1
|
Turan G, Spiertz V, Bein O, Shing YL, Nolden S. Unexpected Twists: Electrophysiological Correlates of Encoding and Retrieval of Events Eliciting Prediction Error. Psychophysiology 2025; 62:e14752. [PMID: 39740036 DOI: 10.1111/psyp.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/02/2025]
Abstract
According to the predictive processing framework, our brain constantly generates predictions based on past experiences and compares these predictions with incoming sensory information. When an event contradicts these predictions, it results in a prediction error (PE), which has been shown to enhance subsequent memory. However, the neural mechanisms underlying the influence of PEs on subsequent memory remain unclear. This study investigated the electrophysiological correlates during encoding and retrieval of events eliciting PEs. We employed a statistical learning task in which participants were presented with pairs of objects in sequence. Subsequently, while recording electroencephalography (EEG), we introduced PEs by replacing the second object of each pair with new objects and we then tested the participants' memory. Behaviorally, PEs did not enhance memory. During retrieval, we observed higher amplitudes in the recollection-related late positive component for violation items that were remembered compared to those that were forgotten. In contrast, no evidence for the presence of the FN400 component associated with familiarity was found. These results suggest that recollection, but not familiarity, plays a crucial role in the interplay between PE and memory. Contrary to our hypothesis, we did not observe a relationship between PEs and the P3 component during encoding. In conclusion, our study contributes to the growing body of knowledge concerning the intricate relationship between PEs and episodic memory. It sheds light on the underlying neural mechanisms involved and emphasizes the importance of recollection in this context.
Collapse
Affiliation(s)
- Gözem Turan
- Department of Psychology, Goethe University Frankfurt, Frankfurt Am Main, Germany
- IDeA Center for Individual Development and Adaptive Education, DIPF Leibniz Institute for Research and Information in Education, Frankfurt am Main, Germany
| | - Veronika Spiertz
- Department of Psychology, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
- Department of Psychiatry, Weill Cornell Medicine, Weill Cornell Institute of Geriatric Psychiatry, New York, New York, USA
| | - Yee Lee Shing
- Department of Psychology, Goethe University Frankfurt, Frankfurt Am Main, Germany
- IDeA Center for Individual Development and Adaptive Education, DIPF Leibniz Institute for Research and Information in Education, Frankfurt am Main, Germany
| | - Sophie Nolden
- Department of Psychology, Goethe University Frankfurt, Frankfurt Am Main, Germany
- IDeA Center for Individual Development and Adaptive Education, DIPF Leibniz Institute for Research and Information in Education, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Manojlović M, Bjekić J, Purić D, Filipović SR. High-density theta oscillatory-modulated tDCS over the parietal cortex for targeted memory enhancement. Clin Neurophysiol 2024; 170:80-90. [PMID: 39700630 DOI: 10.1016/j.clinph.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVES Associative memory (AM) declines due to healthy aging as well as in various neurological conditions. Standard transcranial electrical stimulation (tES) protocols show inconclusive facilitatory effects on AM, often lacking function specificity and stimulation focality. We tested the effectiveness of high-density electrode montage delivering anodal theta oscillatory-modulated transcranial direct current stimulation (HD-Theta-otDCS) over the left posterior parietal cortex (PPC), aiming to target AM in a spatially focused and function-specific manner. METHODS In a sham-controlled cross-over experiment we explored the differential effects of HD-Theta-otDCS applied during either encoding or the retrieval phases of two AM tasks (Face-Word and Object-Location). The stimulation protocol consisted of an anode over the left PPC (P3) and four surrounding return electrodes (CP1, CP5, PO3, POz) with electrical current oscillating in theta rhythm (5 Hz, 1.5 ± 0.5 mA). RESULTS HD-Theta-otDCS stimulation applied during both encoding and retrieval increased AM performance compared to sham control in the Face-Word task. We found no differences between the two active stimulation conditions. CONCLUSIONS HD-Theta-otDCS showed to be a promising tool for enhancing AM, regardless of the stimulation timing. The results provide further support for our previous findings with bipolar otDCS and confirm that PPC stimulation can induce behaviorally relevant modulation in the memory-related cortico-subcortical networks. SIGNIFICANCE The presented approach is one step forward towards precision brain stimulation for memory neuromodulation. The novelty lies in the combination of increased focality and function-specific current waveform. Positive results set the ground for further research on HD-theta-otDCS effectiveness in clinical populations.
Collapse
Affiliation(s)
- Milica Manojlović
- Human Neuroscience Group, Centre for Neuroscience and Neuromodulation, Institute for Medical Research, University of Belgrade, Serbia; Department of Psychology, Faculty of Philosophy, University of Belgrade, Serbia
| | - Jovana Bjekić
- Human Neuroscience Group, Centre for Neuroscience and Neuromodulation, Institute for Medical Research, University of Belgrade, Serbia.
| | - Danka Purić
- Department of Psychology, Faculty of Philosophy, University of Belgrade, Serbia
| | - Saša R Filipović
- Human Neuroscience Group, Centre for Neuroscience and Neuromodulation, Institute for Medical Research, University of Belgrade, Serbia
| |
Collapse
|
3
|
Cheng S. Distinct mechanisms and functions of episodic memory. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230411. [PMID: 39278239 PMCID: PMC11482257 DOI: 10.1098/rstb.2023.0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 09/18/2024] Open
Abstract
The concept of episodic memory (EM) faces significant challenges by two claims: EM might not be a distinct memory system, and EM might be an epiphenomenon of a more general capacity for mental time travel (MTT). Nevertheless, the observations leading to these arguments do not preclude the existence of a mechanically and functionally distinct EM system. First, modular systems, like cognition, can have distinct subsystems that may not be distinguishable in the system's final output. EM could be such a subsystem, even though its effects may be difficult to distinguish from those of other subsystems. Second, EM could have a distinct and consistent low-level function, which is used in diverse high-level functions such as MTT. This article introduces the scenario construction framework, proposing that EM crucially rests on memory traces containing the gist of an episodic experience. During retrieval, EM traces trigger the reconstruction of semantic representations, which were active during the remembered episode, and are further enriched with semantic information, to generate a scenario of the past experience. This conceptualization of EM is consistent with studies on the neural basis of EM and resolves the two challenges while retaining the key properties associated with EM. This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- Sen Cheng
- Institute for Neural Computation Faculty of Computer Science, Ruhr University Bochum, Bochum44780, Germany
| |
Collapse
|
4
|
Büchel PK, Klingspohr J, Kehl MS, Staresina BP. Brain and eye movement dynamics track the transition from learning to memory-guided action. Curr Biol 2024; 34:5054-5061.e4. [PMID: 39437781 DOI: 10.1016/j.cub.2024.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/16/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Learning never stops. As we navigate life, we continuously acquire and update knowledge to optimize memory-guided action, with a gradual shift from the former to the latter as we master our environment. How are these learning dynamics expressed in the brain and in behavioral patterns? Here, we devised a spatiotemporal image learning task ("Memory Arena") in which participants learn a set of 50 items to criterion across repeated exposure blocks. Critically, brief task-free periods between successive image presentations allowed us to assess multivariate electroencephalogram (EEG) patterns representing the previous and/or upcoming image identity, as well as anticipatory eye movements toward the upcoming image location. As expected, participants eventually met the performance criterion, albeit with different learning rates. During task-free periods, we were able to readily decode representations of both previous and upcoming image identities. Importantly though, decoding strength followed opposing slopes for previous vs. upcoming images across time, with a gradual decline of evidence for the previous image and a gradual increase of evidence for the upcoming image. Moreover, the ratio of upcoming vs. previous image evidence directly followed behavioral learning rates. Finally, eye movement data revealed that participants increasingly used the task-free period to anticipate upcoming image locations, with target-precision slopes paralleling both behavioral performance measures as well as EEG decodability of the upcoming image across time. Together, these results unveil the neural and behavioral dynamics underlying the gradual transition from learning to memory-guided action.
Collapse
Affiliation(s)
- Philipp K Büchel
- Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Hanzeplein, Groningen 9713 GZ, the Netherlands; Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; Department of Epileptology, University Hospital Bonn, Venusberg Campus, Bonn 53127, Germany
| | - Janina Klingspohr
- Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Hanzeplein, Groningen 9713 GZ, the Netherlands; Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Marcel S Kehl
- Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Warneford Lane, Oxford OX3 7JX, UK.
| |
Collapse
|
5
|
Rait LI, Hutchinson JB. Recall as a Window into Hippocampally Defined Events. J Cogn Neurosci 2024; 36:2386-2400. [PMID: 38820552 DOI: 10.1162/jocn_a_02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
We experience the present as a continuous stream of information, but often experience the past in parcels of unique events or episodes. Decades of research have helped to articulate how we perform this event segmentation in the moment, as well as how events and their boundaries influence what we later remember. More recently, neuroscientific research has suggested that the hippocampus plays a role at critical moments during event formation alongside its established role in enabling subsequent recall. Here, we review and explore the relationship between event processing and recall with the perspective that it can be uniquely characterized by the contributions of the hippocampus and its interactions with the rest of the brain. Specifically, we highlight a growing number of empirical studies suggesting that the hippocampus is important for processing events that have just ended, bridging the gap between the prior and current event, and influencing the contents and trajectories of recalled information. We also catalogue and summarize the multifaceted sets of findings concerning how recall is influenced by event structure. Lastly, we discuss several exciting directions for future research and how our understanding of events might be enriched by characterizing them in terms of the operations of different regions of the brain.
Collapse
|
6
|
Addante RJ, Clise E, Waechter R, Bengson J, Drane DL, Perez-Caban J. A third kind of episodic memory: Context familiarity is distinct from item familiarity and recollection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603640. [PMID: 39071285 PMCID: PMC11275934 DOI: 10.1101/2024.07.15.603640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Episodic memory is accounted for with two processes: 'familiarity' when generally recognizing an item and 'recollection' when retrieving the full contextual details bound with the item. Paradoxically, people sometimes report contextual information as familiar but without recollecting details, which is not easily accounted for by existing theories. We tested a combination of item recognition confidence and source memory, focusing upon 'item-only hits with source unknown' ('item familiarity'), 'low-confidence hits with correct source memory' ('context familiarity'), and 'high-confidence hits with correct source memory' ('recollection'). Results across multiple within-subjects (trial-wise) and between subjects (individual variability) levels indicated these were behaviorally and physiologically distinct. Behaviorally, a crossover interaction was evident in response times, with context familiarity being slower than each condition during item recognition, but faster during source memory. Electrophysiologically, a Condition x Time x Location triple dissociation was evident in event-related potentials (ERPs), which was then independently replicated. Context familiarity exhibited an independent negative central effect from 800-1200 ms, differentiated from positive ERPs for item-familiarity (400 to 600 ms) and recollection (600 to 900 ms). These three conditions thus reflect mutually exclusive, fundamentally different processes of episodic memory. Context familiarity is a third distinct process of episodic memory. Summary Memory for past events is widely believed to operate through two different processes: one called 'recollection' when retrieving confident, specific details of a memory, and another called 'familiarity' when only having an unsure but conscious awareness that an item was experienced before. When people successfully retrieve details such as the source or context of a prior event, it has been assumed to reflect recollection. We demonstrate that familiarity of context is functionally distinct from familiarity of items and recollection and offer a new, tri-component model of memory. The three memory responses were differentiated across multiple behavioral and brain wave measures. What has traditionally been thought to be two kinds of memory processes are actually three, becoming evident when using sensitive enough multi-measures. Results are independently replicated across studies from different labs. These data reveal that context familiarity is a third process of human episodic memory.
