1
|
Doumar H, Mostafi HE, Elhessni A, Ebn Touhami M, Mesfioui A. Exploring the diversity of cannabis cannabinoid and non-cannabinoid compounds and their roles in Alzheimer's disease: A review. IBRO Neurosci Rep 2025; 18:96-119. [PMID: 39866750 PMCID: PMC11763173 DOI: 10.1016/j.ibneur.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Cannabis sativa is recognized for its chemical diversity and therapeutic potential, particularly in addressing neurodegenerative diseases such as Alzheimer's disease (AD). Given the complexity of AD, where single-target therapies often prove inadequate, a multi-target approach utilizing cannabis-derived compounds may offer promising alternatives. This review first highlights the chemical diversity of cannabis by categorizing its compounds into cannabinoids and non-cannabinoids. It then examines studies investigating the effects of these compounds on AD-related pathological features. By synthesizing existing knowledge, identifying research gaps, and facilitating comparative analysis, this review aims to advance future research and understanding. It underscores cannabis's potential as a multi-target therapeutic strategy for AD, contributing valuable insights to ongoing scientific discussions.
Collapse
Affiliation(s)
- Hanane Doumar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Hicham El Mostafi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker Elhessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohamed Ebn Touhami
- Laboratory of Materials Engineering and Environment: Modeling and Application, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
2
|
Thapa S, Nalli Y, Singh A, Singh SK, Ali A. Neuroprotective Effects of Cannabispirenone A against NMDA-Induced Excitotoxicity in Differentiated N2a Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:3530499. [PMID: 38855429 PMCID: PMC11161259 DOI: 10.1155/2024/3530499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 06/11/2024]
Abstract
The endocannabinoid system is found throughout the central nervous system, and its cannabinoids receptor 1 is critical in preventing neurotoxicity caused by N-methyl-D-aspartate receptor activation (NMDARs). The activity of NMDARs places demands on endogenous cannabinoids to regulate their calcium currents. Endocannabinoids keep NMDAR activity within safe limits, protecting neural cells from excitotoxicity. Cannabinoids are remembered to deliver this outcome by repressing presynaptic glutamate discharge or obstructing postsynaptic NMDAR-managed flagging pathways. The endocannabinoid system must exert a negative influence proportional to the strength of NMDAR signaling for such control to be effective. The goal of this paper is to draw the attention towards the neuroprotective mechanism of constituents of Cannabis sativa against NMDA-induced excitotoxic result. Phytochemical investigation of the cannabis flowers led to the isolation of nine secondary metabolites. A spiro-compound, Cannabispirenone A, which on treatment of the cells prior to NMDA exposure significantly increases cell survival while decreasing ROS production, lipid peroxidation, and intracellular calcium. Our findings showed that this compound showed neuroprotection against NMDA-induced excitotoxic insult, has antioxidative properties, and increased cannabinoid receptor 1 expression, which may be involved in the signaling pathway for this neuroprotection.
Collapse
Affiliation(s)
- Sonia Thapa
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yedukondalu Nalli
- Natural Products Chemistry Division, CSIR–Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, India
| | - Ajeet Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shashank Kr. Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asif Ali
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Products Chemistry Division, CSIR–Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, India
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
3
|
Nalli Y, Bashir Mir K, Amin T, Gannedi V, Jameel E, Goswami A, Ali A. Divergent synthesis of fractionated Cannabis sativa extract led to multiple cannabinoids C-&O-glycosides with anti-proliferative/anti-metastatic properties. Bioorg Chem 2024; 143:107030. [PMID: 38091718 DOI: 10.1016/j.bioorg.2023.107030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
