1
|
Wang H, Xu F, Wang C. Metabolic reprogramming of tumor microenviroment by engineered bacteria. Semin Cancer Biol 2025; 112:58-70. [PMID: 40157514 DOI: 10.1016/j.semcancer.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The tumor microenvironment (TME) is a complex ecosystem that plays a crucial role in tumor progression and response to therapy. The metabolic characteristics of the TME are fundamental to its function, influencing not only cancer cell proliferation and survival but also the behavior of immune cells within the tumor. Metabolic reprogramming-where cancer cells adapt their metabolic pathways to support rapid growth and immune evasion-has emerged as a key factor in cancer immunotherapy. Recently, the potential of engineered bacteria in cancer immunotherapy has gained increasing recognition, offering a novel strategy to modulate TME metabolism and enhance antitumor immunity. This review summarizes the metabolic properties and adaptations of tumor and immune cells within the TME and summarizes the strategies by which engineered bacteria regulate tumor metabolism. We discuss how engineered bacteria can overcome the immunosuppressive TME by reprogramming its metabolism to improve antitumor therapy. Furthermore, we examine the advantages, potential challenges, and future clinical translation of engineered bacteria in reshaping TME metabolism.
Collapse
Affiliation(s)
- Heng Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Fang Xu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
2
|
Zhang J, Kong X, Zhou B, Li R, Yu Z, Zhu J, Xi Q, Li Y, Zhao Z, Zhang R. Metabolic reprogramming of drug resistance in pancreatic cancer: mechanisms and effects. Mol Aspects Med 2025; 103:101368. [PMID: 40398192 DOI: 10.1016/j.mam.2025.101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 05/10/2025] [Accepted: 05/10/2025] [Indexed: 05/23/2025]
Abstract
Pancreatic cancer is a highly aggressive gastrointestinal malignancy, often termed the "king of cancers" due to its notoriously high mortality rate. Its clinical characteristics, including late diagnosis, low surgical resectability, high recurrence rates, significant chemoresistance, and poor prognosis have collectively driven the persistent rise in incidence and mortality. Despite ongoing advancements in therapeutic strategies, the management of pancreatic cancer, particularly at advanced stages, remains challenging. Chemotherapy remains the mainstay of current treatment. However, the prevalent problem of chemotherapy resistance poses a significant obstacle to effective treatment. Metabolic reprogramming, characterized by alterations in glucose metabolism, lipid biosynthesis, and amino acid utilization, supports the high energy demands and rapid proliferation of cancer cells. Emerging evidence suggests that these metabolic changes, possibly mediated by epigenetic mechanisms, also contribute to tumorigenesis and metastasis. These findings highlight the critical role of metabolic alterations in pancreatic cancer pathogenesis. This review explores the relationship between metabolic reprogramming and chemotherapy resistance, discussing underlying mechanisms and summarizing preclinical studies and drug development targeting metabolism. The aim is to provide a comprehensive perspective on potential therapeutic strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Jinyi Zhang
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Department of Biotechnology, Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou,The Second Clinical Medical School of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xueqing Kong
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Department of Biotechnology, Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou,The Second Clinical Medical School of Guangdong Pharmaceutical University, Guangzhou, China
| | - Boyan Zhou
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Department of Biotechnology, Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou,The Second Clinical Medical School of Guangdong Pharmaceutical University, Guangzhou, China
| | - Rui Li
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Department of Biotechnology, Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou,The Second Clinical Medical School of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhaoan Yu
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Department of Biotechnology, Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou,The Second Clinical Medical School of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinrong Zhu
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Department of Biotechnology, Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou,The Second Clinical Medical School of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Xi
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Department of Biotechnology, Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou,The Second Clinical Medical School of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Li
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Department of Biotechnology, Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou,The Second Clinical Medical School of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zichao Zhao
- Department of Emergency Medicine, Shaodong People's Hospital, Shaodong City, Hunan Province, China.
| | - Rongxin Zhang
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Department of Biotechnology, Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou,The Second Clinical Medical School of Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
3
|
Tran NA, Moonshi SS, Lam AK, Lu CT, Vu CQ, Arai S, Ta HT. Nanomaterials in cancer starvation therapy: pioneering advances, therapeutic potential, and clinical challenges. Cancer Metastasis Rev 2025; 44:51. [PMID: 40347350 PMCID: PMC12065774 DOI: 10.1007/s10555-025-10267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Gaining significant attention in recent years, starvation therapy based on the blocking nutrients supply to cancer cells via blood occlusion and metabolic interventions is a promisingly novel approach in cancer treatment. However, there are many crucial obstacles to overcome to achieve effective treatment, for example, poor-targeting delivery, cellular hypoxia, adverse effects, and ineffective monotherapy. The starvation-based multitherapy based on multifunctional nanomaterials can narrow these gaps and pave a promising way for future clinical translation. This review focuses on the progression in nanomaterials-mediated muti-therapeutic modalities based on starvation therapy in recent years and therapeutic limitations that prevent their clinical applications. Moreover, unlike previous reviews that focused on a single aspect of the field, this comprehensive review presents a broader perspective on starvation therapy by summarising advancements across its various therapeutic strategies.
Collapse
Affiliation(s)
- Nam Anh Tran
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Shehzahdi S Moonshi
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cu Tai Lu
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cong Quang Vu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
4
|
Wang Q, Chen Z, Lu X, Lin H, Feng H, Weng N, Chen L, Liu M, Long L, Huang L, Deng Y, Zheng K, Zheng X, Li Y, Cai T, Zheng J, Yang W. Methionine Metabolism Dictates PCSK9 Expression and Antitumor Potency of PD-1 Blockade in MSS Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2501623. [PMID: 40125618 PMCID: PMC12097065 DOI: 10.1002/advs.202501623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Indexed: 03/25/2025]
Abstract
Nutrient metabolisms are vitally interrelated to cancer progression and immunotherapy. However, the mechanisms by which nutrient metabolisms interact to remodel immune surveillance within the tumor microenvironment remain largely unexplored. Here it is demonstrated that methionine restriction inhibits the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of cholesterol homeostasis and a potential target for cancer immunotherapy, in colorectal cancer (CRC) but not in the liver. Mechanistically, methionine is catabolized to S-adenosylmethionine (SAM), promoting mRNA transcription of PCSK9 through increased DNA methyltransferase 1 (DNMT1)-mediated DNA methylation and suppression of sirtuin 6 (SIRT6) expression. Furthermore, both PCSK9 inhibition and dietary methionine restriction (DMR) potentiate PD-1 blockade therapy and foster the infiltration of CD8+ T cells in Colon 26 tumor-bearing mice-a proficient mismatch repair (pMMR)/microsatellite stable (MSS) CRC model that exhibits limited response to anti-PD-1 therapy. Moreover, combining 5-fluorouracil (5-FU) chemotherapy with PCSK9 inhibition and PD-1 blockade further augments therapeutic efficacy for MSS CRC. The findings establish a mechanistic link between amino acid metabolism and cholesterol metabolism within the tumor microenvironment where tumor cells sense methionine to regulate PCSK9 expression, highlighting promising combination therapeutic strategies that may greatly benefit MSS CRC patients.
Collapse
Affiliation(s)
- Qi‐Long Wang
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Zijie Chen
- Guangdong Provincial Key Laboratory of Molecular Oncologic PathologyDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Xiaofei Lu
- Guangdong Provincial Key Laboratory of Molecular Oncologic PathologyDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Huizhen Lin
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Provincial Key Laboratory of Molecular Oncologic PathologyDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Huolun Feng
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Nuozhou Weng
- Department of General SurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Liwen Chen
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Provincial Key Laboratory of Molecular Oncologic PathologyDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Mengnan Liu
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Provincial Key Laboratory of Molecular Oncologic PathologyDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Li Long
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Provincial Key Laboratory of Molecular Oncologic PathologyDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Lingjun Huang
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yongmei Deng
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Kehong Zheng
- Department of General SurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Xiaojun Zheng
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yong Li
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Ting Cai
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Jiabin Zheng
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Wei Yang
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Provincial Key Laboratory of Molecular Oncologic PathologyDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
5
|
Ma C, Xu A, Zuo L, Li Q, Fan F, Hu Y, Sun C. Methionine Dependency and Restriction in Cancer: Exploring the Pathogenic Function and Therapeutic Potential. Pharmaceuticals (Basel) 2025; 18:640. [PMID: 40430461 PMCID: PMC12114517 DOI: 10.3390/ph18050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Methionine, an essential amino acid, is obtained by dietary intake to fulfill the requirements of our bodies. Accumulating evidence indicates that methionine plays a pivotal role in various biological processes, including protein synthesis, energy metabolism, redox balance maintenance, and methylation modifications. Numerous advances underscore the heightened dependence of cancer cells on methionine, which is a significant factor in cancer pathogenesis and development. A profound comprehension of the intricate relationship between methionine metabolism and tumorigenesis is imperative for advancing the field of cancer therapeutics. Herein, we delve into the role of methionine in supporting cancer growth, the impact on epigenetic modifications, and the interaction between methionine and the tumor microenvironment. Additionally, we provide insights into the development of various methionine-targeted therapy strategies. This paper summarizes the current state of research and its translational potential, emphasizing the challenges and opportunities associated with harnessing methionine dependence as a target for innovative cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunyan Sun
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.M.); (A.X.); (L.Z.); (Q.L.); (F.F.); (Y.H.)
| |
Collapse
|
6
|
Ibrahim NK, Schreek S, Cinar B, Stasche AS, Lee SH, Zeug A, Dolgner T, Niessen J, Ponimaskin E, Shcherbata H, Fehlhaber B, Bourquin JP, Bornhauser B, Stanulla M, Pich A, Gutierrez A, Hinze L. SOD2 is a regulator of proteasomal degradation promoting an adaptive cellular starvation response. Cell Rep 2025; 44:115434. [PMID: 40131931 PMCID: PMC12094083 DOI: 10.1016/j.celrep.2025.115434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Adaptation to changes in amino acid availability is crucial for cellular homeostasis, which requires an intricate orchestration of involved pathways. Some cancer cells can maintain cellular fitness upon amino acid shortage, which has a poorly understood mechanistic basis. Leveraging a genome-wide CRISPR-Cas9 screen, we find that superoxide dismutase 2 (SOD2) has a previously unrecognized dismutase-independent function. We demonstrate that SOD2 regulates global proteasomal protein degradation and promotes cell survival under conditions of metabolic stress in malignant cells through the E3 ubiquitin ligases UBR1 and UBR2. Consequently, inhibition of SOD2-mediated protein degradation highly sensitizes different cancer entities, including patient-derived xenografts, to amino acid depletion, highlighting the pathophysiological relevance of our findings. Our study reveals that SOD2 is a regulator of proteasomal protein breakdown upon starvation, which serves as an independent catabolic source of amino acids, a mechanism co-opted by cancer cells to maintain cellular fitness.
Collapse
Affiliation(s)
- Nurul Khalida Ibrahim
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Sabine Schreek
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Buesra Cinar
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Anna Sophie Stasche
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Su Hyun Lee
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andre Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Tim Dolgner
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Julia Niessen
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Halyna Shcherbata
- Department of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Beate Fehlhaber
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Jean-Pierre Bourquin
- Department of Pediatric Hematology/Oncology, University Children's Hospital, 8032 Zurich, Switzerland
| | - Beat Bornhauser
- Department of Pediatric Hematology/Oncology, University Children's Hospital, 8032 Zurich, Switzerland
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology, Research Core Unit - Proteomics, Hannover Medical School, 30625 Hannover, Germany
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Pediatric Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Hinze
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
7
|
Yu M, Su M, Tian Z, Pan L, Li Z, Huang E, Chen Y. Extracellular Vesicle-Packaged Linc-ZNF25-1 from Pancreatic Cancer Cell Promotes Pancreatic Stellate Cell Uptake of Asparagine to Advance Chemoresistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413439. [PMID: 40041969 PMCID: PMC12021039 DOI: 10.1002/advs.202413439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/21/2025] [Indexed: 04/26/2025]
Abstract
Extensive fibrous stroma plays an important role in gemcitabine (GEM) resistance. However, the mechanism by which pancreatic cancer cells interact with pancreatic stellate cells (PSCs) to promote GEM resistance remains unclear. This study investigates the role of metabolic crosstalk between these two cells in inducing GEM resistance. Extracellular vesicles (EVs) of parental and GEM-resistant pancreatic cancer cells are extracted and performed metabolic assays and long noncoding RNA (lncRNA) sequencing. Pancreatic cancer cell-derived EVs promote PSCs activation and extracellular matrix formation, and GEM-resistant pancreatic cancer cells produce more asparagine (Asn), favoring PSCs activation. Mechanistically, pancreatic cancer cell-derived EVs mediate linc-ZNF25-1 to promote Asn uptake via the IGF2BP3/c-Myc/SLC1A5 pathway in PSCs. In addition, mouse models elucidate the oncogenic function of linc-ZNF25-1 and the enhanced therapeutic effect of asparaginase (L-ASNase) in combination with GEM in pancreatic cancer. This study demonstrates that pancreatic cancer cell-derived EVs promote the uptake of Asn released from pancreatic cancer cells through the upregulation of SLC1A5 in PSCs, facilitating PSCs activation and pancreatic cancer resistance to GEM. L-ASNase in combination with GEM is a potential therapeutic strategy for targeting stromal cells to enhance the efficacy of chemotherapeutic agents against pancreatic cancer.
