1
|
Lange E, Pałkowska-Goździk E, Kęszycka P. The Influence of Various Types of Functional Bread on Postprandial Glycemia in Healthy Adults. APPLIED SCIENCES 2024; 14:11900. [DOI: 10.3390/app142411900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Bread is a crucial component of a balanced diet. Increasing the choice of functional bakery products based on whole grain flours, with the addition of seeds and grains, can improve health, including reducing postprandial glycemia and the risk of metabolic syndrome. The current study attempted to characterize the relationship between the composition and nutritional value of 23 different types of functional bread and postprandial glycemic response values. This study involved 209 non-obese healthy volunteers aged between 18 and 50. The study protocol followed the standard glycemic index (GI) method outlined by the International Standard, ISO 26642:2010. Most of the examined bread had a low GI and was composed mainly of rye, oats, buckwheat flour with a sourdough starter, and oilseeds. Postprandial glycemia was negatively associated with the fat, protein, and fiber content of bread. However, the GI depended directly on the carbohydrate content and, inversely, on the fat content in wheat bread and bread containing oilseeds. Similarly, using whole-grain flour and sourdough in a functional bakery reduces the GI. Adding oilseeds and sourdough to bread also reduced blood glucose levels approximately one hour after a meal. A greater number of ingredients in a recipe may be associated with a higher GI. In designing a functional bread with a potentially beneficial effect on postprandial glycemia, the nutritional value, type of fermentation, and additives (type and number) are worth considering. The high variability in postprandial glycemia after bread consumption is related to several factors and requires GI determination according to standard methods to ensure that the information provided to the consumer is reliable.
Collapse
Affiliation(s)
- Ewa Lange
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159 C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Ewelina Pałkowska-Goździk
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159 C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Paulina Kęszycka
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159 C Nowoursynowska Street, 02-776 Warsaw, Poland
| |
Collapse
|
2
|
Almaguer C, Kollmannsberger H, Gastl M, Becker T. Influence of the malting conditions on the modification and variation in the physicochemical properties and volatile composition of barley (Hordeum vulgare L.), rye (Secale cereale L.), and quinoa (Chenopodium quinoa Willd.) malts. Food Res Int 2024; 196:114965. [PMID: 39614532 DOI: 10.1016/j.foodres.2024.114965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 12/01/2024]
Abstract
The traditional malted cereal used primarily for beverages is barley (Hordeum vulgare L.), while rye (Secale cereale L.) is mainly used in baked goods. In contrast, quinoa (Chenopodium quinoa Willd.) is a gluten-free pseudocereal, rich in starch and high-quality proteins, that can be used similarly to cereals. Their physicochemical properties and volatile compositions (e.g., aroma compounds) directly influence the finished food products. The sharp bitterness of unprocessed rye and the earthy aroma of native quinoa can interfere with the development and acceptance of food products. Malting is known to improve the processing and sensory properties of barley. A face-centered, central composite design was used to investigate the individual and interactive effects of three malting parameters (i.e., steep moisture (SM), germination temperature (T), and germination time (t)) on malt quality indicators (e.g., extract) and volatile formation (e.g., 3-methylbutanal) in rye and quinoa, and were compared to barley. The malt modification predictive models were then used to determine standard malting regimes for brewing quality malts. The malting parameters for the steeping and germination stages were: 43 %, 15 °C, and 6 d for barley; 45 %, 12 °C, and 8 d for rye; and 46 %, 16 °C, 6 d for quinoa. Malt modification and volatile formation were primarily associated with the interactive effect of germination temperature and time. Conversely, steep moisture had limited impact on malt modification but strongly regulated the formation of 34 known (pseudo)cereal volatile compounds. Principal component analysis (PCA) of the volatile data identified (pseudo)cereal specific volatile patterns. Aldehydes were characteristic in the cereal malts, particularly barley, whereas phenyl compounds and pyrazines were abundant in rye and quinoa malts, respectively. Controlling (pseudo)cereal modification and volatile development through the malting process could help deliver targeted sensory properties and improve the acceptance of malt-based food products.
Collapse
Affiliation(s)
- Cynthia Almaguer
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - Hubert Kollmannsberger
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - Martina Gastl
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - Thomas Becker
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Weihenstephaner Steig 20, 85354 Freising, Germany.
| |
Collapse
|
3
|
Li W, Tang H, Xue K, Ying T, Wu M, Qu Z, Dong C, Jin T, Brunius C, Hallmans G, Åman P, Johansson A, Landberg R, Liu Y, He G. Personalized Microbial Fingerprint Associated with Differential Glycemic Effects of a Whole Grain Rye Intervention on Chinese Adults. Mol Nutr Food Res 2024; 68:e2400274. [PMID: 39091068 DOI: 10.1002/mnfr.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/13/2024] [Indexed: 08/04/2024]
Abstract
SCOPE This study aims to identify the gut enterotypes that explain differential responses to intervention with whole grain rye by proposing an "enterotype - metabolic" model. METHODS AND RESULTS A 12-week randomized controlled trial is conducted in Chinese adults, with 79 subjects consuming whole grain products with fermented rye bran (FRB) and 77 consuming refined wheat products in this exploratory post-hoc analysis. Responders or non-responders are identified according to whether blood glucose decreased by more than 10% after rye intervention. Compared to non-responders, responders in FRB have higher baseline Bacteroides (p < 0.001), associated with reduced blood glucose (p < 0.001), increased Faecalibacterium (p = 0.020) and Erysipelotrichaceae_UCG.003 (p = 0.022), as well as deceased 7β-hydroxysteroid dehydrogenase (p = 0.033) after intervention. The differentiated gut microbiota and metabolites between responders and non-responders after intervention are enriched in aminoacyl-tRNA biosynthesis. CONCLUSION The work confirms the previously suggested importance of microbial enterotypes in differential responses to whole grain interventions and supports taking enterotypes into consideration for improved efficacy of whole grain intervention for preventing type 2 diabetes. Altered short-chain fatty acids and bile acid metabolism might be a potential mediator for the beneficial effects of whole grain rye on glucose metabolism.
Collapse
Affiliation(s)
- Wenyun Li
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Fudan University, Shanghai, 200032, China
| | - Kun Xue
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Tao Ying
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Min Wu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Zheng Qu
- Department of Gastroenterology, Zhongye Hospital, Shanghai, 200003, China
| | - Chenglin Dong
- Department of Clinical Laboratory, Zhongye Hospital, Shanghai, 200003, China
| | - Taiyi Jin
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Carl Brunius
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, 901 87, Sweden
| | - Per Åman
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Anders Johansson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, 901 87, Sweden
- Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, 901 87, Sweden
| | - Rikard Landberg
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Yuwei Liu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Gengsheng He
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| |
Collapse
|
4
|
Tagliasco M, Font G, Renzetti S, Capuano E, Pellegrini N. Role of particle size in modulating starch digestibility and textural properties in a rye bread model system. Food Res Int 2024; 190:114565. [PMID: 38945564 DOI: 10.1016/j.foodres.2024.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
In cereal products, the use of flour containing clusters of intact cells has been indicated as a potential strategy to decrease starch digestion. Rye possesses more uniform and thicker cell walls than wheat but its protective effect against starch digestion has not been elucidated. In this study, rye flours with three different particle sizes, large (LF) (∼1700 μm), medium (MF) (∼1200 μm), and small (SF) (∼350 μm), were used to produce model bread. The textural properties of these breads were analysed using Textural Profile Analysis (TPA). The starch digestibility of both the flour and the bread was measured using Englyst's method, while the presence of intact cell clusters was examined using Confocal Laser Scanning Microscopy (CLSM). Additionally, the disintegration of bread digesta during simulated digestion was assessed through image analysis. CLSM micrographs revealed that bread made with MF and LF retained clusters of intact cells after processing, whereas bread made with SF showed damaged cell walls. Starch digestibility in LF and MF was lower (p ≤ 0.05) than that in SF. Bread produced with MF and LF exhibited the least (p ≤ 0.05) cohesive and resilient texture, disintegrated more during digestion, and exhibited higher starch digestibility (p ≤ 0.05) than bread made with SF. These results highlight the central role of bread texture on in vitro starch digestibility.
Collapse
Affiliation(s)
- Marianna Tagliasco
- Department of Agricultural, Food, Environmental and Animal Sciences, Via Sondrio 2/A, University of Udine, 33100 Udine, Italy
| | - Guillem Font
- Food Quality and Design Group, Wageningen University, Wageningen, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Stefano Renzetti
- Wageningen Food and Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University, Wageningen, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, Via Sondrio 2/A, University of Udine, 33100 Udine, Italy; Food Quality and Design Group, Wageningen University, Wageningen, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
5
|
Tammi R, Männistö S, Maukonen M, Kaartinen NE. Whole grain intake, diet quality and risk factors of chronic diseases: results from a population-based study in Finnish adults. Eur J Nutr 2024; 63:397-408. [PMID: 37934237 PMCID: PMC10899358 DOI: 10.1007/s00394-023-03272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVES Better diet quality of whole grain consumers could contribute to the associations between whole grain intake and chronic disease risk factors. We examined whole grain intake in relation to diet quality and chronic disease risk factors (anthropometrics, blood pressure, cholesterol, triglycerides, C-reactive protein and glucose) and the role of diet quality in whole grains' associations with each risk factor. METHODS Our data included 5094 Finnish adults who completed a validated food frequency questionnaire and participated in a health examination within the National FinHealth 2017 Study. We assessed diet quality by the modified Baltic Sea Diet Score. P trends were calculated across whole grain intake quintiles by linear regression analysis. Interactions were assessed by including an interaction term in the analyses. RESULTS Higher whole grain intake was associated with slightly better diet quality compared with lower intakes in both sexes (P < 0.001). Whole grain intake was inversely associated with body mass index (P < 0.001), waist circumference (P < 0.001) and total cholesterol (P = 0.02) in men. Adjusting for medication use attenuated the inverse associations with diastolic blood pressure (P = 0.06) and HDL cholesterol (P = 0.14) in men. We observed no associations in women. Diet quality did not modify the associations between whole grain intake and chronic disease risk factors. CONCLUSIONS Our results suggest that whole grain intake was associated with small improvements in the chronic disease risk factors in men, regardless of diet quality. The sex differences may arise from varying health associations of whole grains from different cereal sources.