Here, we present an interesting, previously unreported method for fractionating a particular class of cannabinoids from the crude leaf extract of Cannabis sativa using HP-20 resins. In this study, we report a novel method of divergent synthesis of fractionated Cannabis sativa extract, which allows the generation of multiple cannabinoids C- and O-glycosides which react with the glycosyl donor 2,3,4,6-tetra-O-acetyl-d-mannosyl trichloroacetimidate (TAMTA) to create eight C- and O-β-d-cannabinoids glycosides (COCG), which are separated by HPLC and whose structures are characterized by 1D, 2D NMR, and mass spectrometry. These glycosides exhibit improved anti-proliferative and anti-metastatic effects against numerous cancer cell lines in vitro and are more water-soluble and stable than their parent cannabinoids. The in vitro testing of the pure cannabinoids (1-4) and their C- & O-glycosides (1a-4a) and 1b-4b exhibited anti-proliferative and anti-metastatic activities against a panel of eight human cancer cell lines in contrast to their respective parent molecules. Different cancer cell lines' IC50 values varied significantly when their cell viability was compared. In addition to the others, compounds 2a, 3a, 4a, and 2b, 3b were highly potent, with IC50values ranging from 0.74 µM (3a) to 51.40 µM (4a).Although2a(1.42 µM) and3a(0.74 µM) exhibited lower IC50values in the MiaPaca-2 cell line than4a(2.58 µM). But, in addition to the comparable anti-clonogenic activity of4ain MiaPaca-2 and Panc-1 cells, it manifested remarkable anti-invasive activity than either 2a or 3a.In contrast to 2a, 2b, 3a, and 3b and their respective parent compounds,4ahad substantial anti-invasive/anti-metastatic capabilities and possessed anti-proliferative activity.The effects of 4a treatment on MiaPaca-2 and Panc-1 cells include a dose-dependent increase in the expression of E-cadherin and a significant decrease in the expression of Zeb-1, Vimentin, and Snail1. Our results demonstrate that divergent synthesis of fractionated Cannabis sativa extract is a feasible and efficient strategy to produce a library of novel cannabinoid glycosides with improved pharmacological properties and potential anticancer benefits.
Collapse
Affiliation(s)
- Yedukondalu Nalli
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Khalid Bashir Mir
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Tanzeeba Amin
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Veeranjaneyulu Gannedi
- BCC-324 Beckman Center For Chemical Sciences, The Scripps Research Institute 10650 N Torrey Pines Rd, La Jolla, CA 92037, United States
| | - Ehtesham Jameel
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute (CDRI), Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Asif Ali
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India; Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute (CDRI), Sector 10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
4
|
Dadiotis E, Cui M, Gerasi M, Mitsis V, Melliou E, Makriyannis A, Logothetis DE, Magiatis P. A Simple Chiral 1H NMR Method for the Discrimination of ( R)- and ( S)-Cannabichromene in Complex Natural Mixtures and Their Effects on TRPA1 Activity. JOURNAL OF NATURAL PRODUCTS 2024; 87:77-84. [PMID: 38158562 DOI: 10.1021/acs.jnatprod.3c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In recent years, the enantiomeric ratio of cannabichromene (CBC) within the cannabis plant has attracted significant attention. Cannabichromene is one of the well-known cannabinoids found in cannabis, along with THC (tetrahydrocannabinol) and CBD (cannabidiol). Cannabichromene exists as a scalemic mixture, meaning it has two enantiomers, (S)-cannabichromene and (R)-cannabichromene, with the ratio between these enantiomers varying among different cannabis strains and even within individual plants. This study presents an accurate and robust chiral NMR method for analyzing cannabichromene's enantiomeric ratio, a well-investigated cannabinoid with numerous pharmacological targets. The use of Pirkle's alcohol as the chiral solvating agent (CSA) or, alternatively, the use of (S)-ibuprofen as a chiral derivatizing agent (CDA) facilitated this analysis. Moreover, the chiral NMR method proves to be a user-friendly tool, easily applicable within any NMR facility, and an expanded investigation of cannabichromene chirality may provide insights into the origin, cultivation, treatment, and processing of Cannabis sativa plants. This study also undertakes a pharmacological examination of the (R)- and (S)-cannabichromenes concerning their most extensively studied pharmacological target, the TRPA1 channels, with the two enantiomers showing the same strong agonistic effect as the racemic mixture.