Collapse
Affiliation(s)
- Miao Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of GastroenterologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Mingxin Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of GastroenterologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Zhenfeng Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of GastroenterologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Lele Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of GastroenterologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Zongmeng Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of GastroenterologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Enlai Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of GastroenterologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of GastroenterologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| |
Collapse
|
8
|
Sencha LM, Karpova MA, Dobrynina OE, Balalaeva IV. Cell-type dependent effect of 3D collagen matrix on cancer cell resistance to suboptimal conditions: the case of serum deprivation, glucose starvation, and hypoxia. Tissue Cell 2025; 93:102719. [PMID: 39823703 DOI: 10.1016/j.tice.2024.102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/13/2024] [Accepted: 12/29/2024] [Indexed: 01/20/2025]
Abstract
The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds. However, the role of the ECM in tumor cell adaptation to nutritional deficiencies and hypoxic conditions remains significantly less studied. Since it is generally accepted that tumor cells resistance increases when cultured in a three-dimensional matrix, we sought to experimentally test the universality of this statement. In this work, we analyzed the responses of tumor cells with varying origins and proliferative activities, including human bladder carcinoma, epidermoid carcinoma, and ovarian carcinoma, to deprivation of serum, glucose and oxygen. We compared cell resistance to suboptimal conditions when cultured in a monolayer on tissue culture (TC)-treated polystyrene, on collagen-coated surfaces, or within a three-dimensional hydrogel composed of collagen type I. All three cell lines were stably transfected with fluorescent protein genes. To register the cell growth dynamics, we used a fluorescence-based technique that allows long-term quantitative observations without disrupting the hydrogel. The analyzed cell lines demonstrated different patterns of relative sensitivity to suboptimal conditions. We revealed that the direction and intensity of the collagen matrix effect depend on the cell type. Slowly proliferating ovarian carcinoma cells showed no noticeable changes in their behavior when cultured in a gel compared to a monolayer. In the case of bladder carcinoma, we registered predominantly resistance-stimulating effect of the collagen matrix, but it was significant only under serum deprivation. The most pronounced effect of collagen was registered for epidermoid carcinoma. Importantly, this effect was ambivalent: gel-embedded cells demonstrated significantly enhanced resistance to serum deprivation, but, at the same time, they were more responsive to glucose starvation and hypoxic conditions. We attribute the registered phenomenon to the individual characteristics of tumor cells with different origins and metabolic activities.
Collapse
Affiliation(s)
- Ludmila M Sencha
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria A Karpova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga E Dobrynina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Irina V Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| |
Collapse
|
9
|
Alshajrawi OM, Tengku Din TADAATD, Marzuki SSB, Maulidiani M, Mohd Rusli NARB, Badrol Hisham NFAB, Hui Ying L, Yahya MMB, Wan Azman WNB, Ramli RA, Wan Abdul Rahman WF. Exploring the complex relationship between metabolomics and breast cancer early detection (Review). Mol Clin Oncol 2025; 22:35. [PMID: 40083862 PMCID: PMC11905217 DOI: 10.3892/mco.2025.2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/08/2024] [Indexed: 03/16/2025] Open
Abstract
An overview of metabolomics in cancer research, focusing on the identification of biomarkers, pharmacological targets and therapeutic agents, is provided in the present review. The fundamentals of metabolomics, the role of metabolites in cancer emergence and the methods used in metabolomic analysis, are reviewed. The applications of metabolomics in cancer therapy and diagnostics, as well as the challenges encountered in metabolomic research, are discussed. Finally, the potential clinical uses of metabolomics in cancer research and its future possibilities are explored, emphasising the importance of non-invasive diagnostic and monitoring techniques. The present review highlights the significance of metabolite-based metabolomics as a specialised tool for illuminating disease processes and identifying treatment potentials. The malfunctioning of metabolomic pathways and metabolite accumulation or depletion is caused by metabolomics abnormalities. Metabolite signatures close to a subject's phenotypic informative dimension can be used to monitor therapies and disease prediction diagnosis and prognosis. Non-invasive diagnostic and monitoring techniques with high specificity and selectivity are urgently needed. Metabolite-based metabolomics is a specialised metabolic biomarker and pathway-analysis technique, illuminating the putative processes of numerous human illnesses and determining treatment potentials. Locating biochemical pathway modifications that are early warning signs of pathological malfunction and illness is possible by identifying functional biomarkers linked to phenotypic variance. Scientists generated numerous metabolomics profiles to disclose the underlying processes and metabolomics networks for therapeutic target research in biomedicine. The metabolomic analysis of the potential utility of metabolites as biomarkers for clinical events is summarised in the present review. The significance of metabolite-based metabolomics as a specialised tool for illuminating disease processes and identifying treatment potentials is highlighted.
Collapse
Affiliation(s)
- Omar Mahmoud Alshajrawi
- Department of Chemical Pathology, School of Medical Science, Health Campus, University Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Shahira Sofea Binti Marzuki
- Department of Chemical Pathology, School of Medical Science, Health Campus, University Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Maulidiani Maulidiani
- Faculty of Science and Marine Environment, University Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | | | | | - Lim Hui Ying
- Faculty of Science and Marine Environment, University Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Maya Mazuwin Binti Yahya
- Department of Surgery, School of Medical Science, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Wan Norlina Binti Wan Azman
- Department of Chemical Pathology, School of Medical Science, Health Campus, University Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
- Hospital University Sains Malaysia, Health Campus, University Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ras A. Ramli
- Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu, Terengganu 20400, Malaysia
| | - Wan Faiziah Wan Abdul Rahman
- Department of Pathology, School of Medical Science, Health Campus, University Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
10
|
Ge L, Jiang C, Ma C, Han CY, Gong Y, Zhu L, Liu Q, Liu FL. Ultrasensitive Determination of Amino Acids in Single Cells by Chemical Isotope Labeling with Liquid Chromatography Mass Spectrometry Analysis. Anal Chem 2025; 97:5171-5178. [PMID: 39999418 DOI: 10.1021/acs.analchem.4c06441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Amino acids play multiple critical roles in the regulation of various metabolic pathways and physiological processes in living organisms. Mass spectrometry (MS) has become the most pioneering platform for amino acid analysis. However, the simultaneous and sensitive determination of amino acids is still challenging because of their structural similarity and broad ranges of concentrations. To this end, a pair of isotope labeling reagents, d0/d3-2-((diazomethyl)phenyl)(9-methyl-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indol-2-yl) methanone (DMPI/d3-DMPI), were applied to label amino acid metabolites. The diazo groups on the pair of isotopomers (DMPI/d3-DMPI) can specifically react with the carboxyl groups on the amino acids. The results showed that the retention on reversed-phase column were enhanced and the detection sensitivities of 19 amino acids were increased benefiting from DMPI labeling strategy that transfers the hydrophobic indole heterocycle group of DMPI to the hydrophilic compounds of amino acids. The obtained limits of detection (LODs) of amino acids were in the range of 0.002-0.082 fmol. With this established method, we achieved the sensitive detection of amino acids in a single HUVE cell. Meanwhile, we found that the contents of amino acids in the serum of premature neonates were higher compared to normal neonates. Overall, this developed method provides great support of detection tool for the clinical metabolomic study of amino acids and the investigation of dynamic changes of amino acid metabolism in single cells.
Collapse
Affiliation(s)
- Li Ge
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Chuanling Jiang
- Department of Pharmacy and Biomedical Engineering, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Chengjie Ma
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Chun-Yue Han
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yi Gong
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lili Zhu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qi Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fei-Long Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
11
|
Wu J, Ding C, Zhang C, Xu Z, Deng Z, Wei H, He T, Long L, Tang L, Ma J, Liang X. Methionine metabolite spermidine inhibits tumor pyroptosis by enhancing MYO6-mediated endocytosis. Nat Commun 2025; 16:2184. [PMID: 40038267 PMCID: PMC11880502 DOI: 10.1038/s41467-025-57511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
The connection between amino acid metabolism and pyroptosis remains elusive. Herein, we screen the effect of individual amino acid on pyroptosis and identify that methionine inhibits GSDME-mediated pyroptosis. Mechanistic analyses unveil that MYO6, a unique actin-based motor protein, bridges the GSDME N-terminus (GSDME-NT) and the endocytic adaptor AP2, mediating endolysosomal degradation of GSDME-NT. This degradation is increased by the methionine-derived metabolite spermidine noncanonically by direct binding to MYO6, which enhances MYO6 selectivity for GSDME-NT. Moreover, combination targeted therapies using dietary or pharmacological inhibition in methionine-to-spermidine metabolism in the tumor promotes pyroptosis and anti-tumor immunity, leading to a stronger tumor-suppressive effect in in vivo models. Clinically, higher levels of tumor spermidine and expression of methionine-to-spermidine metabolism-related gene signature predict poorer survival. Conclusively, our research identifies an unrecognized mechanism of pyroptotic resistance mediated by methionine-spermidine metabolic axis, providing a fresh angle for cancer treatment.
Collapse
Affiliation(s)
- Jiawei Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Cong Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Ultrasound and Electrocardiogram, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuqing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhimin Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhenji Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hanmiao Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Tingxiang He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liufen Long
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Linglong Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Xiaoyu Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
12
|
Bolliger M, Wasinger D, Brunmair J, Hagn G, Wolf M, Preindl K, Reiter B, Bileck A, Gerner C, Fitzal F, Meier-Menches SM. Mass spectrometry-based analysis of eccrine sweat supports predictive, preventive and personalised medicine in a cohort of breast cancer patients in Austria. EPMA J 2025; 16:165-182. [PMID: 39991101 PMCID: PMC11842658 DOI: 10.1007/s13167-025-00396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 02/25/2025]
Abstract
Objective Metabolomics measurements of eccrine sweat may provide novel and relevant biomedical information to support predictive, preventive and personalised medicine (3PM). However, only limited data is available regarding metabolic alterations accompanying chemotherapy of breast cancer patients related to residual cancer burden (RCB) or therapy response. Here, we have applied Metabo-Tip, a non-invasive metabolomics assay based on the analysis of eccrine sweat from the fingertips, to investigate the feasibility of such an approach, especially with respect to drug monitoring, assessing lifestyle parameters and stratification of breast cancer patients. Methods Eccrine sweat samples were collected from breast cancer patients (n = 9) during the first cycle of neoadjuvant chemotherapy at four time points in this proof-of-concept study at a Tertiary University Hospital. Metabolites in eccrine sweat were analysed using mass spectrometry. Blood plasma samples from the same timepoints were also collected and analysed using a validated targeted metabolomics kit, in addition to proteomics and fatty acids/oxylipin analysis. Results A total of 247 exogenous small molecules and endogenous metabolites were identified in eccrine sweat of the breast cancer patients. Cyclophosphamide and ondansetron were successfully detected and monitored in eccrine sweat of individual patients and accurately reflected the administration schedule. The non-essential amino acids asparagine, serine and proline, as well as ornithine were significantly regulated in eccrine sweat and blood plasma over the therapy cycle. However, their distinct time-dependent profiles indicated compartment-specific distributions. Indeed, the metabolite composition of eccrine sweat seems to largely resemble the composition of the interstitial fluid. Plasma proteins and fatty acids/oxylipins were not affected by the first treatment cycle. Individual smoking habit was revealed by the simultaneous detection of nicotine and its primary metabolite cotinine in eccrine sweat. Stratification according to RCB revealed pronounced differences in the metabolic composition of eccrine sweat in these patients at baseline, e.g., essential amino acids, possibly due to the systemic contribution of breast cancer and its impact on metabolic turnover. Conclusion Mass spectrometry-based analysis of metabolites from eccrine sweat of breast cancer patients successfully qualified lifestyle parameters for risk assessment and allowed us to monitor drug treatment and systemic response to therapy. Moreover, eccrine sweat revealed a potentially predictive metabolic pattern stratifying patients by the extent of the metabolic activity of breast cancer tissue at baseline. Eccrine sweat is derived from the otherwise hardly accessible interstitial fluid and, thus, opens up a new dimension for biomonitoring of breast cancer in secondary and tertiary care. The simple sample collection without the need for trained personnel could also enable decentralised long-term biomonitoring to assess stable disease or disease progression. Eccrine sweat analysis may indeed significantly advance 3PM for the benefit of breast cancer patients. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-025-00396-6.
