1
|
Xiao Q, Lu M, Zhang X, Guan J, Li X, Wen R, Wang N, Qian L, Liao Y, Zhang Z, Liao X, Jiang C, Yue F, Ren S, Xia J, Hu J, Luo F, Hu Z, He C. Isolated theta waves originating from the midline thalamus trigger memory reactivation during NREM sleep in mice. Nat Commun 2024; 15:9231. [PMID: 39455583 PMCID: PMC11511994 DOI: 10.1038/s41467-024-53522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
During non-rapid eye movement (NREM) sleep, neural ensembles in the entorhinal-hippocampal circuit responsible for encoding recent memories undergo reactivation to facilitate the process of memory consolidation. This reactivation is widely acknowledged as pivotal for the formation of stable memory and its impairment is closely associated with memory dysfunction. To date, the neural mechanisms driving the reactivation of neural ensembles during NREM sleep remain poorly understood. Here, we show that the neural ensembles in the medial entorhinal cortex (MEC) that encode spatial experiences exhibit reactivation during NREM sleep. Notably, this reactivation consistently coincides with isolated theta waves. In addition, we found that the nucleus reuniens (RE) in the midline thalamus exhibits typical theta waves during NREM sleep, which are highly synchronized with those occurring in the MEC in male mice. Closed-loop optogenetic inhibition of the RE-MEC pathway specifically suppressed these isolated theta waves, resulting in impaired reactivation and compromised memory consolidation following a spatial memory task in male mice. The findings suggest that theta waves originating from the ventral midline thalamus play a role in initiating memory reactivation and consolidation during sleep.
Collapse
Affiliation(s)
- Qin Xiao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Minmin Lu
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Xiaolong Zhang
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jiangheng Guan
- Department of Neurosurgery, General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Xin Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Ruyi Wen
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Na Wang
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Ling Qian
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Yixiang Liao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences of Jilin University, Changchun, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Chenggang Jiang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Faguo Yue
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Shuancheng Ren
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jianxia Xia
- Department of Physiology, Third Military Medical University, Chongqing, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fenlan Luo
- Department of Physiology, Third Military Medical University, Chongqing, China.
| | - Zhian Hu
- Department of Physiology, Third Military Medical University, Chongqing, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China.
| | - Chao He
- Department of Physiology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
2
|
Darevsky D, Kim J, Ganguly K. Coupling of Slow Oscillations in the Prefrontal and Motor Cortex Predicts Onset of Spindle Trains and Persistent Memory Reactivations. J Neurosci 2024; 44:e0621242024. [PMID: 39168655 PMCID: PMC11502226 DOI: 10.1523/jneurosci.0621-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024] Open
Abstract
Sleep is known to drive the consolidation of motor memories. During nonrapid eye movement (NREM) sleep, the close temporal proximity between slow oscillations (SOs) and spindles ("nesting" of SO-spindles) is known to be essential for consolidation, likely because it is closely associated with the reactivation of awake task activity. Interestingly, recent work has found that spindles can occur in temporal clusters or "trains." However, it remains unclear how spindle trains are related to the nesting phenomenon. Here, we hypothesized that spindle trains are more likely when SOs co-occur in the prefrontal and motor cortex. We conducted simultaneous neural recordings in the medial prefrontal cortex (mPFC) and primary motor cortex (M1) of male rats training on the reach-to-grasp motor task. We found that intracortically recorded M1 spindles are organized into distinct temporal clusters. Notably, the occurrence of temporally precise SOs between mPFC and M1 was a strong predictor of spindle trains. Moreover, reactivation of awake task patterns is much more persistent during spindle trains in comparison with that during isolated spindles. Together, our work suggests that the precise coupling of SOs across mPFC and M1 may be a potential driver of spindle trains and persistent reactivation of motor memory during NREM sleep.
Collapse
Affiliation(s)
- David Darevsky
- Bioengineering Graduate Program, University of California San Francisco, San Francisco, California 94143
- Medical Scientist Training Program, University of California San Francisco, San Francisco, California 94143
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Jaekyung Kim
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Karunesh Ganguly
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
3
|
Crowley R, Alderman E, Javadi AH, Tamminen J. A systematic and meta-analytic review of the impact of sleep restriction on memory formation. Neurosci Biobehav Rev 2024; 167:105929. [PMID: 39427809 DOI: 10.1016/j.neubiorev.2024.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Modern life causes a quarter of adults and half of teenagers to sleep for less than is recommended (Kocevska et al., 2021). Given well-documented benefits of sleep on memory, we must understand the cognitive costs of short sleep. We analysed 125 sleep restriction effect sizes from 39 reports involving 1234 participants. Restricting sleep (3-6.5 hours) compared to normal sleep (7-11 hours) negatively affects memory formation with a small effect size (Hedges' g = 0.29, 95 % CI = [0.13, 0.44]). We detected no evidence for publication bias. When sleep restriction effect sizes were compared with 185 sleep deprivation effect sizes (Newbury et al., 2021) no statistically significant difference was found, suggesting that missing some sleep has similar consequences for memory as not sleeping at all. When the analysis was restricted to post-encoding, rather than pre-encoding, sleep loss, sleep deprivation was associated with larger memory impairment than restriction. Our findings are best accounted for by the sequential hypothesis which emphasises complementary roles of slow-wave sleep and REM sleep for memory.
Collapse
Affiliation(s)
- Rebecca Crowley
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | - Eleanor Alderman
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | | | - Jakke Tamminen
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| |
Collapse
|
4
|
Mayeli A, Sanguineti C, Ferrarelli F. Recent Evidence of Non-Rapid Eye Movement Sleep Oscillation Abnormalities in Psychiatric Disorders. Curr Psychiatry Rep 2024:10.1007/s11920-024-01544-x. [PMID: 39400693 DOI: 10.1007/s11920-024-01544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE OF REVIEW We review recent studies published from 2019 to 2024 examining slow waves and sleep spindles abnormalities across neurodevelopmental, mood, trauma-related, and psychotic disorders using polysomnography and Electroencephalogram (EEG). RECENT FINDINGS Individuals with attention-deficit/hyperactivity disorder (ADHD) showed higher slow-spindle activity, while findings on slow-wave activity were mixed. Individuals with autism spectrum disorder (ASD) showed inconsistent results with some evidence of lower spindle chirp and slow-wave amplitude. Individuals with depression displayed lower slow-wave and spindle parameters mostly in medicated patients. Individuals with post-traumatic stress disorder (PTSD) showed higher spindle frequency and activity, which were associated with their clinical symptoms. Psychotic disorders demonstrated the most consistent alterations, with lower spindle density, amplitude, and duration across illness stages that correlated with patients' symptom severity and cognitive deficits, whereas lower slow-wave measures were present in the early phases of the disorders. Sleep spindle and slow-wave abnormalities are present across psychiatric populations, with the most consistent alterations observed in psychotic disorders. Larger studies with standardized methodologies and longitudinal assessments are needed to establish the potential of these oscillations as neurophysiological biomarkers and/or treatment targets.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Suite 456, Pittsburgh, PA, 15213, USA
| | - Claudio Sanguineti
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Suite 456, Pittsburgh, PA, 15213, USA
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Suite 456, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Fan Y, Li J, Qiao S. Sleep deprivation-induced memory impairment: exploring potential interventions. Front Psychiatry 2024; 15:1470976. [PMID: 39439911 PMCID: PMC11494604 DOI: 10.3389/fpsyt.2024.1470976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Sleep's crucial role in memory consolidation is well-established, with neuroimaging and sleep stage analysis revealing the intricate processes involved. Sleep deprivation significantly impairs memory performance and the ability to form new memories, highlighting the need for effective countermeasures. This article concludes that while sleep deprivation significantly impairs memory, the emerging insights into the gut-brain axis offer a promising frontier for developing novel interventions that can mitigate these effects. The review discusses various interventions, ranging from pharmaceutical compounds like donepezil, memantine, and tolcapone, to innovative physical therapy techniques such as transcranial magnetic stimulation (TMS), deep brain stimulation (DBS), and transcranial direct current stimulation (tDCS). Additionally, the emerging role of the gut-brain axis in sleep deprivation-induced memory impairment is examined, shedding light on the complex interplay between gut microbiota and cognitive functions. This comprehensive review explores the multifaceted relationship between sleep deprivation and memory impairment, delving into the neurobiological mechanisms underlying these processes and examining potential interventions.
Collapse
Affiliation(s)
- Yisheng Fan
- Department of Urology, Shuyang Hospital of Traditional Chinese Medicine, Jiangsu, China
| | - Jianfeng Li
- Department of Surgery, Yizheng Hospital, Drum Tower Hospital Group of Nanjing, Jiangsu, China
| | - Shanfeng Qiao
- Department of Obstetrics and Gynaecology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Jiangsu, China
| |
Collapse
|
6
|
Schmidig FJ, Geva-Sagiv M, Falach R, Yakim S, Gat Y, Sharon O, Fried I, Nir Y. A visual paired associate learning (vPAL) paradigm to study memory consolidation during sleep. J Sleep Res 2024; 33:e14151. [PMID: 38286437 DOI: 10.1111/jsr.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024]
Abstract
Sleep improves the consolidation and long-term stability of newly formed memories and associations. Most research on human declarative memory and its consolidation during sleep uses word-pair associations requiring exhaustive learning. In the present study, we present the visual paired association learning (vPAL) paradigm, in which participants learn new associations between images of celebrities and animals. The vPAL is based on a one-shot exposure that resembles learning in natural conditions. We tested if vPAL can reveal a role for sleep in memory consolidation by assessing the specificity of memory recognition, and the cued recall performance, before and after sleep. We found that a daytime nap improved the stability of recognition memory and discrimination abilities compared to identical intervals of wakefulness. By contrast, cued recall of associations did not exhibit significant sleep-dependent effects. High-density electroencephalography during naps further revealed an association between sleep spindle density and stability of recognition memory. Thus, the vPAL paradigm opens new avenues for future research on sleep and memory consolidation across ages and heterogeneous populations in health and disease.
Collapse
Affiliation(s)
- Flavio Jean Schmidig
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Geva-Sagiv
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Rotem Falach
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Yakim
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University, Jerusalem, Israel
| | - Yael Gat
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omer Sharon
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, USA
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
7
|
Wu J, Kwok SC, Wang H, Wang Z. Effects of post-learning nap in the recognition memory for faces in habitual nappers. Neurobiol Learn Mem 2024; 213:107957. [PMID: 38964599 DOI: 10.1016/j.nlm.2024.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
This study investigated the effects of diurnal nap in the recognition memory for faces in habitual nappers. Thirty volunteers with habitual midday napping (assigned as the sleep group) and 28 non-nappers (assigned as the wake group) participated in this study. Participants were instructed to memorize faces, and subsequently to perform two recognition tasks before and after nap/wakefulness, i.e., an immediate recognition and a delayed recognition. There were three experimental conditions: same faces with the same view angle (S-S condition); same faces with a different view angle (22.5°) (S-D condition); and novel faces (NF condition). A mixed repeated-measures ANOVA revealed that the sleep group exhibited significantly longer reaction times (RT) following their nap compared to those of the wake group; no significant between-group differences were observed in accuracy or sensitivity (d'). Furthermore, both groups were more conservative in the delayed recognition task compared to the immediate recognition task, but the sleep group was more conservative after their nap (vs pre-nap), reflected by the criterion (β, Ohit/Ofalse alarm). Further stepwise regression analysis revealed a positive relationship between duration of stage N3 sleep and normalized RT difference before/after nap on the S-S condition. These findings suggest that an immediate nap following face learning is associated with memory reorganization during N3 sleep in habitual nappers, rendering the memories not readily accessible.