Collapse
Affiliation(s)
- Evangelos Dadiotis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Meng Cui
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Maria Gerasi
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts 02115, United States
| | | | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Alexandros Makriyannis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts 02115, United States
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts 02115, United States
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| |
Collapse
|
5
|
Vozza Berardo ME, Mendieta JR, Villamonte MD, Colman SL, Nercessian D. Antifungal and antibacterial activities of Cannabis sativa L. resins. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116839. [PMID: 37400009 DOI: 10.1016/j.jep.2023.116839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cannabis sativa L. (Cannabaceae) is a plant native to Eastern Asia spread throughout the world because of its medicinal properties. Despite being used for thousands of years as a palliative therapeutic agent for many pathologies, in many countries research on its effects and properties could only be carried out in recent years, after its legalization. AIMS OF THE STUDY Increasing resistance to traditional antimicrobial agents demands finding new strategies to fight against microbial infections in medical therapy and agricultural activities. Upon legalization in many countries, Cannabis sativa is gaining attention as a new source of active components, and the evidence for new applications of these compounds is constantly increasing. METHODS Extracts from five different varieties ofCannabis sativa were performed and their cannabinoids and terpenes profiles were determined by liquid and gas chromatography. Antimicrobial and antifungal activities against Gram (+) and Gram (-) bacteria, yeast and phytopathogen fungus were measured. To analyze a possible action mechanism, cell viability of bacteria and yeast was assessed by propidium iodide stain. RESULTS Cannabis varieties were grouped into chemotype I and II as a consequence of their cannabidiol (CBD) or tetrahydrocannabinol (THC) content. The terpenes profile was different in quantity and quality among varieties, with (-)b-pinene, b-myrcene, p-cymene and b-caryophyllene being present in all plants. All cannabis varieties were effective to different degree against Gram (+) and Gram (-) bacteria as well as on spore germination and vegetative development of phytopathogenic fungi. These effects were not correlated to the content of major cannabinoids such as CBD or THC, but with the presence of a complex terpenes profile. The effectiveness of the extracts allowed to reduce the necessary doses of a widely used commercial antifungal to prevent the development of fungal spores. CONCLUSION All the extracts of the analysed cannabis varieties showed antibacterial and antifungal activities. In addition, plants belonging to the same chemotype showed different antimicrobial activity, demonstrating that the classification of cannabis strains based solely on THC and CBD content is not sufficient to justify their biological activities and that other compounds present in the extracts are involved in their action against pathogens. Cannabis extracts act in synergy with chemical fungicides, allowing to reduce its doses.
Collapse
Affiliation(s)
- María Eugenia Vozza Berardo
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - Julieta Renée Mendieta
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - María Daniela Villamonte
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - Silvana Lorena Colman
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250, CP7600, Mar del Plata, Argentina.
| | - Débora Nercessian
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata - CONICET, Funes 3250, CP7600, Mar del Plata, Argentina.
| |
Collapse
|
6
|
Abidi AH, Abhyankar V, Alghamdi SS, Tipton DA, Dabbous M. Phytocannabinoids regulate inflammation in IL-1β-stimulated human gingival fibroblasts. J Periodontal Res 2022; 57:1127-1138. [PMID: 36070347 DOI: 10.1111/jre.13050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Billions of individuals worldwide suffer from periodontal disease, an inflammatory disease that results in hard-tissue and soft-tissue destruction. A viable therapeutic option to treat periodontal disease may be via cannabinoids that exert immunomodulatory effects, and the endocannabinoid system (ECS) is readily present in periodontal tissues that exhibit cannabinoid type 1 and 2 receptors (CB1R and CB2R). Phytocannabinoids (pCBs), which are a part of a heterogeneous group of molecules acting on cannabinoid receptors (CBR) derived from the cannabis plants, have been attributed to a wide variety of effects including anti-inflammatory activity and some pro-inflammatory effects depending on the cell type. Thus, this study aims to examine the effects of pCBs on primary human gingival fibroblasts (HGFs) in IL-1β stimulated (simulated periodontal disease) HGFs. MATERIALS AND METHODS Human gingival fibroblasts (HGFs) obtained from ATCC were cultured per the manufacturer's recommendation. The functional activity of cannabinoid receptors was measured using ACTOne (cAMP)-based CB1R and CB2R assay. The effects of three pCBs (0.1-10 μg/ml or 10-4.5 -10-6.5 M) on cell viability were assessed using the CCK-8 cellular dehydrogenase assay. IL-1β (1 ng/ml) was added an hour before the treatment to stimulate inflammation in the HGFs before the addition of cannabinoid ligands. After 24-h incubation, the production of INF-γ, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNF-α was measured using Mesoscale Discovery (MSD) Human Pro-Inflammatory kit. To measure prostaglandin E 2 levels (PGE2), Cisbio HTRF PGE2 assay kit was used