D. Minacapelli
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Carolyn Catalano
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Vinod K. Rustgi
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| |
Collapse
|
27
|
Smith HA, Betts JA. Nutrient timing and metabolic regulation symposium review from "Novel dietary approaches to appetite regulation, health and performance (2021)". J Physiol 2022; 600:1299-1312. [PMID: 35038774 PMCID: PMC9305539 DOI: 10.1113/jp280756] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
Daily (circadian) rhythms coordinate our physiology and behaviour with regular environmental changes. Molecular clocks in peripheral tissues (e.g. liver, skeletal muscle and adipose) give rise to rhythms in macronutrient metabolism, appetite regulation and the components of energy balance such that our bodies can align the periodic delivery of nutrients with ongoing metabolic requirements. The timing of meals both in absolute terms (i.e. relative to clock time) and in relative terms (i.e. relative to other daily events) is therefore relevant to metabolism and health. Experimental manipulation of feeding–fasting cycles can advance understanding of the effect of absolute and relative timing of meals on metabolism and health. Such studies have extended the overnight fast by regular breakfast omission and revealed that morning fasting can alter the metabolic response to subsequent meals later in the day, whilst also eliciting compensatory behavioural responses (i.e. reduced physical activity). Similarly, restricting energy intake via alternate‐day fasting also has the potential to elicit a compensatory reduction in physical activity, and so can undermine weight‐loss efforts (i.e. to preserve body fat stores). Interrupting the usual overnight fast (and therefore also the usual sleep cycle) by nocturnal feeding has also been examined and further research is needed to understand the importance of this period for either nutritional intervention or nutritional withdrawal. In summary, it is important for dietary guidelines for human health to consider nutrient timing (i.e. when we eat) alongside the conventional focus on nutrient quantity and nutrient quality (i.e. how much we eat and what we eat).
![]()
Collapse
Affiliation(s)
- Harry A Smith
- Centre for Nutrition Exercise and Metabolism, Department for Health, University of Bath, Bath, BA2 7AY, United Kingdom
| | - James A Betts
- Centre for Nutrition Exercise and Metabolism, Department for Health, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
28
|
Tuning up an aged clock: Circadian clock regulation in metabolism and aging. TRANSLATIONAL MEDICINE OF AGING 2022. [DOI: 10.1016/j.tma.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
29
|
Crislip GR, Johnston JG, Douma LG, Costello HM, Juffre A, Boyd K, Li W, Maugans CC, Gutierrez-Monreal M, Esser KA, Bryant AJ, Liu AC, Gumz ML. Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. Compr Physiol 2021; 12:2769-2798. [PMID: 34964116 PMCID: PMC11514412 DOI: 10.1002/cphy.c210011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.
Collapse
Affiliation(s)
- G. Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Jermaine G. Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Hannah M. Costello
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Kyla Boyd
- Department of Biochemistry and Molecular Biology
| | - Wendy Li
- Department of Biochemistry and Molecular Biology
| | | | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics
- Myology Institute
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics
- Myology Institute
| | - Michelle L. Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
- Department of Biochemistry and Molecular Biology
- Department of Physiology and Functional Genomics
- Center for Integrative Cardiovascular and Metabolic Disease
| |
Collapse
|
30
|
Escobar-Martínez I, Arreaza-Gil V, Muguerza B, Arola-Arnal A, Bravo FI, Torres-Fuentes C, Suárez M. Administration Time Significantly Affects Plasma Bioavailability of Grape Seed Proanthocyanidins Extract in Healthy and Obese Fischer 344 Rats. Mol Nutr Food Res 2021; 66:e2100552. [PMID: 34851030 DOI: 10.1002/mnfr.202100552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/07/2021] [Indexed: 12/17/2022]
Abstract
SCOPE Phenolic compounds are bioactive molecules that are associated with several health benefits. Metabolization and absorption are the main determinants of their bioavailability and bioactivity. Thus, the study of the factors that modulate these processes, such as sex or diet is essential. Recently, it has been shown that biological rhythms may also play a key role. Hence, the aim of this study is to evaluate if the bioavailability of a grape proanthocyanidin extract (GSPE) is affected by the administration time in an animal model of metabolic syndrome (MetS). METHODS AND RESULTS Female and male Fischer 344 rats are fed either a standard or a cafeteria diet (CAF) for 9 weeks, and an oral dose of GSPE (25 mg kg-1 ) is daily administered either at 8:00 am (zeitgeber time (ZT)-0) or at 8:00 pm (ZT-12) during the last 4 weeks. Plasma phenolic compounds are then quantified by liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Phase-II and gut microbiota-derived phenolic metabolites are affected by ZT in all conditions or only in obese rats, respectively. CAF feeding affected the bioavailability of phenolic acids and free flavan-3-ols. Differences due to sex are also observed. CONCLUSION These findings demonstrate that ZT, diet, and sex are key factors influencing phenolic compounds bioavailability.