Collapse
Affiliation(s)
- Michael Bolliger
- Department of General Surgery (Division of Visceral Surgery), Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Department of Surgery, St. Francis Hospital, Nikolsdorfergasse 32, 1050 Vienna, Austria
| | - Daniel Wasinger
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Waehringer Str. 38-42, 1090 Vienna, Austria
| | - Julia Brunmair
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Gerhard Hagn
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Waehringer Str. 38-42, 1090 Vienna, Austria
| | - Michael Wolf
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Waehringer Str. 38-42, 1090 Vienna, Austria
| | - Karin Preindl
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18–20, Vienna, 1090 Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Birgit Reiter
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18–20, Vienna, 1090 Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Andrea Bileck
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Christopher Gerner
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Florian Fitzal
- Department of Surgery and Vascular Surgery, Hanusch Hospital, Heinrich-Collin-Str. 30, 1140 Vienna, Austria
| | - Samuel M. Meier-Menches
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| |
Collapse
|
13
|
Faiad J, Andrade MF, de Castro G, de Resende J, Coêlho M, Aquino G, Seelaender M. Muscle loss in cancer cachexia: what is the basis for nutritional support? Front Pharmacol 2025; 16:1519278. [PMID: 40078277 PMCID: PMC11897308 DOI: 10.3389/fphar.2025.1519278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer cachexia (CC) is characterized by significant skeletal muscle wasting, and contributes to diminished quality of life, while being associated with poorer response to treatment and with reduced survival. Chronic inflammation plays a central role in driving CC progression, within a complex interplay favoring catabolism. Although cachexia cannot be fully reversed by conventional nutritional support, nutritional intervention shows promise for the prevention and treatment of the syndrome. Of special interest are nutrients with antioxidant and anti-inflammatory potential and those that activate pathways involved in muscle mass synthesis and/or in the inhibition of muscle wasting. Extensive research has been carried out on novel nutritional supplements' power to mitigate CC impact, while the mechanisms through which some nutrients or bioactive compounds exert beneficial effects on muscle mass are still not totally clear. Here, we discuss the most studied supplements and nutritional strategies for dealing with muscle loss in CC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marilia Seelaender
- Cancer Metabolism Research Group, Faculdade de Medicina da Universidade de São Paulo, Departamento de Cirurgia, LIM 26-HC-USP, São Paulo, Brazil
| |
Collapse
|
14
|
Lin K, Wei L, Wang R, Li L, Song S, Wang F, He M, Pu W, Wang J, Wazir J, Cao W, Yang X, Treuter E, Fan R, Wang Y, Huang Z, Wang H. Disrupted methionine cycle triggers muscle atrophy in cancer cachexia through epigenetic regulation of REDD1. Cell Metab 2025; 37:460-476.e8. [PMID: 39729999 DOI: 10.1016/j.cmet.2024.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/19/2024] [Accepted: 10/19/2024] [Indexed: 12/29/2024]
Abstract
The essential amino acid methionine plays a pivotal role in one-carbon metabolism, facilitating the production of S-adenosylmethionine (SAM), a critical supplier for DNA methylation and thereby a modulator of gene expression. Here, we report that the methionine cycle is disrupted in skeletal muscle during cancer cachexia, leading to endoplasmic reticulum stress and DNA hypomethylation-induced expression of the DNA damage inducible transcript 4 (Ddit4) gene, encoding the regulated in development and DNA damage response 1 (REDD1) protein. Targeting DNA methylation by depletion or pharmacological inhibition of DNA methyltransferase 3A (DNMT3A) exacerbates cachexia, while restoring DNMT3A expression or REDD1 knockout alleviates cancer cachexia-induced skeletal muscle atrophy in mice. Methionine supplementation restores DNA methylation of the Ddit4 promoter in a DNMT3A-dependent manner, thereby inhibiting activating transcription factor 4 (ATF4)-mediated Ddit4 transcription. Thus, with the identification of the methionine/SAM-DNMT3A/DNA hypomethylation-Ddit4/REDD1 axis, our study provides molecular insights into an epigenetic mechanism underlying cancer cachexia, and it suggests nutrient supplementation as a promising therapeutic strategy to prevent or reverse cachectic muscle atrophy.
Collapse
Affiliation(s)
- Kai Lin
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Lulu Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; Department of Pathology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an 223399, China
| | - Ranran Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Li Li
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Shiyu Song
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; Nanjing Lupine (YuShanDou) Biomedical Research Institute Co. Ltd, Nanjing 210046, China
| | - Fei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Meiwei He
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210093, Jiangsu, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Wangsen Cao
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaozhong Yang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an 223399, China
| | - Eckardt Treuter
- Department of Medicine Huddinge, Biosciences and Nutrition Unit, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Rongrong Fan
- Department of Medicine Huddinge, Biosciences and Nutrition Unit, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, 98 West Nantong Road, Yangzhou 225001, China.
| | - Zhiqiang Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
15
|
Amrutkar M, Guttorm SJT, Finstadsveen AV, Labori KJ, Eide L, Rootwelt H, Elgstøen KBP, Gladhaug IP, Verbeke CS. Global metabolomic profiling of tumor tissue and paired serum samples to identify biomarkers for response to neoadjuvant FOLFIRINOX treatment of human pancreatic cancer. Mol Oncol 2025; 19:391-411. [PMID: 39545923 PMCID: PMC11793008 DOI: 10.1002/1878-0261.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Neoadjuvant chemotherapy (NAT) is increasingly used for the treatment of non-metastatic pancreatic ductal adenocarcinoma (PDAC) and is established as a standard of care for borderline resectable and locally advanced PDAC. However, full exploitation of its clinical benefits is limited by the lack of biomarkers that assess treatment response. To address this unmet need, global metabolomic profiling was performed on tumor tissue and paired serum samples from patients with treatment-naïve (TN; n = 18) and neoadjuvant leucovorin calcium (folinic acid), fluorouracil, irinotecan hydrochloride and oxaliplatin (FOLFIRINOX)-treated (NAT; n = 17) PDAC using liquid chromatography mass spectrometry. Differentially abundant metabolites (DAMs) in TN versus NAT groups were identified and their correlation with various clinical parameters was assessed. Metabolomics profiling identified 40 tissue and five serum DAMs in TN versus NAT PDAC. In general, DAMs associated with amino acid and nucleotide metabolism were lower in NAT compared to TN. Four DAMs-3-hydroxybutyric acid (BHB), 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), glycochenodeoxycholate and citrulline-were common to both tissue and serum and showed a similar pattern of differential abundance in both groups. A strong positive correlation was observed between serum carbohydrate 19-9 antigen (CA 19-9) and tissue carnitines (C12, C18, C18:2) and N8-acetylspermidine. The reduction in CA 19-9 following NAT correlated negatively with serum deoxycholate levels, and the latter correlated positively with survival. This study revealed neoadjuvant-chemotherapy-induced changes in metabolic pathways in PDAC, mainly amino acid and nucleotide metabolism, and these correlated with reduced CA 19-9 following neoadjuvant FOLFIRINOX treatment.
Collapse
Affiliation(s)
- Manoj Amrutkar
- Department of Pathology, Division of Laboratory MedicineOslo University HospitalNorway
| | - Sander Johannes Thorbjørnsen Guttorm
- Department of Medical Biochemistry, Division of Laboratory MedicineOslo University HospitalNorway
- Core Facility for Global Metabolomics and Lipidomics, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| | | | - Knut Jørgen Labori
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
- Department of Hepato‐Pancreato‐Biliary SurgeryOslo University HospitalOsloNorway
| | - Lars Eide
- Department of Medical Biochemistry, Division of Laboratory MedicineOslo University HospitalNorway
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| | - Helge Rootwelt
- Department of Medical Biochemistry, Division of Laboratory MedicineOslo University HospitalNorway
- Core Facility for Global Metabolomics and Lipidomics, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| | - Katja Benedikte Prestø Elgstøen
- Department of Medical Biochemistry, Division of Laboratory MedicineOslo University HospitalNorway
- Core Facility for Global Metabolomics and Lipidomics, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| | - Ivar P. Gladhaug
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
- Department of Hepato‐Pancreato‐Biliary SurgeryOslo University HospitalOsloNorway
| | - Caroline S. Verbeke
- Department of Pathology, Division of Laboratory MedicineOslo University HospitalNorway
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloNorway
| |
Collapse
|
16
|
Du F, Wu X, He Y, Zhao S, Xia M, Zhang B, Tong J, Xia T. Identification of an Amino Acid Metabolism Reprogramming Signature for Predicting Prognosis, Immunotherapy Efficacy, and Drug Candidates in Colon Cancer. Appl Biochem Biotechnol 2025; 197:714-734. [PMID: 39222169 DOI: 10.1007/s12010-024-05049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Colon cancer ranked third among the most frequently diagnosed cancers worldwide. Amino acid metabolic reprogramming was related to the occurrence and development of colon cancer. We looked for the amino acid metabolism genes (AMGs) associated with amino acid metabolism from molecular signatures database as prognostic markers and constructed amino acid metabolism scoring model (AMS). According to AMS, the patients were divided into high AMS and low AMS groups, and the prognostic characteristics, molecular phenotypes, somatic cell mutation characteristics, immune cell infiltration characteristics, and immunotherapy effect of the two groups were systematically analyzed. Finally, the compounds targeting AMGs were also screened. We screen out 6 prognostic AMGs (P < 0.05) and construct an AMS model based on them. K-M curve indicated that OS in low AMS group was significantly higher than that in high group (P < 0.05), which were validated in multiple datasets. And different AMS groups had different molecular phenotypes, somatic cell mutation characteristics and immune cell infiltration characteristics. Low AMS group had a better effect for immunotherapy. In addition, we predicted potential therapeutic compounds that could bind to AMGs target proteins. AMS model can be used as a hierarchical tool to evaluate the prognosis, immune infiltration characteristics and immunotherapy response ability of colon cancer. And the compounds screened based on AMGs may become new anti-tumor drugs.