Collapse
|
7
|
Xia J, Kutas M, Salmon DP, Stoermann AM, Rigatuso SN, Tomaszewski Farias SE, Edland SD, Brewer JB, Olichney JM. Memory-related brain potentials for visual objects in early AD show impairment and compensatory mechanisms. Cereb Cortex 2024; 34:bhae398. [PMID: 39390709 DOI: 10.1093/cercor/bhae398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Impaired episodic memory is the primary feature of early Alzheimer's disease (AD), but not all memories are equally affected. Patients with AD and amnestic Mild Cognitive Impairment (aMCI) remember pictures better than words, to a greater extent than healthy elderly. We investigated neural mechanisms for visual object recognition in 30 patients (14 AD, 16 aMCI) and 36 cognitively unimpaired healthy (19 in the "preclinical" stage of AD). Event-related brain potentials (ERPs) were recorded while participants performed a visual object recognition task. Hippocampal occupancy (integrity), amyloid (florbetapir) PET, and neuropsychological measures of verbal & visual memory, executive function were also collected. A right-frontal ERP recognition effect (500-700 ms post-stimulus) was seen in cognitively unimpaired participants only, and significantly correlated with memory and executive function abilities. A later right-posterior negative ERP effect (700-900 ms) correlated with visual memory abilities across participants with low verbal memory ability, and may reflect a compensatory mechanism. A correlation of this retrieval-related negativity with right hippocampal occupancy (r = 0.55), implicates the hippocampus in the engagement of compensatory perceptual retrieval mechanisms. Our results suggest that early AD patients are impaired in goal-directed retrieval processing, but may engage compensatory perceptual mechanisms which rely on hippocampal function.
Collapse
Affiliation(s)
- Jiangyi Xia
- Center for Mind and Brain, University of California, 267 Cousteau Place, Davis, CA 95618, United States
- Department of Neurology, University of California, 4860 Y Street, Sacramento, CA 95817, United States
| | - Marta Kutas
- Department of Neurosciences, University of California, 9500 Gilman Drive La Jolla, CA 92093, United States
- Department of Cognitive Sciences, University of California, 9500 Gilman Drive La Jolla, CA 92093, United States
| | - David P Salmon
- Department of Neurosciences, University of California, 9500 Gilman Drive La Jolla, CA 92093, United States
| | - Anna M Stoermann
- Department of Neurosciences, University of California, 9500 Gilman Drive La Jolla, CA 92093, United States
- Department of Cognitive Sciences, University of California, 9500 Gilman Drive La Jolla, CA 92093, United States
| | - Siena N Rigatuso
- Center for Mind and Brain, University of California, 267 Cousteau Place, Davis, CA 95618, United States
| | | | - Steven D Edland
- Department of Neurosciences, University of California, 9500 Gilman Drive La Jolla, CA 92093, United States
- Division of Biostatistics, School of Public Health and Human Longevity Science, University of California, 9500 Gilman Drive La Jolla, CA 92093, United States
| | - James B Brewer
- Department of Neurosciences, University of California, 9500 Gilman Drive La Jolla, CA 92093, United States
| | - John M Olichney
- Center for Mind and Brain, University of California, 267 Cousteau Place, Davis, CA 95618, United States
- Department of Neurology, University of California, 4860 Y Street, Sacramento, CA 95817, United States
| |
Collapse
|
8
|
Paßmann S, Baselgia S, Kasten FH, Herrmann CS, Rasch B. Differential online and offline effects of theta-tACS on memory encoding and retrieval. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:894-911. [PMID: 39085585 PMCID: PMC11390785 DOI: 10.3758/s13415-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Theta oscillations support memory formation, but their exact contribution to the communication between prefrontal cortex (PFC) and the hippocampus is unknown. We tested the functional relevance of theta oscillations as a communication link between both areas for memory formation using transcranial alternating current stimulation (tACS). Healthy, young participants learned two lists of Dutch-German word pairs and retrieved them immediately and with a 30-min delay. In the encoding group (N = 30), tACS was applied during the encoding of list 1. List 2 was used to test stimulation aftereffects. In the retrieval group (N = 23), we stimulated during the delayed recall. In both groups, we applied tACS bilaterally at prefrontal and tempo-parietal sites, using either individualized theta frequency or 15 Hz (as control), according to a within-subject design. Stimulation with theta-tACS did not alter overall learning performance. An exploratory analysis revealed that immediate recall improved when word-pairs were learned after theta-tACS (list 2). Applying theta-tACS during retrieval had detrimental effects on memory. No changes in the power of the respective frequency bands were observed. Our results do not support the notion that impacting the communication between PFC and the hippocampus during a task by bilateral tACS improves memory. However, we do find evidence that direct stimulation had a trend for negatively interfering effects during immediate and delayed recall. Hints for beneficial effects on memory only occurred with aftereffects of the stimulation. Future studies need to further examine the effects during and after stimulation on memory formation.
Collapse
Affiliation(s)
- Sven Paßmann
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland.
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.
| | - Sandrine Baselgia
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| | - Florian H Kasten
- Centre de Recherche Cerveau & Cognition, CNRS, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl Von Ossietzky Universität, Oldenburg, Germany
| | - Björn Rasch
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| |
Collapse
|
9
|
McKenzie AT, Zeleznikow-Johnston A, Sparks JS, Nnadi O, Smart J, Wiley K, Cerullo MA, de Wolf A, Minerva F, Risco R, Church GM, de Magalhães JP, Kendziorra EF. Structural brain preservation: a potential bridge to future medical technologies. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1400615. [PMID: 39315362 PMCID: PMC11416988 DOI: 10.3389/fmedt.2024.1400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
When faced with the prospect of death, some people would prefer a form of long-term preservation that may allow them to be restored to healthy life in the future, if technology ever develops to the point that this is feasible and humane. Some believe that we may have the capacity to perform this type of experimental preservation today-although it has never been proven-using contemporary methods to preserve the structure of the brain. The idea is that the morphomolecular organization of the brain encodes the information required for psychological properties such as personality and long-term memories. If these structures in the brain can be maintained intact over time, this could theoretically provide a bridge to access restorative technologies in the future. To consider this hypothesis, we first describe possible metrics that can be used to assess structural brain preservation quality. We next explore several possible methods to preserve structural information in the brain, including the traditional cryonics method of cryopreservation, as well as aldehyde-stabilized cryopreservation and fluid preservation. We focus in-depth on fluid preservation, which relies on aldehyde fixation to induce chemical gel formation in a wide set of biomolecules and appears to be a cost-effective method. We describe two theoretical recovery technologies, alongside several of the ethical and legal complexities of brain preservation, all of which will require a prudent approach. We believe contemporary structural brain preservation methods have a non-negligible chance of allowing successful restoration in the future and that this deserves serious research efforts by the scientific community.
Collapse
Affiliation(s)
| | - Ariel Zeleznikow-Johnston
- School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | | | - Oge Nnadi
- Brain Preservation Foundation, Ashburn, VA, United States
| | - John Smart
- Brain Preservation Foundation, Ashburn, VA, United States
| | - Keith Wiley
- Brain Preservation Foundation, Ashburn, VA, United States
| | | | | | | | - Ramón Risco
- Escuela Superior de Ingeniería, Universidad de Sevilla & National Accelerators Center, CNA-CSIC, Seville, Spain
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - João Pedro de Magalhães
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
10
|
Lifanov-Carr J, Griffiths BJ, Linde-Domingo J, Ferreira CS, Wilson M, Mayhew SD, Charest I, Wimber M. Reconstructing Spatiotemporal Trajectories of Visual Object Memories in the Human Brain. eNeuro 2024; 11:ENEURO.0091-24.2024. [PMID: 39242212 PMCID: PMC11439564 DOI: 10.1523/eneuro.0091-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/03/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024] Open
Abstract
How the human brain reconstructs, step-by-step, the core elements of past experiences is still unclear. Here, we map the spatiotemporal trajectories along which visual object memories are reconstructed during associative recall. Specifically, we inquire whether retrieval reinstates feature representations in a copy-like but reversed direction with respect to the initial perceptual experience, or alternatively, this reconstruction involves format transformations and regions beyond initial perception. Participants from two cohorts studied new associations between verbs and randomly paired object images, and subsequently recalled the objects when presented with the corresponding verb cue. We first analyze multivariate fMRI patterns to map where in the brain high- and low-level object features can be decoded during perception and retrieval, showing that retrieval is dominated by conceptual features, represented in comparatively late visual and parietal areas. A separately acquired EEG dataset is then used to track the temporal evolution of the reactivated patterns using similarity-based EEG-fMRI fusion. This fusion suggests that memory reconstruction proceeds from anterior frontotemporal to posterior occipital and parietal regions, in line with a conceptual-to-perceptual gradient but only partly following the same trajectories as during perception. Specifically, a linear regression statistically confirms that the sequential activation of ventral visual stream regions is reversed between image perception and retrieval. The fusion analysis also suggests an information relay to frontoparietal areas late during retrieval. Together, the results shed light onto the temporal dynamics of memory recall and the transformations that the information undergoes between the initial experience and its later reconstruction from memory.