Collapse
Affiliation(s)
- Jue Wu
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Center for Psychological Health Education of College Students, Wuhan University, Wuhan, Hubei Province, China
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China; Phylo-Cognition Laboratory, Division of Natural and Applied Sciences, Data Science Research Center, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan, Jiangsu, China; Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Huimin Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China.
| | - Zhaoxin Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics (Ministry of Education), Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China; Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.
| |
Collapse
|
8
|
Alter DS. Things that go bump in the night. AMERICAN JOURNAL OF CLINICAL HYPNOSIS 2024; 66:193-202. [PMID: 37105567 DOI: 10.1080/00029157.2023.2193231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Sleep disturbances take many forms. Negative health consequences are associated with nearly all of them. Insomnia, the most common sleep disturbance, can present as an inability to initiate sleep or to maintain sleep such that the restorative benefits of sleep are limited. This case report describes a client in her 60s who sought treatment for early morning awakening that persisted for four years despite the use of sleep-inducing medications. Her successful course of treatment utilized hypnotic suggestions and interactions that targeted distinctive features of the sleep cycle as well as her daily transition from wakefulness to sleep to early morning reawakening. The article highlights the coordination of neurophysiological features of sleep, psychological dynamics at play while awake and in her dream sleep, and how attention to their interplay utilizing hypnosis enabled the client to reestablish restorative sleep patterns in a treatment process spanning less than a dozen treatment sessions.
Collapse
Affiliation(s)
- David S Alter
- Partners in Healing of Minneapolis, Minnetonka, MN, USA
| |
Collapse
|
9
|
Martial C, Piarulli A, Gosseries O, Cassol H, Ledoux D, Charland-Verville V, Laureys S. EEG signature of near-death-like experiences during syncope-induced periods of unresponsiveness. Neuroimage 2024; 298:120759. [PMID: 39067553 DOI: 10.1016/j.neuroimage.2024.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
During fainting, disconnected consciousness may emerge in the form of dream-like experiences. Characterized by extra-ordinary and mystical features, these subjective experiences have been associated to near-death-like experiences (NDEs-like). We here aim to assess brain activity during syncope-induced disconnected consciousness by means of high-density EEG monitoring. Transient loss of consciousness and unresponsiveness were induced in 27 healthy volunteers through hyperventilation, orthostasis, and Valsalva maneuvers. Upon awakening, subjects were asked to report memories, if any. The Greyson NDE scale was used to evaluate the potential phenomenological content experienced during the syncope-induced periods of unresponsiveness. EEG source reconstruction assessed cortical activations during fainting, which were regressed out with subjective reports collected upon recovery of normal consciousness. We also conducted functional connectivity, graph-theoretic and complexity analyses. High quality high-density EEG data were obtained in 22 volunteers during syncope and unresponsiveness (lasting 22±8 s). NDE-like features (Greyson NDE scale total score ≥7/32) were apparent for eight volunteers and characterized by higher activity in delta, theta and beta2 bands in temporal and frontal regions. The richness of the NDE-like content was associated with delta, theta and beta2 bands cortical current densities, in temporal, parietal and frontal lobes, including insula, right temporoparietal junction, and cingulate cortex. Our analyses also revealed a higher complexity and that networks related to delta, theta, and beta2 bands were characterized by a higher overall connectivity paralleled by a higher segregation (i.e., local efficiency) and a higher integration (i.e., global efficiency) for the NDE-like group compared to the non-NDE-like group. Fainting-induced NDE-like episodes seem to be sustained by surges of neural activity representing promising markers of disconnected consciousness.
Collapse
Affiliation(s)
- Charlotte Martial
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium, Avenue de l'hôpital, 11, 4000 Liège, Belgium; Centre du Cerveau², University Hospital of Liège, Liège, Belgium, Avenue de l'Hôpital, 11, 4000 Liège, Belgium.
| | - Andrea Piarulli
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium, Avenue de l'hôpital, 11, 4000 Liège, Belgium; Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy. Via Paradisa 2, 56124 Pisa, Italy
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium, Avenue de l'hôpital, 11, 4000 Liège, Belgium; Centre du Cerveau², University Hospital of Liège, Liège, Belgium, Avenue de l'Hôpital, 11, 4000 Liège, Belgium
| | - Héléna Cassol
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium, Avenue de l'hôpital, 11, 4000 Liège, Belgium
| | - Didier Ledoux
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium, Avenue de l'Hôpital, 11, 4000 Liège, Belgium; Department of Intensive Care and Resuscitation, University Hospital of Liège, Liège, Belgium, Avenue de l'Hôpital, 11, 4000 Liège, Belgium
| | - Vanessa Charland-Verville
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium, Avenue de l'hôpital, 11, 4000 Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium, Avenue de l'hôpital, 11, 4000 Liège, Belgium; Centre du Cerveau², University Hospital of Liège, Liège, Belgium, Avenue de l'Hôpital, 11, 4000 Liège, Belgium
| |
Collapse
|
10
|
Ng T, Noh E, Spencer RMC. Does slow oscillation-spindle coupling contribute to sleep-dependent memory consolidation? A Bayesian meta-analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610060. [PMID: 39257832 PMCID: PMC11383665 DOI: 10.1101/2024.08.28.610060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The active system consolidation theory suggests that information transfer between the hippocampus and cortex during sleep underlies memory consolidation. Neural oscillations during sleep, including the temporal coupling between slow oscillations (SO) and sleep spindles (SP), may play a mechanistic role in memory consolidation. However, differences in analytical approaches and the presence of physiological and behavioral moderators have led to inconsistent conclusions. This meta-analysis, comprising 23 studies and 297 effect sizes, focused on four standard phase-amplitude coupling measures including coupling phase, strength, percentage, and SP amplitude, and their relationship with memory retention. We developed a standardized approach to incorporate non-normal circular-linear correlations. We found strong evidence supporting that precise and strong SO-fast SP coupling in the frontal lobe predicts memory consolidation. The strength of this association is mediated by memory type, aging, and dynamic spatio-temporal features, including SP frequency and cortical topography. In conclusion, SO-SP coupling should be considered as a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Thea Ng
- Neuroscience & Behavior Program, Mount Holyoke College
- Department of Mathematics & Statistics, Mount Holyoke College
| | - Eunsol Noh
- Neuroscience & Behavior Program, University of Massachusetts, Amherst
| | - Rebecca M. C. Spencer
- Neuroscience & Behavior Program, University of Massachusetts, Amherst
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst
- Institute of Applied Life Sciences, University of Massachusetts, Amherst
| |
Collapse
|
11
|
Koukaroudi D, Qiu Z, Fransén E, Gokhale R, Bulovaite E, Komiyama NH, Seibt J, Grant SGN. Sleep maintains excitatory synapse diversity in the cortex and hippocampus. Curr Biol 2024; 34:3836-3843.e5. [PMID: 39096907 PMCID: PMC11359089 DOI: 10.1016/j.cub.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/17/2024] [Accepted: 07/05/2024] [Indexed: 08/05/2024]
Abstract
Insufficient sleep is a global problem with serious consequences for cognition and mental health.1 Synapses play a central role in many aspects of cognition, including the crucial function of memory consolidation during sleep.2 Interference with the normal expression or function of synapse proteins is a cause of cognitive, mood, and other behavioral problems in over 130 brain disorders.3 Sleep deprivation (SD) has also been reported to alter synapse protein composition and synapse number, although with conflicting results.4,5,6,7 In our study, we conducted synaptome mapping of excitatory synapses in 125 regions of the mouse brain and found that sleep deprivation selectively reduces synapse diversity in the cortex and in the CA1 region of the hippocampus. Sleep deprivation targeted specific types and subtypes of excitatory synapses while maintaining total synapse density (synapse number/area). Synapse subtypes with longer protein lifetimes exhibited resilience to sleep deprivation, similar to observations in aging and genetic perturbations. Moreover, the altered synaptome architecture affected the responses to neural oscillations, suggesting that sleep plays a vital role in preserving cognitive function by maintaining the brain's synaptome architecture.
Collapse
Affiliation(s)
- Dimitra Koukaroudi
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Erik Fransén
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Ragini Gokhale
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Edita Bulovaite
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; The Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Julie Seibt
- Surrey Sleep Research Centre, School of Biosciences, University of Surrey, Guildford, Surrey GU2 7XP, UK
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
12
|
Sharman R, Kyle SD, Espie CA, Tamm S. Associations between self-reported sleep, overnight memory consolidation, and emotion perception: A large-scale online study in the general population. J Sleep Res 2024; 33:e14094. [PMID: 38009410 DOI: 10.1111/jsr.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 11/28/2023]
Abstract
Experimental studies suggest that short or disrupted sleep impairs memory consolidation, mood, and perception of emotional stimuli. However, studies have chiefly relied on laboratory-based study designs and small sample sizes. The aim of this fully online and pre-registered study was to investigate the association between sleep and overnight memory consolidation, emotion perception, and affect in a large, self-selected UK sample. A total of 1646 participants (473 completed) took part in an online study, where they completed a declarative (word-pairs) memory task, emotion perception task (valence ratings of images), and rated their affect within 2 h of bed-time. The following morning, participants reported on their state affect, sleep for the previous night, completed a cued recall task for the previously presented word-pairs, rated the valence of previously viewed images, and completed a surprise recognition task. Demographic data and habitual sleep quality and duration (sleep traits) were also recorded. Habitual sleep traits were associated with immediate recall for the word-pairs task, while self-reported sleep parameters for the specific night were not associated with overnight memory consolidation. Neither habitual sleep traits, nor nightly sleep parameters were associated with unpleasantness ratings to negative stimuli or overnight habituation. Habitual poor sleep was associated with less positive and more negative affect, and morning affect was predicted by the specific night's sleep. This study suggests that overnight emotional processing and declarative memory may not be associated with self-reported sleep across individuals. More work is needed to understand how findings from laboratory-based studies extrapolate to real-world samples and contexts.
Collapse
Affiliation(s)
- Rachel Sharman
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Simon D Kyle
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Colin A Espie
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sandra Tamm
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Whitehurst LN, Morehouse A, Mednick SC. Can stimulants make you smarter, despite stealing your sleep? Trends Cogn Sci 2024; 28:702-713. [PMID: 38763802 DOI: 10.1016/j.tics.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Nonmedical use of psychostimulants for cognitive enhancement is widespread and growing in neurotypical individuals, despite mixed scientific evidence of their effectiveness. Sleep benefits cognition, yet the interaction between stimulants, sleep, and cognition in neurotypical adults has received little attention. We propose that one effect of psychostimulants, namely decreased sleep, may play an important and unconsidered role in the effect of stimulants on cognition. We discuss the role of sleep in cognition, the alerting effects of stimulants in the context of sleep loss, and the conflicting findings of stimulants for complex cognitive processes. Finally, we hypothesize that sleep may be one unconsidered factor in the mythology of stimulants as cognitive enhancers and propose a methodological approach to systematically assess this relation.