Collapse
Affiliation(s)
- Iván Escobar-Martínez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | - Verónica Arreaza-Gil
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | - Francisca Isabel Bravo
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | - Cristina Torres-Fuentes
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | - Manuel Suárez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| |
Collapse
|
31
|
Role of circadian rhythm and impact of circadian rhythm disturbance on the metabolism and disease. J Cardiovasc Pharmacol 2021; 79:254-263. [PMID: 34840256 DOI: 10.1097/fjc.0000000000001178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Molecular circadian clocks exist in almost all cells of the organism and operate for approximately 24 h, maintain the normal physiological and behavioral body processes and regulate metabolism of many cells related to a variety of disease states. Circadian rhythms regulate metabolism, mainly including neurotransmitters, hormones, amino acids and lipids. Circadian misalignment is related to metabolic syndromes, such as obesity, diabetes and hypertension, which have reached an alarming level in modern society. We reviewed the mechanism of the circadian clock and the interaction between circadian rhythm and metabolism, as well as circadian rhythm disturbance on the metabolism of hypertension, obesity and diabetes. Finally, we discuss how to use the circadian rhythm to prevent diseases. Thus, this review is a micro to macro discussion from the perspective of circadian rhythm and aims to provide basic ideas for circadian rhythm research and disease therapies.
Collapse
|
32
|
Wang W, Duan X, Huang Z, Pan Q, Chen C, Guo L. The GH-IGF-1 Axis in Circadian Rhythm. Front Mol Neurosci 2021; 14:742294. [PMID: 34566581 PMCID: PMC8458700 DOI: 10.3389/fnmol.2021.742294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Organisms have developed common behavioral and physiological adaptations to the influence of the day/night cycle. The CLOCK system forms an internal circadian rhythm in the suprachiasmatic nucleus (SCN) during light/dark input. The SCN may synchronize the growth hormone (GH) secretion rhythm with the dimming cycle through somatostatin neurons, and the change of the clock system may be related to the pulsatile release of GH. The GH-insulin-like growth factor 1 (IGF-1) axis and clock system may interact further on the metabolism through regulatory pathways in peripheral organs. We have summarized the current clinical and animal evidence on the interaction of clock systems with the GH-IGF-1 axis and discussed their effects on metabolism.
Collapse
Affiliation(s)
- Weihao Wang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoye Duan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Adamovich Y, Dandavate V, Ezagouri S, Manella G, Zwighaft Z, Sobel J, Kuperman Y, Golik M, Auerbach A, Itkin M, Malitsky S, Asher G. Clock proteins and training modify exercise capacity in a daytime-dependent manner. Proc Natl Acad Sci U S A 2021; 118:e2101115118. [PMID: 34426495 PMCID: PMC8536342 DOI: 10.1073/pnas.2101115118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exercise and circadian biology are closely intertwined with physiology and metabolism, yet the functional interaction between circadian clocks and exercise capacity is only partially characterized. Here, we tested different clock mutant mouse models to examine the effect of the circadian clock and clock proteins, namely PERIODs and BMAL1, on exercise capacity. We found that daytime variance in endurance exercise capacity is circadian clock controlled. Unlike wild-type mice, which outperform in the late compared with the early part of their active phase, PERIODs- and BMAL1-null mice do not show daytime variance in exercise capacity. It appears that BMAL1 impairs and PERIODs enhance exercise capacity in a daytime-dependent manner. An analysis of liver and muscle glycogen stores as well as muscle lipid utilization suggested that these daytime effects mostly relate to liver glycogen levels and correspond to the animals' feeding behavior. Furthermore, given that exercise capacity responds to training, we tested the effect of training at different times of the day and found that training in the late compared with the early part of the active phase improves exercise performance. Overall, our findings suggest that clock proteins shape exercise capacity in a daytime-dependent manner through changes in liver glycogen levels, likely due to their effect on animals' feeding behavior.