Collapse
Affiliation(s)
- Julia Lifanov-Carr
- School of Psychology and Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Benjamin J Griffiths
- School of Psychology and Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Juan Linde-Domingo
- School of Psychology and Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham B15 2TT, United Kingdom
- Department of Experimental Psychology, Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, 18011 Granada, Spain
- Center for Adaptive Rationality, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Catarina S Ferreira
- School of Psychology and Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Martin Wilson
- School of Psychology and Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stephen D Mayhew
- Institute of Health and Neurodevelopment (IHN), School of Psychology, Aston University, Birmingham B4 7ET, United Kingdom
| | - Ian Charest
- Département de Psychologie, Université de Montréal, Montréal, Quebec H2V 2S9, Canada
| | - Maria Wimber
- School of Psychology and Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham B15 2TT, United Kingdom
- School of Psychology & Neuroscience and Centre for Cognitive Neuroimaging (CCNi), University of Glasgow, Glasgow G12 8QB, United Kingdom
| |
Collapse
|
11
|
Ambrus GG. Shared neural codes of recognition memory. Sci Rep 2024; 14:15846. [PMID: 38982142 PMCID: PMC11233521 DOI: 10.1038/s41598-024-66158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Recognition memory research has identified several electrophysiological indicators of successful memory retrieval, known as old-new effects. These effects have been observed in different sensory domains using various stimulus types, but little attention has been given to their similarity or distinctiveness and the underlying processes they may share. Here, a data-driven approach was taken to investigate the temporal evolution of shared information content between different memory conditions using openly available EEG data from healthy human participants of both sexes, taken from six experiments. A test dataset involving personally highly familiar and unfamiliar faces was used. The results show that neural signals of recognition memory for face stimuli were highly generalized starting from around 200 ms following stimulus onset. When training was performed on non-face datasets, an early (around 200-300 ms) to late (post-400 ms) differentiation was observed over most regions of interest. Successful cross-classification for non-face stimuli (music and object/scene associations) was most pronounced in late period. Additionally, a striking dissociation was observed between familiar and remembered objects, with shared signals present only in the late window for correctly remembered objects, while cross-classification for familiar objects was successful in the early period as well. These findings suggest that late neural signals of memory retrieval generalize across sensory modalities and stimulus types, and the dissociation between familiar and remembered objects may provide insight into the underlying processes.
Collapse
Affiliation(s)
- Géza Gergely Ambrus
- Department of Psychology, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK.
| |
Collapse
|
12
|
Lin X, Chen D, Liu J, Yao Z, Xie H, Anderson MC, Hu X. Observing the suppression of individual aversive memories from conscious awareness. Cereb Cortex 2024; 34:bhae080. [PMID: 38863114 PMCID: PMC11166503 DOI: 10.1093/cercor/bhae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 06/13/2024] Open
Abstract
When reminded of an unpleasant experience, people often try to exclude the unwanted memory from awareness, a process known as retrieval suppression. Here we used multivariate decoding (MVPA) and representational similarity analyses on EEG data to track how suppression unfolds in time and to reveal its impact on item-specific cortical patterns. We presented reminders to aversive scenes and asked people to either suppress or to retrieve the scene. During suppression, mid-frontal theta power within the first 500 ms distinguished suppression from passive viewing of the reminder, indicating that suppression rapidly recruited control. During retrieval, we could discern EEG cortical patterns relating to individual memories-initially, based on theta-driven visual perception of the reminders (0 to 500 ms) and later, based on alpha-driven reinstatement of the aversive scene (500 to 3000 ms). Critically, suppressing retrieval weakened (during 360 to 600 ms) and eventually abolished item-specific cortical patterns, a robust effect that persisted until the reminder disappeared (780 to 3000 ms). Representational similarity analyses provided converging evidence that retrieval suppression weakened the representation of target scenes during the 500 to 3000 ms reinstatement window. Together, rapid top-down control during retrieval suppression abolished cortical patterns of individual memories, and precipitated later forgetting. These findings reveal a precise chronometry on the voluntary suppression of individual memories.
Collapse
Affiliation(s)
- Xuanyi Lin
- Center for Sleep & Circadian Biology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, 60208, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, 60208, United States
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Danni Chen
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Hui Xie
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Michael C Anderson
- MRC Cognition & Brain Sciences Unit, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518057, China
| |
Collapse
|
13
|
Leroy N, Majerus S, D'Argembeau A. Working memory capacity for continuous events: The root of temporal compression in episodic memory? Cognition 2024; 247:105789. [PMID: 38583322 DOI: 10.1016/j.cognition.2024.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Remembering the unfolding of past episodes usually takes less time than their actual duration. In this study, we evaluated whether such temporal compression emerges when continuous events are too long to be fully held in working memory. To do so, we asked 90 young adults to watch and mentally replay video clips showing people performing a continuous action (e.g., turning a car jack) that lasted 3, 6, 9, 12, or 15 s. For each clip, participants had to carefully watch the event and then to mentally replay it as accurately and precisely as possible. Results showed that mental replay durations increased with event duration but in a non-linear manner: they were close to the actual event duration for short videos (3-9 s), but significantly smaller for longer videos (12 and 15 s). These results suggest that working memory is temporally limited in its capacity to represent continuous events, which could in part explain why the unfolding of events is temporally compressed in episodic memory.
Collapse
|
14
|
Chen YY, Areti A, Yoshor D, Foster BL. Perception and Memory Reinstatement Engage Overlapping Face-Selective Regions within Human Ventral Temporal Cortex. J Neurosci 2024; 44:e2180232024. [PMID: 38627090 PMCID: PMC11140664 DOI: 10.1523/jneurosci.2180-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Humans have the remarkable ability to vividly retrieve sensory details of past events. According to the theory of sensory reinstatement, during remembering, brain regions specialized for processing specific sensory stimuli are reactivated to support content-specific retrieval. Recently, several studies have emphasized transformations in the spatial organization of these reinstated activity patterns. Specifically, studies of scene stimuli suggest a clear anterior shift in the location of retrieval activations compared with the activity observed during perception. However, it is not clear that such transformations occur universally, with inconsistent evidence for other important stimulus categories, particularly faces. One challenge in addressing this question is the careful delineation of face-selective cortices, which are interdigitated with other selective regions, in configurations that spatially differ across individuals. Therefore, we conducted a multisession neuroimaging study to first carefully map individual participants' (nine males and seven females) face-selective regions within ventral temporal cortex (VTC), followed by a second session to examine the activity patterns within these regions during face memory encoding and retrieval. While face-selective regions were expectedly engaged during face perception at encoding, memory retrieval engagement exhibited a more selective and constricted reinstatement pattern within these regions, but did not show any consistent direction of spatial transformation (e.g., anteriorization). We also report on unique human intracranial recordings from VTC under the same experimental conditions. These findings highlight the importance of considering the complex configuration of category-selective cortex in elucidating principles shaping the neural transformations that occur from perception to memory.
Collapse
Affiliation(s)
- Yvonne Y Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Daniel Yoshor
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
15
|
Smith CM, Federmeier KD. Multiple mechanisms of visual prediction as revealed by the timecourse of scene-object facilitation. Psychophysiology 2024; 61:e14503. [PMID: 38178793 PMCID: PMC11021179 DOI: 10.1111/psyp.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 01/06/2024]
Abstract
Not only semantic, but also recently learned arbitrary associations have the potential to facilitate visual processing in everyday life-for example, knowledge of a (moveable) object's location at a specific time may facilitate visual processing of that object. In our prior work, we showed that previewing a scene can facilitate processing of recently associated objects at the level of visual analysis (Smith and Federmeier in Journal of Cognitive Neuroscience, 32(5):783-803, 2020). In the current study, we assess how rapidly this facilitation unfolds by manipulating scene preview duration. We then compare our results to studies using well-learned object-scene associations in a first-pass assessment of whether systems consolidation might speed up high-level visual prediction. In two ERP experiments (N = 60), we had participants study categorically organized novel object-scene pairs in an explicit paired associate learning task. At test, we varied contextual pre-exposure duration, both between (200 vs. 2500 ms) and within subjects (0-2500 ms). We examined the N300, an event-related potential component linked to high-level visual processing of objects and scenes and found that N300 effects of scene congruity increase with longer scene previews, up to approximately 1-2 s. Similar results were obtained for response times and in a separate component-neutral ERP analysis of visual template matching. Our findings contrast with prior evidence that scenes can rapidly facilitate visual processing of commonly associated objects. This raises the possibility that systems consolidation might mediate different kinds of predictive processing with different temporal profiles.
Collapse
Affiliation(s)
- Cybelle M. Smith
- Department of Psychology, University of Illinois, Urbana-Champaign, Champaign, Illinois, USA
| | - Kara D. Federmeier
- Department of Psychology, University of Illinois, Urbana-Champaign, Champaign, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Champaign, Illinois, USA
- Program in Neuroscience, University of Illinois, Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
16
|
Schmidig FJ, Ruch S, Henke K. Episodic long-term memory formation during slow-wave sleep. eLife 2024; 12:RP89601. [PMID: 38661727 PMCID: PMC11045222 DOI: 10.7554/elife.89601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words' linguistic processing raised neural complexity. The words' semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.
Collapse
Affiliation(s)
| | - Simon Ruch
- Institute of Psychology, University of BernBernSwitzerland
- Faculty of Psychology, UniDistance SuisseBrigSwitzerland
| | | |
Collapse
|
17
|
Ishihara Y, Fujimoto K, Murai H, Ishikawa J, Mitsushima D. Classification of Hippocampal Ripples: Convolutional Neural Network Learns Episode-Specific Changes. Brain Sci 2024; 14:177. [PMID: 38391751 PMCID: PMC10886971 DOI: 10.3390/brainsci14020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
The hippocampus is known to play an important role in memory by processing spatiotemporal information of episodic experiences. By recording synchronized multiple-unit firing events (ripple firings with 300 Hz-10 kHz) of hippocampal CA1 neurons in freely moving rats, we previously found an episode-dependent diversity in the waveform of ripple firings. In the present study, we hypothesized that changes in the diversity would depend on the type of episode experienced. If this hypothesis holds, we can identify the ripple waveforms associated with each episode. Thus, we first attempted to classify the ripple firings measured from rats into five categories: those experiencing any of the four episodes and those before experiencing any of the four episodes. In this paper, we construct a convolutional neural network (CNN) to classify the current stocks of ripple firings into these five categories and demonstrate that the CNN can successfully classify the ripple firings. We subsequently indicate partial ripple waveforms that the CNN focuses on for classification by applying gradient-weighted class activation mapping (Grad-CAM) to the CNN. The method of t-distributed stochastic neighbor embedding (t-SNE) maps ripple waveforms into a two-dimensional feature space. Analyzing the distribution of partial waveforms extracted by Grad-CAM in a t-SNE feature space suggests that the partial waveforms may be representative of each category.