Collapse
Affiliation(s)
- Lauren N Whitehurst
- Department of Psychology, University of Kentucky, Lexington, KY, USA, 40508.
| | - Allison Morehouse
- Department of Cognitive Science, University of California, Irvine, Irvine, CA, USA, 92617
| | - Sara C Mednick
- Department of Cognitive Science, University of California, Irvine, Irvine, CA, USA, 92617.
| |
Collapse
|
14
|
Cushing SD, Moseley SC, Stimmell AC, Schatschneider C, Wilber AA. Rescuing impaired hippocampal-cortical interactions and spatial reorientation learning and memory during sleep in a mouse model of Alzheimer's disease using hippocampal 40 Hz stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599921. [PMID: 38979221 PMCID: PMC11230253 DOI: 10.1101/2024.06.20.599921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In preclinical Alzheimer's disease (AD), spatial learning and memory is impaired. We reported similar impairments in 3xTg-AD mice on a virtual maze (VM) spatial-reorientation-task that requires using landmarks to navigate. Hippocampal (HPC)-cortical dysfunction during sleep (important for memory consolidation) is a potential mechanism for memory impairments in AD. We previously found deficits in HPC-cortical coordination during sleep coinciding with VM impairments the next day. Some forms of 40 Hz stimulation seem to clear AD pathology in mice, and improve functional connectivity in AD patients. Thus, we implanted a recording array targeting parietal cortex (PC) and HPC to assess HPC-PC coordination, and an optical fiber targeting HPC for 40 Hz or sham optogenetic stimulation in 3xTg/PV cre mice. We assessed PC delta waves (DW) and HPC sharp wave ripples (SWRs). In sham mice, SWR-DW cross-correlations were reduced, similar to 3xTg-AD mice. In 40 Hz mice, this phase-locking was rescued, as was performance on the VM. However, rescued HPC-PC coupling no longer predicted performance as in NonTg animals. Instead, DWs and SWRs independently predicted performance in 40 Hz mice. Thus, 40 Hz stimulation of HPC rescued functional interactions in the HPC-PC network, and rescued impairments in spatial navigation, but did not rescue the correlation between HPC-PC coordination during sleep and learning and memory. Together this pattern of results could inform AD treatment timing by suggesting that despite applying 40 Hz stimulation before significant tau and amyloid aggregation, pathophysiological processes led to brain changes that were not fully reversed even though cognition was recovered. Significance Statement One of the earliest symptoms of Alzheimer's disease (AD) is getting lost in space or experiencing deficits in spatial navigation, which involve navigation computations as well as learning and memory. We investigated cross brain region interactions supporting memory formation as a potential causative factor of impaired spatial learning and memory in AD. To assess this relationship between AD pathophysiology, brain changes, and behavioral alterations, we used a targeted approach for clearing amyloid beta and tau to rescue functional interactions in the brain. This research strongly connects brain activity patterns during sleep to tau and amyloid accumulation, and will aid in understanding the mechanisms underlying cognitive dysfunction in AD. Furthermore, the results offer insight for improving early identification and treatment strategies.
Collapse
|
15
|
Kniffin A, Bangasser DA, Parikh V. Septohippocampal cholinergic system at the intersection of stress and cognition: Current trends and translational implications. Eur J Neurosci 2024; 59:2155-2180. [PMID: 37118907 PMCID: PMC10875782 DOI: 10.1111/ejn.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Deficits in hippocampus-dependent memory processes are common across psychiatric and neurodegenerative disorders such as depression, anxiety and Alzheimer's disease. Moreover, stress is a major environmental risk factor for these pathologies and it exerts detrimental effects on hippocampal functioning via the activation of hypothalamic-pituitary-adrenal (HPA) axis. The medial septum cholinergic neurons extensively innervate the hippocampus. Although, the cholinergic septohippocampal pathway (SHP) has long been implicated in learning and memory, its involvement in mediating the adaptive and maladaptive impact of stress on mnemonic processes remains less clear. Here, we discuss current research highlighting the contributions of cholinergic SHP in modulating memory encoding, consolidation and retrieval. Then, we present evidence supporting the view that neurobiological interactions between HPA axis stress response and cholinergic signalling impact hippocampal computations. Finally, we critically discuss potential challenges and opportunities to target cholinergic SHP as a therapeutic strategy to improve cognitive impairments in stress-related disorders. We argue that such efforts should consider recent conceptualisations on the dynamic nature of cholinergic signalling in modulating distinct subcomponents of memory and its interactions with cellular substrates that regulate the adaptive stress response.
Collapse
Affiliation(s)
- Alyssa Kniffin
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Debra A. Bangasser
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| |
Collapse
|
16
|
Mayor C, Moser C, Korff C. Long-term memory consolidation of new words in children with self-limited epilepsy with centro-temporal spikes. Epilepsy Behav 2024; 153:109720. [PMID: 38428174 DOI: 10.1016/j.yebeh.2024.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Accelerated long-term forgetting has been studied and demonstrated in adults with epilepsy. In contrast, the question of long-term consolidation (delays > 1 day) in children with epilepsy shows conflicting results. However, childhood is a period of life in which the encoding and long-term storage of new words is essential for the development of knowledge and learning. The aim of this study was therefore to investigate long-term memory consolidation skills in children with self-limited epilepsy with centro-temporal spikes (SeLECTS), using a paradigm exploring new words encoding skills and their long-term consolidation over one-week delay. As lexical knowledge, working memory skills and executive/attentional skills has been shown to contribute to long-term memory/new word learning, we added standardized measures of oral language and executive/attentional functions to explore the involvement of these cognitive skills in new word encoding and consolidation. The results showed that children with SeLECTS needed more repetitions to encode new words, struggled to encode the phonological forms of words, and when they finally reached the level of the typically developing children, they retained what they had learned, but didn't show improved recall skills after a one-week delay, unlike the control participants. Lexical knowledge, verbal working memory skills and phonological skills contributed to encoding and/or recall abilities, and interference sensitivity appeared to be associated with the number of phonological errors during the pseudoword encoding phase. These results are consistent with the functional model linking working memory, phonology and vocabulary in a fronto-temporo-parietal network. As SeLECTS involves perisylvian dysfunction, the associations between impaired sequence storage (phonological working memory), phonological representation storage and new word learning are not surprising. This dual impairment in both encoding and long-term consolidation may result in large learning gap between children with and without epilepsy. Whether these results indicate differences in the sleep-induced benefits required for long-term consolidation or differences in the benefits of retrieval practice between the epilepsy group and healthy children remains open. As lexical development is associated with academic achievement and comprehension, the impact of such deficits in learning new words is certainly detrimental.
Collapse
Affiliation(s)
- C Mayor
- Child Neuropsychology Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland.
| | - C Moser
- Child Neuropsychology Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland
| | - C Korff
- Pediatric Neurology Unit, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Drouin JR, Flores S. Effects of training length on adaptation to noise-vocoded speech. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2114-2127. [PMID: 38488452 DOI: 10.1121/10.0025273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Listeners show rapid perceptual learning of acoustically degraded speech, though the amount of exposure required to maximize speech adaptation is unspecified. The current work used a single-session design to examine the length of auditory training on perceptual learning for normal hearing listeners exposed to eight-channel noise-vocoded speech. Participants completed short, medium, or long training using a two-alternative forced choice sentence identification task with feedback. To assess learning and generalization, a 40-trial pre-test and post-test transcription task was administered using trained and novel sentences. Training results showed all groups performed near ceiling with no reliable differences. For test data, we evaluated changes in transcription accuracy using separate linear mixed models for trained or novel sentences. In both models, we observed a significant improvement in transcription at post-test relative to pre-test. Critically, the three training groups did not differ in the magnitude of improvement following training. Subsequent Bayes factors analysis evaluating the test by group interaction provided strong evidence in support of the null hypothesis. For these stimuli and procedure, results suggest increased training does not necessarily maximize learning outcomes; both passive and trained experience likely supported adaptation. Findings may contribute to rehabilitation recommendations for listeners adapting to degraded speech signals.
Collapse
Affiliation(s)
- Julia R Drouin
- Division of Speech and Hearing Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Stephany Flores
- Department of Communication Sciences and Disorders, California State University Fullerton, Fullerton, California 92831, USA
| |
Collapse
|
18
|
Wiese H, Popova T, Schipper M, Zakriev D, Burton AM, Young AW. How neural representations of newly learnt faces change over time: Event-related brain potential evidence for overnight consolidation. Cortex 2024; 171:13-25. [PMID: 37977110 DOI: 10.1016/j.cortex.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/05/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Previous experiments have shown that a brief encounter with a previously unfamiliar person leads to the establishment of new facial representations, which can be activated by completely novel pictures of the newly learnt face. The present study examined how stable such novel neural representations are over time, and, specifically, how they become consolidated within the first 24 h after learning. Using event-related brain potentials (ERPs) in a between-participants design, we demonstrate that clear face familiarity effects in the occipito-temporal N250 are evident immediately after learning. These effects then undergo change, with a nearly complete absence of familiarity-related ERP differences 4 h after the initial encounter. Critically, 24 h after learning, the original familiarity effect re-emerges. These findings suggest that the neural correlates of novel face representations are not stable over time but change during the first day after learning. The resulting pattern of change is consistent with a process of consolidation.
Collapse
|
19
|
Chen P, Hao C, Ma N. Sleep spindles consolidate declarative memory with tags: A meta-analysis of adult data. JOURNAL OF PACIFIC RIM PSYCHOLOGY 2024; 18. [DOI: 10.1177/18344909241226761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Tags are attached to salient information during the wake period, which can preferentially determine what information can be consolidated during sleep. Previous studies demonstrated that spindles during non-rapid eye movement (NREM) sleep give priority to strengthening memory representations with tags, indicating a privileged reactivation of tagged information. The current meta-analysis investigated whether and how spindles can capture different tags to consolidate declarative memory. This study searched the Web of Science, Google Scholar, PubMed, PsycINFO, and OATD databases for studies that spindles consolidate declarative memory with tags. A meta-analysis using a random-effects model was performed. Based on 19 datasets from 18 studies (N = 388), spindles had a medium effect on the consolidation of declarative memory with tags ( r = 0.519). In addition, spindles derived from whole-night sleep and nap studies were positively related to the consolidation of memory representations with tags. These findings reveal the shared mechanism that spindles are actively involved in the prefrontal-hippocampus circuits to consolidate memory with tags.
Collapse
Affiliation(s)
- Peiyao Chen
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Chao Hao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
20
|
Dehnavi F, Koo-Poeggel PC, Ghorbani M, Marshall L. Memory ability and retention performance relate differentially to sleep depth and spindle type. iScience 2023; 26:108154. [PMID: 37876817 PMCID: PMC10590735 DOI: 10.1016/j.isci.2023.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/09/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Temporal interactions between non-rapid eye movement (NREM) sleep rhythms especially the coupling between cortical slow oscillations (SO, ∼1 Hz) and thalamic spindles (∼12 Hz) have been proposed to contribute to multi-regional interactions crucial for memory processing and cognitive ability. We investigated relationships between NREM sleep depth, sleep spindles and SO-spindle coupling regarding memory ability and memory consolidation in healthy humans. Findings underscore the functional relevance of spindle dynamics (slow versus fast), SO-phase, and most importantly NREM sleep depth for cognitive processing. Cross-frequency coupling analyses demonstrated stronger precise temporal coordination of slow spindles to SO down-state in N2 for subjects with higher general memory ability. A GLM model underscored this relationship, and furthermore that fast spindle properties were predictive of overnight memory consolidation. Our results suggest cognitive fingerprints dependent on conjoint fine-tuned SO-spindle temporal coupling, spindle properties, and brain sleep state.