Collapse
Affiliation(s)
- Yaarit Adamovich
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Vaishnavi Dandavate
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Saar Ezagouri
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gal Manella
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ziv Zwighaft
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Jonathan Sobel
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Marina Golik
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Asher Auerbach
- Department of Chemical Research Support, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel;
| |
Collapse
|
34
|
Yang Z, Smalling RV, Huang Y, Jiang Y, Kusumanchi P, Bogaert W, Wang L, Delker DA, Skill NJ, Han S, Zhang T, Ma J, Huda N, Liangpunsakul S. The role of SHP/REV-ERBα/CYP4A axis in the pathogenesis of alcohol-associated liver disease. JCI Insight 2021; 6:e140687. [PMID: 34423788 PMCID: PMC8410014 DOI: 10.1172/jci.insight.140687] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol-associated liver disease (ALD) represents a spectrum of histopathological changes, including alcoholic steatosis, steatohepatitis, and cirrhosis. One of the early responses to excessive alcohol consumption is lipid accumulation in the hepatocytes. Lipid ω-hydroxylation of medium- and long-chain fatty acid metabolized by the cytochrome P450 4A (CYP4A) family is an alternative pathway for fatty acid metabolism. The molecular mechanisms of CYP4A in ALD pathogenesis have not been elucidated. In this study, WT and Shp−/− mice were fed with a modified ethanol-binge, National Institute on Alcohol Abuse and Alcoholism model (10 days of ethanol feeding plus single binge). Liver tissues were collected every 6 hours for 24 hours and analyzed using RNA-Seq. The effects of REV-ERBα agonist (SR9009, 100 mg/kg/d) or CYP4A antagonist (HET0016, 5 mg/kg/d) in ethanol-fed mice were also evaluated. We found that hepatic Cyp4a10 and Cyp4a14 expression were significantly upregulated in WT mice, but not in Shp−/− mice, fed with ethanol. ChIP quantitative PCR and promoter assay revealed that REV-ERBα is the transcriptional repressor of Cyp4a10 and Cyp4a14. Rev-Erbα−/− hepatocytes had a marked induction of both Cyp4a genes and lipid accumulation. REV-ERBα agonist SR9009 or CYP4A antagonist HET0016 attenuated Cyp4a induction by ethanol and prevented alcohol-induced steatosis. Here, we have identified a role for the SHP/REV-ERBα/CYP4A axis in the pathogenesis of ALD. Our data also suggest REV-ERBα or CYP4A as the potential therapeutic targets for ALD.
Collapse
Affiliation(s)
- Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rana V Smalling
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yi Huang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Will Bogaert
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Don A Delker
- Divisions of Gastroenterology, University of Utah, Salt Lake City, Utah, USA
| | - Nicholas J Skill
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sen Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
35
|
Sato T, Greco CM. Expanding the link between circadian rhythms and redox metabolism of epigenetic control. Free Radic Biol Med 2021; 170:50-58. [PMID: 33450380 DOI: 10.1016/j.freeradbiomed.2021.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Circadian rhythms play a central role in physiological and metabolic processes. This is mostly achieved through rhythmic regulation of myriad genes via dynamic epigenome changes. Accumulating evidence indicates that oxidative stress and redox balance are under circadian control and feedback on the clock system. Circadian perturbations induce oxidative stress accumulation and disturb redox balance. Along with these changes, epigenomic landscape changes are a remarkable hallmark of clock disruption. This review aims to summarize evidence supporting the link between the circadian clock and redox metabolism, focusing on possible connections through epigenetic mechanisms.
Collapse
Affiliation(s)
- Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Carolina Magdalen Greco
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
36
|
Ávila-Román J, Soliz-Rueda JR, Bravo FI, Aragonès G, Suárez M, Arola-Arnal A, Mulero M, Salvadó MJ, Arola L, Torres-Fuentes C, Muguerza B. Phenolic compounds and biological rhythms: Who takes the lead? Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Abdul F, Sreenivas N, Kommu JVS, Banerjee M, Berk M, Maes M, Leboyer M, Debnath M. Disruption of circadian rhythm and risk of autism spectrum disorder: role of immune-inflammatory, oxidative stress, metabolic and neurotransmitter pathways. Rev Neurosci 2021; 33:93-109. [PMID: 34047147 DOI: 10.1515/revneuro-2021-0022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/01/2021] [Indexed: 12/27/2022]
Abstract
Circadian rhythms in most living organisms are regulated by light and synchronized to an endogenous biological clock. The circadian clock machinery is also critically involved in regulating and fine-tuning neurodevelopmental processes. Circadian disruption during embryonic development can impair crucial phases of neurodevelopment. This can contribute to neurodevelopmental disorders like autism spectrum disorder (ASD) in the offspring. Increasing evidence from studies showing abnormalities in sleep and melatonin as well as genetic and epigenetic changes in the core elements of the circadian pathway indicate a pivotal role of circadian disruption in ASD. However, the underlying mechanistic basis through which the circadian pathways influence the risk and progression of ASD are yet to be fully discerned. Well-recognized mechanistic pathways in ASD include altered immune-inflammatory, nitro oxidative stress, neurotransmission and synaptic plasticity, and metabolic pathways. Notably, all these pathways are under the control of the circadian clock. It is thus likely that a disrupted circadian clock will affect the functioning of these pathways. Herein, we highlight the possible mechanisms through which aberrations in the circadian clock might affect immune-inflammatory, nitro-oxidative, metabolic pathways, and neurotransmission, thereby driving the neurobiological sequelae leading to ASD.