Collapse
Affiliation(s)
- Fenqi Du
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiangxin Wu
- Ganzhou Cancer Hospital, Ganzhou, Jiangxi Province, People's Republic of China
| | - Yibo He
- Department of Acupuncture Massage & Rehabilitation, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong Province, People's Republic of China
| | - Shihui Zhao
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China
| | - Mingyu Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China
| | - Bomiao Zhang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jinxue Tong
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China.
| | - Tianyi Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
17
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
18
|
Yao P, Cao S, Zhu Z, Wen Y, Guo Y, Liang W, Xie J. Cellular Signaling of Amino Acid Metabolism in Prostate Cancer. Int J Mol Sci 2025; 26:776. [PMID: 39859489 PMCID: PMC11765784 DOI: 10.3390/ijms26020776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Prostate cancer is one of the most common malignancies affecting men worldwide and a leading cause of cancer-related mortality, necessitating a deeper understanding of its underlying biochemical pathways. Similar to other cancer types, prostate cancer is also characterised by aberrantly activated metabolic pathways that support tumour development, such as amino acid metabolism, which is involved in modulating key physiological and pathological cellular processes during the progression of this disease. The metabolism of several amino acids, such as glutamine and methionine, crucial for tumorigenesis, is dysregulated and commonly discussed in prostate cancer. And the roles of some less studied amino acids, such as histidine and glycine, have also been covered in prostate cancer studies. Aberrant regulation of two major signalling pathways, mechanistic target of rapamycin (mTOR) and general amino acid control non-depressible 2 (GCN2), is a key driver of reshaping the amino acid metabolism landscape in prostate cancer. By summarising our current understanding of how amino acid metabolism is modulated in prostate cancer, here, we provide further insights into certain potential therapeutic targets for managing prostate cancer through metabolic interventions.
Collapse
Affiliation(s)
- Ping Yao
- School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China
| | - Shiqi Cao
- School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China
| | - Ziang Zhu
- School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China
| | - Yunru Wen
- School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China
| | - Yawen Guo
- School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China
| | - Wenken Liang
- School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China
| | - Jianling Xie
- School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
19
|
Ma Q, Zhang W, Wu K, Shi L. The roles of KRAS in cancer metabolism, tumor microenvironment and clinical therapy. Mol Cancer 2025; 24:14. [PMID: 39806421 PMCID: PMC11727292 DOI: 10.1186/s12943-024-02218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
KRAS is one of the most mutated genes, driving alternations in metabolic pathways that include enhanced nutrient uptaking, increased glycolysis, elevated glutaminolysis, and heightened synthesis of fatty acids and nucleotides. However, the beyond mechanisms of KRAS-modulated cancer metabolisms remain incompletely understood. In this review, we aim to summarize current knowledge on KRAS-related metabolic alterations in cancer cells and explore the prevalence and significance of KRAS mutation in shaping the tumor microenvironment and influencing epigenetic modification via various molecular activities. Given that cancer cells rely on these metabolic changes to sustain cell growth and survival, targeting these processes may represent a promising therapeutic strategy for KRAS-driven cancers.
Collapse
Affiliation(s)
- Qinglong Ma
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
20
|
Karale RR, Kamble S, Alwaleedy S, Kabara KB, Narwade P, Al-Hamdani SM, Kumbharkhane AC, Sarode AV. Hydration behavior of asparagine: an approach using time domain reflectometry at low temperatures. J Biomol Struct Dyn 2024:1-14. [PMID: 39731534 DOI: 10.1080/07391102.2024.2445153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/10/2024] [Indexed: 12/30/2024]
Abstract
The dielectric behavior of Asparagine (C4H8N2O3) in water over the frequency range of 10 MHz to 30 GHz in the temperature region of 278.15-303.15 K in a step of 5 K has been carried out using time domain reflectometry (TDR) at various concentrations of asparagine. The obtained dielectric spectra reveal two relaxation peaks. The low frequency relaxation is attributed to the interaction between solute-solute molecules, while the high frequency relaxation is due to the reorientation of solvent molecules. The various dielectric and thermodynamic parameters were calculated such as the dielectric constant (εj), relaxation time (τj), effective dipole moment (μeff), Kirkwood correlation factor (g1), hydration number or the number of solvent molecules effectively bounded to solute molecule (Zib), effective volume of rotation (Veff), free energy of activation (ΔFj), entropy of activation (ΔSj) and enthalpy of activation (ΔHj). The static dielectric constant (ε1) shows increasing trend towards the higher concentration of asparagine, where as the high frequency dielectric constant (ε2) decreases with the concentration of asparagine. The relaxation time of low frequency (τ1) and high frequency (τ2) processes increases towards higher concentration of solute molecule and also towards lower temperature. As the concentration of asparagine increases, the value of effective dipole moment (μeff) decreases. With increasing amino acid concentrations hydration dynamics get affected and indicated by decreasing the hydration number (Zib) but the hydration dynamics of aqueous asparagine was found least temperature dependent.
Collapse
Affiliation(s)
- Ravikant R Karale
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Savita Kamble
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Suad Alwaleedy
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
- Department of Physics, Taiz University, Taiz, Yemen
| | - Komal B Kabara
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Pallavi Narwade
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
- Department of Physics, Shri Vitthal Rukmini Arts, Commerce and Science College, Yavatmal, Maharashtra, India
| | - Saeed Mohammed Al-Hamdani
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
- Department of Physics, Abyn University, Yemen
| | - Ashok C Kumbharkhane
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Arvind V Sarode
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| |
Collapse
|
21
|
Zhu W, Fu M, Li Q, Chen X, Liu Y, Li X, Luo N, Tang W, Zhang Q, Yang F, Chen Z, Zhang Y, Peng B, Zhang Q, Zhang Y, Peng X, Hu G. Amino acid metabolism-related genes as potential biomarkers and the role of MATN3 in stomach adenocarcinoma: A bioinformatics, mendelian randomization and experimental validation study. Int Immunopharmacol 2024; 143:113253. [PMID: 39353384 DOI: 10.1016/j.intimp.2024.113253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is a major contributor to cancer-related mortality worldwide. Alterations in amino acid metabolism, which is integral to protein synthesis, have been observed across various tumor types. However, the prognostic significance of amino acid metabolism-related genes in STAD remains underexplored. METHODS Transcriptomic gene expression and clinical data for STAD patients were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Amino acid metabolism-related gene sets were sourced from the Gene Set Enrichment Analysis (GSEA) database. A prognostic model was built using LASSO Cox regression based on the TCGA cohort and validated with GEO datasets (GSE84433, GSE84437, GSE84426). Kaplan-Meier analysis compared overall survival (OS) between high- and low-risk groups, and ROC curves assessed model accuracy. A nomogram predicted 1-, 3-, and 5-year survival. Copy number variations (CNVs) in model genes were visualized using data from the Xena platform, and mutation profiles were analyzed with "maftools" to create a waterfall plot. KEGG and GO enrichment analyses were performed to explore biological mechanisms. Immune infiltration and related functions were evaluated via ssGSEA, and Spearman correlation analyzed associations between risk scores and immune components. The TIDE database predicted immunotherapy efficacy, while FDA-approved drug sensitivity was assessed through CellMiner database. The role of MATN3 in STAD was further examined in vitro and in vivo, including amino acid-targeted metabolomic sequencing to assess its impact on metabolism. Finally, Mendelian randomization (MR) analysis evaluated the causal relationship between the model genes and gastric cancer. RESULTS In this study, we developed a prognostic risk model for STAD based on three amino acid metabolism-related genes (SERPINE1, NRP1, MATN3) using LASSO regression analysis. CNV amplification was common in SERPINE1 and NRP1, while CNV deletion frequently occurred in MATN3. STAD patients were classified into high- and low-risk groups based on the median risk score, with the high-risk group showing worse prognosis. A nomogram incorporating the risk score and clinical factors was created to estimate 1-, 3-, and 5-year survival rates. Distinct mutation profiles were observed between risk groups, with KEGG pathway analysis showing immune-related pathways enriched in the high-risk group. High-risk scores were significantly associated with the C6 (TGF-β dominant) subtype, while low-risk scores correlated with the C4 (lymphocyte-depleted) subtype. Higher risk scores also indicated increased immune infiltration, enhanced immune functions, lower tumor purity, and poorer immunotherapy response. Model genes were linked to anticancer drug sensitivity. Manipulating MATN3 expression showed that it promoted STAD cell proliferation and migration in vitro and tumor growth in vivo. Metabolomic sequencing revealed that MATN3 knockdown elevated levels of 30 amino acid metabolites, including alpha-aminobutyric acid, glycine, and aspartic acid, while reducing (S)-β-Aminoisobutyric acid and argininosuccinic acid. MR analysis found a significant causal effect of NRP1 on gastric cancer, but no causal relationship for MATN3 or SERPINE1. CONCLUSION In conclusion, the amino acid metabolism-related prognostic model shows promise as a valuable biomarker for predicting the clinical prognosis, selecting immunotherapy and drug treatment for STAD patients. Furthermore, our study has shed light on the potential value of the MATN3 as a promising strategy for combating the progression of STAD.
Collapse
Affiliation(s)
- Wenjun Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyu Li
- Department of Oncology, Hubei Cancer Hospital, Wuhan 430000, China
| | - Na Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenhua Tang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ziqi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiling Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bi Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiang Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
22
|
Besermenji K, Petracca R. Rewiring Lysine Catabolism in Cancer Leads to Increased Histone Crotonylation and Immune Escape. Chembiochem 2024; 25:e202400638. [PMID: 39462882 DOI: 10.1002/cbic.202400638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Indexed: 10/29/2024]
Abstract
Crotonyl-CoA (cr-CoA) is a metabolite derived directly from the catabolism of lysine (Lys) and tryptophan (Trp) or from the β-oxidation of fatty acids. In glioblastoma stem cells (GSCs), histone H4 crotonylation levels are significantly elevated, which appears to positively correlate with tumor growth. This increase in crotonyl-CoA production is attributed to the overexpression of specific Lys transporters on the cell membrane, leading to higher free lysine levels. Additionally, the overexpression of glutaryl-CoA dehydrogenase (GCDH), the enzyme responsible for crotonyl-CoA production, further contributes to this increase. When GCDH is depleted or under a lysine-restricted diet, genes involved in type I interferon (IFN) signaling are upregulated, resulting in tumor growth suppression. Type I interferons are a group of cytokines critical for antiviral responses and immunoregulation. This highlights how cancer cells exploit crotonylation to modulate the immune response. This work opens up new avenues for investigating how cancer cells rewire their metabolism to increase crotonylation and evade the immune system.
Collapse
Affiliation(s)
- Kosta Besermenji
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, David De Wied building, Universiteitsweg 99, 3584 CG, Utrecht, NL
| | - Rita Petracca
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, David De Wied building, Universiteitsweg 99, 3584 CG, Utrecht, NL
| |
Collapse
|
23
|
Hong J, Liu W, Xiao X, Gajendran B, Ben-David Y. Targeting pivotal amino acids metabolism for treatment of leukemia. Heliyon 2024; 10:e40492. [PMID: 39654725 PMCID: PMC11626780 DOI: 10.1016/j.heliyon.2024.e40492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Metabolic reprogramming is a crucial characteristic of cancer, allowing cancer cells to acquire metabolic properties that support their survival, immune evasion, and uncontrolled proliferation. Consequently, targeting cancer metabolism has become an essential therapeutic strategy. Abnormal amino acid metabolism is not only a key aspect of metabolic reprogramming but also plays a significant role in chemotherapy resistance and immune evasion, particularly in leukemia. Changes in amino acid metabolism in tumor cells are typically driven by a combination of signaling pathways and transcription factors. Current approaches to targeting amino acid metabolism in leukemia include inhibiting amino acid transporters, blocking amino acid biosynthesis, and depleting specific amino acids to induce apoptosis in leukemic cells. Different types of leukemic cells rely on the exogenous supply of specific amino acids, such as asparagine, glutamine, arginine, and tryptophan. Therefore, disrupting the supply of these amino acids may represent a vulnerability in leukemia. This review focuses on the pivotal role of amino acids in leukemia metabolism, their impact on leukemic stem cells, and their therapeutic potential.