Collapse
Affiliation(s)
- Fereshteh Dehnavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Center for International Scientific Studies & Collaborations (CISSC), Shahid Azodi Street, Karim-Khane Zand Boulevard, Tehran 15875-7788, Iran
| | - Ping Chai Koo-Poeggel
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Ratzeburger Allee 160, Bldg. 66, 23562 Luebeck, Germany
- Center for Brain, Behavior and Metabolism, University of Luebeck, 23562 Luebeck, Germany
| | - Maryam Ghorbani
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Center for International Scientific Studies & Collaborations (CISSC), Shahid Azodi Street, Karim-Khane Zand Boulevard, Tehran 15875-7788, Iran
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Ratzeburger Allee 160, Bldg. 66, 23562 Luebeck, Germany
- Center for Brain, Behavior and Metabolism, University of Luebeck, 23562 Luebeck, Germany
| |
Collapse
|
21
|
Gholston AS, Thurmann KE, Chiew KS. Contributions of transient and sustained reward to memory formation. PSYCHOLOGICAL RESEARCH 2023; 87:2477-2498. [PMID: 37079090 PMCID: PMC10116487 DOI: 10.1007/s00426-023-01829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Reward benefits to memory formation have been robustly linked to dopaminergic activity. Despite the established characterization of dopaminergic mechanisms as operating at multiple timescales, potentially supporting distinct functional outcomes, the temporal dynamics by which reward might modulate memory encoding are just beginning to be investigated. In the present study, we leveraged a mixed block/event experimental design to disentangle transient and sustained reward influences on task engagement and subsequent recognition memory in an adapted monetary-incentive-encoding (MIE) paradigm. Across three behavioral experiments, transient and sustained reward modulation of item and context memory was probed, at both 24-h and ~ 15-min retention intervals, to investigate the importance of overnight consolidation. In general, we observed that transient reward was associated with enhanced item memory encoding, while sustained reward modulated response speed but did not appear to benefit subsequent recognition accuracy. Notably, reward effects on item memory performance and response speed were somewhat inconsistent across the three experiments, with suggestions that RT speeding might also be related to time on task, and we did not observe reward modulation of context memory performance or amplification of reward benefits to memory by overnight consolidation. Taken together, the observed pattern of behavior is consistent with potentially distinct roles for transient and sustained reward in memory encoding and cognitive performance and suggests that further investigation of the temporal dynamics of dopaminergic contributions to memory formation will advance the understanding of motivated memory.
Collapse
Affiliation(s)
- Avery S Gholston
- Department of Psychology, University of Denver, 2155 South Race Street, Denver, CO, 80208, USA
| | - Kyle E Thurmann
- Department of Psychology, University of Denver, 2155 South Race Street, Denver, CO, 80208, USA
| | - Kimberly S Chiew
- Department of Psychology, University of Denver, 2155 South Race Street, Denver, CO, 80208, USA.
| |
Collapse
|
22
|
Richter M, Cross ZR, Bornkessel-Schlesewsky I. Individual differences in information processing during sleep and wake predict sleep-based memory consolidation of complex rules. Neurobiol Learn Mem 2023; 205:107842. [PMID: 37848075 DOI: 10.1016/j.nlm.2023.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/03/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Memory is critical for many cognitive functions, from remembering facts, to learning complex environmental rules. While memory encoding occurs during wake, memory consolidation is associated with sleep-related neural activity. Further, research suggests that individual differences in alpha frequency during wake (∼7 - 13 Hz) modulate memory processes, with higher individual alpha frequency (IAF) associated with greater memory performance. However, the relationship between wake-related EEG individual differences, such as IAF, and sleep-related neural correlates of memory consolidation has been largely unexplored, particularly in a complex rule-based memory context. Here, we aimed to investigate whether wake-derived IAF and sleep neurophysiology interact to influence rule learning in a sample of 35 healthy adults (16 males; mean age = 25.4, range: 18 - 40). Participants learned rules of a modified miniature language prior to either 8hrs of sleep or wake, after which they were tested on their knowledge of the rules in a grammaticality judgement task. Results indicate that sleep neurophysiology and wake-derived IAF do not interact but modulate memory for complex linguistic rules separately. Phase-amplitude coupling between slow oscillations and spindles during non-rapid eye-movement (NREM) sleep also promoted memory for rules that were analogous to the canonical English word order. As an exploratory analysis, we found that rapid eye-movement (REM) sleep theta power at posterior regions interacts with IAF to predict rule learning and proportion of time in REM sleep predicts rule learning differentially depending on grammatical rule type. Taken together, the current study provides behavioural and electrophysiological evidence for a complex role of NREM and REM sleep neurophysiology and wake-derived IAF in the consolidation of rule-based information.
Collapse
Affiliation(s)
- Madison Richter
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia; College of Nursing and Health Sciences, Flinders University, Adelaide, Australia.
| | - Zachariah R Cross
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia; Department of Medical Social Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, United States
| | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| |
Collapse
|
23
|
Holm L, Wells M. Reliable retrieval is intrinsically rewarding: Recency, item difficulty, study session memory, and subjective confidence predict satisfaction in word-pair recall. PLoS One 2023; 18:e0292866. [PMID: 37856440 PMCID: PMC10586604 DOI: 10.1371/journal.pone.0292866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
The recall of a distant memory may appear satisfying and suggest successful retrieval is inherently rewarding. If the brain incentivizes retrieval attempts on the prospect of an internal retrieval reward, then the desire for that reward might natively reinforce declarative memory access. But what determines the level of retrieval satisfaction? We tested the idea that retrieval attempt uncertainty drives retrieval satisfaction. For instance, the more distant the memory, the more satisfying should it be to successfully retrieve it. Alternatively, the brain issues rewards based on the level of confidence in recall independent of the recall achievement. If so, then more confident retrieval is also more satisfying. In an online experiment containing five Swahili-English word pair study sessions spaced across one week, we tested 30 English-speaking participants' recall satisfaction and memory confidence during learning as well as in a final cued recall test. We hypothesized that retrieval satisfaction should either increase or decrease with retrieval uncertainty as indicated by time since encoding, and how little in overall they recalled from the session. We found that retrieval satisfaction decreased with time since encoding and with study session retrieval performance. Moreover, we found that retrieval confidence and satisfaction ratings were highly related in the experiment. We also found a reliable interaction between confidence and word difficulty indicating that confidently recalled difficult items induced more satisfaction. Thus, the brain appears to reward both retrieval confidence and to a lesser extent, fruitful retrieval effort. Our findings may explain seemingly irrational self-regulated study behavior such as avoiding learning-efficient but difficult training protocols, as effects of a system rationally seeking to accrue intrinsic cognitive reward.
Collapse
Affiliation(s)
- Linus Holm
- Department of Psychology, Umeå University, Umeå, Sweden
| | - Michael Wells
- Department of Psychology, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Poe AR, Zhu L, Szuperak M, McClanahan PD, Anafi RC, Scholl B, Thum AS, Cavanaugh DJ, Kayser MS. Developmental emergence of sleep rhythms enables long-term memory in Drosophila. SCIENCE ADVANCES 2023; 9:eadh2301. [PMID: 37683005 PMCID: PMC10491288 DOI: 10.1126/sciadv.adh2301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
In adulthood, sleep-wake rhythms are one of the most prominent behaviors under circadian control. However, during early life, sleep is spread across the 24-hour day. The mechanism through which sleep rhythms emerge, and consequent advantage conferred to a juvenile animal, is unknown. In the second-instar Drosophila larvae (L2), like in human infants, sleep is not under circadian control. We identify the precise developmental time point when the clock begins to regulate sleep in Drosophila, leading to emergence of sleep rhythms in early third-instars (L3). At this stage, a cellular connection forms between DN1a clock neurons and arousal-promoting Dh44 neurons, bringing arousal under clock control to drive emergence of circadian sleep. Last, we demonstrate that L3 but not L2 larvae exhibit long-term memory (LTM) of aversive cues and that this LTM depends upon deep sleep generated once sleep rhythms begin. We propose that the developmental emergence of circadian sleep enables more complex cognitive processes, including the onset of enduring memories.
Collapse
Affiliation(s)
- Amy R. Poe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucy Zhu
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Milan Szuperak
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ron C. Anafi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin Scholl
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andreas S. Thum
- Department of Genetics, Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
You S, Lv T, Qin R, Hu Z, Ke Z, Yao W, Zhao H, Bai F. Neuro-Navigated rTMS Improves Sleep and Cognitive Impairment via Regulating Sleep-Related Networks' Spontaneous Activity in AD Spectrum Patients. Clin Interv Aging 2023; 18:1333-1349. [PMID: 37601952 PMCID: PMC10439779 DOI: 10.2147/cia.s416992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Study Objectives By examining spontaneous activity changes of sleep-related networks in patients with the Alzheimer's disease (AD) spectrum with or without insomnia disorder (ID) over time via neuro-navigated repetitive transcranial magnetic stimulation (rTMS), we revealed the effect and mechanism of rTMS targeting the left-angular gyrus in improving the comorbidity symptoms of the AD spectrum with ID. Methods A total of 34 AD spectrum patients were recruited in this study, including 18 patients with ID and the remaining 16 patients without ID. All of them were measured for cognitive function and sleep by using the cognitive and sleep subscales of the neuropsychiatric inventory. The amplitude of low-frequency fluctuation changes in sleep-related networks was revealed before and after neuro-navigated rTMS treatment between these two groups, and the behavioral significance was further explored. Results Affective auditory processing and sensory-motor collaborative sleep-related networks with hypo-spontaneous activity were observed at baseline in the AD spectrum with ID group, while substantial increases in activity were evident at follow-up in these subjects. In addition, longitudinal affective auditory processing, sensory-motor and default mode collaborative sleep-related networks with hyper-spontaneous activity were also revealed at follow-up in the AD spectrum with ID group. In particular, longitudinal changes in sleep-related networks were associated with improvements in sleep quality and episodic memory scores in AD spectrum with ID patients. Conclusion We speculated that left angular gyrus-navigated rTMS therapy may enhance the memory function of AD spectrum patients by regulating the spontaneous activity of sleep-related networks, and it was associated with memory consolidation in the hippocampus-cortical circuit during sleep. Clinical Trial Registration The study was registered at the Chinese Clinical Trial Registry, registration ID: ChiCTR2100050496, China.