Collapse
Affiliation(s)
- Fazal Abdul
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| | - Nikhitha Sreenivas
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| | - John Vijay Sagar Kommu
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| | - Moinak Banerjee
- Human Molecular Genetics Division, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Trivandrum, 695014, Kerala, India
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia.,Orygen, The Centre of Excellence in Youth Mental Health, The Department of Psychiatry, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Michael Maes
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia.,Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Pathum Wan, Pathum Wan District, Bangkok, 10330, Thailand.,Department of Psychiatry, Medical University of Plovdiv, bul. "Vasil Aprilov" 15A, 4002 Tsetar, Plovdiv, Bulgaria
| | - Marion Leboyer
- Université Paris Est Creteil (UPEC), AP-HP, Hôpitaux Universitaires "H. Mondor", DMU IMPACT, INSERM, IMRB, Translational Neuropsychiatry, Fondation FondaMental, 8, rue du Général Sarrail, 94010, Creteil, France
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, Karnataka, India
| |
Collapse
|
38
|
Ashimori A, Nakahata Y, Sato T, Fukamizu Y, Matsui T, Yoshitane H, Fukada Y, Shinohara K, Bessho Y. Attenuated SIRT1 Activity Leads to PER2 Cytoplasmic Localization and Dampens the Amplitude of Bmal1 Promoter-Driven Circadian Oscillation. Front Neurosci 2021; 15:647589. [PMID: 34108855 PMCID: PMC8180908 DOI: 10.3389/fnins.2021.647589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
The circadian clock possesses robust systems to maintain the rhythm approximately 24 h, from cellular to organismal levels, whereas aging is known to be one of the risk factors linked to the alternation of circadian physiology and behavior. The amount of many metabolites in the cells/body is altered with the aging process, and the most prominent metabolite among them is the oxidized form of nicotinamide adenine dinucleotide (NAD+), which is associated with posttranslational modifications of acetylation and poly-ADP-ribosylation status of circadian clock proteins and decreases with aging. However, how low NAD+ condition in cells, which mimics aged or pathophysiological conditions, affects the circadian clock is largely unknown. Here, we show that low NAD+ in cultured cells promotes PER2 to be retained in the cytoplasm through the NAD+/SIRT1 axis, which leads to the attenuated amplitude of Bmal1 promoter-driven luciferase oscillation. We found that, among the core clock proteins, PER2 is mainly affected in its subcellular localization by NAD+ amount, and a higher cytoplasmic PER2 localization was observed under low NAD+ condition. We further found that NAD+-dependent deacetylase SIRT1 is the regulator of PER2 subcellular localization. Thus, we anticipate that the altered PER2 subcellular localization by low NAD+ is one of the complex changes that occurs in the aged circadian clock.
Collapse
Affiliation(s)
- Atsushige Ashimori
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan.,Department of Neurobiology and Behavior, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yasukazu Nakahata
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan.,Department of Neurobiology and Behavior, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toshiya Sato
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, Tokyo, Japan
| | - Yuichiro Fukamizu
- Research and Development Division, Mitsubishi Corporation Life Sciences Limited, Tokyo, Japan
| | - Takaaki Matsui
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Shinohara
- Department of Neurobiology and Behavior, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
39
|
Ahmed R, Nakahata Y, Shinohara K, Bessho Y. Cellular Senescence Triggers Altered Circadian Clocks With a Prolonged Period and Delayed Phases. Front Neurosci 2021; 15:638122. [PMID: 33568972 PMCID: PMC7868379 DOI: 10.3389/fnins.2021.638122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Senescent cells, which show the permanent growth arrest in response to various forms of stress, accumulate in the body with the progression of age, and are associated with aging and age-associated diseases. Although the senescent cells are growth arrested, they still demonstrate high metabolic rate and altered gene expressions, indicating that senescent cells are still active. We recently showed that the circadian clock properties, namely phase and period of the cells, are altered with the establishment of replicative senescence. However, whether cellular senescence triggers the alteration of circadian clock properties in the cells is still unknown. In this study we show that the oxidative stress-induced premature senescence induces the alterations of the circadian clock, similar to the phenotypes of the replicative senescent cells. We found that the oxidative stress-induced premature senescent cells display the prolonged period and delayed phases. In addition, the magnitude of these changes intensified over time, indicating that cellular senescence changes the circadian clock properties. Our current results corroborate with our previous findings and further confirm that cellular senescence induces altered circadian clock properties, irrespective of the replicative senescence or the stress-induced premature senescence.