Collapse
Affiliation(s)
- Yuta Ishihara
- Graduate School of Science for Creative Emergence, Kagawa University, Kagawa 761-0396, Japan
| | - Ken'ichi Fujimoto
- Faculty of Engineering and Design, Kagawa University, Kagawa 761-0396, Japan
| | - Hiroshi Murai
- Faculty of Global and Science Studies, Yamaguchi University, Yamaguchi 753-8541, Japan
| | - Junko Ishikawa
- Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
| | - Dai Mitsushima
- Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
| |
Collapse
|
18
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. Cereb Cortex 2024; 34:bhad427. [PMID: 38041253 PMCID: PMC10793570 DOI: 10.1093/cercor/bhad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/03/2023] Open
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered the stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown, CT 06459, USA
| | - James E Kragel
- Dept. of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ethan A Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley C Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Joshua P Aronson
- Dept. of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Barbara C Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Robert E Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta, GA 30322, USA
| | - Michael R Sperling
- Dept. of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Sameer A Sheth
- Dept. of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel S Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Dhammapeera P, Brunskill C, Hellerstedt R, Bergström ZM. Counterfactual imagination impairs memory for true actions: EEG and behavioural evidence. Cogn Neurosci 2024; 15:12-23. [PMID: 38362597 DOI: 10.1080/17588928.2024.2315814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 02/17/2024]
Abstract
Imagined events can be misremembered as experienced, leading to memory distortions. However, less is known regarding how imagining counterfactual versions of past events can impair existing memories. We addressed this issue, and used EEG to investigate the neurocognitive processes involved when retrieving memories of true events that are associated with a competing imagined event. Participants first performed simple actions with everyday objects (e.g., rolling dice). A week later, they were shown pictures of some of the objects and either imagined the same action they had originally performed, or imagined a counterfactual action (e.g., stacking the dice). Subsequent tests showed that memory for performed actions was reduced after counterfactual imagination when compared to both veridical imagination and a baseline condition that had not been imagined at all, providing novel evidence that counterfactual imagination impairs true memories beyond simple forgetting over time. ERPs and EEG oscillations showed evidence of separate processes associated with memory retrieval versus post-retrieval processes that were recruited to support recall of memories that were challenging to access. The findings show that counterfactual imagination can cause impairments to sensorimotor-rich event memories, and provide new evidence regarding the neurocognitive mechanisms that are recruited when people need to distinguish memories of imagined versus true events.
Collapse
Affiliation(s)
- Phot Dhammapeera
- School of Psychology, University of Kent, Canterbury, UK
- Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | | | - Robin Hellerstedt
- School of Psychology, University of Kent, Canterbury, UK
- Centre for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | | |
Collapse
|
20
|
Pulver RL, Kronberg E, Medenblik LM, Kheyfets VO, Ramos AR, Holtzman DM, Morris JC, Toedebusch CD, Sillau SH, Bettcher BM, Lucey BP, McConnell BV. Mapping sleep's oscillatory events as a biomarker of Alzheimer's disease. Alzheimers Dement 2024; 20:301-315. [PMID: 37610059 PMCID: PMC10840635 DOI: 10.1002/alz.13420] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Memory-associated neural circuits produce oscillatory events including theta bursts (TBs), sleep spindles (SPs), and slow waves (SWs) in sleep electroencephalography (EEG). Changes in the "coupling" of these events may indicate early Alzheimer's disease (AD) pathogenesis. METHODS We analyzed 205 aging adults using single-channel sleep EEG, cerebrospinal fluid (CSF) AD biomarkers, and Clinical Dementia Rating® (CDR®) scale. We mapped SW-TB and SW-SP neural circuit coupling precision to amyloid positivity, cognitive impairment, and CSF AD biomarkers. RESULTS Cognitive impairment correlated with lower TB spectral power in SW-TB coupling. Cognitively unimpaired, amyloid positive individuals demonstrated lower precision in SW-TB and SW-SP coupling compared to amyloid negative individuals. Significant biomarker correlations were found in oscillatory event coupling with CSF Aβ42 /Aβ40 , phosphorylated- tau181 , and total-tau. DISCUSSION Sleep-dependent memory processing integrity in neural circuits can be measured for both SW-TB and SW-SP coupling. This breakdown associates with amyloid positivity, increased AD pathology, and cognitive impairment. HIGHLIGHTS At-home sleep EEG is a potential biomarker of neural circuits linked to memory. Circuit precision is associated with amyloid positivity in asymptomatic aging adults. Levels of CSF amyloid and tau also correlate with circuit precision in sleep EEG. Theta burst EEG power is decreased in very early mild cognitive impairment. This technique may enable inexpensive wearable EEGs for monitoring brain health.
Collapse
Affiliation(s)
- Rachelle L. Pulver
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Eugene Kronberg
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Lindsey M. Medenblik
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Vitaly O. Kheyfets
- Department of Pediatric Critical Care MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Alberto R. Ramos
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - David M. Holtzman
- Department of NeurologyWashington University School of MedicineSt LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMissouriUSA
| | - John C. Morris
- Department of NeurologyWashington University School of MedicineSt LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMissouriUSA
| | | | - Stefan H Sillau
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Brianne M. Bettcher
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Brendan P. Lucey
- Department of NeurologyWashington University School of MedicineSt LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
- Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMissouriUSA
| | - Brice V. McConnell
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
- University of Colorado Alzheimer's and Cognition CenterUniversity of Colorado School of MedicineAuroraColoradoUSA
| |
Collapse
|
21
|
Kopal J, Hlinka J, Despouy E, Valton L, Denuelle M, Sol J, Curot J, Barbeau EJ. Large-scale network dynamics underlying the first few hundred milliseconds after stimulus presentation: An investigation of visual recognition memory using iEEG. Hum Brain Mapp 2023; 44:5795-5809. [PMID: 37688546 PMCID: PMC10619408 DOI: 10.1002/hbm.26477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023] Open
Abstract
Recognition memory is the ability to recognize previously encountered objects. Even this relatively simple, yet extremely fast, ability requires the coordinated activity of large-scale brain networks. However, little is known about the sub-second dynamics of these networks. The majority of current studies into large-scale network dynamics is primarily based on imaging techniques suffering from either poor temporal or spatial resolution. We investigated the dynamics of large-scale functional brain networks underlying recognition memory at the millisecond scale. Specifically, we analyzed dynamic effective connectivity from intracranial electroencephalography while epileptic subjects (n = 18) performed a fast visual recognition memory task. Our data-driven investigation using Granger causality and the analysis of communities with the Louvain algorithm spotlighted a dynamic interplay of two large-scale networks associated with successful recognition. The first network involved the right visual ventral stream and bilateral frontal regions. It was characterized by early, predominantly bottom-up information flow peaking at 115 ms. It was followed by the involvement of another network with predominantly top-down connectivity peaking at 220 ms, mainly in the left anterior hemisphere. The transition between these two networks was associated with changes in network topology, evolving from a more segregated to a more integrated state. These results highlight that distinct large-scale brain networks involved in visual recognition memory unfold early and quickly, within the first 300 ms after stimulus onset. Our study extends the current understanding of the rapid network changes during rapid cognitive processes.
Collapse
Affiliation(s)
- Jakub Kopal
- Institute of Computer Science of the Czech Academy of SciencesPragueCzech Republic
- Department of Computing and Control EngineeringUniversity of Chemistry and TechnologyPragueCzech Republic
- Centre de Recherche Cerveau et CognitionToulouse III University – CNRS UMR 5549ToulouseFrance
| | - Jaroslav Hlinka
- Institute of Computer Science of the Czech Academy of SciencesPragueCzech Republic
- National Institute of Mental HealthKlecanyCzech Republic
| | - Elodie Despouy
- Centre de Recherche Cerveau et CognitionToulouse III University – CNRS UMR 5549ToulouseFrance
| | - Luc Valton
- Centre de Recherche Cerveau et CognitionToulouse III University – CNRS UMR 5549ToulouseFrance
- University Hospital PurpanToulouseFrance
| | - Marie Denuelle
- Centre de Recherche Cerveau et CognitionToulouse III University – CNRS UMR 5549ToulouseFrance
- University Hospital PurpanToulouseFrance
| | - Jean‐Christophe Sol
- University Hospital PurpanToulouseFrance
- Toulouse NeuroImaging CenterToulouseFrance
| | - Jonathan Curot
- Centre de Recherche Cerveau et CognitionToulouse III University – CNRS UMR 5549ToulouseFrance
- University Hospital PurpanToulouseFrance
| | - Emmanuel J. Barbeau
- Centre de Recherche Cerveau et CognitionToulouse III University – CNRS UMR 5549ToulouseFrance
| |
Collapse
|
22
|
Liu J, Xia T, Chen D, Yao Z, Zhu M, Antony JW, Lee TMC, Hu X. Item-specific neural representations during human sleep support long-term memory. PLoS Biol 2023; 21:e3002399. [PMID: 37983253 PMCID: PMC10695382 DOI: 10.1371/journal.pbio.3002399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
Understanding how individual memories are reactivated during sleep is essential in theorizing memory consolidation. Here, we employed the targeted memory reactivation (TMR) paradigm to unobtrusively replaying auditory memory cues during human participants' slow-wave sleep (SWS). Using representational similarity analysis (RSA) on cue-elicited electroencephalogram (EEG), we found temporally segregated and functionally distinct item-specific neural representations: the early post-cue EEG activity (within 0 to 2,000 ms) contained comparable item-specific representations for memory cues and control cues, signifying effective processing of auditory cues. Critically, the later EEG activity (2,500 to 2,960 ms) showed greater item-specific representations for post-sleep remembered items than for forgotten and control cues, indicating memory reprocessing. Moreover, these later item-specific neural representations were supported by concurrently increased spindles, particularly for items that had not been tested prior to sleep. These findings elucidated how external memory cues triggered item-specific neural representations during SWS and how such representations were linked to successful long-term memory. These results will benefit future research aiming to perturb specific memory episodes during sleep.
Collapse
Affiliation(s)
- Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Tao Xia
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Danni Chen
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Ziqing Yao
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Minrui Zhu
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - James W. Antony
- Department of Psychology & Child Development, California Polytechnic State University, San Luis Obispo, California, United States of America
| | - Tatia M. C. Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Xiaoqing Hu
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, People’s Republic of China
| |
Collapse
|
23
|
Hou M, de Chastelaine M, Rugg MD. Age differences in the neural correlates of recollection: transient versus sustained fMRI effects. Neurobiol Aging 2023; 131:132-143. [PMID: 37633119 PMCID: PMC10528128 DOI: 10.1016/j.neurobiolaging.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 08/28/2023]
Abstract
Prior functional magnetic resonance imaging findings in young adults indicate that recollection-sensitive neural regions dissociate according to the time courses of their respective recollection effects. Here, we examined whether such dissociations are also evident in older adults. Young and older participants encoded a series of word-image pairs, judging which of the denoted objects was the smaller. At the test, participants judged whether each of a series of test words was old or new. If a word was old, the requirement was to recall the associated image and maintain it over a variable delay period. Older adults demonstrated significantly lower associative memory performance than young adults. Transient recollection effects were identified in the left hippocampus, medial prefrontal cortex, and posterior cingulate, while sustained effects were widespread across left lateral cortex and were also evident in the bilateral striatum. Except for those in the left insula, all effects were age-invariant. These findings suggest that both transient and sustained recollection effects are largely stable across much of the healthy adult life span.