Collapse
Affiliation(s)
- Rilla Tammi
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), P. O. Box 30, 00271, Helsinki, Finland.
| | - Satu Männistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), P. O. Box 30, 00271, Helsinki, Finland
| | - Mirkka Maukonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), P. O. Box 30, 00271, Helsinki, Finland
| | - Niina E Kaartinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), P. O. Box 30, 00271, Helsinki, Finland
| |
Collapse
|
6
|
Koistinen VM, Haldar S, Tuomainen M, Lehtonen M, Klåvus A, Draper J, Lloyd A, Beckmann M, Bal W, Ross AB, Brandt K, Fawcett L, Seal C, Hanhineva K. Metabolic changes in response to varying whole-grain wheat and rye intake. NPJ Sci Food 2024; 8:8. [PMID: 38291073 PMCID: PMC10828387 DOI: 10.1038/s41538-024-00247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Epidemiological studies have shown associations between whole-grain intake and lowered disease risk. A sufficient level of whole-grain intake to reach the health benefits has not been established, and there is limited knowledge about the impact of whole-grain intake on metabolite levels. In this clinical intervention study, we aimed to identify plasma and urine metabolites associated with two different intake levels of whole-grain wheat and rye and to correlate them with clinical plasma biomarkers. Healthy volunteers (N = 68) were divided into two groups receiving either whole-grain wheat or whole-grain rye in two four-week interventions with 48 and 96 g/d of whole grains consumed. The metabolomics of the plasma samples was performed with UPLC-QTOF-MS. Plasma alkylresorcinols were quantified with GC-MS and plasma and urinary mammalian lignans with HPLC-ECD. The high-dose intervention impacted the metabolite profile, including microbial metabolites, more in the rye-enriched diet compared with wheat. Among the increased metabolites were alkylresorcinol glucuronides, sinapyl alcohol, and pipecolic acid betaine, while the decreased metabolites included acylcarnitines and ether lipids. Plasma alkylresorcinols, urinary enterolactone, and total mammalian lignans reflected the study diets in a dose-dependent manner. Several key metabolites linked with whole-grain consumption and gut microbial metabolism increased in a linear manner between the two interventions. The results reveal that an increase in whole-grain intake, particularly rye, is strongly reflected in the metabolite profile, is correlated with clinical variables, and suggests that a diet rich in whole grains promotes the growth and/or metabolism of microbes producing potentially beneficial microbial metabolites.
Collapse
Affiliation(s)
- Ville M Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland.
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Sumanto Haldar
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovations (SIFBI), Yong Loo Lin School of Medicine, Singapore, 117599, Singapore
| | - Marjo Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - John Draper
- Department of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales, UK
| | - Amanda Lloyd
- Department of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales, UK
| | - Manfred Beckmann
- Department of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales, UK
| | - Wendy Bal
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Kirsten Brandt
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lee Fawcett
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Seal
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Food and Nutrition Science Division, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
7
|
Almaguer C, Kollmannsberger H, Gastl M, Becker T. Daily assessment of malting-induced changes in the volatile composition of barley (Hordeum vulgare L.), rye (Secale cereale L.), and quinoa (Chenopodium quinoa Willd.). J Food Sci 2023; 88:3773-3785. [PMID: 37530626 DOI: 10.1111/1750-3841.16717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Barley (Hordeum vulgare L.) is the traditional malting cereal and is primarily used for beverages, whereas rye (Secale cereale L.) is mainly used in baked goods. Conversely, quinoa (Chenopodium quinoa Willd.) is a gluten-free pseudocereal, rich in starch and high-quality proteins, and can be used in a similar manner to cereals. The sharp bitterness of unprocessed rye and the earthy aroma of native quinoa interfere with the acceptance and development of food products. Malting of barley is known to improve its processing properties and enhance its sensory quality. Therefore, the effect of germination and kilning on malt quality (e.g., viscosity) as well as the volatile composition of barley, rye, and quinoa were monitored. Moreover, temporal changes on the volatile patterns of rye and quinoa at the different stages of malting were compared to barley. In total, 34 volatile compounds were quantified in the three (pseudo)cereals; the alcohol group dominated in all unprocessed samples, in particular, compounds contributing grassy notes (e.g., hexan-1-ol). These grassy compounds remained abundant during germination, whereas kilning promoted the formation of Maillard reaction volatiles associated with malty and roasted notes. The volatile profiles of kilned barley and quinoa were characterized by high concentrations of the malty Strecker aldehyde, 3-methylbutanal. In contrast, green, floral notes imparted by phenylacetaldehyde remained dominant in rye malt. Hierarchical cluster analysis of the volatile data discriminated the samples into the different stages of malting, confirmed the similarities in the volatile patterns of barley and rye, and indicated clear differences to the quinoa samples. PRACTICAL APPLICATION: In this study, the effect of germination and kilning on the chemical and volatile composition of barley, rye, and quinoa was examined. Temporal changes on the volatile patterns of rye and quinoa at different stages of malting were compared to barley. Understanding the differences among the (pseudo)cereals as well as the influence of processing on malt quality and aroma development can help find new food applications.
Collapse
Affiliation(s)
- Cynthia Almaguer
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Freising, Germany
| | - Hubert Kollmannsberger
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Freising, Germany
| | - Martina Gastl
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Freising, Germany
| | - Thomas Becker
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Freising, Germany
| |
Collapse
|
8
|
Almaguer C, Kollmannsberger H, Gastl M, Becker T. Comparative study of the impact of malting on the aroma profiles of barley (Hordeum vulgare L.) and rye (Secale cereale L.). Food Chem 2023; 427:136694. [PMID: 37418806 DOI: 10.1016/j.foodchem.2023.136694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023]
Abstract
Barley (Hordeum vulgare L.) remains the traditional malted cereal used for beverages, whereas rye (Secale cereale L.) is mainly used in baked goods. To evaluate the potential of rye malt for beverage production, malt quality indicators and the volatile composition of different rye malts were compared to barley malt. Sensory assessment revealed that pleasant malty and caramel aromas were formed by malting. Subsequently, three complementary isolation techniques and gas chromatography-olfactometry/mass spectrometry (GC-O/MS) were used for volatile analysis. Instrumental analysis detected 50 and 56 odor active volatiles in barley and rye, respectively. In part two, storage and the impact of three malting parameters on volatile formation were examined. Similarities in the malt volatile patterns were detected but the perceived intensity and composition varied. In barley, characteristic malty volatiles were lost during storage and staling compounds were formed. Conversely, nutty pyrazines and caramel furanones remained dominant in rye malts even after storage.
Collapse
Affiliation(s)
- Cynthia Almaguer
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - Hubert Kollmannsberger
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - Martina Gastl
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - Thomas Becker
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München Weihenstephan, Weihenstephaner Steig 20, 85354 Freising, Germany.
| |
Collapse
|
9
|
Åberg S, Palmnäs-Bédard M, Karlsson T, Hjorth T, Iversen KN, Landberg R. Evaluation of Subjective Appetite Assessment under Free-Living vs. Controlled Conditions: A Randomized Crossover Trial Comparing Whole-Grain Rye and Refined Wheat Diets (VASA-Home). Nutrients 2023; 15:nu15112456. [PMID: 37299419 DOI: 10.3390/nu15112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Accurate assessment of self-reported appetite under free-living conditions is warranted to conduct large-scale intervention studies measuring appetite at a feasible cost. However, the performance of visual analogue scales (VASs) for this purpose has not been widely examined. METHOD This randomized crossover trial was conducted to evaluate VASs in free-living vs. clinic-based settings and to assess appetite response following hypocaloric whole-grain rye and refined wheat diets. Twenty-nine healthy adults with overweight or obesity continuously answered VAS questions about their perceived appetite from morning to evening. RESULTS No differences in whole-day VAS scores (primary outcome) between clinic-based and free-living settings were observed, whereas measures of total area under the curve (tAUC) showed increased fullness in clinic-based interventions of 7% (p < 0.008) for whole-day responses and 13% (p < 0.03) following a snack. Appetite responses for a whole day did not differ between diets whereas rye-based dinners induced 12% (p < 0.016) higher fullness and reduced hunger by 17% (p < 0.02) irrespective of setting. A reduction in hunger of 15% (p < 0.05) was also observed following rye-based vs. wheat-based lunches. CONCLUSION The results suggest that the VAS is valid for evaluation of appetite responses between diets under free-living conditions. No difference in self-reported appetite over the whole day was found after whole-grain rye vs. refined wheat-based diets, but there were some suggested differences at certain postprandial periods, in individuals with overweight or obesity.