Collapse
Affiliation(s)
- Rezwana Ahmed
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.,Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Yasukazu Nakahata
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.,Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuyuki Shinohara
- Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
40
|
Abstract
The regulation of brain cytochrome P450 enzymes (CYPs) is different compared with respective hepatic enzymes. This may result from anatomical bases and physiological functions of the two organs. The brain is composed of a variety of functional structures built of different interconnected cell types endowed with specific receptors that receive various neuronal signals from other brain regions. Those signals activate transcription factors or alter functioning of enzyme proteins. Moreover, the blood-brain barrier (BBB) does not allow free penetration of all substances from the periphery into the brain. Differences in neurotransmitter signaling, availability to endogenous and exogenous active substances, and levels of transcription factors between neuronal and hepatic cells lead to differentiated expression and susceptibility to the regulation of CYP genes in the brain and liver. Herein, we briefly describe the CYP enzymes of CYP1-3 families, their distribution in the brain, and discuss brain-specific regulation of CYP genes. In parallel, a comparison to liver CYP regulation is presented. CYP enzymes play an essential role in maintaining the levels of bioactive molecules within normal ranges. These enzymes modulate the metabolism of endogenous neurochemicals, such as neurosteroids, dopamine, serotonin, melatonin, anandamide, and exogenous substances, including psychotropics, drugs of abuse, neurotoxins, and carcinogens. The role of these enzymes is not restricted to xenobiotic-induced neurotoxicity, but they are also involved in brain physiology. Therefore, it is crucial to recognize the function and regulation of CYP enzymes in the brain to build a foundation for future medicine and neuroprotection and for personalized treatment of brain diseases.
Collapse
Affiliation(s)
- Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
41
|
Aouizerat BE, Byun E, Pullinger CR, Gay C, Lerdal A, Lee KA. Sleep disruption and duration are associated with variants in genes involved in energy homeostasis in adults with HIV/AIDS. Sleep Med 2020; 82:84-95. [PMID: 33906044 DOI: 10.1016/j.sleep.2020.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine whether selected genes and plasma markers involved in energy homeostasis are associated with sleep disruption or duration in adults with HIV/AIDS. METHODS A sample of 289 adults with HIV/AIDS wore a wrist actigraph for 72 h to estimate total sleep time (TST) and wake after sleep onset (WASO). Twenty-three single nucleotide polymorphisms (SNP) spanning 5 energy homeostasis genes (adiponectin [ADIPOQ], ghrelin [GHRL], leptin [LEP], peroxisome proliferator-activated receptor-alpha [PPARA], and -gamma [PPARG]) were genotyped using a custom array. Plasma markers of energy homeostasis (adiponectin, ghrelin, leptin) were measured by commercial multiplex assay. RESULTS After adjusting for demographic and clinical characteristics (race/ethnicity, gender, CD4 cell count, waist circumference, medications), both WASO and TST were associated with SNPs in ADIPOQ (rs182052), LEP (rs10244329, rs3828942), PPARA (rs135551, rs4253655), and PPARG (rs709151). Additional SNPs in ADIPOQ were associated with WASO (rs1501299, rs3821799, rs6773957) and TST (rs2241766). TST was also associated with SNPs in GHRL (rs26802), LEP (rs11760956), PPARA (rs135547, rs8138102, rs4253776), and PPARG (rs12490265, rs796313). Many covariate-adjusted associations involved a significant interaction with markers of HIV (viral load, years since diagnosis). Among plasma markers, higher adiponectin was associated with less WASO, higher ghrelin and glucose levels with shorter TST, and higher leptin with longer TST. CONCLUSIONS Replication of SNPs in all five genes and three plasma markers of energy homeostasis were associated with objective sleep measures. HIV disease influenced many of the associations. Findings strengthen evidence for associations between energy homeostasis genetics and poor sleep, and provide direction for pharmacological intervention research.
Collapse
Affiliation(s)
- Bradley E Aouizerat
- Bluestone Center for Clinical Research, New York University, NY, USA; Department of Oral and Maxillofacial Surgery, New York University, NY, USA.