Collapse
Affiliation(s)
- Shengqi You
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| | - Tingyu Lv
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Weina Yao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| |
Collapse
|
26
|
Sridhar S, Khamaj A, Asthana MK. Cognitive neuroscience perspective on memory: overview and summary. Front Hum Neurosci 2023; 17:1217093. [PMID: 37565054 PMCID: PMC10410470 DOI: 10.3389/fnhum.2023.1217093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
This paper explores memory from a cognitive neuroscience perspective and examines associated neural mechanisms. It examines the different types of memory: working, declarative, and non-declarative, and the brain regions involved in each type. The paper highlights the role of different brain regions, such as the prefrontal cortex in working memory and the hippocampus in declarative memory. The paper also examines the mechanisms that underlie the formation and consolidation of memory, including the importance of sleep in the consolidation of memory and the role of the hippocampus in linking new memories to existing cognitive schemata. The paper highlights two types of memory consolidation processes: cellular consolidation and system consolidation. Cellular consolidation is the process of stabilizing information by strengthening synaptic connections. System consolidation models suggest that memories are initially stored in the hippocampus and are gradually consolidated into the neocortex over time. The consolidation process involves a hippocampal-neocortical binding process incorporating newly acquired information into existing cognitive schemata. The paper highlights the role of the medial temporal lobe and its involvement in autobiographical memory. Further, the paper discusses the relationship between episodic and semantic memory and the role of the hippocampus. Finally, the paper underscores the need for further research into the neurobiological mechanisms underlying non-declarative memory, particularly conditioning. Overall, the paper provides a comprehensive overview from a cognitive neuroscience perspective of the different processes involved in memory consolidation of different types of memory.
Collapse
Affiliation(s)
- Sruthi Sridhar
- Department of Psychology, Mount Allison University, Sackville, NB, Canada
| | - Abdulrahman Khamaj
- Department of Industrial Engineering, College of Engineering, Jazan University, Jazan, Saudi Arabia
| | - Manish Kumar Asthana
- Department of Humanities and Social Sciences, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
27
|
Pase MP, Harrison S, Misialek JR, Kline CE, Cavuoto M, Baril AA, Yiallourou S, Bisson A, Himali D, Leng Y, Yang Q, Seshadri S, Beiser A, Gottesman RF, Redline S, Lopez O, Lutsey PL, Yaffe K, Stone KL, Purcell SM, Himali JJ. Sleep Architecture, Obstructive Sleep Apnea, and Cognitive Function in Adults. JAMA Netw Open 2023; 6:e2325152. [PMID: 37462968 PMCID: PMC10354680 DOI: 10.1001/jamanetworkopen.2023.25152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/07/2023] [Indexed: 07/21/2023] Open
Abstract
Importance Good sleep is essential for health, yet associations between sleep and dementia risk remain incompletely understood. The Sleep and Dementia Consortium was established to study associations between polysomnography (PSG)-derived sleep and the risk of dementia and related cognitive and brain magnetic resonance imaging endophenotypes. Objective To investigate association of sleep architecture and obstructive sleep apnea (OSA) with cognitive function in the Sleep and Dementia Consortium. Design, Setting, and Participants The Sleep and Dementia Consortium curated data from 5 population-based cohorts across the US with methodologically consistent, overnight, home-based type II PSG and neuropsychological assessments over 5 years of follow-up: the Atherosclerosis Risk in Communities study, Cardiovascular Health Study, Framingham Heart Study (FHS), Osteoporotic Fractures in Men Study, and Study of Osteoporotic Fractures. Sleep metrics were harmonized centrally and then distributed to participating cohorts for cohort-specific analysis using linear regression; study-level estimates were pooled in random effects meta-analyses. Results were adjusted for demographic variables, the time between PSG and neuropsychological assessment (0-5 years), body mass index, antidepressant use, and sedative use. There were 5946 participants included in the pooled analyses without stroke or dementia. Data were analyzed from March 2020 to June 2023. Exposures Measures of sleep architecture and OSA derived from in-home PSG. Main Outcomes and Measures The main outcomes were global cognitive composite z scores derived from principal component analysis, with cognitive domains investigated as secondary outcomes. Higher scores indicated better performance. Results Across cohorts, 5946 adults (1875 females [31.5%]; mean age range, 58-89 years) were included. The median (IQR) wake after sleep onset time ranged from 44 (27-73) to 101 (66-147) minutes, and the prevalence of moderate to severe OSA ranged from 16.9% to 28.9%. Across cohorts, higher sleep maintenance efficiency (pooled β per 1% increase, 0.08; 95% CI, 0.03 to 0.14; P < .01) and lower wake after sleep onset (pooled β per 1-min increase, -0.07; 95% CI, -0.13 to -0.01 per 1-min increase; P = .02) were associated with better global cognition. Mild to severe OSA (apnea-hypopnea index [AHI] ≥5) was associated with poorer global cognition (pooled β, -0.06; 95% CI, -0.11 to -0.01; P = .01) vs AHI less than 5; comparable results were found for moderate to severe OSA (pooled β, -0.06; 95% CI, -0.11 to -0.01; P = .02) vs AHI less than 5. Differences in sleep stages were not associated with cognition. Conclusions and Relevance This study found that better sleep consolidation and the absence of OSA were associated with better global cognition over 5 years of follow-up. These findings suggest that the role of interventions to improve sleep for maintaining cognitive function requires investigation.
Collapse
Affiliation(s)
- Matthew P. Pase
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
- Harvard T.H. Chan School of Public Health, Massachusetts
- Framingham Heart Study, Framingham, Massachusetts
| | | | - Jeffrey R. Misialek
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis
| | - Christopher E. Kline
- Department of Health and Human Development, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marina Cavuoto
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Andree-Ann Baril
- Framingham Heart Study, Framingham, Massachusetts
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Stephanie Yiallourou
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Alycia Bisson
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Dibya Himali
- Framingham Heart Study, Framingham, Massachusetts
| | - Yue Leng
- Department of Psychiatry and Behavioral Sciences, University of California
| | - Qiong Yang
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Sudha Seshadri
- Framingham Heart Study, Framingham, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
| | - Alexa Beiser
- Framingham Heart Study, Framingham, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Rebecca F. Gottesman
- National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, Maryland
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Oscar Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis
| | - Kristine Yaffe
- Department of Psychiatry, University of California, San Francisco
- Department of Neurology, University of California, San Francisco
- Department of Epidemiology, University of California, San Francisco
| | - Katie L. Stone
- California Pacific Medical Center, Research Institute, San Francisco
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Shaun M. Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jayandra J. Himali
- Framingham Heart Study, Framingham, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio
| |
Collapse
|
28
|
Teh JZ, Grummitt L, Haroutonian C, Cross NE, Skinner B, Bartlett DJ, Yee B, Grunstein RR, Naismith SL, D’Rozario AL. Overnight declarative memory consolidation and non-rapid eye movement sleep electroencephalographic oscillations in older adults with obstructive sleep apnea. Sleep 2023; 46:zsad087. [PMID: 37052122 PMCID: PMC10666962 DOI: 10.1093/sleep/zsad087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
STUDY OBJECTIVES To compare overnight declarative memory consolidation and non-rapid eye movement (NREM) sleep electroencephalogram (EEG) oscillations in older adults with obstructive sleep apnea (OSA) to a control group and assess slow-wave activity (SWA) and sleep spindles as correlates of memory consolidation. METHODS Forty-six older adults (24 without OSA and 22 with OSA) completed a word-pair associate's declarative memory task before and after polysomnography. Recall and recognition were expressed as a percentage of the morning relative to evening scores. Power spectral analysis was performed on EEG recorded at frontal (F3-M2, F4-M1) and central (C3-M2, C4-M1) sites. We calculated NREM absolute slow oscillation (0.25-1 Hz) and delta (0.5-4.5 Hz) EEG power, and slow (11-13 Hz) spindle density (number of events per minute of N2 sleep) and fast (13-16 Hz) spindle density. RESULTS There were no significant differences in overnight recall and recognition between OSA (mean age 58.7 ± 7.1 years, apnea-hypopnea index (AHI) 41.9 ± 29.7 events/hour) and non-OSA (age 61.1 ± 10.3 years, AHI 6.6 ± 4.2 events/hour) groups. The OSA group had lower fast spindle density in the frontal region (p = 0.007). No between-group differences in SWA were observed. In the Control group, overnight recognition positively correlated with slow spindle density in frontal (rho = 0.555, p = 0.020) and central regions (rho = 0.490, p = 0.046). Overnight recall was not related to SWA or spindle measures in either group. CONCLUSIONS Older adults with OSA had deficits in fast sleep spindles but showed preserved overnight declarative memory consolidation. It is possible that compensatory mechanisms are being recruited by OSA patients to preserve declarative memory consolidation despite the presence of sleep spindle deficits.
Collapse
Affiliation(s)
- Jun Z Teh
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Lucinda Grummitt
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Carla Haroutonian
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Nathan E Cross
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Bradley Skinner
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Delwyn J Bartlett
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Brendon Yee
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Ronald R Grunstein
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Angela L D’Rozario
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- School of Psychological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
29
|
Geva-Sagiv M, Mankin EA, Eliashiv D, Epstein S, Cherry N, Kalender G, Tchemodanov N, Nir Y, Fried I. Augmenting hippocampal-prefrontal neuronal synchrony during sleep enhances memory consolidation in humans. Nat Neurosci 2023; 26:1100-1110. [PMID: 37264156 PMCID: PMC10244181 DOI: 10.1038/s41593-023-01324-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/06/2023] [Indexed: 06/03/2023]
Abstract
Memory consolidation during sleep is thought to depend on the coordinated interplay between cortical slow waves, thalamocortical sleep spindles and hippocampal ripples, but direct evidence is lacking. Here, we implemented real-time closed-loop deep brain stimulation in human prefrontal cortex during sleep and tested its effects on sleep electrophysiology and on overnight consolidation of declarative memory. Synchronizing the stimulation to the active phases of endogenous slow waves in the medial temporal lobe (MTL) enhanced sleep spindles, boosted locking of brain-wide neural spiking activity to MTL slow waves, and improved coupling between MTL ripples and thalamocortical oscillations. Furthermore, synchronized stimulation enhanced the accuracy of recognition memory. By contrast, identical stimulation without this precise time-locking was not associated with, and sometimes even degraded, these electrophysiological and behavioral effects. Notably, individual changes in memory accuracy were highly correlated with electrophysiological effects. Our results indicate that hippocampo-thalamocortical synchronization during sleep causally supports human memory consolidation.
Collapse
Affiliation(s)
- Maya Geva-Sagiv
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Center of Neuroscience, University of California, Davis, Davis, CA, USA
| | - Emily A Mankin
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dawn Eliashiv
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shdema Epstein
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalie Cherry
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Guldamla Kalender
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Natalia Tchemodanov
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Yeganegi H, Ondracek JM. Multi-channel recordings reveal age-related differences in the sleep of juvenile and adult zebra finches. Sci Rep 2023; 13:8607. [PMID: 37244927 DOI: 10.1038/s41598-023-35160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/13/2023] [Indexed: 05/29/2023] Open
Abstract
Despite their phylogenetic differences and distinct pallial structures, mammals and birds show similar electroencephalography (EEG) traces during sleep, consisting of distinct rapid eye movement (REM) sleep and slow wave sleep (SWS) stages. Studies in human and a limited number of other mammalian species show that this organization of sleep into interleaving stages undergoes radical changes during lifetime. Do these age-dependent variations in sleep patterns also occur in the avian brain? Does vocal learning have an effect on sleep patterns in birds? To answer these questions, we recorded multi-channel sleep EEG from juvenile and adult zebra finches for several nights. Whereas adults spent more time in SWS and REM sleep, juveniles spent more time in intermediate sleep (IS). The amount of IS was significantly larger in male juveniles engaged in vocal learning compared to female juveniles, which suggests that IS could be important for vocal learning. In addition, we observed that functional connectivity increased rapidly during maturation of young juveniles, and was stable or declined at older ages. Synchronous activity during sleep was larger for recording sites in the left hemisphere for both juveniles and adults, and generally intra-hemispheric synchrony was larger than inter-hemispheric synchrony during sleep. A graph theory analysis revealed that in adults, highly correlated EEG activity tended to be distributed across fewer networks that were spread across a wider area of the brain, whereas in juveniles, highly correlated EEG activity was distributed across more numerous, albeit smaller, networks in the brain. Overall, our results reveal that significant changes occur in the neural signatures of sleep during maturation in an avian brain.