per the manufacturer's recommendation to measure after 24-h incubation. The data were analyzed using GraphPad Prism 6.0. The analytes for each group were compared using a one-way ANOVA test with Bonferroni's correction. RESULTS Cannabidivarin (CBVN or CBDV) (EC50 = 12 nM) and cannabigerol (CBG) (EC50 = 30 nM) exhibited agonist activity on CB2R with intermediate efficacy. Cannabidiol (CBD) did not exhibit activation of the CB2R, and the CB1R activation was not observed with any of the pCBs. Cytotoxicity results showed that concentrations of 2.50 μg/ml or greater for the pCBs were toxic except for CBVN. Lower concentrations of CBD and CBG (0.1-0.75 μg/ml), and CBVN at 2.50 μg/ml exhibited significant effects on HGF proliferation. In IL-1β-stimulated HGFs, prostaglandin E2 (PGE2) production was significantly suppressed only by CBG and CBVN. CBD and CBG treatment alone did, however, elevate PGE2 production significantly compared to control. IL-1β stimulation resulted in a robust increase in the production of all cytokines tested. Treatment of IL-β-stimulated HGF with the three pCBs (1 μg/ml) significantly reduced INF-ɣ, TNF-α, and IL-2. The significant suppression of IL-4 was seen with CBD and CBVN, while only CBVN exerted suppression of IL-13. The three pCBs significantly increased IL-6, IL-10, and IL-12 levels, while none of the pCBs reduced the expression of IL-8 in IL-1β-stimulated HGF. CONCLUSION The effective inhibition of IL-1β-stimulated production of PGE2 and cytokines by the pCB in HGFs suggests that targeting the endocannabinoid system may lead to the development of therapeutic strategies for periodontal therapy. However, each pCB has its unique anti-inflammatory profile, in which certain pro-inflammatory activities are also exhibited. The pCBs alone or in combination may benefit and aid in improving public oral health.
Collapse
Affiliation(s)
- Ammaar H Abidi
- College of Dentistry, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Vrushali Abhyankar
- College of Dentistry, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Periodontology, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Sahar S Alghamdi
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - David A Tipton
- College of Dentistry, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Mustafa Dabbous
- College of Dentistry, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| |
Collapse
|
7
|
Antimicrobial and Cytotoxic Effects of Cannabinoids: An Updated Review with Future Perspectives and Current Challenges. Pharmaceuticals (Basel) 2022; 15:ph15101228. [PMID: 36297340 PMCID: PMC9607911 DOI: 10.3390/ph15101228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The development of new antibiotics is urgently needed to combat the threat of bacterial resistance. New classes of compounds that have novel properties are urgently needed for the development of effective antimicrobial agents. The extract of Cannabis sativa L. has been used to treat multiple ailments since ancient times. Its bioactivity is largely attributed to the cannabinoids found in its plant. Researchers are currently searching for new anti-infective agents that can treat various infections. Although its phytocannabinoid ingredients have a wide range of medical benefits beyond the treatment of infections, they are primarily associated to psychotropic effects. Different cannabinoids have been demonstrated to be helpful against harmful bacteria, including Gram-positive bacteria. Moreover, combination therapy involving the use of different antibiotics has shown synergism and broad-spectrum activity. The purpose of this review is to gather current data on the actions of Cannabis sativa (C. sativa) extracts and its primary constituents such as terpenes and cannabinoids towards pathogens in order to determine their antimicrobial properties and cytotoxic effects together with current challenges and future perspectives in biomedical application.
Collapse
|
8
|
A New Lactam from Cannabis sativa. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
10
|
Odieka AE, Obuzor GU, Oyedeji OO, Gondwe M, Hosu YS, Oyedeji AO. The Medicinal Natural Products of Cannabis sativa Linn.: A Review. Molecules 2022; 27:1689. [PMID: 35268790 PMCID: PMC8911748 DOI: 10.3390/molecules27051689] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
Cannabis sativa is known among many cultures for its medicinal potential. Its complexity contributes to the historical application of various parts of the plant in ethno-medicines and pharmacotherapy. C. sativa has been used for the treatment of rheumatism, epilepsy, asthma, skin burns, pain, the management of sexually transmitted diseases, difficulties during child labor, postpartum hemorrhage, and gastrointestinal activity. However, the use of C. sativa is still limited, and it is illegal in most countries. Thus, this review aims to highlight the biological potential of the plant parts, as well as the techniques for the extraction, isolation, and characterization of C. sativa compounds. The plant produces a unique class of terpenophenolic compounds, called cannabinoids, as well as non-cannabinoid compounds. The exhaustive profiling of bioactive compounds and the chemical characterization and analysis of C. sativa compounds, which modern research has not yet fully achieved, is needed for the consistency, standardization, and the justified application of Cannabis sativa products for therapeutic purposes. Studies on the clinical relevance and applications of cannabinoids and non-cannabinoid phenols in the prevention and treatment of life-threatening diseases is indeed significant. Furthermore, psychoactive cannabinoids, when chemically standardized and administered under medical supervision, can be the legal answer to the use of C. sativa.