Collapse
Affiliation(s)
- Jiankun Hong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Babu Gajendran
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, 550014, PR China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, PR China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| |
Collapse
|
24
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
25
|
Zaman A, Ghosh A, Ghosh AK, Das PK. DON encapsulated carbon dot-vesicle conjugate in therapeutic intervention of lung adenocarcinoma by dual targeting of CD44 and SLC1A5. NANOSCALE 2024; 16:21817-21836. [PMID: 39513401 DOI: 10.1039/d4nr00426d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Lung adenocarcinoma, recognized as one of the most formidable malignancies with a dismal prognosis and low survival rates, poses a significant challenge in its treatment. This article delineates the design and development of a carbon dot-vesicle conjugate (HACD-TMAV) for efficient cytotoxicity towards lung cancer cells by target selective delivery of the glutamine inhibitor 6-diazo-5-oxo-L-norleucine (DON) within CD44-enriched A549 cancer cells. HACD-TMAV is composed of hyaluronic acid-based carbon dots (HACDs) and trimesic acid-based vesicles (TMAV), which are bound via electrostatic interactions. TMAVs are formed by positively charged trimesic acid-based amphiphiles through H-type aggregation in water. HACDs were synthesized through a one-step hydrothermal route. The blue-emitting HACD-TMAV conjugate demonstrated selective bioimaging in CD44-overexpressed A549 lung cancer cells due to specific ligand-receptor interactions between HA and CD44. HACD-TMAV exhibited notably improved DON loading efficiency compared to individual nano-vehicles. HACD-TMAV-DON exhibited remarkable (∼6.0-fold higher) cytotoxicity against CD44-overexpressing A549 cells compared to CD44- HepG2 cells and HEK 293 normal cells. Also, DON-loaded HACD-TMAV showed ∼2.0-fold higher cytotoxicity against A549 cells compared to individual carriers and ∼4.5-fold higher cytotoxicity than by DON. Furthermore, HACD-TMAV-DON induced a ∼3.5-fold reduction in the size of 3D tumor spheroids of A549 cells. The enhanced anticancer effectiveness was attributed to starvation of the A549 cells of glutamine by dual targeting of glutamine metabolism and solute linked carrier family 1 member A5 (SLC1A5) through HA-linked CD44-mediated targeted delivery of DON. This led to over-production of reactive oxygen species (ROS) that induced apoptosis of cancer cells through downregulation of the PI3K/AKT/mTOR signaling cascade.
Collapse
Affiliation(s)
- Afreen Zaman
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Aparajita Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Anup Kumar Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata - 700032, India.
| |
Collapse
|
26
|
Liaghat M, Ferdousmakan S, Mortazavi SH, Yahyazadeh S, Irani A, Banihashemi S, Seyedi Asl FS, Akbari A, Farzam F, Aziziyan F, Bakhtiyari M, Arghavani MJ, Zalpoor H, Nabi-Afjadi M. The impact of epithelial-mesenchymal transition (EMT) induced by metabolic processes and intracellular signaling pathways on chemo-resistance, metastasis, and recurrence in solid tumors. Cell Commun Signal 2024; 22:575. [PMID: 39623377 PMCID: PMC11610171 DOI: 10.1186/s12964-024-01957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The intricate cellular process, known as the epithelial-mesenchymal transition (EMT), significantly influences solid tumors development. Changes in cell shape, metabolism, and gene expression linked to EMT facilitate tumor cell invasion, metastasis, drug resistance, and recurrence. So, a better understanding of the intricate processes underlying EMT and its role in tumor growth may lead to the development of novel therapeutic approaches for the treatment of solid tumors. This review article focuses on the signals that promote EMT and metabolism, the intracellular signaling pathways leading to EMT, and the network of interactions between EMT and cancer cell metabolism. Furthermore, the functions of EMT in treatment resistance, recurrence, and metastasis of solid cancers are covered. Lastly, treatment approaches that focus on intracellular signaling networks and metabolic alterations brought on by EMT will be discussed.
Collapse
Affiliation(s)
- Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085, India
| | | | - Sheida Yahyazadeh
- Department of Immunology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asrin Irani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Javad Arghavani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
27
|
Feng L, Wang X, Guo X, Shi L, Su S, Li X, Wang J, Tan N, Ma Y, Wang Z. Identification of Novel Target DCTPP1 for Colorectal Cancer Therapy with the Natural Small-Molecule Inhibitors Regulating Metabolic Reprogramming. Angew Chem Int Ed Engl 2024; 63:e202402543. [PMID: 39143504 DOI: 10.1002/anie.202402543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/04/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. Identification of new effective drug targets for CRC and exploration of bioactive small-molecules are clinically urgent. The human dCTP pyrophosphatase 1 (DCTPP1) is a newly identified pyrophosphatase regulating the cellular nucleotide pool but remains unexplored as potential target for CRC treatment. Here, twelve unprecedented chemical architectures terpene-nonadride heterodimers (1-12) and their monomers (13-20) were isolated from endophyte Bipolaris victoriae S27. Compounds 1-12 represented the first example of terpene-nonadride heterodimers, in which nonadride monomers of 1 and 2 were also first example of 5/6 bicyclic nonadrides. A series of assays showed that 2 could repress proliferation and induce cell cycle arrest, apoptotic and autophagic CRC cell death in vitro and in vivo. Clinical cancer samples data revealed that DCTPP1 was a novel target associated with poor survival in CRC. DCTPP1 was also identified as a new target protein of 2. Mechanically, compound 2 bound to DCTPP1, inhibited its enzymatic activity, intervened with amino acid metabolic reprogramming, and exerted anti-CRC activity. Our study demonstrates that DCTPP1 was a novel potential biomarker and therapeutic target for CRC, and 2 was the first natural anti-CRC drug candidate targeting DCTPP1.
Collapse
Affiliation(s)
- Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Xinjia Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Xinrui Guo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Liyuan Shi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Shihuang Su
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Xinjing Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Jia Wang
- School of Pharmacy, Nanjing Medical University, 211166, Nanjing, People's Republic of China
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Yi Ma
- State Key Laboratory of Natural Medicines, School of Engineering, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| |
Collapse
|
28
|
Khamespanah E, Asad S, Vanak Z, Mehrshad M. Niche-Aware Metagenomic Screening for Enzyme Methioninase Illuminates Its Contribution to Metabolic Syntrophy. MICROBIAL ECOLOGY 2024; 87:141. [PMID: 39546027 PMCID: PMC11568061 DOI: 10.1007/s00248-024-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
The single-step methioninase-mediated degradation of methionine (as a sulfur containing amino acid) is a reaction at the interface of carbon, nitrogen, sulfur, and methane metabolism in microbes. This enzyme also has therapeutic application due to its role in starving auxotrophic cancer cells. Applying our refined in silico screening pipeline on 33,469 publicly available genome assemblies and 1878 metagenome assembled genomes/single-cell amplified genomes from brackish waters of the Caspian Sea and the Fennoscandian Shield deep groundwater resulted in recovering 1845 methioninases. The majority of recovered methioninases belong to representatives of phyla Proteobacteria (50%), Firmicutes (29%), and Firmicutes_A (13%). Prevalence of methioninase among anaerobic microbes and in the anoxic deep groundwater together with the relevance of its products for energy conservation in anaerobic metabolism highlights such environments as desirable targets for screening novel methioninases and resolving its contribution to microbial metabolism and interactions. Among archaea, majority of detected methioninases are from representatives of Methanosarcina that are able to use methanethiol, the sulfur containing product from methionine degradation, as a precursor for methanogenesis. Branching just outside these archaeal methioninases in the phylogenetic tree, we recovered three methioninases belonging to representatives of Patescibacteria reconstructed from deep groundwater metagenomes. We hypothesize that methioninase in Patescibacteria could contribute to their syntrophic interactions where their methanogenic partners/hosts benefit from the produced 2-oxobutyrate and methanethiol. Our results underscore the significance of accounting for specific ecological niche in screening for enzyme variates with desired characteristics. Finally, complementing of our findings with experimental validation of methioninase activity confirms the potential of our in silico screening in clarifying the peculiar ecological role of methioninase in anoxic environments.
Collapse
Affiliation(s)
- Erfan Khamespanah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Zeynab Vanak
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden.
| |
Collapse
|
29
|
Abdelrahman AA, Sandow PV, Wang J, Xu Z, Rojas M, Bomalaski JS, Lemtalsi T, Caldwell RB, Caldwell RW. Arginine deprivation/citrulline augmentation with ADI-PEG20 as novel therapy for complications in type 2 diabetes. Mol Metab 2024; 89:102020. [PMID: 39214514 PMCID: PMC11414555 DOI: 10.1016/j.molmet.2024.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Chronic inflammation and oxidative stress mediate the pathological progression of diabetic complications, like diabetic retinopathy (DR), peripheral neuropathy (DPN) and impaired wound healing. Studies have shown that treatment with a stable form of arginase 1 that reduces l-arginine levels and increases ornithine and urea limits retinal injury and improves visual function in DR. We tested the therapeutic efficacy of PEGylated arginine deiminase (ADI-PEG20) that depletes l-arginine and elevates l-citrulline on diabetic complications in the db/db mouse model of type 2 diabetes (T2D). METHODS Mice received intraperitoneal (IP), intramuscular (IM), or intravitreal (IVT) injections of ADI-PEG20 or PEG20 as control. Effects on body weight, fasting blood glucose levels, blood-retinal-barrier (BRB) function, visual acuity, contrast sensitivity, thermal sensitivity, and wound healing were determined. Studies using bone marrow-derived macrophages (BMDM) examined the underlying signaling pathway. RESULTS Systemic injections of ADI-PEG20 reduced body weight and blood glucose and decreased oxidative stress and inflammation in db/db retinas. These changes were associated with improved BRB and visual function along with thermal sensitivity and wound healing. IVT injections of either ADI-PEG20, anti-VEGF antibody or their combination also improved BRB and visual function. ADI-PEG20 treatment also prevented LPS/IFNℽ-induced activation of BMDM in vitro as did depletion of l-arginine and elevation of l-citrulline. CONCLUSIONS/INTERPRETATION ADI-PEG20 treatment limited signs of DR and DPN and enhanced wound healing in db/db mice. Studies using BMDM suggest that the anti-inflammatory effects of ADI-PEG20 involve blockade of the JAK2-STAT1 signaling pathway via l-arginine depletion and l-citrulline production.
Collapse
Affiliation(s)
- Ammar A Abdelrahman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912 USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA.
| | - Porsche V Sandow
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912 USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Jing Wang
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Zhimin Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Modesto Rojas
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912 USA; Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | | | - Tahira Lemtalsi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Robert W Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912 USA; Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA.
| |
Collapse
|
30
|
Surrer DB, Schüsser S, König J, Fromm MF, Gessner A. Transport of aromatic amino acids l-tryptophan, l-tyrosine, and l-phenylalanine by the organic anion transporting polypeptide (OATP) 3A1. FEBS J 2024; 291:4732-4743. [PMID: 39206635 DOI: 10.1111/febs.17255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Amino acids are important for cellular metabolism. Their uptake across the plasma membrane is mediated by transport proteins. Despite the fact that the organic anion transporting polypeptide 4C1 (OATP4C1, Uniprot: Q6ZQN7) mediates transport of l-arginine and l-arginine derivatives, other members of the OATP family have not been characterized as amino acid transporters. The OATP family member OATP3A1 (gene symbol SLCO3A1, Uniprot: Q9UIG8) is ubiquitously expressed in human cells and highly expressed in many cancer tissues and cell lines. However, only a few substrates are known for OATP3A1. Accordingly, knowledge about its biological relevance is restricted. Our aim was to identify new substrates of OATP3A1 to gain insights into its (patho-)physiological function. In an LC-MS-based untargeted metabolomics assay using untreated OATP3A1-overexpressing HEK293 cells and control cells, we identified several amino acids as potential substrates of OATP3A1. Subsequent uptake experiments using exogenously added substrates revealed OATP3A1-mediated transport of l-tryptophan, l-tyrosine, and l-phenylalanine with 194.8 ± 28.7% (P < 0.05), 226.2 ± 18.7% (P < 0.001), and 235.2 ± 13.5% (P < 0.001), respectively, in OATP3A1-overexpressing cells compared to control cells. Furthermore, kinetic transport parameters (Km values) were determined (Trp = 61.5 ± 14.2 μm, Tyr = 220.8 ± 54.5 μm, Phe = 234.7 ± 20.6 μm). In summary, we identified the amino acids l-tryptophan, l-tyrosine, and l-phenylalanine as new substrates of OATP3A1. These findings could be used for a better understanding of (patho-)physiological processes involving increased demand of amino acids, where OATP3A1 should be considered as an important uptake transporter of l-tryptophan, l-tyrosine, and l-phenylalanine.