Collapse
Affiliation(s)
- Sebastian Åberg
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Marie Palmnäs-Bédard
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Therese Karlsson
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, 40 530 Gothenburg, Sweden
| | - Thérése Hjorth
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Kia Nøhr Iversen
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Rikard Landberg
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
10
|
Palmqvist H, Ringmark S, Höglund K, Pelve E, Lundh T, Dicksved J. Effects of rye inclusion in dog food on fecal microbiota and short-chain fatty acids. BMC Vet Res 2023; 19:70. [PMID: 37161401 PMCID: PMC10170736 DOI: 10.1186/s12917-023-03623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Rye intake has been associated with beneficial effects on health in human interventions, possibly due to dietary fiber in rye. In dogs, few studies have explored the effects on health of dietary fiber in general, and rye fiber in particular. The aim of this study was to investigate how inclusion of rye, compared with wheat, influenced fecal microbiota composition, short chain fatty acids (SCFA) and apparent total tract digestibility (ATTD) in dogs. Six male Beagle dogs (mean age 4.6 years, SEM 0.95 years; mean body weight 14.6 kg, SEM 0.32 kg) were fed three experimental diets, each for 21 days, including an adaptation period of six days and with 2-2.5 months between diet periods. The diets were similar regarding energy and protein, but had different carbohydrate sources (refined wheat (W), whole grain rye (R), or an equal mixture of both (RW)) comprising 50% of total weight on a dry matter (DM) basis. The diets were baked and titanium dioxide was added for ATTD determination. Fecal samples were collected before and in the end of each experimental period. Fecal microbiota was analyzed by sequencing 16S rRNA gene amplicons and fecal SCFA by high-performance liquid chromatography. Crude protein, crude fat, neutral detergent fiber, and gross energy (GE) in food and feces were analyzed and ATTD of each was determined. Univariate and multivariate statistical methods were applied in data evaluation. RESULTS Faecal microbiota composition, differed depending on diet (P = 0.002), with samples collected after consumption of the R diet differing from baseline. This was primarily because of a shift in proportion of Prevotella, which increased significantly after consumption of the R diet (P < 0.001). No significant differences were found for SCFA, but there was a tendency (P < 0.06) for higher molar proportions of acetic acid following consumption of the R diet. The ATTD of crude protein, crude fat, neutral detergent fiber, and GE was lower after consumption of the R diet compared with the other diets (P < 0.05). CONCLUSIONS Consumption of the R diet, but not RW or W diets, was associated with specific shifts in microbial community composition and function, but also with lower ATTD.
Collapse
Affiliation(s)
- Hanna Palmqvist
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Ringmark
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Katja Höglund
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Pelve
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Torbjörn Lundh
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
11
|
Sardella C, Capo L, Adamo M, Donna M, Ravetto Enri S, Vanara F, Lonati M, Mucciarelli M, Blandino M. The cultivation of rye in marginal Alpine environments: a comparison of the agronomic, technological, health and sanitary traits of local landraces and commercial cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1130543. [PMID: 37235035 PMCID: PMC10208067 DOI: 10.3389/fpls.2023.1130543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/23/2023] [Indexed: 05/28/2023]
Abstract
Rye is a secondary crop that is characterized by a higher tolerance to climatically less favorable conditions than other cereal species. For this reason, rye was historically used as a fundamental raw material for bread production and as a supply of straw in northern parts of Europe as well as in mountain environments, such as Alpine valleys, where locally adapted landraces have continued to be cultivated over the years. In this study, rye landraces collected in different valleys in the Northwest Italian Alps have been selected as the most genetically isolated within their geographical contexts and cultivated in two different marginal Alpine environments. The traits concerning their agronomy, mycotoxin contamination, bioactive content, as well as their technological and baking quality were assessed to characterize and compare rye landraces with commercial wheat and rye cultivars. Rye cultivars showed the same grain yield level as wheat in both environments. Only the genotype selected from the Maira Valley was characterized by tall and thin culms and a proneness to lodging, thereby resulting in a lower yield capacity. Among the rye cultivars, the hybrid one presented the highest yield potential, but also the highest susceptibility to the occurrence of ergot sclerotia. However, the rye cultivars, especially the landraces, were characterized by higher concentrations of minerals, soluble fibers, and soluble phenolic acids, and thus both their flours and breads had superior antioxidant properties. A 40% substitution of refined wheat flour with whole-grain rye flour led to a higher dough water absorption and a lower stability, thereby resulting in lower loaf volumes and darker products. Agronomically and qualitatively speaking, the rye landraces diverged significantly from the conventional rye cultivars, thus reflecting their genetic distinctiveness. The landrace from the Maira Valley shared a high content in phenolic acids and good antioxidant properties with the one from the Susa Valley and, when combined with wheat flour, turned out to be the most suitable for bread making. Overall, the results have highlighted the suitability of reintroducing historic rye supply chains, based on the cultivation of local landraces in marginal environments and the production of value-added bakery goods.
Collapse
Affiliation(s)
- Claudia Sardella
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Luca Capo
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Martino Adamo
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Matteo Donna
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Simone Ravetto Enri
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Francesca Vanara
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Michele Lonati
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Marco Mucciarelli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Massimo Blandino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Schmidt M, Raczyk M. FODMAP reduction strategies for nutritionally valuable baking products: current state and future challenges. Crit Rev Food Sci Nutr 2023; 64:8036-8053. [PMID: 37000015 DOI: 10.1080/10408398.2023.2195026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Fermentable oligo-, di- and monosaccharides and polyols (FODMAP) comprise several previously unrelated carbohydrates, such as fructans, fructo-oligosaccharides, galacto-oligosaccharides, fructose (in excess of glucose), mannitol and sorbitol, and among others. For many patients with gastro-intestinal disorders, such as irritable bowel syndrome, the ingestion of FODMAP triggers symptoms and causes discomfort. Among the main contributors to the dietary FODMAP intake are baking products, in particular bread as a major global staple food. This is primarily due to the fructan content of the cereal flours, but also process induced accumulation of FODMAP is possible. To provide low-FODMAP baking products, researchers have investigated various approaches, such as bio-process reduction by yeast, lactic acid bacteria, germination of the raw material or the use of exogenous enzymes. In addition, the selection of appropriate ingredients, which are either naturally or after pretreatment suitable for low-FODMAP products, is discussed. The sensory and nutritional quality of low-FODMAP baking products is another issue, that is addressed, with particular focus on providing sufficient dietary fiber intake. Based on this information, the current state of low-FODMAP baking and future research necessities, to establish practical strategies for low-FODMAP products, are evaluated in this article.
Collapse
Affiliation(s)
- Marcus Schmidt
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Detmold, Germany
| | - Marianna Raczyk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
13
|
Mancino W, Carnevali P, Terzi V, Pérez PG, Zhang L, Giuberti G, Morelli L, Patrone V, Lucini L. Hierarchical Effects of Lactic Fermentation and Grain Germination on the Microbial and Metabolomic Profile of Rye Doughs. Foods 2023; 12:998. [PMID: 36900515 PMCID: PMC10000819 DOI: 10.3390/foods12050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
A multi-omics approach was adopted to investigate the impact of lactic acid fermentation and seed germination on the composition and physicochemical properties of rye doughs. Doughs were prepared with either native or germinated rye flour and fermented with Saccharomyces cerevisiae, combined or not with a sourdough starter including Limosilactobacillus fermentum, Weissella confusa and Weissella cibaria. LAB fermentation significantly increased total titrable acidity and dough rise regardless of the flour used. Targeted metagenomics revealed a strong impact of germination on the bacterial community profile of sprouted rye flour. Doughs made with germinated rye displayed higher levels of Latilactobacillus curvatus, while native rye doughs were associated with higher proportions of Lactoplantibacillus plantarum. The oligosaccharide profile of rye doughs indicated a lower carbohydrate content in native doughs as compared to the sprouted counterparts. Mixed fermentation promoted a consistent decrease in both monosaccharides and low-polymerization degree (PD)-oligosaccharides, but not in high-PD carbohydrates. Untargeted metabolomic analysis showed that native and germinated rye doughs differed in the relative abundance of phenolic compounds, terpenoids, and phospholipids. Sourdough fermentation promoted the accumulation of terpenoids, phenolic compounds and proteinogenic and non-proteinogenic amino acids. Present findings offer an integrated perspective on rye dough as a multi-constituent system and on cereal-sourced bioactive compounds potentially affecting the functional properties of derived food products.