Collapse
Affiliation(s)
- Hamed Yeganegi
- Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Janie M Ondracek
- Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
31
|
Wright CJ, Milosavljevic S, Pocivavsek A. The stress of losing sleep: Sex-specific neurobiological outcomes. Neurobiol Stress 2023; 24:100543. [PMID: 37252645 PMCID: PMC10209346 DOI: 10.1016/j.ynstr.2023.100543] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Sleep is a vital and evolutionarily conserved process, critical to daily functioning and homeostatic balance. Losing sleep is inherently stressful and leads to numerous detrimental physiological outcomes. Despite sleep disturbances affecting everyone, women and female rodents are often excluded or underrepresented in clinical and pre-clinical studies. Advancing our understanding of the role of biological sex in the responses to sleep loss stands to greatly improve our ability to understand and treat health consequences of insufficient sleep. As such, this review discusses sex differences in response to sleep deprivation, with a focus on the sympathetic nervous system stress response and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We review sex differences in several stress-related consequences of sleep loss, including inflammation, learning and memory deficits, and mood related changes. Focusing on women's health, we discuss the effects of sleep deprivation during the peripartum period. In closing, we present neurobiological mechanisms, including the contribution of sex hormones, orexins, circadian timing systems, and astrocytic neuromodulation, that may underlie potential sex differences in sleep deprivation responses.
Collapse
Affiliation(s)
- Courtney J. Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
32
|
Closed-Loop tACS Delivered during Slow-Wave Sleep Reduces Retroactive Interference on a Paired-Associates Learning Task. Brain Sci 2023; 13:brainsci13030468. [PMID: 36979277 PMCID: PMC10046133 DOI: 10.3390/brainsci13030468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Previous studies have found a benefit of closed-loop transcranial alternating current stimulation (CL-tACS) matched to ongoing slow-wave oscillations (SWO) during sleep on memory consolidation for words in a paired associates task (PAT). Here, we examined the effects of CL-tACS in a retroactive interference PAT (ri-PAT) paradigm, where additional stimuli were presented to increase interference and reduce memory performance. Thirty-one participants were tested on a PAT before sleep, and CL-tACS was applied over the right and left DLPFC (F3 and F4) vs. mastoids for five cycles after detection of the onset of each discrete event of SWO during sleep. Participants were awoken the following morning, learned a new PAT list, and then were tested on the original list. There was a significant effect of stimulation condition (p = 0.04297; Cohen’s d = 0.768), where verum stimulation resulted in reduced retroactive interference compared with sham and a significant interaction of encoding strength and stimulation condition (p = 0.03591). Planned simple effects testing within levels of encoding revealed a significant effect of stimulation only for low-encoders (p = 0.0066; Cohen’s d = 1.075) but not high-encoders. We demonstrate here for the first time that CL-tACS during sleep can enhance the protective benefits on retroactive interference in participants who have lower encoding aptitude.
Collapse
|
33
|
Drouin JR, Zysk VA, Myers EB, Theodore RM. Sleep-Based Memory Consolidation Stabilizes Perceptual Learning of Noise-Vocoded Speech. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:720-734. [PMID: 36668820 PMCID: PMC10023171 DOI: 10.1044/2022_jslhr-22-00139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/08/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
PURPOSE Sleep-based memory consolidation has been shown to facilitate perceptual learning of atypical speech input including nonnative speech sounds, accented speech, and synthetic speech. The current research examined the role of sleep-based memory consolidation on perceptual learning for noise-vocoded speech, including maintenance of learning over a 1-week time interval. Because comprehending noise-vocoded speech requires extensive restructuring of the mapping between the acoustic signal and prelexical representations, sleep consolidation may be critical for this type of adaptation. Thus, the purpose of this study was to investigate the role of sleep-based memory consolidation on adaptation to noise-vocoded speech in listeners without hearing loss as a foundational step toward identifying parameters that can be useful to consider for auditory training with clinical populations. METHOD Two groups of normal-hearing listeners completed a transcription training task with feedback for noise-vocoded sentences in either the morning or the evening. Learning was assessed through transcription accuracy before training, immediately after training, 12 hr after training, and 1 week after training for both trained and novel sentences. RESULTS Both the morning and evening groups showed improved comprehension of noise-vocoded sentences immediately following training. Twelve hours later, the evening group showed stable gains (following a period of sleep), whereas the morning group demonstrated a decline in gains (following a period of wakefulness). One week after training, the morning and evening groups showed equivalent performance for both trained and novel sentences. CONCLUSION Sleep-consolidated learning helps stabilize training gains for degraded speech input, which may hold clinical utility for optimizing rehabilitation recommendations.
Collapse
Affiliation(s)
- Julia R. Drouin
- Department of Speech, Language and Hearing Sciences, University of Connecticut, Storrs
- Department of Communication Sciences and Disorders, California State University, Fullerton
| | - Victoria A. Zysk
- Department of Speech, Language and Hearing Sciences, University of Connecticut, Storrs
| | - Emily B. Myers
- Department of Speech, Language and Hearing Sciences, University of Connecticut, Storrs
| | - Rachel M. Theodore
- Department of Speech, Language and Hearing Sciences, University of Connecticut, Storrs
| |
Collapse
|
34
|
Learning to Learn: A pilot study on explicit strategy instruction to incoming college students. Acta Psychol (Amst) 2023; 232:103815. [PMID: 36528932 DOI: 10.1016/j.actpsy.2022.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The current pilot study implemented a "Learning to Learn" (L2L) course designed to teach first-year college students about the science of how learning works, how to take ownership of their own learning, and how to effectively apply learning strategies to achieve their academic goals. A cognitive apprenticeship model was used in which students planned, executed, and evaluated strategy use in vivo during the course. Two sections of the course were taught at each of two different institutions, distributed across four semesters. Quantitative data showed an increased growth mindset among L2L students at the end of the semester compared to the beginning of the semester. In contrast, first-year students surveyed from control groups in the same semester had a decreased growth mindset. Furthermore, compared to students in the control groups, students in the L2L courses maintained more stable levels of effort across the semester and felt more in control of their learning by the end of the semester. Qualitative data collected from focus groups indicated that the L2L students continued to use the strategies they had learned in the course in the subsequent semester, and that the changes in their perceptions about growth mindset continued beyond the duration of the course. Several L2L students noted a desire for the learning strategies to be taught earlier in their education. Next steps involve feasibility studies on appropriate scaling to support more undergraduates each year, and to support students during the critical transition from K-12 schooling to the college environment.
Collapse
|
35
|
van Rijn E, Gouws A, Walker SA, Knowland VCP, Cairney SA, Gaskell MG, Henderson LM. Do naps benefit novel word learning? Developmental differences and white matter correlates. Cortex 2023; 158:37-60. [PMID: 36434978 DOI: 10.1016/j.cortex.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/04/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Memory representations of newly learned words undergo changes during nocturnal sleep, as evidenced by improvements in explicit recall and lexical integration (i.e., after sleep, novel words compete with existing words during online word recognition). Some studies have revealed larger sleep-benefits in children relative to adults. However, whether daytime naps play a similar facilitatory role is unclear. We investigated the effect of a daytime nap (relative to wake) on explicit memory (recall/recognition) and lexical integration (lexical competition) of newly learned novel words in young adults and children aged 10-12 years, also exploring white matter correlates of the pre- and post-nap effects of word learning in the child group with diffusion weighted MRI. In both age groups, a nap maintained explicit memory of novel words and wake led to forgetting. However, there was an age group interaction when comparing change in recall over the nap: children showed a slight improvement whereas adults showed a slight decline. There was no evidence of lexical integration at any point. Although children spent proportionally more time in slow-wave sleep (SWS) than adults, neither SWS nor spindle parameters correlated with over-nap changes in word learning. For children, increased fractional anisotropy (FA) in the uncinate fasciculus and arcuate fasciculus were associated with the recognition of novel words immediately after learning, and FA in the right arcuate fasciculus was further associated with changes in recall of novel words over a nap, supporting the importance of these tracts in the word learning and consolidation process. These findings point to a protective role of naps in word learning (at least under the present conditions), and emphasize the need to better understand both the active and passive roles that sleep plays in supporting vocabulary consolidation over development.
Collapse
Affiliation(s)
- E van Rijn
- Department of Psychology, University of York, York, United Kingdom.
| | - A Gouws
- Department of Psychology, University of York, York, United Kingdom.
| | - S A Walker
- Department of Psychology, University of York, York, United Kingdom.
| | - V C P Knowland
- Department of Psychology, University of York, York, United Kingdom.
| | - S A Cairney
- Department of Psychology, University of York, York, United Kingdom.
| | - M G Gaskell
- Department of Psychology, University of York, York, United Kingdom.
| | - L M Henderson
- Department of Psychology, University of York, York, United Kingdom.
| |
Collapse
|
36
|
Mushtaq M, Marshall L, Bazhenov M, Mölle M, Martinetz T. Differential thalamocortical interactions in slow and fast spindle generation: A computational model. PLoS One 2022; 17:e0277772. [PMID: 36508417 PMCID: PMC9744318 DOI: 10.1371/journal.pone.0277772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022] Open
Abstract
Cortical slow oscillations (SOs) and thalamocortical sleep spindles are two prominent EEG rhythms of slow wave sleep. These EEG rhythms play an essential role in memory consolidation. In humans, sleep spindles are categorized into slow spindles (8-12 Hz) and fast spindles (12-16 Hz), with different properties. Slow spindles that couple with the up-to-down phase of the SO require more experimental and computational investigation to disclose their origin, functional relevance and most importantly their relation with SOs regarding memory consolidation. To examine slow spindles, we propose a biophysical thalamocortical model with two independent thalamic networks (one for slow and the other for fast spindles). Our modeling results show that fast spindles lead to faster cortical cell firing, and subsequently increase the amplitude of the cortical local field potential (LFP) during the SO down-to-up phase. Slow spindles also facilitate cortical cell firing, but the response is slower, thereby increasing the cortical LFP amplitude later, at the SO up-to-down phase of the SO cycle. Neither the SO rhythm nor the duration of the SO down state is affected by slow spindle activity. Furthermore, at a more hyperpolarized membrane potential level of fast thalamic subnetwork cells, the activity of fast spindles decreases, while the slow spindles activity increases. Together, our model results suggest that slow spindles may facilitate the initiation of the following SO cycle, without however affecting expression of the SO Up and Down states.