Collapse
Affiliation(s)
- Mingzhu Hou
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA.
| | - Marianne de Chastelaine
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
24
|
Griffiths BJ, Jensen O. Gamma oscillations and episodic memory. Trends Neurosci 2023; 46:832-846. [PMID: 37550159 DOI: 10.1016/j.tins.2023.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/20/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023]
Abstract
Enhanced gamma oscillatory activity (30-80 Hz) accompanies the successful formation and retrieval of episodic memories. While this co-occurrence is well documented, the mechanistic contributions of gamma oscillatory activity to episodic memory remain unclear. Here, we review how gamma oscillatory activity may facilitate spike timing-dependent plasticity, neural communication, and sequence encoding/retrieval, thereby ensuring the successful formation and/or retrieval of an episodic memory. Based on the evidence reviewed, we propose that multiple, distinct forms of gamma oscillation can be found within the canonical gamma band, each of which has a complementary role in the neural processes listed above. Further exploration of these theories using causal manipulations may be key to elucidating the relevance of gamma oscillatory activity to episodic memory.
Collapse
Affiliation(s)
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Lee H, Keene PA, Sweigart SC, Hutchinson JB, Kuhl BA. Adding Meaning to Memories: How Parietal Cortex Combines Semantic Content with Episodic Experience. J Neurosci 2023; 43:6525-6537. [PMID: 37596054 PMCID: PMC10513070 DOI: 10.1523/jneurosci.1919-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023] Open
Abstract
Neuroimaging studies of human memory have consistently found that univariate responses in parietal cortex track episodic experience with stimuli (whether stimuli are 'old' or 'new'). More recently, pattern-based fMRI studies have shown that parietal cortex also carries information about the semantic content of remembered experiences. However, it is not well understood how memory-based and content-based signals are integrated within parietal cortex. Here, in humans (males and females), we used voxel-wise encoding models and a recognition memory task to predict the fMRI activity patterns evoked by complex natural scene images based on (1) the episodic history and (2) the semantic content of each image. Models were generated and compared across distinct subregions of parietal cortex and for occipitotemporal cortex. We show that parietal and occipitotemporal regions each encode memory and content information, but they differ in how they combine this information. Among parietal subregions, angular gyrus was characterized by robust and overlapping effects of memory and content. Moreover, subject-specific semantic tuning functions revealed that successful recognition shifted the amplitude of tuning functions in angular gyrus but did not change the selectivity of tuning. In other words, effects of memory and content were additive in angular gyrus. This pattern of data contrasted with occipitotemporal cortex where memory and content effects were interactive: memory effects were preferentially expressed by voxels tuned to the content of a remembered image. Collectively, these findings provide unique insight into how parietal cortex combines information about episodic memory and semantic content.SIGNIFICANCE STATEMENT Neuroimaging studies of human memory have identified multiple brain regions that not only carry information about "whether" a visual stimulus is successfully recognized but also "what" the content of that stimulus includes. However, a fundamental and open question concerns how the brain integrates these two types of information (memory and content). Here, using a powerful combination of fMRI analysis methods, we show that parietal cortex, particularly the angular gyrus, robustly combines memory- and content-related information, but these two forms of information are represented via additive, independent signals. In contrast, memory effects in high-level visual cortex critically depend on (and interact with) content representations. Together, these findings reveal multiple and distinct ways in which the brain combines memory- and content-related information.
Collapse
Affiliation(s)
- Hongmi Lee
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218
| | - Paul A Keene
- Department of Psychology, University of Oregon, Eugene, OR 97403
| | - Sarah C Sweigart
- Department of Psychology, University of California-Davis, Davis, California 95616
| | | | - Brice A Kuhl
- Department of Psychology, University of Oregon, Eugene, OR 97403
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| |
Collapse
|
26
|
Zacks O, Jablonka E. The evolutionary origins of the Global Neuronal Workspace in vertebrates. Neurosci Conscious 2023; 2023:niad020. [PMID: 37711313 PMCID: PMC10499063 DOI: 10.1093/nc/niad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
The Global Neuronal Workspace theory of consciousness offers an explicit functional architecture that relates consciousness to cognitive abilities such as perception, attention, memory, and evaluation. We show that the functional architecture of the Global Neuronal Workspace, which is based mainly on human studies, corresponds to the cognitive-affective architecture proposed by the Unlimited Associative Learning theory that describes minimal consciousness. However, we suggest that when applied to basal vertebrates, both models require important modifications to accommodate what has been learned about the evolution of the vertebrate brain. Most importantly, comparative studies suggest that in basal vertebrates, the Global Neuronal Workspace is instantiated by the event memory system found in the hippocampal homolog. This proposal has testable predictions and implications for understanding hippocampal and cortical functions, the evolutionary relations between memory and consciousness, and the evolution of unified perception.
Collapse
Affiliation(s)
- Oryan Zacks
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Ramat Aviv 6934525, Israel
| | - Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Ramat Aviv 6934525, Israel
- CPNSS, London School of Economics, Houghton St., London WC2A 2AE, United Kingdom
| |
Collapse
|
27
|
Craik FI. Memory, aging and the brain: Old findings and current issues. AGING BRAIN 2023; 4:100096. [PMID: 37701730 PMCID: PMC10494262 DOI: 10.1016/j.nbas.2023.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
In this article I reprise some selected findings and issues from my previous behavioural work on age-related differences in memory, and relate them to current work on the neural correlates of encoding, retrieval and representation. In particular, I describe the case study of a woman who had persistent experiences of erroneous recollection. I also describe the results of a study showing a double dissociation of implicit and explicit memory in younger and older adults. Finally, I assess recent work on loss of specificity in older adults' encoding and retrieval processes of episodic events. In all cases I attempt to relate these older findings to current ideas and empirical results in the area of memory, aging, and the brain.
Collapse
Affiliation(s)
- Fergus I.M. Craik
- Rotman Research Institute, Baycrest Academy, 3560 Bathurst St., Toronto, ON M6A 2E1, Canada
| |
Collapse
|
28
|
Chang WS, Liang WK, Li DH, Muggleton NG, Balachandran P, Huang NE, Juan CH. The association between working memory precision and the nonlinear dynamics of frontal and parieto-occipital EEG activity. Sci Rep 2023; 13:14252. [PMID: 37653059 PMCID: PMC10471634 DOI: 10.1038/s41598-023-41358-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023] Open
Abstract
Electrophysiological working memory (WM) research shows brain areas communicate via macroscopic oscillations across frequency bands, generating nonlinear amplitude modulation (AM) in the signal. Traditionally, AM is expressed as the coupling strength between the signal and a prespecified modulator at a lower frequency. Therefore, the idea of AM and coupling cannot be studied separately. In this study, 33 participants completed a color recall task while their brain activity was recorded through EEG. The AM of the EEG data was extracted using the Holo-Hilbert spectral analysis (HHSA), an adaptive method based on the Hilbert-Huang transforms. The results showed that WM load modulated parieto-occipital alpha/beta power suppression. Furthermore, individuals with higher frontal theta power and lower parieto-occipital alpha/beta power exhibited superior WM precision. In addition, the AM of parieto-occipital alpha/beta power predicted WM precision after presenting a target-defining probe array. The phase-amplitude coupling (PAC) between the frontal theta phase and parieto-occipital alpha/beta AM increased with WM load while processing incoming stimuli, but the PAC itself did not predict the subsequent recall performance. These results suggest frontal and parieto-occipital regions communicate through theta-alpha/beta PAC. However, the overall recall precision depends on the alpha/beta AM following the onset of the retro cue.
Collapse
Affiliation(s)
- Wen-Sheng Chang
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
| | - Dong-Han Li
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
| | - Neil G Muggleton
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology, Goldsmiths, University of London, London, UK
| | - Prasad Balachandran
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Norden E Huang
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
- Data Analysis and Application Laboratory, The First Institute of Oceanography, Qingdao, China
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan.
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan.
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
29
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550851. [PMID: 37609181 PMCID: PMC10441352 DOI: 10.1101/2023.07.27.550851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown CT 06459
| | | | - Ethan A. Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | - Bradley C. Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas TX 75390
| | - Joshua P. Aronson
- Dept. of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Barbara C. Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Robert E. Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta GA 30322
| | - Michael R. Sperling
- Dept. of Neurology, Thomas Jefferson University Hospital, Philadelphia PA 19107
| | | | - Sameer A. Sheth
- Dept. of Neurosurgery, Columbia University Medical Center, New York, NY 10032
| | - Paul A. Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Daniel S. Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Michael J. Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| |
Collapse
|
30
|
Chen YY, Areti A, Yoshor D, Foster BL. Individual-specific memory reinstatement patterns within human face-selective cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552130. [PMID: 37609262 PMCID: PMC10441346 DOI: 10.1101/2023.08.06.552130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Humans have the remarkable ability to vividly retrieve sensory details of past events. According to the theory of sensory reinstatement, during remembering, brain regions involved in the sensory processing of prior events are reactivated to support this perception of the past. Recently, several studies have emphasized potential transformations in the spatial organization of reinstated activity patterns. In particular, studies of scene stimuli suggest a clear anterior shift in the location of retrieval activations compared with those during perception. However, it is not clear that such transformations occur universally, with evidence lacking for other important stimulus categories, particularly faces. Critical to addressing these questions, and to studies of reinstatement more broadly, is the growing importance of considering meaningful variations in the organization of sensory systems across individuals. Therefore, we conducted a multi-session neuroimaging study to first carefully map individual participants face-selective regions within ventral temporal cortex (VTC), followed by a second session to examine the correspondence of activity patterns during face memory encoding and retrieval. Our results showed distinct configurations of face-selective regions within the VTC across individuals. While a significant degree of overlap was observed between face perception and memory encoding, memory retrieval engagement exhibited a more selective and constricted reinstatement pattern within these regions. Importantly, these activity patterns were consistently tied to individual-specific neural substrates, but did not show any consistent direction of spatial transformation (e.g., anteriorization). To provide further insight to these findings, we also report on unique human intracranial recordings from VTC under the same experimental conditions. Our findings highlight the importance of considering individual variations in functional neuroanatomy in the context of assessing the nature of cortical reinstatement. Consideration of such factors will be important for establishing general principles shaping the neural transformations that occur from perception to memory.