Collapse
Affiliation(s)
- Walter Mancino
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Paola Carnevali
- R&D Food Microbiology & Molecular Biology Research Barilla G. e R. Fratelli S.p.A., 43122 Parma, Italy
| | - Valeria Terzi
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, 29017 Fiorenzuola d’Arda, Italy
| | - Pascual García Pérez
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, 32004 Ourense, Spain
| | - Leilei Zhang
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Gianluca Giuberti
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Vania Patrone
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
14
|
Pirkola L, Dicksved J, Loponen J, Marklinder I, Andersson R. Fecal microbiota composition affects in vitro fermentation of rye, oat, and wheat bread. Sci Rep 2023; 13:99. [PMID: 36596824 PMCID: PMC9810601 DOI: 10.1038/s41598-022-26847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Fermentation of dietary fiber by gut microbes produces short-chain fatty acids (SCFA), but fermentation outcomes are affected by dietary fiber source and microbiota composition. The aim of this study was to investigate the effect of two different fecal microbial compositions on in vitro fermentation of a standardized amount of oat, rye, and wheat breads. Two human fecal donors with different microbial community composition were recruited. Bread samples were digested enzymatically. An in vitro fermentation model was used to study SCFA production, dietary fiber degradation, pH, and changes in microbiota. Feces from donor I had high relative abundance of Bacteroides and Escherichia/Shigella, whereas feces from donor II were high in Prevotella and Subdoligranulum. Shifts in microbiota composition were observed during fermentation. SCFA levels were low in the samples with fecal microbiota from donor I after 8 h of fermentation, but after 24 h acetate and propionate levels were similar in the samples from the different donors. Butyrate levels were higher in the fermentation samples from donor II, especially with rye substrate, where high abundance of Subdoligranulum was observed. Dietary fiber degradation was also higher in the fermentation samples from donor II. In conclusion, fermentation capacity and substrate utilization differed between the two different microbiota compositions.
Collapse
Affiliation(s)
- Laura Pirkola
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 75007 Uppsala, Sweden ,Fazer Sweden AB, P.O. Box 30180, 11343 Stockholm, Sweden
| | - Johan Dicksved
- grid.6341.00000 0000 8578 2742Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, P.O. Box 7024, 75007 Uppsala, Sweden
| | | | - Ingela Marklinder
- grid.8993.b0000 0004 1936 9457Department of Food Studies, Nutrition and Dietetics, Uppsala University, P.O. Box 560, 75122 Uppsala, Sweden
| | - Roger Andersson
- grid.6341.00000 0000 8578 2742Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 75007 Uppsala, Sweden
| |
Collapse
|
15
|
Calvi A, Preiti G, Poiana M, Marconi O, Gastl M, Zarnkow M. Multi-Response Optimization of the Malting Process of an Italian Landrace of Rye ( Secale cereale L.) Using Response Surface Methodology and Desirability Function Coupled with Genetic Algorithm. Foods 2022; 11:foods11223561. [PMID: 36429155 PMCID: PMC9689978 DOI: 10.3390/foods11223561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Rye is used in some applications in the food and beverage industry and for the preparation of functional foods. It is an interesting raw material in malting and brewing due to its characteristic contribution to the beer's color, turbidity, foam and aroma. The aim of this work was to optimize the micro-malting process of a rye landrace. The response surface methodology (RSM) was applied to study the influence of three malting parameters (germination time, germination temperature and degree of steeping) on the quality traits of malted rye. Long germination times at high temperatures resulted in an increase in the extract and Kolbach index. The model for the apparent attenuation limit showed a particular pattern, whereby time and temperature inversely influenced the response. The lowest viscosities were determined in the worts produced from highly modified malts. Optimization of the variables under study was achieved by means of a desirability function and a genetic algorithm. The two methodologies provided similar results. The best combination of parameters to optimize the malting process on the rye landrace under study was achieved at 6 days, 12 °C and 44 g/100 g.
Collapse
Affiliation(s)
- Antonio Calvi
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
- Correspondence: ; Tel.: +39-320-8012298
| | - Giovanni Preiti
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Marco Poiana
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Ombretta Marconi
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy
| | - Martina Gastl
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| | - Martin Zarnkow
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany
| |
Collapse
|
16
|
Koistinen VM, Hedberg M, Shi L, Johansson A, Savolainen O, Lehtonen M, Aura A, Hanhineva K, Landberg R. Metabolite Pattern Derived from Lactiplantibacillus plantarum-Fermented Rye Foods and In Vitro Gut Fermentation Synergistically Inhibits Bacterial Growth. Mol Nutr Food Res 2022; 66:e2101096. [PMID: 35960594 PMCID: PMC9787878 DOI: 10.1002/mnfr.202101096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/30/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Fermentation improves many food characteristics using microbes, such as lactic acid bacteria (LAB). Recent studies suggest fermentation may also enhance the health properties, but mechanistic evidence is lacking. The study aims to identify a metabolite pattern reproducibly produced during sourdough and in vitro colonic fermentation of various whole-grain rye products and how it affects the growth of bacterial species of potential importance to health and disease. METHODS AND RESULTS The study uses Lactiplantibacillus plantarum DSMZ 13890 strain, previously shown to favor rye as its substrate. Using LC-MS metabolomics, the study finds seven microbial metabolites commonly produced during the fermentations, including dihydroferulic acid, dihydrocaffeic acid, and five amino acid metabolites, and stronger inhibition is achieved when exposing the bacteria to a mixture of the metabolites in vitro compared to individual compound exposures. CONCLUSION The study suggests that metabolites produced by LAB may synergistically modulate the local microbial ecology, such as in the gut. This could provide new hypotheses on how fermented foods influence human health via diet-microbiota interactions.
Collapse
Affiliation(s)
- Ville M. Koistinen
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopio70211Finland,Food Chemistry and Food Development Unit, Department of BiochemistryUniversity of TurkuTurkuTurku20014Finland,Afekta Technologies Ltd.Kuopio70210Finland
| | - Maria Hedberg
- Department of Odontology/Oral MicrobiologyUmeå UniversityUmeå90187Sweden
| | - Lin Shi
- Division of Food and Nutrition Science, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg41296Sweden,College of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'an710119China
| | - Anders Johansson
- Department of Odontology/Oral MicrobiologyUmeå UniversityUmeå90187Sweden
| | - Otto Savolainen
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopio70211Finland,Division of Food and Nutrition Science, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Marko Lehtonen
- School of PharmacyUniversity of Eastern FinlandKuopio70211Finland
| | - Anna‐Marja Aura
- VTT Technical Research Centre of Finland Ltd.Espoo02044Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopio70211Finland,Food Chemistry and Food Development Unit, Department of BiochemistryUniversity of TurkuTurkuTurku20014Finland,Division of Food and Nutrition Science, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg41296Sweden
| |
Collapse
|
17
|
Ponomareva M, Gorshkov V, Ponomarev S, Mannapova G, Askhadullin D, Askhadullin D, Gogoleva O, Meshcherov A, Korzun V. Resistance to Snow Mold as a Target Trait for Rye Breeding. PLANTS 2022; 11:plants11192516. [PMID: 36235382 PMCID: PMC9571149 DOI: 10.3390/plants11192516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
Abstract
Winter rye is a versatile crop widely used for food and industry. Although rye is resistant to abiotic stressors and many phytopathogens, it is severely damaged by pink snow mold (SM)—a progressive disease caused by the psychrotolerant fungus Microdochium nivale under the snow cover or during prolonged periods of wet and cool conditions. Due to little use of the SM resistance sources in contemporary breeding, varieties with at least moderate resistance to SM are limited. Our study aimed to integrate field assessment under natural conditions and an artificially enriched infection background with laboratory techniques for testing rye accessions and selecting SM resistant sources for applied breeding programs and genetic research. We revealed valuable sources of SM resistance and split rye accessions, according to the level of the genetic divergence of the SM resistance phenotype. This allowed us to select the most distinct donors of the SM resistance, for their use as parental forms, to include novel variability sources in the breeding program for achieving high genetic variability, as well as enhanced and durable SM resistance, in progeny. The rye accessions analyzed here, and the suggested options for their use in breeding, are valuable tools for rye breeding.
Collapse
Affiliation(s)
- Mira Ponomareva
- Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia
- Correspondence: (M.P.); (V.K.)
| | - Vladimir Gorshkov
- Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia
| | - Sergey Ponomarev
- Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia
| | - Gulnaz Mannapova
- Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia
| | - Danil Askhadullin
- Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia
| | - Damir Askhadullin
- Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia
| | - Olga Gogoleva
- Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia
| | - Azat Meshcherov
- Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia
| | - Viktor Korzun
- Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555 Einbeck, Germany
- Correspondence: (M.P.); (V.K.)
| |
Collapse
|
18
|
Iversen KN, Jonsson K, Landberg R. The Effect of Rye-Based Foods on Postprandial Plasma Insulin Concentration: The Rye Factor. Front Nutr 2022; 9:868938. [PMID: 35757252 PMCID: PMC9218669 DOI: 10.3389/fnut.2022.868938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/26/2022] [Indexed: 11/15/2022] Open
Abstract
Consumption of whole grain has been associated with lower incidence of type-2 diabetes, cardiovascular disease and their risk factors including improved glycemic control. In comparison with other whole grain products, rye bread has been shown to induce lower insulin response in the postprandial phase, without affecting the glucose response. This phenomenon has been referred to as the “rye factor” and is being explored in this review where we summarize the findings from meal and extended meal studies including rye-based foods. Overall, results from intervention studies showed that rye-based foods vs. (wheat) control foods had positive effect on both insulin and glucose responses in the postprandial phase, rather than on insulin alone. Mechanistic studies have shown that the rye factor phenomenon might be due to slowing of the glucose uptake in the intestine. However, this has also been shown for wheat-based bread and is likely an effect of structural properties of the investigated foods rather than the rye per se. More carefully controlled studies where standardized structural properties of different cereals are linked to the postprandial response are needed to further elucidate the underlying mechanisms and determinants for the effect of specific cereals and product traits on postprandial glycemic control.
