1
|
Chen HN, Hu YN, Ran LL, Wang M, Zhang Z. Sexual dimorphism in aortic aneurysm: A review of the contributions of sex hormones and sex chromosomes. Vascul Pharmacol 2024; 158:107460. [PMID: 39716526 DOI: 10.1016/j.vph.2024.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/23/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Aortic aneurysm is a common cardiovascular disease. Over time, the disease damages the structural and functional integrity of the aorta, causing it to abnormally expand and potentially rupture, which can be fatal. Sex differences are evident in the disease, with men experiencing an earlier onset and higher incidence. However, women may face a worse prognosis and a higher risk of rupture. While there are some studies on the cellular and molecular mechanisms of aneurysm formation, it remains unclear how sex factors contribute to sexual dimorphism. Therefore, this review aims to summarize the role of sex in the occurrence of aortic aneurysms, offering valuable insights for disease prevention and the development of appropriate treatment options.
Collapse
Affiliation(s)
- Hao-Nan Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yan-Ni Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Li-Ling Ran
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Mi Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
2
|
Tomofuji Y, Edahiro R, Sonehara K, Shirai Y, Kock KH, Wang QS, Namba S, Moody J, Ando Y, Suzuki A, Yata T, Ogawa K, Naito T, Namkoong H, Xuan Lin QX, Buyamin EV, Tan LM, Sonthalia R, Han KY, Tanaka H, Lee H, Okuno T, Liu B, Matsuda K, Fukunaga K, Mochizuki H, Park WY, Yamamoto K, Hon CC, Shin JW, Prabhakar S, Kumanogoh A, Okada Y. Quantification of escape from X chromosome inactivation with single-cell omics data reveals heterogeneity across cell types and tissues. CELL GENOMICS 2024; 4:100625. [PMID: 39084228 PMCID: PMC11406184 DOI: 10.1016/j.xgen.2024.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Several X-linked genes escape from X chromosome inactivation (XCI), while differences in escape across cell types and tissues are still poorly characterized. Here, we developed scLinaX for directly quantifying relative gene expression from the inactivated X chromosome with droplet-based single-cell RNA sequencing (scRNA-seq) data. The scLinaX and differentially expressed gene analyses with large-scale blood scRNA-seq datasets consistently identified the stronger escape in lymphocytes than in myeloid cells. An extension of scLinaX to a 10x multiome dataset (scLinaX-multi) suggested a stronger escape in lymphocytes than in myeloid cells at the chromatin-accessibility level. The scLinaX analysis of human multiple-organ scRNA-seq datasets also identified the relatively strong degree of escape from XCI in lymphoid tissues and lymphocytes. Finally, effect size comparisons of genome-wide association studies between sexes suggested the underlying impact of escape on the genotype-phenotype association. Overall, scLinaX and the quantified escape catalog identified the heterogeneity of escape across cell types and tissues.
Collapse
Affiliation(s)
- Yoshihiko Tomofuji
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan.