Collapse
Affiliation(s)
- Daniela B Surrer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Sarah Schüsser
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
31
|
Ham S, Choi BH, Kwak MK. NRF2 signaling and amino acid metabolism in cancer. Free Radic Res 2024; 58:648-661. [PMID: 39540796 DOI: 10.1080/10715762.2024.2423690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Alterations in amino acid metabolism have emerged as a critical component in cancer biology, influencing various aspects of tumor initiation, progression, and metastasis. This review explores how amino acids, beyond their role as protein building blocks, are essential for redox balance, cell proliferation, metastasis, signaling/epigenetic regulation, and tumor microenvironment modulation in cancer. We particularly focus on the intricate relationship between amino acid metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling, a master regulator of oxidative stress response that frequently hyperactivated in cancer. Increasing evidence indicates that NRF2 is a key player in amino acid metabolism, orchestrating metabolism of cysteine, glutamine, and serine/glycine to promote cancer cell survival and growth. This comprehensive analysis provides insights into potential therapeutic strategies targeting the NRF2-amino acid metabolism axis, offering new avenues for cancer treatment that address multiple aspects of tumor biology.
Collapse
Affiliation(s)
- Suji Ham
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
32
|
Sun J, Shi S, Sun C, Wang J, Yang X, Yang Z, Xu J, Zhang S. Predictive nomogram of the clinical outcomes of colorectal cancer based on methylated SEPT9 and intratumoral IL-10 + Tregs infiltration. J Transl Med 2024; 22:861. [PMID: 39334238 PMCID: PMC11430755 DOI: 10.1186/s12967-024-05635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Gene methylation and the immune-related tumor microenvironment (TME) are highly correlated in tumor progression and therapeutic efficacy. Although both of them can be used to predict the clinical outcomes of colorectal cancer (CRC) patients, their predictive value is still unsatisfactory. Whether a combination risk model comprising these two prediction parameters performs better predictive effectiveness than independent factor is still unclear. Methylated Septin9 (mSEPT9) is an early diagnosis biomarker of CRC, in this study, we aimed to investigate mSEPT9-related biomarkers of immunosuppressive TME and identify the value of the combination risk model in predicting the clinical outcomes of CRC. METHODS Immunofluorescence staining was performed to clarify the correlation between intratumoral IL-10+ Treg infiltration and mSEPT9 in peripheral blood. Survival time, response to 5-fluorouracil (5-FU)-based chemotherapy and PD-1 blockade, and the probability of recurrence or metastasis were analyzed in study (197 CRC samples) and validation (195 CRC samples) sets to evaluate the efficacy of combination risk model. Potential mechanisms were explored by mRNA sequencing. RESULTS Hypermethylated SEPT9 in the peripheral blood of patients with CRC (stage I-III, and stage IV with resectable M1) before radical resection was positively correlated with high intratumoral IL-10+ Treg infiltration. The high-risk model revealed poor overall survival and progression-free survival, inferior therapeutic response to 5-FU-based chemotherapy and PD-1 blockade, and high probability of recurrence or metastasis. The underlying mechanisms may be associated with the increase in mSEPT9 and mediation of IL-10 via methionine metabolic reprogramming-induced infiltration of IL-10+ Tregs in the TME, which promotes tumor progression and resistance to 5-FU-based chemotherapy and PD-1 blockade. CONCLUSIONS The combination risk model of peripheral mSETP9 and intratumoral IL-10+ Treg infiltration in CRC can effectively predict prognosis, responsiveness to 5-FU-based chemotherapy and PD-1 blockade, and the probability of recurrence or metastasis. Therefore, this model can be used for precision treatment of CRC.
Collapse
Affiliation(s)
- Jie Sun
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Songli Shi
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Chao Sun
- Department of Radiology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jiangping Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300121, People's Republic of China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Zhengduo Yang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jing Xu
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Department of General Surgery, Tianjin University Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China.
| |
Collapse
|
33
|
Tufail M, Jiang CH, Li N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Mol Cancer 2024; 23:203. [PMID: 39294640 PMCID: PMC11409553 DOI: 10.1186/s12943-024-02119-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer cells undergo significant metabolic reprogramming to support their rapid growth and survival. This study examines important metabolic pathways like glycolysis, oxidative phosphorylation, glutaminolysis, and lipid metabolism, focusing on how they are regulated and their contributions to the development of tumors. The interplay between oncogenes, tumor suppressors, epigenetic modifications, and the tumor microenvironment in modulating these pathways is examined. Furthermore, we discuss the therapeutic potential of targeting cancer metabolism, presenting inhibitors of glycolysis, glutaminolysis, the TCA cycle, fatty acid oxidation, LDH, and glucose transport, alongside emerging strategies targeting oxidative phosphorylation and lipid synthesis. Despite the promise, challenges such as metabolic plasticity and the need for combination therapies and robust biomarkers persist, underscoring the necessity for continued research in this dynamic field.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
34
|
Turgeon C, Casas K, Flanagan R, White A, Peck D, Pino GB, Jones AS, Gavrilov D, Oglesbee D, Schultz MJ, Tortorelli S, Matern D, Hall PL. Pre-analytic decrease of phenylalanine in plasma of patients with phenylketonuria treated with pegvaliase. Mol Genet Metab Rep 2024; 40:101110. [PMID: 39022300 PMCID: PMC11252920 DOI: 10.1016/j.ymgmr.2024.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Treatment of phenylketonuria (PKU) has evolved since the initial introduction of a phenylalanine (Phe) restricted diet. The most recent option for adults affected with PKU is treatment with an alternate enzyme, phenylalanine ammonia lyase (PAL), that metabolizes excess Phe. Proper management of all patients with PKU relies on accurate measurement of Phe levels in blood, to comply with guidance intended to minimize the neurological symptoms. Recently, our laboratory was notified of discrepant results for a patient with PKU who is treated with pegvaliase. Two specimens were collected at the same time but yielded unexpectedly different Phe concentrations. After exclusion of specimen mix-ups or analytical errors, we suspected that there was residual pegvaliase activity in the specimens continuing to degrade Phe after collection. To investigate this possibility, we performed spiking studies that showed the degradation of Phe over time at ambient temperatures. Sample preparation by protein crash appears to deactivate pegvaliase and prevents further Phe degradation. However, because pegvaliase deactivation would be required immediately following blood collection, appropriate mitigation measures must be implemented, including stringent pre-analytical requirements, alternate sample matrices such as dried blood spots, or point of care testing. Until then, health care professionals need to be cautious in their interpretation of Phe levels in their patients with PKU that are treated with pegvaliase.
Collapse
Affiliation(s)
- Coleman Turgeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Ryan Flanagan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Amy White
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dawn Peck
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Gisele Bentz Pino
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Dimitar Gavrilov
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Matthew J. Schultz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Silvia Tortorelli
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dietrich Matern
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Patricia L. Hall
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
35
|
Zhang D, Qi Y, Inuzuka H, Liu J, Wei W. O-GlcNAcylation in tumorigenesis and its implications for cancer therapy. J Biol Chem 2024; 300:107709. [PMID: 39178944 PMCID: PMC11417186 DOI: 10.1016/j.jbc.2024.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a dynamic and reversible posttranslational modification that targets serine and threonine residues in a variety of proteins. Uridine diphospho-N-acetylglucosamine, which is synthesized from glucose via the hexosamine biosynthesis pathway, is the major donor of this modification. O-GlcNAc transferase is the sole enzyme that transfers GlcNAc onto protein substrates, while O-GlcNAcase is responsible for removing this modification. O-GlcNAcylation plays an important role in tumorigenesis and progression through the modification of specific protein substrates. In this review, we discuss the tumor-related biological functions of O-GlcNAcylation and summarize the recent progress in the development of pharmaceutical options to manipulate the O-GlcNAcylation of specific proteins as potential anticancer therapies.
Collapse
Affiliation(s)
- Dize Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States.
| |
Collapse
|
36
|
Su F, Descher H, Bui-Hoang M, Stuppner H, Skvortsova I, Rad EB, Ascher C, Weiss A, Rao Z, Hohloch S, Koeberle SC, Gust R, Koeberle A. Iron(III)-salophene catalyzes redox cycles that induce phospholipid peroxidation and deplete cancer cells of ferroptosis-protecting cofactors. Redox Biol 2024; 75:103257. [PMID: 38955113 PMCID: PMC11263665 DOI: 10.1016/j.redox.2024.103257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Ferroptosis, a lipid peroxidation-driven cell death program kept in check by glutathione peroxidase 4 and endogenous redox cycles, promises access to novel strategies for treating therapy-resistant cancers. Chlorido [N,N'-disalicylidene-1,2-phenylenediamine]iron (III) complexes (SCs) have potent anti-cancer properties by inducing ferroptosis, apoptosis, or necroptosis through still poorly understood molecular mechanisms. Here, we show that SCs preferentially induce ferroptosis over other cell death programs in triple-negative breast cancer cells (LC50 ≥ 0.07 μM) and are particularly effective against cell lines with acquired invasiveness, chemo- or radioresistance. Redox lipidomics reveals that initiation of cell death is associated with extensive (hydroper)oxidation of arachidonic acid and adrenic acid in membrane phospholipids, specifically phosphatidylethanolamines and phosphatidylinositols, with SCs outperforming established ferroptosis inducers. Mechanistically, SCs effectively catalyze one-electron transfer reactions, likely via a redox cycle involving the reduction of Fe(III) to Fe(II) species and reversible formation of oxo-bridged dimeric complexes, as supported by cyclic voltammetry. As a result, SCs can use hydrogen peroxide to generate organic radicals but not hydroxyl radicals and oxidize membrane phospholipids and (membrane-)protective factors such as NADPH, which is depleted from cells. We conclude that SCs catalyze specific redox reactions that drive membrane peroxidation while interfering with the ability of cells, including therapy-resistant cancer cells, to detoxify phospholipid hydroperoxides.
Collapse
Affiliation(s)
- Fengting Su
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Hubert Descher
- Institute of Pharmacy/Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Minh Bui-Hoang
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria; Unit of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Hermann Stuppner
- Unit of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Ira Skvortsova
- EXTRO-Lab, Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ehsan Bonyadi Rad
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Claudia Ascher
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Alexander Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Zhigang Rao
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Stephan Hohloch
- Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Solveigh C Koeberle
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
37
|
Wang ZB, Zhang X, Fang C, Liu XT, Liao QJ, Wu N, Wang J. Immunotherapy and the ovarian cancer microenvironment: Exploring potential strategies for enhanced treatment efficacy. Immunology 2024; 173:14-32. [PMID: 38618976 DOI: 10.1111/imm.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
Despite progress in cancer immunotherapy, ovarian cancer (OC) prognosis continues to be disappointing. Recent studies have shed light on how not just tumour cells, but also the complex tumour microenvironment, contribute to this unfavourable outcome of OC immunotherapy. The complexities of the immune microenvironment categorize OC as a 'cold tumour'. Nonetheless, understanding the precise mechanisms through which the microenvironment influences the effectiveness of OC immunotherapy remains an ongoing scientific endeavour. This review primarily aims to dissect the inherent characteristics and behaviours of diverse cells within the immune microenvironment, along with an exploration into its reprogramming and metabolic changes. It is expected that these insights will elucidate the operational dynamics of the immune microenvironment in OC and lay a theoretical groundwork for improving the efficacy of immunotherapy in OC management.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Chao Fang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Xiao-Ting Liu
- The Second People's Hospital of Hunan Province, Changsha, China
| | - Qian-Jin Liao
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Nayiyuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Public Service Platform of Tumor Organoids Technology, Changsha, China
| |
Collapse
|
38
|
Kong D, Guo H. Construction and validation of a prognostic model for overall survival time of patients with ovarian cancer by metabolism-related genes. J Obstet Gynaecol Res 2024; 50:1622-1639. [PMID: 39098991 DOI: 10.1111/jog.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Ovarian cancer is a female-specific malignancy with high morbidity and mortality. The metabolic reprogramming of tumor cells is closely related to the biological behavior of tumors. METHODS The prognostic signature of the metabolism-related gene (MRGs) was established by LASSO-Cox regression analysis. The prognostic signature of MRGs was also prognosticated in each clinical subgroup. These genes were subjected to functional enrichment analysis and tissue expression exploration. Analysis of the MRG prognostic signature in terms of immune cell infiltration and antitumor drug susceptibility was also performed. RESULTS A MRG prognostic signature including 21 genes was established and validated. Most of the 21 MRGs were expressed at different levels in ovarian cancer than in normal ovarian tissue. The enrichment analysis suggested that MRGs were involved in lipid metabolism, membrane organization, and molecular binding. The MRG prognostic signature demonstrated the predictive value of overall survival time in various clinical subgroups. The monocyte, NKT, Tgd and Tex cell scores showed differences between the groups with high- and low-risk score. The antineoplastic drug analysis we performed provided information on ovarian cancer drug therapy and drug resistance. In vitro experiments verified that PLCH1 in 21 MRGs can regulate the apoptosis and proliferation of ovarian cancer cells. CONCLUSION This metabolism-related prognostic signature was a potential prognostic factor in patients with ovarian cancer, demonstrating high stability and accuracy.