Collapse
Affiliation(s)
- Kia Nøhr Iversen
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Karin Jonsson
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
19
|
Nordin E, Steffensen SK, Laursen BB, Andersson SO, Johansson JE, Åman P, Hallmans G, Borre M, Stærk D, Hanhineva K, Fomsgaard IS, Landberg R. An inverse association between plasma benzoxazinoid metabolites and PSA after rye intake in men with prostate cancer revealed with a new method. Sci Rep 2022; 12:5260. [PMID: 35347164 PMCID: PMC8960836 DOI: 10.1038/s41598-022-08856-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/11/2022] [Indexed: 11/12/2022] Open
Abstract
Prostate cancer (PC) is a common cancer among men, and preventive strategies are warranted. Benzoxazinoids (BXs) in rye have shown potential against PC in vitro but human studies are lacking. The aim was to establish a quantitative method for analysis of BXs and investigate their plasma levels after a whole grain/bran rye vs refined wheat intervention, as well as exploring their association with PSA, in men with PC. A quantitative method for analysis of 22 BXs, including novel metabolites identified by mass spectrometry and NMR, was established, and applied to plasma samples from a randomized crossover study where patients with indolent PC (n = 17) consumed 485 g whole grain rye/rye bran or fiber supplemented refined wheat daily for 6 wk. Most BXs were significantly higher in plasma after rye (0.3–19.4 nmol/L in plasma) vs. refined wheat (0.05–2.9 nmol/L) intake. HBOA-glc, 2-HHPAA, HBOA-glcA, 2-HPAA-glcA were inversely correlated to PSA in plasma (p < 0.04). To conclude, BXs in plasma, including metabolites not previously analyzed, were quantified. BX metabolites were significantly higher after rye vs refined wheat consumption. Four BX-related metabolites were inversely associated with PSA, which merits further investigation.
Collapse
Affiliation(s)
- Elise Nordin
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 39, Gothenburg, Sweden.
| | - Stine K Steffensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark.
| | - Bente B Laursen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Sven-Olof Andersson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jan-Erik Johansson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Per Åman
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, Uppsala, Sweden
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Michael Borre
- Department of Urology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Dan Stærk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Kati Hanhineva
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 39, Gothenburg, Sweden.,Department of Life Technologies, Food Chemistry and Food Development Unit, 20520, Turku, Finland.,School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210, Kuopio, Finland
| | - Inge S Fomsgaard
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark.
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 39, Gothenburg, Sweden. .,Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
20
|
Abstract
Rye (Secale cereale L.) is abundantly cultivated in countries like Europe and North America, particularly in regions where soil and climate conditions are unfavorable for the growth of other cereals. Among all the cereals generally consumed by human beings, rye grains are characterized by the presence of the highest content of fiber. They are also a rich source of many phytochemical compounds, which are mainly distributed in the outer parts of the grain. This review focuses on the current knowledge regarding the characteristics of rye bran and wholemeal rye flour, as well as their applications in the production of both food and nonfood products. Previous studies have shown that the physicochemical properties of ground rye products are determined by the type of milling technique used to grind the grains. In addition, the essential biologically active compounds found in rye grains were isolated and characterized. Subsequently, the possibility of incorporating wholemeal rye flour, rye bran, and other compounds extracted from rye bran into different industrial products is discussed.
Collapse
|
21
|
El-Mahis A, Baky MH, Farag MA. How Does Rye Compare to other Cereals? A Comprehensive Review of its Potential Nutritional Value and Better Opportunities for its Processing as a Food-Based Cereal. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2023817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Amira El-Mahis
- Applied Research Center of Medicinal Plants, National Organization of Drug Control and Research, Egypt
| | - Mostafa H. Baky
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Egypt
- Chemistry Department, School of Sciences & Engineering, the American University in Cairo, Egypt
| |
Collapse
|
22
|
AĞAOĞLU M, AYAZ B, AYAZ Y, YAMAN M. A historical and nutrition-dietetic analysis of food consumption habits in ottoman culinary culture in the light of travel books. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.51721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Yurdagül AYAZ
- Şehit Binbaşı Bedir Karabıyık Multi-Program Anatolian High School, Turkey
| | | |
Collapse
|
23
|
Kaur P, Singh Sandhu K, Singh Purewal S, Kaur M, Kumar Singh S. Rye: A wonder crop with industrially important macromolecules and health benefits. Food Res Int 2021; 150:110769. [PMID: 34865784 DOI: 10.1016/j.foodres.2021.110769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/16/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Rye (Secale cereale) is a rich source of macromolecules, especially starch, fiber, and proteins which encourages the researchers and industries to use it for various purposes including bakery products, beverages and edible films formulation. However, despite many nutritional and health benefiting properties, rye has not been explored up to its full potential. Interest of consumers in formulating foods with high fiber and phenolic compounds has generated our interest in compiling the detailed information on rye. The present review on rye grains summarizes the existing scientific data on rye macronutrients (starch, arabinoxylan, β-glucan, fructan and proteins) and their corresponding industrial importance. Detailed description in this review unfolds the potential of rye grains for human nutrition. This review provides comprehensive knowledge and fills the remaining gap between the previous and latest scientific findings. Comprehensive information on rye nutrients along with health benefits will help to open a new era for scientific world and industrial sectors.
Collapse
Affiliation(s)
- Pinderpal Kaur
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Kawaljit Singh Sandhu
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India.
| | - Sukhvinder Singh Purewal
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Maninder Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
24
|
Németh R, Tömösközi S. Rye: Current state and future trends in research and applications. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2021.00162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
After wheat, rye is the second most important raw material for bread and bakery products, and it is one of the most excellent sources of dietary fibres and bioactive compounds. Besides, rye is utilised in more and more other food products as well, such as breakfast cereals, porridges, pasta, snack products, etc. Interestingly, its production is decreasing worldwide, probably because of the expansion of other cereals (e.g. triticale), but also the effect of climate change can also play a role therein. However, there is no doubt that scientific research aimed at studying the possible health benefits and the potential of rye in the development of novel food products has intensified over the past decade.
The aim of our paper is to make a comprehensive review of the latest results on the compositional and technological properties of rye that fundamentally influence its utilisation for food purposes. Furthermore, this review aims to identify the current development directions and trends of rye products.
Collapse
Affiliation(s)
- R. Németh
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| | - S. Tömösközi
- Research Group of Cereal Science and Food Quality, Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111, Budapest, Hungary
| |
Collapse
|
25
|
A hypocaloric diet rich in high fiber rye foods causes greater reduction in body weight and body fat than a diet rich in refined wheat: A parallel randomized controlled trial in adults with overweight and obesity (the RyeWeight study). Clin Nutr ESPEN 2021; 45:155-169. [PMID: 34620312 DOI: 10.1016/j.clnesp.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIM A high intake of whole grain foods is inversely associated with body mass index (BMI) and body fat in observational studies, but mixed results have been found in interventional studies. Among whole grains, rye is the richest source of dietary fiber and meals containing high-fiber rye foods have shown increased satiety up to 8 h, compared to meals containing refined wheat products. The aim of the study was to determine the effect of consuming high fiber rye products, compared to refined wheat products, on body weight and body fat loss in the context of an energy restricted diet. METHODS After a 2-week run-in period, 242 males and females with overweight or obesity (BMI 27-35 kg/m2), aged 30-70 years, were randomized (1:1) to consume high fiber rye products or refined wheat products for 12 weeks, while adhering to a hypocaloric diet. At week 0, week 6 and week 12 body weight and body composition (dual energy x-ray absorptiometry) was measured and fasting blood samples were collected. Subjective appetite was evaluated for 14 h at week 0, 6 and 12. RESULTS After 12 weeks the participants in the rye group had lost 1.08 kg body weight and 0.54% body fat more than the wheat group (95% confidence interval (CI): 0.36; 1.80, p < 0.01 and 0.05; 1.03, p = 0.03, respectively). C-reactive protein was 28% lower in the rye vs wheat group after 12 weeks of intervention (CI: 7; 53, p < 0.01). There were no consistent group differences on subjective appetite or on other cardiometabolic risk markers. CONCLUSION Consumption of high fiber rye products as part of a hypocaloric diet for 12 weeks caused a greater weight loss and body fat loss, as well as reduction in C-reactive protein, compared to refined wheat. The difference in weight loss could not be linked to differences in appetite response. CLINICAL TRIAL REGISTRATION www.clinicaltrials.gov, Identifier: NCT03097237.