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan
| | - Yuya Shirai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kian Hong Kock
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Republic of Singapore
| | - Qingbo S Wang
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan
| | - Jonathan Moody
- Laboratory for Genome Information Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yoshinari Ando
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Tomohiro Yata
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Shinanomachi 160-8582, Japan
| | - Quy Xiao Xuan Lin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Republic of Singapore
| | - Eliora Violain Buyamin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Republic of Singapore
| | - Le Min Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Republic of Singapore
| | - Radhika Sonthalia
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Republic of Singapore
| | - Kyung Yeon Han
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinanomachi 160-8582, Japan
| | - Ho Lee
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinanomachi 160-8582, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Boxiang Liu
- Department of Pharmacy, National University of Singapore, Singapore 117549, Republic of Singapore
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Shirokanedai 108-8639, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinanomachi 160-8582, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Chung-Chau Hon
- Laboratory for Genome Information Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Jay W Shin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Republic of Singapore; Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Shyam Prabhakar
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore 138672, Republic of Singapore; Lee Kong Chian School of Medicine, Singapore 308232, Republic of Singapore; Cancer Science Institute of Singapore, Singapore 117599, Republic of Singapore
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
3
|
Franco-Enzástiga Ú, Inturi NN, Natarajan K, Mwirigi JM, Mazhar K, Schlachetzki JC, Schumacher M, Price TJ. Epigenomic landscape of the human dorsal root ganglion: sex differences and transcriptional regulation of nociceptive genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587047. [PMID: 38586055 PMCID: PMC10996669 DOI: 10.1101/2024.03.27.587047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Gene expression is influenced by chromatin architecture via controlled access of regulatory factors to DNA. To better understand gene regulation in the human dorsal root ganglion (hDRG) we used bulk and spatial transposase-accessible chromatin technology followed by sequencing (ATAC-seq). Using bulk ATAC-seq, we detected that in females diverse differentially accessible chromatin regions (DARs) mapped to the X chromosome and in males to autosomal genes. EGR1/3 and SP1/4 transcription factor binding motifs were abundant within DARs in females, and JUN, FOS and other AP-1 factors in males. To dissect the open chromatin profile in hDRG neurons, we used spatial ATAC-seq. The neuron cluster showed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in females, and in Ca2+- signaling-related genes in males. Sex differences in transcription factor binding sites in neuron-proximal barcodes were consistent with the trends observed in bulk ATAC-seq data. We validated that EGR1 expression is biased to female hDRG compared to male. Strikingly, XIST, the long-noncoding RNA responsible for X inactivation, hybridization signal was found to be highly dispersed in the female neuronal but not non-neuronal nuclei suggesting weak X inactivation in female hDRG neurons. Our findings point to baseline epigenomic sex differences in the hDRG that likely underlie divergent transcriptional responses that determine mechanistic sex differences in pain.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Nikhil N. Inturi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Juliet M. Mwirigi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Khadija Mazhar
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Johannes C.M. Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
4
|
Topa H, Benoit-Pilven C, Tukiainen T, Pietiläinen O. X-chromosome inactivation in human iPSCs provides insight into X-regulated gene expression in autosomes. Genome Biol 2024; 25:144. [PMID: 38822397 PMCID: PMC11143737 DOI: 10.1186/s13059-024-03286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/17/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Variation in X chromosome inactivation (XCI) in human-induced pluripotent stem cells (hiPSCs) can impact their ability to model biological sex biases. The gene-wise landscape of X chromosome gene dosage remains unresolved in female hiPSCs. To characterize patterns of de-repression and escape from inactivation, we performed a systematic survey of allele specific expression in 165 female hiPSC lines. RESULTS XCI erosion is non-random and primarily affects genes that escape XCI in human tissues. Individual genes and cell lines vary in the frequency and degree of de-repression. Bi-allelic expression increases gradually after modest decrease of XIST in cultures, whose loss is commonly used to mark lines with eroded XCI. We identify three clusters of female lines at different stages of XCI. Increased XCI erosion amplifies female-biased expression at hypomethylated sites and regions normally occupied by repressive histone marks, lowering male-biased differences in the X chromosome. In autosomes, erosion modifies sex differences in a dose-dependent way. Male-biased genes are enriched for hypermethylated regions, and de-repression of XIST-bound autosomal genes in female lines attenuates normal male-biased gene expression in eroded lines. XCI erosion can compensate for a dominant loss of function effect in several disease genes. CONCLUSIONS We present a comprehensive view of X chromosome gene dosage in hiPSCs and implicate a direct mechanism for XCI erosion in regulating autosomal gene expression in trans. The uncommon and variable reactivation of X chromosome genes in female hiPSCs can provide insight into X chromosome's role in regulating gene expression and sex differences in humans.