Collapse
Affiliation(s)
- Anwuli Endurance Odieka
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Gloria Ukalina Obuzor
- Department of Pure and Industrial Chemistry, University of Port Harcourt, Port Harcourt 500004, Rivers State, Nigeria;
| | | | - Mavuto Gondwe
- Department of Human Biology, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Yiseyon Sunday Hosu
- Department of Economics and Business Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| |
Collapse
|
11
|
Mahmud MS, Hossain MS, Ahmed ATMF, Islam MZ, Sarker ME, Islam MR. Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Molecules 2021; 26:7216. [PMID: 34885798 PMCID: PMC8658882 DOI: 10.3390/molecules26237216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance has emerged as a global health crisis and, therefore, new drug discovery is a paramount need. Cannabis sativa contains hundreds of chemical constituents produced by secondary metabolism, exerting outstanding antimicrobial, antiviral, and therapeutic properties. This paper comprehensively reviews the antimicrobial and antiviral (particularly against SARS-CoV-2) properties of C. sativa with the potential for new antibiotic drug and/or natural antimicrobial agents for industrial or agricultural use, and their therapeutic potential against the newly emerged coronavirus disease (COVID-19). Cannabis compounds have good potential as drug candidates for new antibiotics, even for some of the WHO's current priority list of resistant pathogens. Recent studies revealed that cannabinoids seem to have stable conformations with the binding pocket of the Mpro enzyme of SARS-CoV-2, which has a pivotal role in viral replication and transcription. They are found to be suppressive of viral entry and viral activation by downregulating the ACE2 receptor and TMPRSS2 enzymes in the host cellular system. The therapeutic potential of cannabinoids as anti-inflammatory compounds is hypothesized for the treatment of COVID-19. However, more systemic investigations are warranted to establish the best efficacy and their toxic effects, followed by preclinical trials on a large number of participants.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Mohammad Sorowar Hossain
- Biomedical Research Foundation, Dhaka 1230, Bangladesh;
- School of Environment and Life Sciences, Independent University, Dhaka 1229, Bangladesh
| | - A. T. M. Faiz Ahmed
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Zahidul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Emdad Sarker
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Reajul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| |
Collapse
|
12
|
Radwan MM, Chandra S, Gul S, ElSohly MA. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules 2021; 26:2774. [PMID: 34066753 PMCID: PMC8125862 DOI: 10.3390/molecules26092774] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Cannabis sativa is one of the oldest medicinal plants in the world. It was introduced into western medicine during the early 19th century. It contains a complex mixture of secondary metabolites, including cannabinoids and non-cannabinoid-type constituents. More than 500 compounds have been reported from C. sativa, of which 125 cannabinoids have been isolated and/or identified as cannabinoids. Cannabinoids are C21 terpeno-phenolic compounds specific to Cannabis. The non-cannabinoid constituents include: non-cannabinoid phenols, flavonoids, terpenes, alkaloids and others. This review discusses the chemistry of the cannabinoids and major non-cannabinoid constituents (terpenes, non-cannabinoid phenolics, and alkaloids) with special emphasis on their chemical structures, methods of isolation, and identification.
Collapse
Affiliation(s)
- Mohamed M. Radwan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (M.M.R.); (S.C.)
| | - Suman Chandra
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (M.M.R.); (S.C.)
| | - Shahbaz Gul
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA;
- Sally McDonnell Barksdale Honors College, University of Mississippi, Oxford, MS 38677, USA
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (M.M.R.); (S.C.)