| | - Eeeseung Byun
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA, USA; Department of Physiological Nursing, University of California at San Francisco, San Francisco, CA, USA
| | - Caryl Gay
- Department of Family Health Care Nursing, University of California at San Francisco, San Francisco, CA, USA; Department of Patient Safety and Research, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Anners Lerdal
- Department of Patient Safety and Research, Lovisenberg Diakonale Hospital, Oslo, Norway; Department of Interdisciplinary Health Sciences, Institute of Health and Society, Faculty of Medicine, University of Oslo, Norway
| | - Kathryn A Lee
- Department of Family Health Care Nursing, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
42
|
Sun Q, Yang Y, Wang Z, Yang X, Gao Y, Zhao Y, Ge W, Liu J, Xu X, Guan W, Weng D, Wang S, Wang J, Zhang J. PER1 interaction with GPX1 regulates metabolic homeostasis under oxidative stress. Redox Biol 2020; 37:101694. [PMID: 32896721 PMCID: PMC7484554 DOI: 10.1016/j.redox.2020.101694] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolism serves mammalian feeding and active behavior, and is controlled by circadian clock. The molecular mechanism by which clock factors regulate metabolic homeostasis under oxidative stress is unclear. Here, we have characterized that the daily oxygen consumption rhythm was deregulated in Per1 deficient mice. Per1 deficiency impaired daily mitochondrial dynamics and deregulated cellular GPx-related ROS fluctuations in the peripheral organs. We identified that PER1 enhanced GPx activity through PER1/GPX1 interaction in cytoplasm, consequently improving the oxidative phosphorylation efficiency of mitochondria. Per1 expression was specifically elevated in the fasting peripheral organs for protecting mitochondrial from oxidation stress. These observations reveal that Per1-driven mitochondrial dynamics is a critical effector mechanism for the regulation of mitochondrial function in response to oxidation stress. PER1 regulates daily metabolic rhythm uncoupled from feeding oscillations. Per1 deficiency impairs mitochondrial dynamics and deregulates ROS fluctuations. PER1 interactions with GPX1 and increases mitochondrial ROS clearance. Fasting elevates Per1 expression to protect mitochondrial from oxidation stress.
Collapse
Affiliation(s)
- Qi Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China; Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, 233030, China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Zhongqiu Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiao Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Yan Gao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wei Guan
- The Second Hospital of Nanjing, Nanjing Medical University, Nanjing, 210003, China
| | - Dan Weng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
43
|
Borowiec BG, Scott GR. Hypoxia acclimation alters reactive oxygen species homeostasis and oxidative status in estuarine killifish ( Fundulus heteroclitus). J Exp Biol 2020; 223:jeb222877. [PMID: 32457064 DOI: 10.1242/jeb.222877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
Hypoxia is common in aquatic environments, and exposure to hypoxia followed by re-oxygenation is often believed to induce oxidative stress. However, there have been relatively few studies of reactive oxygen species (ROS) homeostasis and oxidative status in fish that experience natural hypoxia-re-oxygenation cycles. We examined how exposure to acute hypoxia (2 kPa O2) and subsequent re-oxygenation (to 20 kPa O2) affects redox status, oxidative damage and anti-oxidant defenses in estuarine killifish (Fundulus heteroclitus), and whether these effects were ameliorated or potentiated by prolonged (28 days) acclimation to either constant hypoxia or intermittent cycles of nocturnal hypoxia (12 h:12 h normoxia:hypoxia). Acute hypoxia and re-oxygenation led to some modest and transient changes in redox status, increases in oxidized glutathione, depletion of scavenging capacity and oxidative damage to lipids in skeletal muscle. The liver had greater scavenging capacity, total glutathione concentrations and activities of anti-oxidant enzymes (catalase, glutathione peroxidase) than muscle, and generally experienced less variation in glutathiones and lipid peroxidation. Unexpectedly, acclimation to constant hypoxia or intermittent hypoxia led to a more oxidizing redox status (muscle and liver) and it increased oxidized glutathione (muscle). However, hypoxia-acclimated fish exhibited little to no oxidative damage (as reflected by lipid peroxidation and aconitase activity), in association with improvements in scavenging capacity and catalase activity in muscle. We conclude that hypoxia acclimation leads to adjustments in ROS homeostasis and oxidative status that do not reflect oxidative stress, but may instead be part of the suite of responses that killifish use to cope with chronic hypoxia.
Collapse
Affiliation(s)
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4L8
| |
Collapse
|
44
|
Ahmed R, Ashimori A, Iwamoto S, Matsui T, Nakahata Y, Bessho Y. Replicative senescent human cells possess altered circadian clocks with a prolonged period and delayed peak-time. Aging (Albany NY) 2020; 11:950-973. [PMID: 30738414 PMCID: PMC6382424 DOI: 10.18632/aging.101794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/24/2019] [Indexed: 01/16/2023]
Abstract
Over the last decade, a wide array of evidence has been accumulated that disruption of circadian clock is prone to cause age-related diseases and premature aging. On the other hand, aging has been identified as one of the risk factors linked to the alteration of circadian clock. These evidences suggest that the processes of aging and circadian clock feedback on each other at the animal level. However, at the cellular level, we recently revealed that the primary fibroblast cells derived from Bmal1-/- mouse embryo, in which circadian clock is completely disrupted, do not demonstrate the acceleration of cellular aging, i.e., cellular senescence. In addition, little is known about the impact of cellular senescence on circadian clock. In this study, we show for the first time that senescent cells possess a longer circadian period with delayed peak-time and that the variability in peak-time is wider in the senescent cells compared to their proliferative counterparts, indicating that senescent cells show alterations of circadian clock. We, furthermore, propose that investigation at cellular level is a powerful and useful approach to dissect molecular mechanisms of aging in the circadian clock.