Collapse
Affiliation(s)
- Yvonne Y Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | - Daniel Yoshor
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
31
|
Souchet AD, Lourdeaux D, Burkhardt JM, Hancock PA. Design guidelines for limiting and eliminating virtual reality-induced symptoms and effects at work: a comprehensive, factor-oriented review. Front Psychol 2023; 14:1161932. [PMID: 37359863 PMCID: PMC10288216 DOI: 10.3389/fpsyg.2023.1161932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Virtual reality (VR) can induce side effects known as virtual reality-induced symptoms and effects (VRISE). To address this concern, we identify a literature-based listing of these factors thought to influence VRISE with a focus on office work use. Using those, we recommend guidelines for VRISE amelioration intended for virtual environment creators and users. We identify five VRISE risks, focusing on short-term symptoms with their short-term effects. Three overall factor categories are considered: individual, hardware, and software. Over 90 factors may influence VRISE frequency and severity. We identify guidelines for each factor to help reduce VR side effects. To better reflect our confidence in those guidelines, we graded each with a level of evidence rating. Common factors occasionally influence different forms of VRISE. This can lead to confusion in the literature. General guidelines for using VR at work involve worker adaptation, such as limiting immersion times to between 20 and 30 min. These regimens involve taking regular breaks. Extra care is required for workers with special needs, neurodiversity, and gerontechnological concerns. In addition to following our guidelines, stakeholders should be aware that current head-mounted displays and virtual environments can continue to induce VRISE. While no single existing method fully alleviates VRISE, workers' health and safety must be monitored and safeguarded when VR is used at work.
Collapse
Affiliation(s)
- Alexis D. Souchet
- Heudiasyc UMR 7253, Alliance Sorbonne Université, Université de Technologie de Compiègne, CNRS, Compiègne, France
- Institute for Creative Technologies, University of Southern California, Los Angeles, CA, United States
| | - Domitile Lourdeaux
- Heudiasyc UMR 7253, Alliance Sorbonne Université, Université de Technologie de Compiègne, CNRS, Compiègne, France
| | | | - Peter A. Hancock
- Department of Psychology, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
32
|
Shao X, Li A, Chen C, Loftus EF, Zhu B. Cross-stage neural pattern similarity in the hippocampus predicts false memory derived from post-event inaccurate information. Nat Commun 2023; 14:2299. [PMID: 37085518 PMCID: PMC10121656 DOI: 10.1038/s41467-023-38046-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
The misinformation effect occurs when people's memory of an event is altered by subsequent inaccurate information. No study has systematically tested theories about the dynamics of human hippocampal representations during the three stages of misinformation-induced false memory. This study replicates behavioral results of the misinformation effect, and investigates the cross-stage pattern similarity in the hippocampus and cortex using functional magnetic resonance imaging. Results show item-specific hippocampal pattern similarity between original-event and post-event stages. During the memory-test stage, hippocampal representations of original information are weakened for true memory, whereas hippocampal representations of misinformation compete with original information to create false memory. When false memory occurs, this conflict is resolved by the lateral prefrontal cortex. Individuals' memory traces of post-event information in the hippocampus predict false memory, whereas original information in the lateral parietal cortex predicts true memory. These findings support the multiple-trace model, and emphasize the reconstructive nature of human memory.
Collapse
Affiliation(s)
- Xuhao Shao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing, China
- Institute of Developmental Psychology, Beijing Normal University, 100875, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 100875, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
| | - Ao Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, 92697, USA
| | - Elizabeth F Loftus
- Department of Psychological Science, University of California, Irvine, CA, 92697, USA
| | - Bi Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing, China.
- Institute of Developmental Psychology, Beijing Normal University, 100875, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 100875, Beijing, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
33
|
Wu X, Packard PA, García-Arch J, Bunzeck N, Fuentemilla L. Contextual incongruency triggers memory reinstatement and the disruption of neural stability. Neuroimage 2023; 273:120114. [PMID: 37080120 DOI: 10.1016/j.neuroimage.2023.120114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023] Open
Abstract
Schemas, or internal representation models of the environment, are thought to be central in organising our everyday life behaviour by giving stability and predictiveness to the structure of the world. However, when an element from an unfolding event mismatches the schema-derived expectations, the coherent narrative is interrupted and an update to the current event model representation is required. Here, we asked whether the perceived incongruence of an item from an unfolding event and its impact on memory relied on the disruption of neural stability patterns preceded by the neural reactivation of the memory representations of the just-encoded event. Our study includes data from two different experiments whereby human participants (N = 33, 26 females and N = 18, 16 females, respectively) encoded images of objects preceded by trial-unique sequences of events depicting daily routine. We found that neural stability patterns gradually increased throughout the ongoing exposure to a schema-consistent episode, which was corroborated by the re-analysis of data from two other experiments, and that the brain stability pattern was interrupted when the encoding of an object of the event was incongruent with the ongoing schema. We found that the decrease in neural stability for low-congruence items was seen at ∼1000 ms from object encoding onset and that it was preceded by an enhanced N400 ERP and an increased degree of neural reactivation of the just-encoded episode. Current results offer new insights into the neural mechanisms and their temporal orchestration that are engaged during online encoding of schema-consistent episodic narratives and the detection of incongruencies.
Collapse
Affiliation(s)
- Xiongbo Wu
- Cognition and Brain Plasticity Group, Bellvitge Institute for Biomedical Research, Hospitalet de Llobregat 08907, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona 08035, Spain; Institute of Neurosciences, University of Barcelona, Barcelona 08035, Spain.
| | - Pau A Packard
- Multisensory Research Group, Center for Brain and Cognition, Pompeu Fabra University, Barcelona, Spain
| | - Josué García-Arch
- Cognition and Brain Plasticity Group, Bellvitge Institute for Biomedical Research, Hospitalet de Llobregat 08907, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona 08035, Spain; Institute of Neurosciences, University of Barcelona, Barcelona 08035, Spain
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Lübeck 23562, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck 23562, Germany
| | - Lluís Fuentemilla
- Cognition and Brain Plasticity Group, Bellvitge Institute for Biomedical Research, Hospitalet de Llobregat 08907, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona 08035, Spain; Institute of Neurosciences, University of Barcelona, Barcelona 08035, Spain
| |
Collapse
|
34
|
Hou M, de Chastelaine M, Rugg MD. The effects of age on neural correlates of recollection: transient versus sustained fMRI effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536508. [PMID: 37090506 PMCID: PMC10120722 DOI: 10.1101/2023.04.12.536508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Prior fMRI findings in young adults indicate that recollection-sensitive neural regions dissociate according to the time courses of their respective recollection effects. Here, we examined whether such dissociations are also evident in older adults. Young and older participants encoded a series of word-object image pairs, judging which of the denoted objects was the smaller. At test, participants first judged whether a test word was old or new. For items judged old, they were required to recall the associated image and hold it in mind across a variable delay period. A post-delay cue denoted which of three judgments should be made on the retrieved image. Older adults demonstrated significantly lower associative memory performance than young adults. Replicating prior findings, transient recollection effects were identified in the left hippocampus, medial prefrontal cortex and posterior cingulate, while sustained effects were widespread across left lateral cortex and were also evident in the bilateral striatum. With the exception of those in the left insula, all effects were age-invariant. These findings add to the evidence that recollection-related BOLD effects in different neural regions can be temporally dissociated. Additionally, the findings suggest that both transient and sustained recollection effects are largely stable across much of the healthy adult lifespan.
Collapse
|
35
|
Kraemer PM, Gluth S. Episodic Memory Retrieval Affects the Onset and Dynamics of Evidence Accumulation during Value-based Decisions. J Cogn Neurosci 2023; 35:692-714. [PMID: 36724395 DOI: 10.1162/jocn_a_01968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In neuroeconomics, there is much interest in understanding simple value-based choices where agents choose between visually presented goods, comparable to a shopping scenario in a supermarket. However, many everyday decisions are made in the physical absence of the considered goods, requiring agents to recall information about the goods from memory. Here, we asked whether and how this reliance on an internal memory representation affects the temporal dynamics of decision making on a cognitive and neural level. Participants performed a remember-and-decide task in which they made simple purchasing decisions between money offers and snack items while undergoing EEG. Snack identity was presented either visually (value trials) or had to be recalled from memory (memory trials). Behavioral data indicated comparable choice consistency across both trial types, but considerably longer RTs in memory trials. Drift-diffusion modeling suggested that this RT difference was because of longer nondecision time of decision processes as well as altered evidence accumulation dynamics (lower accumulation rate and higher decision threshold). The nondecision time effect was supported by a delayed onset of the lateralized readiness potential. These results show that both decision and nondecision processes are prolonged when participants need to resort to internal memory representations during value-based decisions.
Collapse
|
36
|
Chen ZS, Wilson MA. How our understanding of memory replay evolves. J Neurophysiol 2023; 129:552-580. [PMID: 36752404 PMCID: PMC9988534 DOI: 10.1152/jn.00454.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Memory reactivations and replay, widely reported in the hippocampus and cortex across species, have been implicated in memory consolidation, planning, and spatial and skill learning. Technological advances in electrophysiology, calcium imaging, and human neuroimaging techniques have enabled neuroscientists to measure large-scale neural activity with increasing spatiotemporal resolution and have provided opportunities for developing robust analytic methods to identify memory replay. In this article, we first review a large body of historically important and representative memory replay studies from the animal and human literature. We then discuss our current understanding of memory replay functions in learning, planning, and memory consolidation and further discuss the progress in computational modeling that has contributed to these improvements. Next, we review past and present analytic methods for replay analyses and discuss their limitations and challenges. Finally, looking ahead, we discuss some promising analytic methods for detecting nonstereotypical, behaviorally nondecodable structures from large-scale neural recordings. We argue that seamless integration of multisite recordings, real-time replay decoding, and closed-loop manipulation experiments will be essential for delineating the role of memory replay in a wide range of cognitive and motor functions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
37
|
Pulver RL, Kronberg E, Medenblik LM, Kheyfets VO, Ramos AR, Holtzman DM, Morris JC, Toedebusch CD, Sillau SH, Bettcher BM, Lucey BP, McConnell BV. Mapping Sleep's Oscillatory Events as a Biomarker of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528725. [PMID: 36824720 PMCID: PMC9949053 DOI: 10.1101/2023.02.15.528725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Objective Memory-associated neural circuits produce oscillatory events within single-channel sleep electroencephalography (EEG), including theta bursts (TBs), sleep spindles (SPs) and multiple subtypes of slow waves (SWs). Changes in the temporal "coupling" of these events are proposed to serve as a biomarker for early stages of Alzheimer's disease (AD) pathogenesis. Methods We analyzed data from 205 aging adults, including single-channel sleep EEG, cerebrospinal fluid (CSF) AD-associated biomarkers, and Clinical Dementia Rating® (CDR®) scale. Individual SW events were sorted into high and low transition frequencies (TF) subtypes. We utilized time-frequency spectrogram locations within sleep EEG to "map" the precision of SW-TB and SW-SP neural circuit coupling in relation to amyloid positivity (by CSF Aβ 42 /Aβ 40 threshold), cognitive impairment (by CDR), and CSF levels of AD-associated biomarkers. Results Cognitive impairment was associated with lower TB spectral power in both high and low TF SW-TB coupling (p<0.001, p=0.001). Cognitively unimpaired, amyloid positive aging adults demonstrated lower precision of the neural circuits propagating high TF SW-TB (p<0.05) and low TF SW-SP (p<0.005) event coupling, compared to cognitively unimpaired amyloid negative individuals. Biomarker correlations were significant for high TF SW-TB coupling with CSF Aβ 42 /Aβ 40 (p=0.005), phosphorylated-tau 181 (p<0.005), and total-tau (p<0.05). Low TF SW-SP coupling was also correlated with CSF Aβ 42 /Aβ 40 (p<0.01). Interpretation Loss of integrity in neural circuits underlying sleep-dependent memory processing can be measured for both SW-TB and SW-SP coupling in spectral time-frequency space. Breakdown of sleep's memory circuit integrity is associated with amyloid positivity, higher levels of AD-associated pathology, and cognitive impairment.