Collapse
Affiliation(s)
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, Lübeck, Germany
- University Clinic Hospital Schleswig Holstein, Lübeck, Germany
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Matthias Mölle
- Center for Brain, Behavior and Metabolism, Lübeck, Germany
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, Lübeck, Germany
- * E-mail:
| |
Collapse
|
37
|
Qin H, Fu L, Jian T, Jin W, Liang M, Li J, Chen Q, Yang X, Du H, Liao X, Zhang K, Wang R, Liang S, Yao J, Hu B, Ren S, Zhang C, Wang Y, Hu Z, Jia H, Konnerth A, Chen X. REM sleep-active hypothalamic neurons may contribute to hippocampal social-memory consolidation. Neuron 2022; 110:4000-4014.e6. [PMID: 36272414 DOI: 10.1016/j.neuron.2022.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
The hippocampal CA2 region plays a key role in social memory. The encoding of such memory involves afferent activity from the hypothalamic supramammillary nucleus (SuM) to CA2. However, the neuronal circuits required for consolidation of freshly encoded social memory remain unknown. Here, we used circuit-specific optical and single-cell electrophysiological recordings in mice to explore the role of sleep in social memory consolidation and its underlying circuit mechanism. We found that SuM neurons projecting to CA2 were highly active during rapid-eye-movement (REM) sleep but not during non-REM sleep or quiet wakefulness. REM-sleep-selective optogenetic silencing of these neurons impaired social memory. By contrast, the silencing of another group of REM sleep-active SuM neurons that projects to the dentate gyrus had no effect on social memory. Therefore, we provide causal evidence that the REM sleep-active hypothalamic neurons that project to CA2 are specifically required for the consolidation of social memory.
Collapse
Affiliation(s)
- Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China; Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China.
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Key Laboratory for Biomedical Photonics of Ministry of Education, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Mengru Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jin Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Qianwei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Xinyu Yang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Haoran Du
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Rui Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jiwei Yao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Bo Hu
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Shuancheng Ren
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Chunqing Zhang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Yanjiang Wang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Zhian Hu
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Hongbo Jia
- Advanced Institute for Brain and Intelligence, Guangxi University, Nanning 530004, China; Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany; Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Arthur Konnerth
- Advanced Institute for Brain and Intelligence, Guangxi University, Nanning 530004, China; Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
38
|
Okadome T, Yamaguchi T, Mukaino T, Sakata A, Ogata K, Shigeto H, Isobe N, Uehara T. The effect of interictal epileptic discharges and following spindles on motor sequence learning in epilepsy patients. Front Neurol 2022; 13:979333. [PMID: 36438951 PMCID: PMC9686303 DOI: 10.3389/fneur.2022.979333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/25/2022] [Indexed: 09/05/2023] Open
Abstract
PURPOSE Interictal epileptic discharges (IEDs) are known to affect cognitive function in patients with epilepsy, but the mechanism has not been elucidated. Sleep spindles appearing in synchronization with IEDs were recently demonstrated to impair memory consolidation in rat, but this has not been investigated in humans. On the other hand, the increase of sleep spindles at night after learning is positively correlated with amplified learning effects during sleep for motor sequence learning. In this study, we examined the effects of IEDs and IED-coupled spindles on motor sequence learning in patients with epilepsy, and clarified their pathological significance. MATERIALS AND METHODS Patients undergoing long-term video-electroencephalography (LT-VEEG) at our hospital from June 2019 to November 2021 and age-matched healthy subjects were recruited. Motor sequence learning consisting of a finger-tapping task was performed before bedtime and the next morning, and the improvement rate of performance was defined as the sleep-dependent learning effect. We searched for factors associated with the changes in learning effect observed between the periods of when antiseizure medications (ASMs) were withdrawn for LT-VEEG and when they were returned to usual doses after LT-VEEG. RESULTS Excluding six patients who had epileptic seizures at night after learning, nine patients and 11 healthy subjects were included in the study. In the patient group, there was no significant learning effect when ASMs were withdrawn. The changes in learning effect of the patient group during ASM withdrawal were not correlated with changes in sleep duration or IED density; however, they were significantly negatively correlated with changes in IED-coupled spindle density. CONCLUSION We found that the increase of IED-coupled spindles correlated with the decrease of sleep-dependent learning effects of procedural memory. Pathological IED-coupled sleep spindles could hinder memory consolidation, that is dependent on physiological sleep spindles, resulting in cognitive dysfunction in patients with epilepsy.
Collapse
Affiliation(s)
- Toshiki Okadome
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiko Mukaino
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ayumi Sakata
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Katsuya Ogata
- Department of Pharmacy, School of Pharmaceutical Sciences at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Hiroshi Shigeto
- Division of Medical Technology, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taira Uehara
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, School of Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| |
Collapse
|
39
|
Howard MD, Skorheim SW, Pilly PK. A model of bi-directional interactions between complementary learning systems for memory consolidation of sequential experiences. Front Syst Neurosci 2022; 16:972235. [PMID: 36313529 PMCID: PMC9606815 DOI: 10.3389/fnsys.2022.972235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The standard theory of memory consolidation posits a dual-store memory system: a fast-learning fast-decaying hippocampus that transfers memories to slow-learning long-term cortical storage. Hippocampal lesions interrupt this transfer, so recent memories are more likely to be lost than more remote memories. Existing models of memory consolidation that simulate this temporally graded retrograde amnesia operate only on static patterns or unitary variables as memories and study only one-way interaction from the hippocampus to the cortex. However, the mechanisms underlying the consolidation of episodes, which are sequential in nature and comprise multiple events, are not well-understood. The representation of learning for sequential experiences in the cortical-hippocampal network as a self-consistent dynamical system is not sufficiently addressed in prior models. Further, there is evidence for a bi-directional interaction between the two memory systems during offline periods, whereby the reactivation of waking neural patterns originating in the cortex triggers time-compressed sequential replays in the hippocampus, which in turn drive the consolidation of the pertinent sequence in the cortex. We have developed a computational model of memory encoding, consolidation, and recall for storing temporal sequences that explores the dynamics of this bi-directional interaction and time-compressed replays in four simulation experiments, providing novel insights into whether hippocampal learning needs to be suppressed for stable memory consolidation and into how new and old memories compete for limited replay opportunities during offline periods. The salience of experienced events, based on factors such as recency and frequency of use, is shown to have considerable impact on memory consolidation because it biases the relative probability that a particular event will be cued in the cortex during offline periods. In the presence of hippocampal learning during sleep, our model predicts that the fast-forgetting hippocampus can continually refresh the memory traces of a given episodic sequence if there are no competing experiences to be replayed.
Collapse
|
40
|
Köster M, Gruber T. Rhythms of human attention and memory: An embedded process perspective. Front Hum Neurosci 2022; 16:905837. [PMID: 36277046 PMCID: PMC9579292 DOI: 10.3389/fnhum.2022.905837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
It remains a dogma in cognitive neuroscience to separate human attention and memory into distinct modules and processes. Here we propose that brain rhythms reflect the embedded nature of these processes in the human brain, as evident from their shared neural signatures: gamma oscillations (30-90 Hz) reflect sensory information processing and activated neural representations (memory items). The theta rhythm (3-8 Hz) is a pacemaker of explicit control processes (central executive), structuring neural information processing, bit by bit, as reflected in the theta-gamma code. By representing memory items in a sequential and time-compressed manner the theta-gamma code is hypothesized to solve key problems of neural computation: (1) attentional sampling (integrating and segregating information processing), (2) mnemonic updating (implementing Hebbian learning), and (3) predictive coding (advancing information processing ahead of the real time to guide behavior). In this framework, reduced alpha oscillations (8-14 Hz) reflect activated semantic networks, involved in both explicit and implicit mnemonic processes. Linking recent theoretical accounts and empirical insights on neural rhythms to the embedded-process model advances our understanding of the integrated nature of attention and memory - as the bedrock of human cognition.
Collapse
Affiliation(s)
- Moritz Köster
- Faculty of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Thomas Gruber
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
41
|
Sale MV, Kuzovina A. Motor training is improved by concurrent application of slow oscillating transcranial alternating current stimulation to motor cortex. BMC Neurosci 2022; 23:45. [PMID: 35840886 PMCID: PMC9287859 DOI: 10.1186/s12868-022-00731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Physical exercise and neurorehabilitation involve repetitive training that can induce changes in motor performance arising from neuroplasticity. Retention of these motor changes occurs via an encoding process, during which rapid neuroplastic changes occur in response to training. Previous studies show that transcranial alternating current stimulation (tACS), a form of non-invasive brain stimulation, can enhance encoding of a cognitive learning task during wakefulness. However, the effect of tACS on motor processes in the awake brain is unknown. In this study, forty-two healthy 18–35 year old participants received either 0.75 Hz (active) tACS (or sham stimulation) for 30 min during a ballistic thumb abduction motor training task. Training-related behavioural effects were quantified by assessing changes in thumb abduction acceleration, and neuroplastic changes were quantified by measuring motor evoked potential (MEP) amplitude of the abductor pollicis brevis muscle. These measures were reassessed immediately after the motor training task to quantify short-term changes, and then 24 h later to assess longer-term changes. Thumb abduction acceleration in both active and sham stimulation conditions increased immediately after the motor learning, consistent with effective training. Critically, participants in the active group maintained significantly higher thumb acceleration 24 h later (t40 = 2.810, P = 0.044). There were no significant changes or inter-group differences in MEPs for both conditions. The results suggest that 0.75 Hz tACS applied during motor training enhances the effectiveness of motor training, which manifests as enhancement in longer-term task benefits.
Collapse
Affiliation(s)
- Martin V Sale
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Anastasiia Kuzovina
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
42
|
Lamers D, Landi S, Mezzena R, Baroncelli L, Pillai V, Cruciani F, Migliarini S, Mazzoleni S, Pasqualetti M, Passafaro M, Bassani S, Ratto GM. Perturbation of Cortical Excitability in a Conditional Model of PCDH19 Disorder. Cells 2022; 11:cells11121939. [PMID: 35741068 PMCID: PMC9222106 DOI: 10.3390/cells11121939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
PCDH19 epilepsy (DEE9) is an X-linked syndrome associated with cognitive and behavioral disturbances. Since heterozygous females are affected, while mutant males are spared, it is likely that DEE9 pathogenesis is related to disturbed cell-to-cell communication associated with mosaicism. However, the effects of mosaic PCDH19 expression on cortical networks are unknown. We mimicked the pathology of DEE9 by introducing a patch of mosaic protein expression in one hemisphere of the cortex of conditional PCDH19 knockout mice one day after birth. In the contralateral area, PCDH19 expression was unaffected, thus providing an internal control. In this model, we characterized the physiology of the disrupted network using local field recordings and two photon Ca2+ imaging in urethane anesthetized mice. We found transient episodes of hyperexcitability in the form of brief hypersynchronous spikes or bursts of field potential oscillations in the 9–25 Hz range. Furthermore, we observed a strong disruption of slow wave activity, a crucial component of NREM sleep. This phenotype was present also when PCDH19 loss occurred in adult mice, demonstrating that PCDH19 exerts a function on cortical circuitry outside of early development. Our results indicate that a focal mosaic mutation of PCDH19 disrupts cortical networks and broaden our understanding of DEE9.