Collapse
Affiliation(s)
- Rezwana Ahmed
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Atsushige Ashimori
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Satoshi Iwamoto
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Takaaki Matsui
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Yasukazu Nakahata
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| |
Collapse
|
45
|
Martínez-Tapia RJ, Chavarría A, Navarro L. Differences in Diurnal Variation of Immune Responses in Microglia and Macrophages: Review and Perspectives. Cell Mol Neurobiol 2020; 40:301-309. [PMID: 31549296 DOI: 10.1007/s10571-019-00736-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/07/2019] [Indexed: 12/18/2022]
Abstract
Biological rhythms, especially those that last close to 24 h, better known as circadian rhythms, are highly regulated phenomena, maintained throughout evolution in various organisms which allow organisms to predict, prepare for, and adapt to environmental changes. One of these phenomena that exhibit biological rhythms is the immune response to external agents. Immune cells (neutrophils, lymphocytes, macrophages, among others), as well as their mediators such as cytokines and chemokines, undergo variations in tissue and blood concentrations during the day. These rhythms are still being elucidated in microglia, the resident macrophages of the central nervous system, but since these cells share a common origin with peripheral macrophages, they are expected to behave similarly. In this review, we will discuss the possible differences in the responses between peripheral macrophages and microglia, their relationship with the circadian clock, and whether these rhythms can influence therapeutic choices.
Collapse
Affiliation(s)
- Ricardo J Martínez-Tapia
- Neuroendocrinology Laboratory, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Coyacán, Mexico
- Programa de Doctorado en Ciencias Biomédicas, División de Estudios de Posgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luz Navarro
- Neuroendocrinology Laboratory, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Coyacán, Mexico.
| |
Collapse
|
46
|
Morris AR, Stanton DL, Roman D, Liu AC. Systems Level Understanding of Circadian Integration with Cell Physiology. J Mol Biol 2020; 432:3547-3564. [PMID: 32061938 DOI: 10.1016/j.jmb.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
The mammalian circadian clock regulates a wide variety of physiological and behavioral processes. In turn, its disruption is associated with sleep deficiency, metabolic syndrome, neurological and psychiatric disorders, and cancer. At the turn of the century, the circadian clock was determined to be regulated by a transcriptional negative feedback mechanism composed of a dozen core clock genes. More recently, large-scale genomic studies have expanded the clock into a complex network composed of thousands of gene outputs and inputs. A major task of circadian research is to utilize systems biological approaches to uncover the governing principles underlying cellular oscillatory behavior and advance understanding of biological functions at the genomic level with spatiotemporal resolution. This review focuses on the genes and pathways that provide inputs to the circadian clock. Several emerging examples include AMP-activated protein kinase AMPK, nutrient/energy sensor mTOR, NAD+-dependent deacetylase SIRT1, hypoxia-inducible factor HIF1α, oxidative stress-inducible factor NRF2, and the proinflammatory factor NF-κB. Among others that continue to be revealed, these input pathways reflect the extensive interplay between the clock and cell physiology through the regulation of core clock genes and proteins. While the scope of this crosstalk is well-recognized, precise molecular links are scarce, and the underlying regulatory mechanisms are not well understood. Future research must leverage genetic and genomic tools and technologies, network analysis, and computational modeling to characterize additional modifiers and input pathways. This systems-based framework promises to advance understanding of the circadian timekeeping system and may enable the enhancement of circadian functions through related input pathways.
Collapse
Affiliation(s)
- Andrew R Morris
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Daniel L Stanton
- Department of Animal Sciences, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, United States of America
| | - Destino Roman
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Andrew C Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States of America.
| |
Collapse
|
47
|
Pilorz V, Astiz M, Heinen KO, Rawashdeh O, Oster H. The Concept of Coupling in the Mammalian Circadian Clock Network. J Mol Biol 2020; 432:3618-3638. [PMID: 31926953 DOI: 10.1016/j.jmb.2019.12.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
The circadian clock network regulates daily rhythms in mammalian physiology and behavior to optimally adapt the organism to the 24-h day/night cycle. A central pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), coordinates subordinate cellular oscillators in the brain, as well as in peripheral organs to align with each other and external time. Stability and coordination of this vast network of cellular oscillators is achieved through different levels of coupling. Although coupling at the molecular level and across the SCN is well established and believed to define its function as pacemaker structure, the notion of coupling in other tissues and across the whole system is less well understood. In this review, we describe the different levels of coupling in the mammalian circadian clock system - from molecules to the whole organism. We highlight recent advances in gaining knowledge of the complex organization and function of circadian network regulation and its significance for the generation of stable but plastic intrinsic 24-h rhythms.