Collapse
|
38
|
Rodríguez Holguín S, Folgueira-Ares R, Crego A, López-Caneda E, Corral M, Cadaveira F, Doallo S. Neurocognitive effects of binge drinking on verbal episodic memory. An ERP study in university students. Front Pharmacol 2023; 14:1034248. [PMID: 36825155 PMCID: PMC9941344 DOI: 10.3389/fphar.2023.1034248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Background: Verbal memory may be affected by engagement in alcohol binge drinking during youth, according to the findings of neuropsychological studies. However, little is known about the dynamics of the neural activity underlying this cognitive process in young, heavy drinkers. Aims: To investigate brain event-related potentials associated with cued recall from episodic memory in binge drinkers and controls. Methods: Seventy first-year university students were classified as binge drinkers (32: 17 female) or controls (38: 18 female). The participants completed a verbal paired associates learning task during electroencephalogram (EEG) recording. ERPs elicited by old and new word pairs were extracted from the cued-recall phase of the task by using Principal Component Analysis. Subjects also performed a standardized neuropsychological verbal learning test. Results: Two of the three event-related potentials components indicating old/new memory effects provided evidence for anomalies associated with binge drinking. The old/new effects were absent in the binge drinkers in the two subsequent posterior components, identified with the late parietal component and the late posterior negativity The late frontal component revealed similar old/new effects in both groups. Binge drinkers showed similar behavioural performance to controls in the verbal paired associates task, but performed poorly in the more demanding short-term cued-recall trial of a neuropsychological standardized test. Conclusion: Event-related potentials elicited during a verbal cued-recall task revealed differences in brain functioning between young binge drinkers and controls that may underlie emergent deficits in episodic memory linked to alcohol abuse. The brain activity of binge drinkers suggests alterations in the hippocampal - posterior parietal cortex circuitry subserving recognition and recollection of the cue context and generation of the solution, in relation to verbal information shallowly memorised.
Collapse
Affiliation(s)
- Socorro Rodríguez Holguín
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Rocío Folgueira-Ares
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Alberto Crego
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Campus de Gualtar, Gualtar, Portugal
| | - Eduardo López-Caneda
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Campus de Gualtar, Gualtar, Portugal
| | - Montserrat Corral
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Fernando Cadaveira
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Sonia Doallo
- Department of Clinical Psychology and Psychobiology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| |
Collapse
|
39
|
Corriveau A, Kidder A, Teichmann L, Wardle SG, Baker CI. Sustained neural representations of personally familiar people and places during cued recall. Cortex 2023; 158:71-82. [PMID: 36459788 PMCID: PMC9840701 DOI: 10.1016/j.cortex.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 01/18/2023]
Abstract
The recall and visualization of people and places from memory is an everyday occurrence, yet the neural mechanisms underpinning this phenomenon are not well understood. In particular, the temporal characteristics of the internal representations generated by active recall are unclear. Here, we used magnetoencephalography (MEG) and multivariate pattern analysis to measure the evolving neural representation of familiar places and people across the whole brain when human participants engage in active recall. To isolate self-generated imagined representations, we used a retro-cue paradigm in which participants were first presented with two possible labels before being cued to recall either the first or second item. We collected personalized labels for specific locations and people familiar to each participant. Importantly, no visual stimuli were presented during the recall period, and the retro-cue paradigm allowed the dissociation of responses associated with the labels from those corresponding to the self-generated representations. First, we found that following the retro-cue it took on average ∼1000 ms for distinct neural representations of freely recalled people or places to develop. Second, we found distinct representations of personally familiar concepts throughout the 4 s recall period. Finally, we found that these representations were highly stable and generalizable across time. These results suggest that self-generated visualizations and recall of familiar places and people are subserved by a stable neural mechanism that operates relatively slowly when under conscious control.
Collapse
Affiliation(s)
- Anna Corriveau
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20814, USA; Department of Psychology, The University of Chicago, Chicago, IL 60637, USA.
| | - Alexis Kidder
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20814, USA; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Lina Teichmann
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Susan G Wardle
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20814, USA
| |
Collapse
|
40
|
Legrand N, Etard O, Viader F, Clochon P, Doidy F, Eustache F, Gagnepain P. Attentional capture mediates the emergence and suppression of intrusive memories. iScience 2022; 25:105516. [PMID: 36419855 PMCID: PMC9676635 DOI: 10.1016/j.isci.2022.105516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/20/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022] Open
Abstract
Intrusive memories hijack consciousness and their control may lead to forgetting. However, the contribution of reflexive attention to qualifying a memory signal as interfering is unknown. We used machine learning to decode the brain's electrical activity and pinpoint the otherwise hidden emergence of intrusive memories reported during a memory suppression task. Importantly, the algorithm was trained on an independent attentional model of visual activity, mimicking either the abrupt and interfering appearance of visual scenes into conscious awareness or their deliberate exploration. Intrusion of memories into conscious awareness were decoded above chance. The decoding accuracy increased when the algorithm was trained using a model of reflexive attention. Conscious detection of intrusive activity decoded from the brain signal was central to the future silencing of suppressed memories and later forgetting. Unwanted memories require the reflexive orienting of attention and access to consciousness to be suppressed effectively by inhibitory control.
Collapse
Affiliation(s)
- Nicolas Legrand
- Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Centre Cyceron, Caen, France
| | - Olivier Etard
- Normandie University, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000 Caen, France
| | - Fausto Viader
- Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Centre Cyceron, Caen, France
| | - Patrice Clochon
- Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Centre Cyceron, Caen, France
| | - Franck Doidy
- Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Centre Cyceron, Caen, France
| | - Francis Eustache
- Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Centre Cyceron, Caen, France
| | - Pierre Gagnepain
- Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Centre Cyceron, Caen, France
| |
Collapse
|
41
|
Kerrén C, van Bree S, Griffiths BJ, Wimber M. Phase separation of competing memories along the human hippocampal theta rhythm. eLife 2022; 11:e80633. [PMID: 36394367 PMCID: PMC9671495 DOI: 10.7554/elife.80633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Competition between overlapping memories is considered one of the major causes of forgetting, and it is still unknown how the human brain resolves such mnemonic conflict. In the present magnetoencephalography (MEG) study, we empirically tested a computational model that leverages an oscillating inhibition algorithm to minimise overlap between memories. We used a proactive interference task, where a reminder word could be associated with either a single image (non-competitive condition) or two competing images, and participants were asked to always recall the most recently learned word-image association. Time-resolved pattern classifiers were trained to detect the reactivated content of target and competitor memories from MEG sensor patterns, and the timing of these neural reactivations was analysed relative to the phase of the dominant hippocampal 3 Hz theta oscillation. In line with our pre-registered hypotheses, target and competitor reactivations locked to different phases of the hippocampal theta rhythm after several repeated recalls. Participants who behaviourally experienced lower levels of interference also showed larger phase separation between the two overlapping memories. The findings provide evidence that the temporal segregation of memories, orchestrated by slow oscillations, plays a functional role in resolving mnemonic competition by separating and prioritising relevant memories under conditions of high interference.
Collapse
Affiliation(s)
- Casper Kerrén
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Sander van Bree
- Centre for Cognitive Neuroimaging, School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| | - Benjamin J Griffiths
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Maria Wimber
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Centre for Cognitive Neuroimaging, School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
42
|
Mahr JB, Fischer B. Internally Triggered Experiences of Hedonic Valence in Nonhuman Animals: Cognitive and Welfare Considerations. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 18:688-701. [PMID: 36288434 DOI: 10.1177/17456916221120425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Do any nonhuman animals have hedonically valenced experiences not directly caused by stimuli in their current environment? Do they, like us humans, experience anticipated or previously experienced pains and pleasures as respectively painful and pleasurable? We review evidence from comparative neuroscience about hippocampus-dependent simulation in relation to this question. Hippocampal sharp-wave ripples and theta oscillations have been found to instantiate previous and anticipated experiences. These hippocampal activations coordinate with neural reward and fear centers as well as sensory and cortical areas in ways that are associated with conscious episodic mental imagery in humans. Moreover, such hippocampal “re- and preplay” has been found to contribute to instrumental decision making, the learning of value representations, and the delay of rewards in rats. The functional and structural features of hippocampal simulation are highly conserved across mammals. This evidence makes it reasonable to assume that internally triggered experiences of hedonic valence (IHVs) are pervasive across (at least) all mammals. This conclusion has important welfare implications. Most prominently, IHVs act as a kind of “welfare multiplier” through which the welfare impacts of any given experience of pain or pleasure are increased through each future retrieval. However, IHVs also have practical implications for welfare assessment and cause prioritization.
Collapse
Affiliation(s)
| | - Bob Fischer
- Department of Philosophy, Texas State University
| |
Collapse
|
43
|
Liu AA, Henin S, Abbaspoor S, Bragin A, Buffalo EA, Farrell JS, Foster DJ, Frank LM, Gedankien T, Gotman J, Guidera JA, Hoffman KL, Jacobs J, Kahana MJ, Li L, Liao Z, Lin JJ, Losonczy A, Malach R, van der Meer MA, McClain K, McNaughton BL, Norman Y, Navas-Olive A, de la Prida LM, Rueckemann JW, Sakon JJ, Skelin I, Soltesz I, Staresina BP, Weiss SA, Wilson MA, Zaghloul KA, Zugaro M, Buzsáki G. A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nat Commun 2022; 13:6000. [PMID: 36224194 PMCID: PMC9556539 DOI: 10.1038/s41467-022-33536-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Decades of rodent research have established the role of hippocampal sharp wave ripples (SPW-Rs) in consolidating and guiding experience. More recently, intracranial recordings in humans have suggested their role in episodic and semantic memory. Yet, common standards for recording, detection, and reporting do not exist. Here, we outline the methodological challenges involved in detecting ripple events and offer practical recommendations to improve separation from other high-frequency oscillations. We argue that shared experimental, detection, and reporting standards will provide a solid foundation for future translational discovery.