Collapse
Affiliation(s)
- Deshui Kong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| |
Collapse
|
39
|
Yao H, Jiang W, Liao X, Wang D, Zhu H. Regulatory mechanisms of amino acids in ferroptosis. Life Sci 2024; 351:122803. [PMID: 38857653 DOI: 10.1016/j.lfs.2024.122803] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Ferroptosis, an iron-dependent non-apoptotic regulated cell death process, is associated with the pathogenesis of various diseases. Amino acids, which are indispensable substrates of vital activities, significantly regulate ferroptosis. Amino acid metabolism is involved in maintaining iron and lipid homeostasis and redox balance. The regulatory effects of amino acids on ferroptosis are complex. An amino acid may exert contrasting effects on ferroptosis depending on the context. This review systematically and comprehensively summarized the distinct roles of amino acids in regulating ferroptosis and highlighted the emerging opportunities to develop clinical therapeutic strategies targeting amino acid-mediated ferroptosis.
Collapse
Affiliation(s)
- Heying Yao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Wei Jiang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
40
|
Yamauchi T, Okano Y, Terada D, Yasukochi S, Tsuruta A, Tsurudome Y, Ushijima K, Matsunaga N, Koyanagi S, Ohdo S. Epigenetic repression of de novo cysteine synthetases induces intra-cellular accumulation of cysteine in hepatocarcinoma by up-regulating the cystine uptake transporter xCT. Cancer Metab 2024; 12:23. [PMID: 39113116 PMCID: PMC11304919 DOI: 10.1186/s40170-024-00352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The metabolic reprogramming of amino acids is critical for cancer cell growth and survival. Notably, intracellular accumulation of cysteine is often observed in various cancers, suggesting its potential role in alleviating the oxidative stress associated with rapid proliferation. The liver is the primary organ for cysteine biosynthesis, but much remains unknown about the metabolic alterations of cysteine and their mechanisms in hepatocellular carcinoma cells. METHODS RNA-seq data from patients with hepatocarcinoma were analyzed using the TNMplot database. The underlying mechanism of the oncogenic alteration of cysteine metabolism was studied in mice implanted with BNL 1ME A.7 R.1 hepatocarcinoma. RESULTS Database analysis of patients with hepatocellular carcinoma revealed that the expression of enzymes involved in de novo cysteine synthesis was down-regulated accompanying with increased expression of the cystine uptake transporter xCT. Similar alterations in gene expression have also been observed in a syngeneic mouse model of hepatocarcinoma. The enhanced expression of DNA methyltransferase in murine hepatocarcinoma cells caused methylation of the upstream regions of cysteine synthesis genes, thereby repressing their expression. Conversely, suppression of de novo cysteine synthesis in healthy liver cells induced xCT expression by up-regulating the oxidative-stress response factor NRF2, indicating that reduced de novo cysteine synthesis repulsively increases cystine uptake via enhanced xCT expression, leading to intracellular cysteine accumulation. Furthermore, the pharmacological inhibition of xCT activity decreased intracellular cysteine levels and suppressed hepatocarcinoma tumor growth in mice. CONCLUSIONS Our findings indicate an underlying mechanism of the oncogenic alteration of cysteine metabolism in hepatocarcinoma and highlight the efficacy of alteration of cysteine metabolism as a viable therapeutic target in cancer.
Collapse
Affiliation(s)
- Tomoaki Yamauchi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yumi Okano
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Daishu Terada
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Sai Yasukochi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akito Tsuruta
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Tsurudome
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Kentaro Ushijima
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
41
|
Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Opportunities for nanomaterials in enzyme therapy. J Control Release 2024; 372:619-647. [PMID: 38909702 DOI: 10.1016/j.jconrel.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
In recent years, enzyme therapy strategies have rapidly evolved to catalyze essential biochemical reactions with therapeutic potential. These approaches hold particular promise in addressing rare genetic disorders, cancer treatment, neurodegenerative conditions, wound healing, inflammation management, and infectious disease control, among others. There are several primary reasons for the utilization of enzymes as therapeutics: their substrate specificity, their biological compatibility, and their ability to generate a high number of product molecules per enzyme unit. These features have encouraged their application in enzyme replacement therapy where the enzyme serves as the therapeutic agent to rectify abnormal metabolic and physiological processes, enzyme prodrug therapy where the enzyme initiates a clinical effect by activating prodrugs, and enzyme dynamic or starving therapy where the enzyme acts upon host substrate molecules. Currently, there are >20 commercialized products based on therapeutic enzymes, but approval rates are considerably lower than other biologicals. This has stimulated nanobiotechnology in the last years to develop nanoparticle-based solutions that integrate therapeutic enzymes. This approach aims to enhance stability, prevent rapid clearance, reduce immunogenicity, and even enable spatio-temporal activation of the therapeutic catalyst. This comprehensive review delves into emerging trends in the application of therapeutic enzymes, with a particular emphasis on the synergistic opportunities presented by incorporating enzymes into nanomaterials. Such integration holds the promise of enhancing existing therapies or even paving the way for innovative nanotherapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Cecilia Ortiz
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Jesús Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
42
|
Gao X, Zhao H, Liu J, Wang M, Dai Z, Hao W, Wang Y, Wang X, Zhang M, Liu P, Cheng H, Liu Z. Enzalutamide Sensitizes Castration-Resistant Prostate Cancer to Copper-Mediated Cell Death. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401396. [PMID: 38859590 PMCID: PMC11321675 DOI: 10.1002/advs.202401396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Despite the initial efficacy of enzalutamide in castration-resistant prostate cancer (CRPC), inevitable resistance remains a significant challenge. Here, the synergistic induction of copper-dependent cell death (cuproptosis) in CRPC cells is reported by enzalutamide and copper ionophores (elesclomol/disulfiram). Mechanistically, enzalutamide treatment increases mitochondrial dependence in CRPC cells, rendering them susceptible to cuproptosis, as evidenced by specific reversal with the copper chelator tetrathiomolybdate. This susceptibility is characterized by hallmarks of cuproptosis, including lipoylated protein aggregation and iron-sulfur cluster protein instability. Interestingly, the mitochondrial matrix reductase, FDX1, specifically correlates with elesclomol sensitivity, suggesting a potential mechanistic divergence between the two copper ionophores. Notably, this synergistic effect extends beyond in vitro models, demonstrating efficacy in 22Rv1 xenografts, mouse Pten p53 knockout organoids. Importantly, enzalutamide significantly enhances copper ionophore-mediated cytotoxicity in enzalutamide-resistant cells. Collectively, these findings indicate that enzalutamide and copper ionophores synergistically induce cuproptosis, offering a promising therapeutic avenue for CRPC, potentially including enzalutamide-resistant cases.
Collapse
Affiliation(s)
- Xiang Gao
- Department of UrologySecond Hospital of Dalian Medical UniversityDalian116023China
| | - Haolin Zhao
- Department of UrologySecond Hospital of Dalian Medical UniversityDalian116023China
| | - Jiao Liu
- Dalian Key Laboratory of Molecular Targeted Cancer TherapyCancer InstituteThe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Min Wang
- Dalian Key Laboratory of Molecular Targeted Cancer TherapyCancer InstituteThe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Zhihong Dai
- Department of UrologySecond Hospital of Dalian Medical UniversityDalian116023China
| | - Wenjun Hao
- Department of UrologySecond Hospital of Dalian Medical UniversityDalian116023China
| | - Yanlong Wang
- Department of UrologySecond Hospital of Dalian Medical UniversityDalian116023China
| | - Xiang Wang
- Department of UrologySecond Hospital of Dalian Medical UniversityDalian116023China
| | - Min Zhang
- Dalian Key Laboratory of Molecular Targeted Cancer TherapyCancer InstituteThe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Pixu Liu
- Dalian Key Laboratory of Molecular Targeted Cancer TherapyCancer InstituteThe Second Hospital of Dalian Medical UniversityDalian116023China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Hailing Cheng
- Dalian Key Laboratory of Molecular Targeted Cancer TherapyCancer InstituteThe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Zhiyu Liu
- Department of UrologySecond Hospital of Dalian Medical UniversityDalian116023China
- Liaoning Engineering Research Center of Integrated Precision Diagnosis and Treatment Technology for Urological CancerDalian116023China
| |
Collapse
|
43
|
Shahi A, Kidane D. Starving cancer cells to enhances DNA damage and immunotherapy response. Oncotarget 2024; 15:392-399. [PMID: 38900609 PMCID: PMC11197973 DOI: 10.18632/oncotarget.28595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
Prostate cancer (PCa) poses significant challenges in treatment, particularly when it progresses to a metastatic, castrate-resistant state. Conventional therapies, including chemotherapy, radiotherapy, and hormonal treatments, often fail due to toxicities, off-target effects, and acquired resistance. This research perspective defines an alternative therapeutic strategy focusing on the metabolic vulnerabilities of PCa cells, specifically their reliance on non-essential amino acids such as cysteine. Using an engineered enzyme cyst(e)inase to deplete the cysteine/cystine can induce oxidative stress and DNA damage in cancer cells. This depletion elevates reactive oxygen species (ROS) levels, disrupts glutathione synthesis, and enhances DNA damage, leading to cancer cell death. The combinatorial use of cyst(e)inase with agents targeting antioxidant defenses, such as thioredoxins, further amplifies ROS accumulation and cytotoxicity in PCa cells. Overall, in this perspective provides a compressive overview of the previous work on manipulating amino acid metabolism and redox balance modulate the efficacy of DNA repair-targeted and immune checkpoint blockade therapies in prostate cancer.
Collapse
Affiliation(s)
- Aashirwad Shahi
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Dawit Kidane
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
44
|
Zhang L, Ding S, Tang X, Gao R, Huo R, Xie G. The Improved Antineoplastic Activity of Thermophilic L-Asparaginase Tli10209 via Site-Directed Mutagenesis. Biomolecules 2024; 14:686. [PMID: 38927089 PMCID: PMC11202230 DOI: 10.3390/biom14060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Amino acid deprivation therapy (AADT) is a novel anticancer therapy, considered nontoxic and selective. Thermophilic L-asparaginase enzymes display high stability and activity at elevated temperatures. However, they are of limited use in clinical applications because of their low substrate affinity and reduced activity under physiological conditions, which may necessitate an improved dosage, leading to side effects and greater costs. Thus, in an attempt to improve the activity of L-Asn at 37 °C, with the use of a semi-rational design, eight active-site mutants of Thermococcus litoralis DSM 5473 L-asparaginase Tli10209 were developed. T70A exhibited a 5.11-fold increase compared with the wild enzyme in physiological conditions. Double-mutant enzymes were created by combining mutants with higher hydrolysis activity. T70A/F36Y, T70A/K48L, and T70A/D50G were enhanced by 5.59-, 6.38-, and 5.58-fold. The immobilized enzyme applied in MCF-7 breast cancer cells only required one-seventh of the dose of the free enzyme to achieve the same inhibition rate under near-infrared irradiation. This provides a proof of concept that it is possible to reduce the consumption of L-Asn by improving its activity, thus providing a method to manage side effects.
Collapse
Affiliation(s)
- Lijuan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
| | - Simeng Ding
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (S.D.); (X.T.); (R.G.)
| | - Xiuhui Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (S.D.); (X.T.); (R.G.)