- Sally McDonnell Barksdale Honors College, University of Mississippi, Oxford, MS 38677, USA
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
13
|
Muscarà C, Smeriglio A, Trombetta D, Mandalari G, La Camera E, Occhiuto C, Grassi G, Circosta C. Antioxidant and antimicrobial activity of two standardized extracts from a new Chinese accession of non-psychotropic Cannabis sativa L. Phytother Res 2020; 35:1099-1112. [PMID: 33034400 DOI: 10.1002/ptr.6891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to evaluate the antioxidant and antimicrobial properties of two extracts from a new Chinese accession (G-309) of Cannabis sativa L. (Δ9 -tetrahydrocannabinol <0.2%) with high content of propyl side chain phytocannabinoids. Dried flowering tops, as such and after hydrodistillation of the essential oil, were extracted with acidic hexane to produce the Cannabis Chinese hexane extract 1 (CChHE1) and 2 (CChHE2), respectively. The phytochemical profile of CChHE1 and CChHE2 was investigated by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-diode array detector-electrospray ionization-tandem mass spectrometry (LC-DAD-ESI-MS/MS) analyses. The antioxidant properties were assessed by several in vitro cell-free assays. The antimicrobial activity was evaluated against Gram-positive and Gram-negative bacteria and the yeast Candida albicans. Phytochemical analyses highlighted a high content of cannabidivarinic acid (CBDVA) and tetraydrocannabivarinic acid (THCVA) in CChHE1, and cannabidivarin (CBDV) and tetraydrocannabivarin (THCV) in CChHE2. Both extracts showed remarkable antioxidant activity and strong antimicrobial properties (MIC 39.06 and MBC 39.06-78.13 μg/ml) against both ATCC and methicillin-resistant clinical strains of Staphylococcus aureus. In conclusion, standardized extracts of C. sativa Chinese accession could be promising for their possible use as novel antibacterial agents for the treatment of widespread S. aureus infections.
Collapse
Affiliation(s)
- Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Foundation Prof. Antonio Imbesi, Messina, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Foundation Prof. Antonio Imbesi, Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Erminia La Camera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Cristina Occhiuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gianpaolo Grassi
- Council for Agricultural Research and Agricultural Economy Analysis - Research Center for Industrialcrops (CREA-CI), Rovigo, Italy
| | - Clara Circosta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Nalli Y, Jan S, Lauro G, Ur Rasool J, Lone WI, Sarkar AR, Banday J, Bifulco G, Laatsch H, Syed SH, Ali A. Isolation, Synthesis And Structure Determination Of Cannabidiol Derivatives And Their Cytotoxic Activities. Nat Prod Res 2019; 35:471-480. [PMID: 31282748 DOI: 10.1080/14786419.2019.1638381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a continuing effort to explore the structural diversity and pharmacological activities of natural products based scaffolds, herein, we report the isolation, synthesis, and structure determination of cannabidiol and its derivatives along with their cytotoxic activities. Treatment of cannabidiol (1) with acid catalyst POCl3 afforded a new derivative 6 along with six known molecules 2 - 5, 7 and, 8. The structure of 6 was elucidated by extensive spectroscopic analyses and DFT calculations of the NMR and ECD data. All the compounds (2 - 8) were evaluated for their cytotoxic potential against a panel of eight cancer cell lines. Compounds 4, 5, 7, and 8 showed pronounced in vitro cytotoxic activity with IC50 values ranging from 5.6 to 60 μM. Out of the active molecules, compounds 4, and 7 were found to be comparable to that of the parent molecule 1 on the inhibition of almost all the tested cancer cell lines.
Collapse
Affiliation(s)
- Yedukondalu Nalli
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, J&K, 180001, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Suraya Jan
- Academy of Scientific and Innovative Research, New Delhi, India.,Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Sanatnagar Srinagar, 180001, India and 190005
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Javeed Ur Rasool
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, J&K, 180001, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Waseem I Lone
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, J&K, 180001, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Aminur R Sarkar
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, J&K, 180001, India
| | - Junaid Banday
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, J&K, 180001, India
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Hartmut Laatsch
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, Göttingen, D-37077, Germany
| | - Sajad H Syed
- Academy of Scientific and Innovative Research, New Delhi, India.,Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Sanatnagar Srinagar, 180001, India and 190005
| | - Asif Ali
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, J&K, 180001, India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|