Collapse
|
26
|
Botticella E, Savatin DV, Sestili F. The Triple Jags of Dietary Fibers in Cereals: How Biotechnology Is Longing for High Fiber Grains. FRONTIERS IN PLANT SCIENCE 2021; 12:745579. [PMID: 34594354 PMCID: PMC8477015 DOI: 10.3389/fpls.2021.745579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/18/2021] [Indexed: 05/03/2023]
Abstract
Cereals represent an important source of beneficial compounds for human health, such as macro- and micronutrients, vitamins, and bioactive molecules. Generally, the consumption of whole-grain products is associated with significant health benefits, due to the elevated amount of dietary fiber (DF). However, the consumption of whole-grain foods is still modest compared to more refined products. In this sense, it is worth focusing on the increase of DF fractions inside the inner compartment of the seed, the endosperm, which represents the main part of the derived flour. The main components of the grain fiber are arabinoxylan (AX), β-glucan (βG), and resistant starch (RS). These three components are differently distributed in grains, however, all of them are represented in the endosperm. AX and βG, classified as non-starch polysaccharides (NSP), are in cell walls, whereas, RS is in the endosperm, being a starch fraction. As the chemical structure of DFs influences their digestibility, the identification of key actors involved in their metabolism can pave the way to improve their function in human health. Here, we reviewed the main achievements of plant biotechnologies in DFs manipulation in cereals, highlighting new genetic targets to be exploited, and main issues to face to increase the potential of cereals in fighting malnutrition.
Collapse
Affiliation(s)
- Ermelinda Botticella
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, Italy
| | | | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
27
|
Liu Y, Xue K, Iversen KN, Qu Z, Dong C, Jin T, Hallmans G, Åman P, Johansson A, He G, Landberg R. The effects of fermented rye products on gut microbiota and their association with metabolic factors in Chinese adults - an explorative study. Food Funct 2021; 12:9141-9150. [PMID: 34397057 DOI: 10.1039/d1fo01423d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rye is among the cereals with the highest content of dietary fibre. A high rye food intake has been associated with improved metabolic risk factors in some but not all observational and intervention studies. Whole-grain rye has also been suggested to affect the gut microbiota in individuals with metabolic syndrome. However, it is yet unclear to what extent effects on the gut microbiota mediate the beneficial metabolic responses of whole-grain rye intake. We hypothesized that a high intake of whole grain rye products containing fermented rye bran (FRB) vs. refined wheat based products (RW) could alter the gut microbiota and short-chain fatty acid (SCFA) composition towards a phenotype associated with beneficial metabolic effects in a population not used to such foods. For this purpose, we conducted a post hoc analysis of a 12-week randomized controlled trial in Chinese adults with Helicobacter pylori (HP) infection, with 53 participants consuming RW and 31 participants consuming FRB included in the analysis. Anthropometric measurements and fasting blood and fecal sample analyses as well as 13C-urea breath test were performed at baseline and after a 12-week intervention. At week 12, we observed a higher serum insulin concentration (P-value = 0.038) in the FRB group (n = 31) versus the RW group (n = 53), and this difference was corroborated with alterations in the genus-level relative abundances of the gut microbiota, represented by an increase in Romboutsia and a reduction in Bilophila in the FRB group (n = 22) versus the RW group (n = 46). Compared to the RW group (n = 53), fecal acetic acid concentration was significantly higher in the FRB group (n = 31) at week 12. We also found that fecal acetic and butyric acids positively, while isobutyric, isovaleric and 2-methylbutyric acids inversely, correlated with the gut Romboutsia level among all participants (n = 68) at week 12. We found positive correlations of fecal isobutyric, isovaleric and 2-methylbutyric acids with gut Bilophila (n = 68). In conclusion, our results suggest that the intake of high-fibre rye products could modify gut Romboutsia and Bilophila in a Chinese population with HP infection. These effects are paralleled with favorable modifications of the SCFA concentration and are associated with altered glycemic traits.
Collapse
Affiliation(s)
- Yuwei Liu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| | - Kun Xue
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| | - Kia N Iversen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Zheng Qu
- Department of Gastroenterology, Zhongye Hospital, Shanghai, China
| | - Chenglin Dong
- Department of Clinical Laboratory, Zhongye Hospital, Shanghai, China
| | - Taiyi Jin
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Per Åman
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders Johansson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden and Department of Odontology, Section of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Gengsheng He
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
28
|
Improving rye bread antioxidant capacity by bread-making methodology: Contribution of phosphate-buffered saline- and methanol-soluble phenolic phytochemicals with different molecular profiles. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Cronin P, Joyce SA, O’Toole PW, O’Connor EM. Dietary Fibre Modulates the Gut Microbiota. Nutrients 2021; 13:nu13051655. [PMID: 34068353 PMCID: PMC8153313 DOI: 10.3390/nu13051655] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Dietary fibre has long been established as a nutritionally important, health-promoting food ingredient. Modern dietary practices have seen a significant reduction in fibre consumption compared with ancestral habits. This is related to the emergence of low-fibre “Western diets” associated with industrialised nations, and is linked to an increased prevalence of gut diseases such as inflammatory bowel disease, obesity, type II diabetes mellitus and metabolic syndrome. The characteristic metabolic parameters of these individuals include insulin resistance, high fasting and postprandial glucose, as well as high plasma cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL). Gut microbial signatures are also altered significantly in these cohorts, suggesting a causative link between diet, microbes and disease. Dietary fibre consumption has been hypothesised to reverse these changes through microbial fermentation and the subsequent production of short-chain fatty acids (SCFA), which improves glucose and lipid parameters in individuals who harbour diseases associated with dysfunctional metabolism. This review article examines how different types of dietary fibre can differentially alter glucose and lipid metabolism through changes in gut microbiota composition and function.
Collapse
Affiliation(s)
- Peter Cronin
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland; (S.A.J.); (P.W.O.)
| | - Susan A. Joyce
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland; (S.A.J.); (P.W.O.)
- School of Biochemistry and Cell Biology, University College Cork, T12 K8AF Cork, Ireland
| | - Paul W. O’Toole
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland; (S.A.J.); (P.W.O.)
- Department of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - Eibhlís M. O’Connor
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland; (S.A.J.); (P.W.O.)
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Correspondence:
| |
Collapse
|
30
|
Encapsulation of Grape Seed Extract in Rye Flour and Whey Protein–Based Electrospun Nanofibers. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02627-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Xue K, Liu Y, Iversen KN, Mazidi M, Qu Z, Dong C, Jin T, Hallmans G, Åman P, Johansson A, He G, Landberg R. Impact of a Fermented High-Fiber Rye Diet on Helicobacter pylori and Cardio-Metabolic Risk Factors: A Randomized Controlled Trial Among Helicobacter pylori-Positive Chinese Adults. Front Nutr 2021; 7:608623. [PMID: 33521037 PMCID: PMC7844128 DOI: 10.3389/fnut.2020.608623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background: High dietary fiber intake has been associated with reduced risk of Helicobacter pylori infection and co-morbidities such as gastric cancer but also with reduced risk of cardiovascular disease. It has been suggested that fermented rye could affect Helicobacter pylori bacterial load and that high- fiber rye may be superior to wheat for improvement of several cardiometabolic risk factors, but few long-term interventions with high fiber rye foods have been conducted. Objective: To examine the effect of high-fiber wholegrain rye foods with added fermented rye bran vs. refined wheat on Helicobacter pylori infection and cardiometabolic risk markers in a Chinese population with a low habitual consumption of high fiber cereal foods. Design: A parallel dietary intervention was set up and 182 normal- or overweight men and women were randomized to consume wholegrain rye products containing fermented rye bran (FRB) or refined wheat (RW) for 12 weeks. Anthropometric measurements, fasting blood sample collection and 13C-urea breath test (13C-UBT) were performed at baseline and after 6 and 12 weeks of intervention as well as 12 weeks after the end of the intervention. Results: No difference between diets on Helicobacter pylori bacterial load measured by 13C-UBT breath test or in virulence factors of Helicobacter pylori in blood samples were found. Low density lipoprotein cholesterol (LDL-C) and high sensitivity C-reactive protein (hs-CRP) were significantly lower in the FRB group, compared to the RW group after 12 weeks of intervention. The intervention diets did not affect markers of glucose metabolism or insulin sensitivity. Conclusions: While the results of the present study did not support any effect of FRB on Helicobacter pylori bacterial load, beneficial effects on LDL-C and hs-CRP were clearly shown. This suggest that consumption of high fiber rye foods instead of refined wheat could be one strategy for primary prevention of cardiovascular disease. Clinical Trial Registration: The trial was registered at www.clinicaltrials.gov, Identifier: NCT03103386.