Collapse
Affiliation(s)
- Didi Lamers
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Silvia Landi
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
| | - Roberta Mezzena
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Laura Baroncelli
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Vinoshene Pillai
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Federica Cruciani
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Sara Migliarini
- Unit of Cellular and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy; (S.M.); (M.P.)
| | - Sara Mazzoleni
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Massimo Pasqualetti
- Unit of Cellular and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy; (S.M.); (M.P.)
| | - Maria Passafaro
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Silvia Bassani
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Gian Michele Ratto
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
- Correspondence:
| |
Collapse
|
43
|
B. Szabo A, Cretin B, Gérard F, Curot J, J. Barbeau E, Pariente J, Dahan L, Valton L. Sleep: The Tip of the Iceberg in the Bidirectional Link Between Alzheimer's Disease and Epilepsy. Front Neurol 2022; 13:836292. [PMID: 35481265 PMCID: PMC9035794 DOI: 10.3389/fneur.2022.836292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The observation that a pathophysiological link might exist between Alzheimer's disease (AD) and epilepsy dates back to the identification of the first cases of the pathology itself and is now strongly supported by an ever-increasing mountain of literature. An overwhelming majority of data suggests not only a higher prevalence of epilepsy in Alzheimer's disease compared to healthy aging, but also that AD patients with a comorbid epileptic syndrome, even subclinical, have a steeper cognitive decline. Moreover, clinical and preclinical investigations have revealed a marked sleep-related increase in the frequency of epileptic activities. This characteristic might provide clues to the pathophysiological pathways underlying this comorbidity. Furthermore, the preferential sleep-related occurrence of epileptic events opens up the possibility that they might hasten cognitive decline by interfering with the delicately orchestrated synchrony of oscillatory activities implicated in sleep-related memory consolidation. Therefore, we scrutinized the literature for mechanisms that might promote sleep-related epileptic activity in AD and, possibly dementia onset in epilepsy, and we also aimed to determine to what degree and through which processes such events might alter the progression of AD. Finally, we discuss the implications for patient care and try to identify a common basis for methodological considerations for future research and clinical practice.
Collapse
Affiliation(s)
- Anna B. Szabo
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- *Correspondence: Anna B. Szabo
| | - Benjamin Cretin
- Clinical Neuropsychology Unit, Neurology Department, CM2R (Memory Resource and Research Centre), University Hospital of Strasbourg, Strasbourg, France
- CNRS, ICube Laboratory, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg, Strasbourg, France
- CMRR d'Alsace, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Pôle Tête et Cou, Strasbourg, France
| | - Fleur Gérard
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jonathan Curot
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Emmanuel J. Barbeau
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
| | - Jérémie Pariente
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Toulouse NeuroImaging Center (ToNIC), INSERM-University of Toulouse Paul Sabatier, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Luc Valton
| |
Collapse
|
44
|
Kokkinos V, Urban A, Frauscher B, Simon M, Hussein H, Bush A, Williams Z, Bagić AI, Mark Richardson R. Barques are generated in posterior hippocampus and phase reverse over lateral posterior hippocampal surface. Clin Neurophysiol 2022; 136:150-157. [DOI: 10.1016/j.clinph.2022.01.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/03/2022]
|
45
|
Abstract
Since the first description of the case of H.M. in the mid-1950s, the debate over the contribution of the mesial temporal lobe (MTL) to human memory functioning has not ceased to stimulate new experimental work and the development of new theoretical models. The early demonstration that despite their devastating memory loss patients with hippocampal damage are still able to learn a number of visuo-motor and visuo-perceptual skills at a normal rate and to be normally primed by verbal and visual material suggested that the term "memory" is actually an umbrella concept that includes very different brain plasticity phenomena and that MTL damage actually impairs only one of these. Subsequent research, which capitalized on a detailed anatomical description of MTL structures and on the close analysis of memory-related phenomena, tried to define the unique role of the MTL structures in brain plasticity and in the government of human behavior. A first hypothesis identified this role in the conscious forms of memory as opposed to implicit ones. In the last two decades, the emphasis has moved to the relational role of the hippocampus in binding together different pieces of unimodal information to provide unitary, multimodal representations of personal experiences.
Collapse
Affiliation(s)
- Giovanni A Carlesimo
- Department of Systems Medicine, Tor Vergata University, Rome, Italy; Clinical and Behavioral Neurology Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
46
|
Sousa FYM, Silva YDMRE, Santos AKDS, Palma GCDS, Lemos RLF, Bonuzzi GMG. The role of nocturnal sleep on the retention, adaptability, and relearning rate of a motor skill. MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-657420220017221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Stanyer EC, Baniqued PDE, Awais M, Kouara L, Davies AG, Killan EC, Mushtaq F. The impact of acoustic stimulation during sleep on memory and sleep architecture: A meta-analysis. J Sleep Res 2021; 31:e13385. [PMID: 34850995 DOI: 10.1111/jsr.13385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 11/28/2022]
Abstract
The relationship between sleep and cognition has long been recognized, with slow-wave sleep thought to play a critical role in long-term memory consolidation. Recent research has presented the possibility that non-invasive acoustic stimulation during sleep could enhance memory consolidation. Herein, we report a random-effects model meta-analysis examining the impact of this intervention on memory and sleep architecture in healthy adults. Sixteen studies were identified through a systematic search. We found a medium significant effect of acoustic stimulation on memory task performance (g = 0.68, p = .031) in young adults <35 years of age, but no statistically significant effect in adults >35 years of age (g = -0.83, p = .223). In young adults, there was a large statistically significant effect for declarative memory tasks (g = 0.87, p = .014) but no effect for non-declarative tasks (g = -0.25, p = .357). There were no statistically significant differences in polysomnography-derived sleep architecture values between sham and stimulation conditions in either young or older adults. Based on these results, it appears that acoustic stimulation during sleep may only be an effective intervention for declarative memory consolidation in young adults. However, the small number of studies in this area, their small sample sizes, the short-term nature of most investigations and the high between-studies heterogeneity highlight a need for high-powered and long-term experiments to better elucidate, and subsequently maximise, any potential benefits of this novel approach.
Collapse
Affiliation(s)
- Emily C Stanyer
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK.,Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paul Dominick E Baniqued
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK.,School of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | - Muhammad Awais
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK.,Department of Computer Science, Edgehill University, Ormskirk, Lancashire, UK
| | - Layla Kouara
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK
| | - Andrew G Davies
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK
| | - Edward C Killan
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK
| | - Faisal Mushtaq
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, UK
| |
Collapse
|
48
|
Stepan ME, Altmann EM, Fenn KM. Slow-wave sleep during a brief nap is related to reduced cognitive deficits during sleep deprivation. Sleep 2021; 44:zsab152. [PMID: 34156468 PMCID: PMC8598175 DOI: 10.1093/sleep/zsab152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/23/2021] [Indexed: 11/12/2022] Open
Abstract
Sleeping for a short period (i.e. napping) may help mitigate impairments in cognitive processing caused by sleep deprivation, but there is limited research on effects of brief naps in particular. Here, we tested the effect of a brief nap opportunity (30- or 60-min) during a period of sleep deprivation on two cognitive processes with broad scope, placekeeping and vigilant attention. In the evening, participants (N = 280) completed a placekeeping task (UNRAVEL) and a vigilant attention task (Psychomotor Vigilance Task [PVT]) and were randomly assigned to either stay awake overnight or sleep at home. Sleep-deprived participants were randomly assigned to receive either no nap opportunity, a 30-min opportunity, or a 60-min opportunity. Participants who napped were set up with polysomnography. The next morning, sleep participants returned, and all participants completed UNRAVEL and the PVT. Sleep deprivation impaired performance on both tasks, but nap opportunity did not reduce the impairment, suggesting that naps longer than those tested may be necessary to cause group differences. However, in participants who napped, more time spent in slow-wave sleep (SWS) was associated with reduced performance deficits on both tasks, effects we interpret in terms of the role of SWS in alleviating sleep pressure and facilitating memory consolidation.
Collapse
Affiliation(s)
- Michelle E Stepan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erik M Altmann
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Kimberly M Fenn
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
49
|
Kokkinos V, Hussein H, Frauscher B, Simon M, Urban A, Bush A, Bagić AI, Richardson RM. Hippocampal spindles and barques are normal intracranial electroencephalographic entities. Clin Neurophysiol 2021; 132:3002-3009. [PMID: 34715425 DOI: 10.1016/j.clinph.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To assess whether hippocampal spindles and barques are markers of epileptogenicity. METHODS Focal epilepsy patients that underwent stereo-electroencephalography implantation with at least one electrode in their hippocampus were selected (n = 75). The occurrence of spindles and barques in the hippocampus was evaluated in each patient. We created pairs of pathologic and pathology-free groups according to two sets of criteria: 1. Non-invasive diagnostic criteria (patients grouped according to focal epilepsy classification). 2. Intracranial neurophysiological criteria (patient's hippocampi grouped according to their seizure onset involvement). RESULTS Hippocampal spindles and barques appear equally often in both pathologic and pathology-free groups, both for non-invasive (Pspindles = 0.73; Pbarques = 0.46) and intracranial criteria (Pspindles = 0.08; Pbarques = 0.26). In Engel Class I patients, spindles occurred with similar incidence both within the non-invasive (P = 0.67) and the intracranial criteria group (P = 0.20). Barques were significantly more frequent in extra-temporal lobe epilepsy defined by either non-invasive (P = 0.01) or intracranial (P = 0.01) criteria. CONCLUSIONS Both spindles and barques are normal entities of the hippocampal intracranial electroencephalogram. The presence of barques may also signify lack of epileptogenic properties in the hippocampus. SIGNIFICANCE Understanding that hippocampal spindles and barques do not reflect epileptogenicity is critical for correct interpretation of epilepsy surgery evaluations and appropriate surgical treatment selection.
Collapse
Affiliation(s)
- Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Helweh Hussein
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Mirela Simon
- Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Alexandra Urban
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, USA
| | - Alan Bush
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Anto I Bagić
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Matorina N, Poppenk J. Memory decay distinguishes subtypes of gist. Neurobiol Learn Mem 2021; 185:107519. [PMID: 34536526 DOI: 10.1016/j.nlm.2021.107519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023]
Abstract
Memories are thought to become more gist-like over time. Multiple related memories might form generalized memory representations, losing specific details but enhancing or retaining gist. The time course within which gist memory emerges, however, is the subject of less consensus. To address this question, we focused our design on four kinds of gist: inferential gist (relations extracted across non-contiguous events), statistical learning (regularities extracted from a series), summary gist (a theme abstracted from a temporally contiguous series of items), and category gist (characterization of a stimulus at a higher level in the semantic hierarchy). Seventy participants completed memory encoding tasks addressing these types of gist and corresponding retrieval tasks the same evening, the morning after, and one week later, as well as an MRI at a later time point. We found little evidence that gist slowly emerges over time or that gist traces are more resistant to forgetting than detail traces. Instead, we found that initial gist memory shortly after encoding was either retained over time or decayed. Inferential gist and statistical learning were retained over a week, whereas memory for category and summary gist decayed. We discuss several interpretations for differences between these two subtypes of gist. Individual differences in REM or slow-wave sleep and hippocampal volumes did not predict changes in memory for these four kinds of gist in a healthy young adult population.
Collapse
Affiliation(s)
- Nelly Matorina
- Department of Psychology, Queen's University, K7L 3N6, Canada
| | - Jordan Poppenk
- Department of Psychology, Queen's University, K7L 3N6, Canada; Centre for Neuroscience, Queen's University, K7L 3N6, Canada; School of Computing, Queen's University, K7L 3N6, Canada.
| |
Collapse
|