Collapse
Affiliation(s)
- Violetta Pilorz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Mariana Astiz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Keno Ole Heinen
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany
| | - Oliver Rawashdeh
- The University of Queensland, School of Biomedical Sciences, Faculty of Medicine, St Lucia Qld, 4071, Australia
| | - Henrik Oster
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany.
| |
Collapse
|
48
|
Heyde I, Oster H. Differentiating external zeitgeber impact on peripheral circadian clock resetting. Sci Rep 2019; 9:20114. [PMID: 31882641 PMCID: PMC6934673 DOI: 10.1038/s41598-019-56323-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Circadian clocks regulate physiological functions, including energy metabolism, along the 24-hour day cycle. The mammalian clock system is organized in a hierarchical manner with a coordinating pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN). The SCN clock is reset primarily by the external light-dark cycle while other zeitgebers such as the timing of food intake are potent synchronizers of many peripheral tissue clocks. Under conflicting zeitgeber conditions, e.g. during shift work, phase synchrony across the clock network is disrupted promoting the development of metabolic disorders. We established a zeitgeber desynchrony (ZD) paradigm to quantify the differential contributions of the two main zeitgebers, light and food, to the resetting of specific tissue clocks and the effect on metabolic homeostasis in mice. Under 28-hour light-dark and 24-hour feeding-fasting conditions SCN and peripheral clock, as well as activity and hormonal rhythms showed specific periodicities aligning in-between those of the two zeitgebers. During ZD, metabolic homeostasis was cyclic with mice gaining weight under synchronous and losing weight under conflicting zeitgeber conditions. In summary, our study establishes an experimental paradigm to compare zeitgeber input in vivo and study the physiological consequences of chronodisruption.
Collapse
Affiliation(s)
- Isabel Heyde
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
49
|
Diurnal influences of fasted and non-fasted brisk walking on gastric emptying rate, metabolic responses, and appetite in healthy males. Appetite 2019; 143:104411. [DOI: 10.1016/j.appet.2019.104411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023]
|
50
|
Hsieh AL, Zheng X, Yue Z, Stine ZE, Mancuso A, Rhoades SD, Brooks R, Weljie AM, Eisenman RN, Sehgal A, Dang CV. Misregulation of Drosophila Myc Disrupts Circadian Behavior and Metabolism. Cell Rep 2019; 29:1778-1788.e4. [PMID: 31722196 PMCID: PMC6910219 DOI: 10.1016/j.celrep.2019.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/29/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
Drosophila Myc (dMyc) is highly conserved and functions as a transcription factor similar to mammalian Myc. We previously found that oncogenic Myc disrupts the molecular clock in cancer cells. Here, we demonstrate that misregulation of dMyc expression affects Drosophila circadian behavior. dMyc overexpression results in a high percentage of arrhythmic flies, concomitant with increases in the expression of clock genes cyc, tim, cry, and cwo. Conversely, flies with hypomorphic mutations in dMyc exhibit considerable arrhythmia, which can be rescued by loss of dMnt, a suppressor of dMyc activity. Metabolic profiling of fly heads revealed that loss of dMyc and its overexpression alter steady-state metabolite levels and have opposing effects on histidine, the histamine precursor, which is rescued in dMyc mutants by ablation of dMnt and could contribute to effects of dMyc on locomotor behavior. Our results demonstrate a role of dMyc in modulating Drosophila circadian clock, behavior, and metabolism.
Collapse
Affiliation(s)
- Annie L Hsieh
- Ludwig Institute for Cancer Research, New York, NY 10017, USA; The Wistar Institute, Philadelphia, PA 19104, USA; Department of Neurology, Albert Einstein Medical Center, Philadelphia, PA 19141, USA.
| | - Xiangzhong Zheng
- Chronobiology Program, Howard Hughes Medical Institute (HHMI), Perelman School of Medicine (PSOM), University of Pennsylvania, Philadelphia, PA 19104, USA; Bloomington Drosophila Stock Center, Indiana University, Bloomington, IN 47405, USA.
| | - Zhifeng Yue
- Chronobiology Program, Howard Hughes Medical Institute (HHMI), Perelman School of Medicine (PSOM), University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Anthony Mancuso
- Laboratory for NMR Spectroscopy of Cellular Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth D Rhoades
- Department of Systems Pharmacology and Translational Therapeutics, PSOM and Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | | | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, PSOM and Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 90109, USA
| | - Amita Sehgal
- Chronobiology Program, Howard Hughes Medical Institute (HHMI), Perelman School of Medicine (PSOM), University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Chi V Dang
- Ludwig Institute for Cancer Research, New York, NY 10017, USA; The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|