Collapse
Affiliation(s)
- Kun Xue
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Fudan University, Shanghai, China
| | - Yuwei Liu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Fudan University, Shanghai, China
| | - Kia Nøhr Iversen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mohsen Mazidi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Zheng Qu
- Department of Gastroenterology, Shanghai Zhongye Hospital, Shanghai, China
| | - Chenglin Dong
- Department of Clinical Laboratory, Shanghai Zhongye Hospital, Shanghai, China
| | - Tayi Jin
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Fudan University, Shanghai, China
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Per Åman
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders Johansson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.,Department of Odontology, Section of Cariology, Umeå University, Umeå, Sweden
| | - Gengsheng He
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Fudan University, Shanghai, China
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
32
|
Desouky MM, Salama HH. Preparation and properties of children food after weaning using camels’ milk and guadar cereal nanoparticles. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Marwa M. Desouky
- Dairy Unit, Breeding Department, Animal Production Division Desert Research Center Cairo Egypt
| | - Heba H. Salama
- Dairy Department, Food Industry and Nutrition Research Division National Research Centre Giza Egypt
| |
Collapse
|
33
|
Ravisankar S, Queiroz VA, Awika JM. Rye flavonoids – Structural profile of the flavones in diverse varieties and effect of fermentation and heat on their structure and antioxidant properties. Food Chem 2020; 324:126871. [DOI: 10.1016/j.foodchem.2020.126871] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/31/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
|
34
|
Long-term whole-grain rye and wheat consumption and their associations with selected biomarkers of inflammation, endothelial function, and cardiovascular disease. Eur J Clin Nutr 2020; 75:123-132. [PMID: 32782386 DOI: 10.1038/s41430-020-00714-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/29/2020] [Accepted: 08/04/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Whole-grain (WG) intake has been associated with a lowered risk of developing type 2 diabetes, cardiovascular disease, and some cancers in epidemiological studies. Reduced subclinical inflammation could be one important mechanism behind such associations. This study investigated whether high long-term WG rye and wheat intakes were associated with lower concentrations of biomarkers of inflammation, endothelial function, and protein biomarkers associated with cardiovascular disease. SUBJECTS/METHODS We assessed WG intake by food frequency questionnaire (FFQ) and by measuring alkylresorcinols (ARs) in plasma and adipose tissue, respectively. Selected biomarkers in free-living 109 women and 149 men were analyzed from two clinical subcohort studies (Swedish Mammography Cohort-Clinical (SMC-C) and Cohort of Swedish Men-Clinical (COSM-C), respectively. Total WG rye and wheat (WGRnW) and the ratio of WG rye to WG rye and wheat (WGR/WGRnW) were estimated from FFQs. ARs were measured in plasma and adipose tissue by gas chromatography-mass spectrometry (GC-MS) and the biomarkers by ELISA. RESULTS We found no consistent associations between WG intake assessed by different methods and the selected biomarkers. However, WGRnW intake was inversely associated with cathepsin S (P-trend < 0.05) and total AR and C17:0/C21:0 in plasma were inversely associated with the endostatin concentration (P-trend < 0.05) adjusted for BMI, age, and sex. CONCLUSION The results give limited support to the hypothesis that a high WG wheat and rye intake is associated with lower concentrations of common biomarkers of inflammation and CVD that have previously been reported inversely associated with WG intake or an overall healthy lifestyle.
Collapse
|
35
|
Deleu LJ, Lemmens E, Redant L, Delcour JA. The major constituents of rye (
Secale cereale
L.) flour and their role in the production of rye bread, a food product to which a multitude of health aspects are ascribed. Cereal Chem 2020. [DOI: 10.1002/cche.10306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lomme J. Deleu
- Laboratory of Food Chemistry and Biochemistry KU Leuven Kasteelpark Arenberg 20 Leuven 3001 Belgium
| | - Elien Lemmens
- Laboratory of Food Chemistry and Biochemistry KU Leuven Kasteelpark Arenberg 20 Leuven 3001 Belgium
| | - Lore Redant
- Laboratory of Food Chemistry and Biochemistry KU Leuven Kasteelpark Arenberg 20 Leuven 3001 Belgium
- Aminolabs Groups NV Research Campus 6 Hasselt3500 Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry KU Leuven Kasteelpark Arenberg 20 Leuven 3001 Belgium
| |
Collapse
|
36
|
Eriksen AK, Brunius C, Mazidi M, Hellström PM, Risérus U, Iversen KN, Fristedt R, Sun L, Huang Y, Nørskov NP, Knudsen KEB, Kyrø C, Olsen A, Tjønneland A, Dicksved J, Landberg R. Effects of whole-grain wheat, rye, and lignan supplementation on cardiometabolic risk factors in men with metabolic syndrome: a randomized crossover trial. Am J Clin Nutr 2020; 111:864-876. [PMID: 32097450 DOI: 10.1093/ajcn/nqaa026] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A whole-grain (WG)-rich diet has shown to have potential for both prevention and treatment of the metabolic syndrome (MetS), which is a cluster of risk factors that increase the risk of type 2 diabetes and cardiovascular disease. Different WGs may have different health effects. WG rye, in particular, may improve glucose homeostasis and blood lipids, possibly mediated through fermentable dietary fiber and lignans. Recent studies have also suggested a crucial role of the gut microbiota in response to WG. OBJECTIVES The aim was to investigate WG rye, alone and with lignan supplements [secoisolariciresinol diglucoside (SDG)], and WG wheat diets on glucose tolerance [oral-glucose-tolerance test (OGTT)], other cardiometabolic outcomes, enterolignans, and microbiota composition. Moreover, we exploratively evaluated the role of gut microbiota enterotypes in response to intervention diets. METHODS Forty men with MetS risk profile were randomly assigned to WG diets in an 8-wk crossover study. The rye diet was supplemented with 280 mg SDG at weeks 4-8. Effects of treatment were evaluated by mixed-effects modeling, and effects on microbiota composition and the role of gut microbiota as a predictor of response to treatment were analyzed by random forest plots. RESULTS The WG rye diet (± SDG supplements) did not affect the OGTT compared with WG wheat. Total and LDL cholesterol were lowered (-0.06 and -0.09 mmol/L, respectively; P < 0.05) after WG rye compared with WG wheat after 4 wk but not after 8 wk. WG rye resulted in higher abundance of Bifidobacterium [fold-change (FC) = 2.58, P < 0.001] compared with baseline and lower abundance of Clostridium genus compared with WG wheat (FC = 0.54, P = 0.02). The explorative analyses suggest that baseline enterotype is associated with total and LDL-cholesterol response to diet. CONCLUSIONS WG rye, alone or with SDG supplementation, compared with WG wheat did not affect glucose metabolism but caused transient LDL-cholesterol reduction. The effect of WG diets appeared to differ according to enterotype. This trial was registered at www.clinicaltrials.gov as NCT02987595.
Collapse
Affiliation(s)
- Anne K Eriksen
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Carl Brunius
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mohsen Mazidi
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Kia N Iversen
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Rikard Fristedt
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Li Sun
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yi Huang
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden.,College of Animal Science and Technology, Guangxi University, Nanning, China
| | | | | | - Cecilie Kyrø
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anja Olsen
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anne Tjønneland
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
37
|
Linear and Non-linear Rheology of Bread Doughs Made from Blends of Wheat (Triticum aestivum L.) and Rye (Secale cereale L.) Flour. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02393-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Tuomainen M, Kärkkäinen O, Leppänen J, Auriola S, Lehtonen M, Savolainen MJ, Hermansen K, Risérus U, Åkesson B, Thorsdottir I, Kolehmainen M, Uusitupa M, Poutanen K, Schwab U, Hanhineva K. Quantitative assessment of betainized compounds and associations with dietary and metabolic biomarkers in the randomized study of the healthy Nordic diet (SYSDIET). Am J Clin Nutr 2019; 110:1108-1118. [PMID: 31504116 DOI: 10.1093/ajcn/nqz179] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recently, a group of betainized compounds have been suggested to play a role in health effects in relation to a whole-grain-rich diet. OBJECTIVES The aims of this study were to develop a quantitative mass spectrometric method for selected betainized compounds in human plasma, and to investigate their association with nutrient intake and measures of metabolic health in participants of the SYSDIET study. METHODS The SYSDIET study was a controlled randomized intervention including individuals with metabolic syndrome, where the healthy Nordic diet (HND) group increased intakes of whole grains, canola oil, berries, and fish, whereas the control diet (CD) group consumed low-fiber cereal products, milk fat, and restricted amounts of fish and berries. A quantitative LC combined with triple quadrupole MS method for betainized compounds was developed and applied to fasting plasma samples from baseline (week 0) and the end of the intervention (week 18 or 24). Concentrations of betainized compounds were correlated with intakes of selected nutrients and fiber and measures of metabolic health. RESULTS Pipecolic acid betaine (PAB) concentrations were significantly higher in the HND group than in the CD group (P = 0.00032) at the end of the intervention and correlated directly (P < 0.0001) with intakes of dietary fiber (r = 0.376) and a biomarker related to whole-grain rye intake, namely the ratio of alkylresorcinol C17:0 to C21:0 (r = 0.442). PAB was associated inversely with fasting plasma insulin consistently at the beginning and at the end of the intervention (P < 0.001, r = -0.300; P < 0.01, r = -0.250, respectively), as well as IL-1 receptor antagonist (P < 0.01, r = -0.232 at the beginning; P < 0.01, r = -0.236 at the end) and serum LDL/HDL cholesterol (P < 0.01, r = -0.239 at the beginning; P < 0.01, r = -0.241 at the end). CONCLUSIONS Among adults with the metabolic syndrome, PAB plasma concentrations were associated with fasting insulin, inflammation, and lipids and were significantly increased with adoption of the HND. Further studies are needed to clarify the biological functions of betainized compounds. This trial was registered at clinicaltrials.gov as NCT00992641.