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China; (S.D.); (X.T.); (R.G.)
| | - Rui Huo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
| | - Guiqiu Xie
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
| |
Collapse
|
45
|
Wolkersdorfer A, Bergmann B, Adelmann J, Ebbinghaus M, Günther E, Gutmann M, Hahn L, Hurwitz R, Krähmer R, Leenders F, Lühmann T, Schueler J, Schmidt L, Teifel M, Meinel L, Rudel T. PEGylated Recombinant Aplysia punctata Ink Toxin Depletes Arginine and Lysine and Inhibits the Growth of Tumor Xenografts. ACS Biomater Sci Eng 2024; 10:3825-3832. [PMID: 38722049 PMCID: PMC11168412 DOI: 10.1021/acsbiomaterials.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
In recent years, a novel treatment method for cancer has emerged, which is based on the starvation of tumors of amino acids like arginine. The deprivation of arginine in serum is based on enzymatic degradation and can be realized by arginine deaminases like the l-amino acid oxidase found in the ink toxin of the sea hare Aplysia punctata. Previously isolated from the ink, the l-amino acid oxidase was described to oxidate the essential amino acids l-lysine and l-arginine to their corresponding deaminated alpha-keto acids. Here, we present the recombinant production and functionalization of the amino acid oxidase Aplysia punctata ink toxin (APIT). PEGylated APIT (APIT-PEG) increased the blood circulation time. APIT-PEG treatment of patient-derived xenografted mice shows a significant dose-dependent reduction of tumor growth over time mediated by amino acid starvation of the tumor. Treatment of mice with APIT-PEG, which led to deprivation of arginine, was well tolerated.
Collapse
Affiliation(s)
- Alena
M. Wolkersdorfer
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Birgit Bergmann
- Chair
of Microbiology, Biocentre, University of
Würzburg, 97074 Würzburg, Germany
| | - Juliane Adelmann
- Institute
of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Matthias Ebbinghaus
- Charles
River Laboratories Germany GmbH, Am Flughafen 12−14, 79108 Freiburg, Germany
| | - Eckhard Günther
- Aeterna
Zentaris GmbH, Weismuellerstr. 50, 60314 Frankfurt am Main, Germany
| | - Marcus Gutmann
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Lukas Hahn
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Robert Hurwitz
- Max-Planck-Institute
for Infection Biology, Virchowweg 12, 10117 Berlin, Germany
| | - Ralf Krähmer
- Celares
GmbH, Otto-Warburg-Haus, 13125 Berlin, Germany
| | | | - Tessa Lühmann
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Julia Schueler
- Charles
River Laboratories Germany GmbH, Am Flughafen 12−14, 79108 Freiburg, Germany
| | - Luisa Schmidt
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Michael Teifel
- Aeterna
Zentaris GmbH, Weismuellerstr. 50, 60314 Frankfurt am Main, Germany
| | - Lorenz Meinel
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
- Helmholtz-Institute
for RNA-based Infection Research (HIRI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Thomas Rudel
- Chair
of Microbiology, Biocentre, University of
Würzburg, 97074 Würzburg, Germany
- Helmholtz-Institute
for RNA-based Infection Research (HIRI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
46
|
Chen Z, Yam JWP, Mao X. The multifaceted roles of small extracellular vesicles in metabolic reprogramming in the tumor microenvironments. Proteomics 2024; 24:e2300021. [PMID: 38171844 DOI: 10.1002/pmic.202300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
The link between metabolism and tumor progression has been extensively researched for a long time. With the increasing number of studies uncovering the multiple functions of metabolic reprogramming in tumor microenvironments, the regulatory network seems to become even more intricate at the same time. Small extracellular vesicles (sEV), as crucial mediators facilitating intercellular communications, exhibit significant involvement in regulating metabolic reprogramming within the complicated network of tumor microenvironments. sEV derived from tumor cells and those released by other cell populations such as tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) can mutually influence each other, giving rise to diverse complex feedback loops. This review includes multiple studies conducted in recent years to summarize the functions of sEV in altering metabolism in various cell types within tumor microenvironments. Additionally, it aims to highlight potential therapeutic targets based on the commonly observed mechanisms identified in different studies.
Collapse
Affiliation(s)
- Zhixian Chen
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
47
|
Liu Y, Wang X, Feng H, Li X, Yang R, Zhang M, Du Y, Liu R, Luo M, Li Z, Liu B, Wang J, Wang W, An F, Niu F, He P. Glutathione-depleting Liposome Adjuvant for Augmenting the Efficacy of a Glutathione Covalent Inhibitor Oridonin for Acute Myeloid Leukemia Therapy. J Nanobiotechnology 2024; 22:299. [PMID: 38812031 PMCID: PMC11137913 DOI: 10.1186/s12951-024-02574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Discrepancies in the utilization of reactive oxygen species (ROS) between cancer cells and their normal counterparts constitute a pivotal juncture for the precise treatment of cancer, delineating a noteworthy trajectory in the field of targeted therapies. This phenomenon is particularly conspicuous in the domain of nano-drug precision treatment. Despite substantial strides in employing nanoparticles to disrupt ROS for cancer therapy, current strategies continue to grapple with challenges pertaining to efficacy and specificity. One of the primary hurdles lies in the elevated levels of intracellular glutathione (GSH). Presently, predominant methods to mitigate intracellular GSH involve inhibiting its synthesis or promoting GSH efflux. However, a conspicuous gap remains in the absence of a strategy capable of directly and efficiently clearing GSH. METHODS We initially elucidated the chemical mechanism underpinning oridonin, a diminutive pharmacological agent demonstrated to perturb reactive oxygen species, through its covalent interaction with glutathione. Subsequently, we employed the incorporation of maleimide-liposomes, renowned for their capacity to disrupt the ROS delivery system, to ameliorate the drug's water solubility and pharmacokinetics, thereby enhancing its ROS-disruptive efficacy. In a pursuit to further refine the targeting for acute myeloid leukemia (AML), we harnessed the maleic imide and thiol reaction mechanism, facilitating the coupling of Toll-like receptor 2 (TLR2) peptides to the liposomes' surface via maleic imide. This strategic approach offers a novel method for the precise removal of GSH, and its enhancement endeavors are directed towards fortifying the precision and efficacy of the drug's impact on AML targets. RESULTS We demonstrated that this peptide-liposome-small molecule machinery targets AML and consequently induces cell apoptosis both in vitro and in vivo through three disparate mechanisms: (I) Oridonin, as a Michael acceptor molecule, inhibits GSH function through covalent bonding, triggering an initial imbalance of oxidative stress. (II) Maleimide further induces GSH exhaustion, aggravating redox imbalance as a complementary augment with oridonin. (III) Peptide targets TLR2, enhances the directivity and enrichment of oridonin within AML cells. CONCLUSION The rationally designed nanocomplex provides a ROS drug enhancement and targeted delivery platform, representing a potential solution by disrupting redox balance for AML therapy.
Collapse
Affiliation(s)
- Yi Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Xiaoning Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Hui Feng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Xinyan Li
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Runyu Yang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Mengyao Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yue Du
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Ruimin Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Minna Luo
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Zhiyi Li
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Bo Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Jincheng Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Wenjuan Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Feifei An
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Fan Niu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
48
|
Pradhan R, Dieterich W, Natarajan A, Schwappacher R, Reljic D, Herrmann HJ, Neurath MF, Zopf Y. Influence of Amino Acids and Exercise on Muscle Protein Turnover, Particularly in Cancer Cachexia. Cancers (Basel) 2024; 16:1921. [PMID: 38791998 PMCID: PMC11119313 DOI: 10.3390/cancers16101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer cachexia is a multifaceted syndrome that impacts individuals with advanced cancer. It causes numerous pathological changes in cancer patients, such as inflammation and metabolic dysfunction, which further diminish their quality of life. Unfortunately, cancer cachexia also increases the risk of mortality in affected individuals, making it an important area of focus for cancer research and treatment. Several potential nutritional therapies are being tested in preclinical and clinical models for their efficacy in improving muscle metabolism in cancer patients. Despite promising results, no special nutritional therapies have yet been validated in clinical practice. Multiple studies provide evidence of the benefits of increasing muscle protein synthesis through an increased intake of amino acids or protein. There is also increasing evidence that exercise can reduce muscle atrophy by modulating protein synthesis. Therefore, the combination of protein intake and exercise may be more effective in improving cancer cachexia. This review provides an overview of the preclinical and clinical approaches for the use of amino acids with and without exercise therapy to improve muscle metabolism in cachexia.
Collapse
Affiliation(s)
- Rashmita Pradhan
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Walburga Dieterich
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anirudh Natarajan
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Raphaela Schwappacher
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dejan Reljic
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hans J. Herrmann
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
| | - Yurdagül Zopf
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
49
|
Wu X, Fan Y, Wang K, Miao Y, Chang Y, Ming J, Wang X, Lu S, Liu R, Zhang F, Zhang Y, Qin H, Shi J. NIR-II imaging-guided precise photodynamic therapy for augmenting tumor-starvation therapy by glucose metabolism reprogramming interference. Sci Bull (Beijing) 2024; 69:1263-1274. [PMID: 38418300 DOI: 10.1016/j.scib.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/31/2023] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
Metabolic reprogramming is a mechanism by which cancer cells alter their metabolic patterns to promote cell proliferation and growth, thereby enabling their resistance to external stress. 2-Deoxy-D-glucose (2DG) can eliminate their energy source by inhibiting glucose glycolysis, leading to cancer cell death through starvation. However, a compensatory increase in mitochondrial metabolism inhibits its efficacy. Herein, we propose a synergistic approach that combines photodynamic therapy (PDT) with starvation therapy to address this challenge. To monitor the nanodrugs and determine the optimal triggering time for precise tumor therapy, a multifunctional nano-platform comprising lanthanide-doped nanoparticle (LnNP) cores was constructed and combined with mesoporous silicon shells loaded with 2DG and photosensitizer chlorin e6 (Ce6) in the mesopore channels. Under 980 nm near-infrared light excitation, the downshifted 1550 nm fluorescence signal in the second near-infrared (NIR-II, 1000-1700 nm) window from the LnNPs was used to monitor the accumulation of nanomaterials in tumors. Furthermore, upconverted 650 nm light excited the Ce6 to generate singlet oxygen for PDT, which damaged mitochondrial function and enhanced the efficacy of 2DG by inhibiting hexokinase 2 and lactate dehydrogenase A expressions. As a result, glucose metabolism reprogramming was inhibited and the efficiency of starvation therapy was significantly enhanced. Overall, the proposed NIR-II bioimaging-guided PDT-augmented starvation therapy, which simultaneously inhibited glycolysis and mitochondria, facilitated the effects of a cancer theranostic system.
Collapse
Affiliation(s)
- Xiawei Wu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yong Fan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, China
| | - Kairuo Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yunqiu Miao
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yongliang Chang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jiang Ming
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, China
| | - Xinyue Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shengwei Lu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ruichi Liu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Huanlong Qin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
50
|
Li Q, Yang L, Zhang C, Yuan J, Zhang J, Tao W, Zhou J. METTL16 deficiency attenuates apoptosis through translational control of extrinsic death receptor during nutrient deprivation. Biochem Biophys Res Commun 2024; 708:149802. [PMID: 38520913 DOI: 10.1016/j.bbrc.2024.149802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
METTL16 is a well-characterized m6A methyltransferase that has been reported to contribute to tumorigenesis in various types of cancer. However, the effect of METTL16 on tumor progression under restricted nutrient conditions, which commonly occur in tumor microenvironment, has yet to be elucidated. Herein, our study initially reported the inhibitory effect of METTL16 depletion on apoptosis under amino acid starvation conditions. Mechanistically, we determined that the METTL16 knockdown represses the expression of extrinsic death receptors at both transcription and translation levels. Depletion of METTL16 prevented protein synthesis of GCN2, resulting in diminished ATF4 expression in a GCN2-eIF2α-dependent manner. Reduction of ATF4 further declined the expression of apoptotic receptor protein DR5. Meanwhile, METTL16 deficiency directly hampered protein synthesis of FADD and DR5, thereby impairing apoptosis and promoting cancer cell survival. Taken together, our study provides novel evidence for the involvement of METTL16 in regulating cancer progression, suggesting that METTL16 as a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Qiujie Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Lu Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Chenxin Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Jingying Yuan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Jun Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Wenjun Tao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Jun Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China.
| |
Collapse
|