Collapse
Affiliation(s)
- Anli A Liu
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Simon Henin
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Saman Abbaspoor
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - David J Foster
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tamara Gedankien
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Jean Gotman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jennifer A Guidera
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, Department of Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Kari L Hoffman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Jack J Lin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Rafael Malach
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Kathryn McClain
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Bruce L McNaughton
- The Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Yitzhak Norman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | | | | | - Jon W Rueckemann
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - John J Sakon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Skelin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Bernhard P Staresina
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Shennan A Weiss
- Brookdale Hospital Medical Center, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Michaël Zugaro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - György Buzsáki
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
44
|
Kang J, Kang W, Lee SH. Stronger memory representation after memory reinstatement during retrieval in the human hippocampus. Neuroimage 2022; 260:119493. [PMID: 35868616 DOI: 10.1016/j.neuroimage.2022.119493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
Memory retrieval allows us to reinstate previously encoded information but is also considered to contribute to memory enhancement. Retrieval-induced enhancement may involve processing to strengthen memory traces, but neural processing beyond reinstatement during retrieval remains elusive. Here, we show that hippocampal processing, different from memory reinstatement, exists during retrieval in the human brain. By tracking changes in the response patterns in the selected hippocampal and cortical regions over time during retrieval based on functional MRI, we found that the representation of associative memory in CA3/DG became stronger even after cortical memory reinstatement, while CA1 showed significant memory representation at retrieval onset with the cortical reinstatement, but not afterwards. This tendency was not observed in the condition without active retrieval. Moreover, subsequent long-term memory performance depended on the delayed CA3/DG representation during retrieval. These findings suggest that CA3/DG contributes to neural processing beyond memory reinstatement during retrieval, which may lead to memory enhancement.
Collapse
Affiliation(s)
- Joonyoung Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST); Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-Ro, Yuseong-Gu, Daejeon 34141 Republic of Korea
| | - Wonjun Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST)
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST); Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-Ro, Yuseong-Gu, Daejeon 34141 Republic of Korea.
| |
Collapse
|
45
|
Aitken F, Kok P. Hippocampal representations switch from errors to predictions during acquisition of predictive associations. Nat Commun 2022; 13:3294. [PMID: 35676285 PMCID: PMC9178037 DOI: 10.1038/s41467-022-31040-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWe constantly exploit the statistical regularities in our environment to help guide our perception. The hippocampus has been suggested to play a pivotal role in both learning environmental statistics, as well as exploiting them to generate perceptual predictions. However, it is unclear how the hippocampus balances encoding new predictive associations with the retrieval of existing ones. Here, we present the results of two high resolution human fMRI studies (N = 24 for both experiments) directly investigating this. Participants were exposed to auditory cues that predicted the identity of an upcoming visual shape (with 75% validity). Using multivoxel decoding analysis, we find that the hippocampus initially preferentially represents unexpected shapes (i.e., those that violate the cue regularities), but later switches to representing the cue-predicted shape regardless of which was actually presented. These findings demonstrate that the hippocampus is involved both acquiring and exploiting predictive associations, and is dominated by either errors or predictions depending on whether learning is ongoing or complete.
Collapse
|
46
|
Spadone S, Tosoni A, Penna SD, Sestieri C. Alpha rhythm modulations in the intraparietal sulcus reflect decision signals during item recognition. Neuroimage 2022; 258:119345. [PMID: 35660462 DOI: 10.1016/j.neuroimage.2022.119345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 01/05/2023] Open
Abstract
Theoretical work and empirical observations suggest a contribution of regions along the intraparietal sulcus to the process of evidence accumulation during episodic memory retrieval. In the present study, we recorded magnetoencephalographic signals in a group of healthy human participants to test whether the pattern of oscillatory modulations in the lateral parietal lobe is consistent with the mnemonic accumulator hypothesis. To this aim, the dynamic properties and the spatial distribution of MEG oscillatory power modulations were investigated during an item recognition task in which the amount of evidence for old vs. new memory decisions was manipulated across three levels. A data-driven approach was employed to identify brain nodes where oscillatory activity was sensitive to both retrieval success and the amount of evidence for old decisions. The analysis identified three nodes in the left lateral parietal lobe where the event-related desynchronization (ERD) in the alpha frequency band showed both effects. Further analyses revealed that the alpha ERD in the intraparietal sulcus, but not in other parietal nodes: i. showed modulation of duration in response to the amount of evidence for both old and new decisions, ii. was behaviorally significant, and iii. more accurately tracked the subjective memory judgment rather than the objective memory status. The present findings provide support for a recent anatomical-functional model of the parietal involvement in episodic memory retrieval and suggest that the alpha ERD in the intraparietal sulcus might represent a neural signature of the evidence accumulation process during simple memory-based decisions.
Collapse
Affiliation(s)
- Sara Spadone
- Department of Neuroscience, Imaging and Clinical Sciences and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100, Italy
| | - Annalisa Tosoni
- Department of Neuroscience, Imaging and Clinical Sciences and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100, Italy.
| |
Collapse
|
47
|
Anterior Cingulate Cortex Signals the Need to Control Intrusive Thoughts during Motivated Forgetting. J Neurosci 2022; 42:4342-4359. [PMID: 35437275 PMCID: PMC9145231 DOI: 10.1523/jneurosci.1711-21.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/07/2021] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
How do people limit awareness of unwanted memories? When such memories intrude, a control process engages the right DLPFC (rDLPFC) to inhibit hippocampal activity and stop retrieval. It remains unknown how the need for control is detected, and whether control operates proactively to prevent unwelcome memories from being retrieved, or responds reactively, to counteract intrusions. We hypothesized that dorsal ACC (dACC) detects the emergence of an unwanted trace in awareness and transmits the need for inhibitory control to rDLPFC. During a memory suppression task, we measured in humans (both sexes) trial-by-trial variations in the theta power and N2 amplitude of dACC, two EEG markers that are thought to reflect the need for control. With simultaneous EEG-fMRI recordings, we tracked interactions among dACC, rDLPFC, and hippocampus during suppression. We found a clear role of dACC in detecting the need for memory control and upregulating prefrontal inhibition. Importantly, we identified distinct early (300-450 ms) and late (500-700 ms) dACC contributions, suggesting both proactive control before recollection and reactive control in response to intrusions. Stronger early activity was associated with reduced hippocampal activity and diminished BOLD signal in dACC and rDLPFC, suggesting that preempting retrieval reduced overall control demands. In the later window, dACC activity was larger, and effective connectivity analyses revealed robust communication from dACC to rDLPFC and from rDLPFC to hippocampus, which are tied to successful forgetting. Together, our findings support a model in which dACC detects the emergence of unwanted content, triggering top-down inhibitory control, and in which rDLPFC countermands intruding thoughts that penetrate awareness.SIGNIFICANCE STATEMENT Preventing unwanted memories from coming to mind is an adaptive ability of humans. This ability relies on inhibitory control processes in the prefrontal cortex to modulate hippocampal retrieval processes. How and when reminders to unwelcome memories come to trigger prefrontal control mechanisms remains unknown. Here we acquired neuroimaging data with both high spatial and temporal resolution as participants suppressed specific memories. We found that the anterior cingulate cortex detects the need for memory control, responding both proactively to early warning signals about unwelcome content and reactively to intrusive thoughts themselves. When unwanted traces emerge in awareness, anterior cingulate communicates with prefrontal cortex and triggers top-down inhibitory control over the hippocampus through specific neural oscillatory networks.
Collapse
|
48
|
Paoletti P, Leshem R, Pellegrino M, Ben-Soussan TD. Tackling the Electro-Topography of the Selves Through the Sphere Model of Consciousness. Front Psychol 2022; 13:836290. [PMID: 35664179 PMCID: PMC9161303 DOI: 10.3389/fpsyg.2022.836290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the current hypothesis paper, we propose a novel examination of consciousness and self-awareness through the neuro-phenomenological theoretical model known as the Sphere Model of Consciousness (SMC). Our aim is to create a practical instrument to address several methodological issues in consciousness research. We present a preliminary attempt to validate the SMC via a simplified electrophysiological topographic map of the Self. This map depicts the gradual shift from faster to slower frequency bands that appears to mirror the dynamic between the various SMC states of Self. In order to explore our hypothesis that the SMC's different states of Self correspond to specific frequency bands, we present a mini-review of studies examining the electrophysiological activity that occurs within the different states of Self and in the context of specific meditation types. The theoretical argument presented here is that the SMC's hierarchical organization of three states of the Self mirrors the hierarchical organization of Focused Attention, Open Monitoring, and Non-Dual meditation types. This is followed by testable predictions and potential applications of the SMC and the hypotheses derived from it. To our knowledge, this is the first integrated electrophysiological account that combines types of Self and meditation practices. We suggest this electro-topographic framework of the Selves enables easier, clearer conceptualization of the connections between meditation types as well as increased understanding of wakefulness states and altered states of consciousness.
Collapse
Affiliation(s)
- Patrizio Paoletti
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| | - Rotem Leshem
- Department of Criminology, Bar-Ilan University, Ramat Gan, Israel
| | - Michele Pellegrino
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| |
Collapse
|
49
|
Lee K, Mirjalili S, Quadri A, Corbett B, Duarte A. Neural Reinstatement of Overlapping Memories in Young and Older Adults. J Cogn Neurosci 2022; 34:1376-1396. [PMID: 35604351 DOI: 10.1162/jocn_a_01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
When we update our episodic memories with new information, mnemonic competition between old and new memories may result because of the presence of shared features. Behavioral studies suggest that this competition can lead to proactive interference, resulting in unsuccessful memory updating, particularly for older adults. It is difficult with behavioral data alone to measure the reactivation of old, overlapping memories during retrieval and its impact on memory for new memories. Here, we applied encoding-retrieval representational similarity (ERS) analysis to EEG data to estimate event-specific encoding-related neural reinstatement of old associations during the retrieval of new ones and its impact on memory for new associations in young and older adults. Our results showed that older adults' new associative memory performance was more negatively impacted by proactive interference from old memories than that of young adults. In both age groups, ERS for old associative memories was greater for trials for which new associative memories were forgotten than remembered. In contrast, ERS for new associative memories was greater when they were remembered than forgotten. In addition, older adults showed relatively attenuated target (i.e., new associates) and lure (i.e., old associates) ERS effects compared to younger adults. Collectively, these results suggest that the neural reinstatement of interfering memories during retrieval contributes to proactive interference across age, whereas overall attenuated ERS effect in older adults might reflect their reduced memory fidelity.
Collapse
|
50
|
Montoro-Membila N, Maswood R, Molina B, Rajaram S, Bajo T. Neurocognitive Mechanisms of Collaborative Recall. Neurobiol Learn Mem 2022; 193:107639. [DOI: 10.1016/j.nlm.2022.107639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 03/18/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
|