Collapse
Affiliation(s)
- Marjo Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Olli Kärkkäinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jukka Leppänen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Markku J Savolainen
- Medical Research Center, Department of Internal Medicine, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Björn Åkesson
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, Lund, Sweden.,Department of Clinical Nutrition, Skåne University Hospital, Lund, Sweden
| | - Inga Thorsdottir
- Unit for Nutrition Research, University of Iceland and Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Kaisa Poutanen
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
39
|
Braun EM, Tsvetkova N, Rotter B, Siekmann D, Schwefel K, Krezdorn N, Plieske J, Winter P, Melz G, Voylokov AV, Hackauf B. Gene Expression Profiling and Fine Mapping Identifies a Gibberellin 2-Oxidase Gene Co-segregating With the Dominant Dwarfing Gene Ddw1 in Rye ( Secale cereale L.). FRONTIERS IN PLANT SCIENCE 2019; 10:857. [PMID: 31333700 PMCID: PMC6616298 DOI: 10.3389/fpls.2019.00857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/14/2019] [Indexed: 06/03/2023]
Abstract
The gibberellin (GA)-sensitive dwarfing gene Ddw1 provides an opportunity to genetically reduce plant height in rye. Genetic analysis in a population of recombinant inbred lines confirmed a monogenetic dominant inheritance of Ddw1. Significant phenotypic differences in PH between homo- and heterozygotic genotypes indicate an incomplete dominance of Ddw1. De novo transcriptome sequencing of Ddw1 mutant as well as tall genotypes resulted in 113,547 contigs with an average length of 318 bp covering 36.18 Mbp rye DNA. A hierarchical cluster analysis based on individual groups of rye homologs of functionally characterized rice genes controlling morphological or physiological traits including plant height, flowering time, and source activity identified the gene expression profile of stems at the begin of heading to most comprehensively mirror effects of Ddw1. Genome-wide expression profiling identified 186 transcripts differentially expressed between semi-dwarf and tall genotypes in stems. In total, 29 novel markers have been established and mapped to a 27.2 cM segment in the distal part of the long arm of chromosome 5R. Ddw1 could be mapped within a 0.4 cM interval co-segregating with a marker representing the C20-GA2-oxidase gene ScGA2ox12, that is up-regulated in stems of Ddw1 genotypes. The increased expression of ScGA2ox12 observed in semi-dwarf rye as well as structural alterations in transcript sequences associated with the ScGA2ox12 gene implicate, that Ddw1 is a dominant gain-of-function mutant. Integration of the target interval in the wheat reference genome sequence indicated perfect micro-colinearity between the Ddw1 locus and a 831 kb segment on chromosome 5A, which resides inside of a 11.21 Mb interval carrying the GA-sensitive dwarfing gene Rht12 in wheat. The potential of Ddw1 as a breeder's option to improve lodging tolerance in rye is discussed.
Collapse
Affiliation(s)
- Eva-Maria Braun
- Institute for Breeding Research on Agricultural Crops, Julius Kühn-Institut, Quedlinburg, Germany
| | - Natalia Tsvetkova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Dörthe Siekmann
- Institute for Breeding Research on Agricultural Crops, Julius Kühn-Institut, Quedlinburg, Germany
- HYBRO Saatzucht GmbH & Co. KG, Schenkenberg, Germany
| | - Konrad Schwefel
- Institute for Breeding Research on Agricultural Crops, Julius Kühn-Institut, Quedlinburg, Germany
| | | | | | | | | | - Anatoly V. Voylokov
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Bernd Hackauf
- Institute for Breeding Research on Agricultural Crops, Julius Kühn-Institut, Quedlinburg, Germany
| |
Collapse
|
40
|
Evaluation of physicochemical properties, antioxidant potential and baking quality of grain and flour of primitive rye ( Secale cereale var. Multicaule). Journal of Food Science and Technology 2019; 56:3422-3430. [PMID: 31274910 PMCID: PMC6581991 DOI: 10.1007/s13197-019-03827-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 04/11/2019] [Accepted: 05/08/2019] [Indexed: 11/12/2022]
Abstract
The consumers interest in organic food and farmers’ search for cultivars with increased usefulness for organic farming have contributed to the revival of ancient cereal species and their launch onto the food market. In view of the above, the aim of this study was to determine the physicochemical properties, antioxidant potential and baking quality of grain and flour of primitive rye (Secale cereale var. Multicaule Polish: Krzyca), and to compare these parameters with open-pollinated and hybrid cultivars of common rye. The following determinations were made: the morphological and mechanical properties of grain, milling energy and the protein, starch, ash and free phenolic content of the analyzed flours, their amylograph characteristics and antioxidant potential. It was found that primitive rye has shorter kernels, lower thousand-kernel weight and a higher contribution of redness in color compared with common rye. In primitive rye grain rupture force was determined at 68.9 N and rupture energy at 35.6 mJ. Flours made from primitive rye grain have a higher content of ash and free phenolic compounds, lower starch content and similar antioxidant potential relative to common rye flours. The results of the amylograph test revealed that primitive rye flours were characterized by high baking quality. The primitive rye flours can be alternative ingredients for bread making and provide health advantage such as higher content of phenolic compounds. However, further research is needed to analyze variations in the properties of primitive rye grain and flour resulting from changes in environmental and climatic conditions.
Collapse
|
41
|
Eriksen AK, Kyrø C, Nørskov NP, Frederiksen K, Bach Knudsen KE, Overvad K, Landberg R, Tjønneland A, Olsen A. Pre-diagnostic plasma enterolactone concentrations are associated with lower mortality among individuals with type 2 diabetes: a case-cohort study in the Danish Diet, Cancer and Health cohort. Diabetologia 2019; 62:959-969. [PMID: 30963187 PMCID: PMC6509069 DOI: 10.1007/s00125-019-4854-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/27/2019] [Indexed: 01/18/2023]
Abstract
AIMS/HYPOTHESIS The phytoestrogen enterolactone is a gut microbiota-derived metabolite of plant lignans with suggested beneficial properties for health. In the current study, we investigated the association between pre-diagnostic plasma enterolactone concentrations and mortality among individuals diagnosed with type 2 diabetes. METHODS In a population of people diagnosed with diabetes, nested within the Danish Diet, Cancer and Health cohort, we conducted a case-cohort study including a random sample of n = 450 cases (deceased) and a randomly selected subcohort of n = 850 (in total n = 617 deaths). Information on diagnosis, vital status and cause of death was obtained from Danish registers. Cox proportional hazard models with special weighting were applied to assess all-cause and cause-specific mortality. RESULTS The median enterolactone concentration of the current population was low, 10.9 nmol/l (5th percentile to 95th percentile: 1.3-59.6), compared with previously reported concentrations from the Diet, Cancer and Health cohort. Pre-diagnostic enterolactone concentrations were associated with lower all-cause mortality when assessed linearly per doubling in concentration (log2) (HR 0.91 [95% CI 0.85, 0.96]) and according to quartiles (HR 0.63 [95% CI 0.48, 0.84]) for the highest quartile of enterolactone compared with the lowest quartile. For cause-specific mortality, only death from diabetes (registered as underlying cause of death) reached statistical significance. CONCLUSIONS/INTERPRETATION Based on this large cohort of people with diabetes with detailed and complete baseline and follow-up information, pre-diagnostic enterolactone concentrations were inversely associated with mortality. To our knowledge, this is the first study on enterolactone and type 2 diabetes mortality. Our findings call for further exploration of enterolactone in type 2 diabetes management.
Collapse
Affiliation(s)
- Anne K Eriksen
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
| | - Cecilie Kyrø
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | | | - Kirsten Frederiksen
- Unit of Statistics and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus C, Denmark
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Anne Tjønneland
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anja Olsen
- Unit of Diet, Genes and Environment, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| |
Collapse
|
42
|
Ciudad-Mulero M, Fernández-Ruiz V, Matallana-González MC, Morales P. Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:83-134. [PMID: 31445601 DOI: 10.1016/bs.afnr.2019.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary fiber (DF) includes the remnants of the edible part of plants and analogous carbohydrates that are resistant to digestion and absorption in the human small intestine with complete or partial fermentation in the human large intestine. DF can be classified into two main groups according to its solubility, namely insoluble dietary fiber (IDF) that mainly consists on cell wall components, including cellulose, some hemicelluloses, lignin and resistant starch, and soluble dietary fiber (SDF) that consists of non-cellulosic polysaccharides as non-digestible oligosaccharides, arabinoxylans (AX), β-glucans, some hemicelluloses, pectins, gums, mucilages and inulin. The intake of DF is associated with health benefits. IDF can contribute to the normal function of the intestinal tract and it has an important role in the prevention of colonic diverticulosis and constipation. SDF is extensively fermented by gut microbiota and it is associated with carbohydrate and lipid metabolism, with important health benefits due to its hypocholesterolemic properties. Due to these nutritional and health properties, DF is widely used as functional ingredients in food industry, being whole grain cereals, pulses, fruits and vegetables the main sources of DF. Also some synthetic sources are employed, namely polydextrose, hydroxypropyl methylcellulose or cyclodextrins. The DF content of cereals varies depending on cultivars, their botanical components (pericarp, emdosperm and germ) and the processing conditions they have undergone (baking, extrusion, etc.). In cereal grains, AX are the predominant non-cellulose DF polysaccharides followed by cellulose and β-glucans, while in pseudocereals, pectins are quantitatively predominant.
Collapse
Affiliation(s)
- María Ciudad-Mulero
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Virginia Fernández-Ruiz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Mª Cruz Matallana-González
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Patricia Morales
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|