Collapse
Affiliation(s)
- Hande Topa
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Clara Benoit-Pilven
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Olli Pietiläinen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- The Stanley Center for Psychiatric Research at the Broad Institute, of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Flowers AE, Gonzalez TL, Wang Y, Santiskulvong C, Clark EL, Novoa A, Jefferies CA, Lawrenson K, Chan JL, Joshi NV, Zhu Y, Tseng HR, Wang ET, Ishimori M, Karumanchi SA, Williams J, Pisarska MD. High-throughput mRNA sequencing of human placenta shows sex differences across gestation. Placenta 2024; 150:8-21. [PMID: 38537412 PMCID: PMC11262790 DOI: 10.1016/j.placenta.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 05/04/2024]
Abstract
INTRODUCTION Fetal sex affects fetal and maternal health outcomes in pregnancy, but this connection remains poorly understood. As the placenta is the route of fetomaternal communication and derives from the fetal genome, placental gene expression sex differences may explain these outcomes. OBJECTIVES We utilized next generation sequencing to study the normal human placenta in both sexes in first and third trimester to generate a normative transcriptome based on sex and gestation. STUDY DESIGN We analyzed 124 first trimester (T1, 59 female and 65 male) and 43 third trimester (T3, 18 female and 25 male) samples for sex differences within each trimester and sex-specific gestational differences. RESULTS Placenta shows more significant sexual dimorphism in T1, with 94 T1 and 26 T3 differentially expressed genes (DEGs). The sex chromosomes contributed 60.6% of DEGs in T1 and 80.8% of DEGs in T3, excluding X/Y pseudoautosomal regions. There were 6 DEGs from the pseudoautosomal regions, only significant in T1 and all upregulated in males. The distribution of DEGs on the X chromosome suggests genes on Xp (the short arm) may be particularly important in placental sex differences. Dosage compensation analysis of X/Y homolog genes shows expression is primarily contributed by the X chromosome. In sex-specific analyses of first versus third trimester, there were 2815 DEGs common to both sexes upregulated in T1, and 3263 common DEGs upregulated in T3. There were 7 female-exclusive DEGs upregulated in T1, 15 female-exclusive DEGs upregulated in T3, 10 male-exclusive DEGs upregulated in T1, and 20 male-exclusive DEGs upregulated in T3. DISCUSSION This is the largest cohort of placentas across gestation from healthy pregnancies defining the normative sex dimorphic gene expression and sex common, sex specific and sex exclusive gene expression across gestation. The first trimester has the most sexually dimorphic transcripts, and the majority were upregulated in females compared to males in both trimesters. The short arm of the X chromosome and the pseudoautosomal region is particularly critical in defining sex differences in the first trimester placenta. As pregnancy is a dynamic state, sex specific DEGs across gestation may contribute to sex dimorphic changes in overall outcomes.
Collapse
Affiliation(s)
- Amy E Flowers
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Tania L Gonzalez
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Yizhou Wang
- Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Chintda Santiskulvong
- CS Cancer Applied Genomics Shared Resource, CS Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ekaterina L Clark
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Allynson Novoa
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Caroline A Jefferies
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Kate Lawrenson
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica L Chan
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nikhil V Joshi
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Yazhen Zhu
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA; California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Erica T Wang
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mariko Ishimori
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - John Williams
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Hattori A, Seki A, Inaba N, Nakabayashi K, Takeda K, Tatsusmi K, Naiki Y, Nakamura A, Ishiwata K, Matsumoto K, Nasu M, Okamura K, Michigami T, Katoh-Fukui Y, Umezawa A, Ogata T, Kagami M, Fukami M. Expression levels and DNA methylation profiles of the growth gene SHOX in cartilage tissues and chondrocytes. Sci Rep 2024; 14:8069. [PMID: 38580675 PMCID: PMC10997625 DOI: 10.1038/s41598-024-58530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
All attempts to identify male-specific growth genes in humans have failed. This study aimed to clarify why men are taller than women. Microarray-based transcriptome analysis of the cartilage tissues of four adults and chondrocytes of 12 children showed that the median expression levels of SHOX, a growth gene in the pseudoautosomal region (PAR), were higher in male samples than in female samples. Male-dominant SHOX expression was confirmed by quantitative RT-PCR for 36 cartilage samples. Reduced representation bisulfite sequencing of four cartilage samples revealed sex-biased DNA methylation in the SHOX-flanking regions, and pyrosequencing of 22 cartilage samples confirmed male-dominant DNA methylation at the CpG sites in the SHOX upstream region and exon 6a. DNA methylation indexes of these regions were positively correlated with SHOX expression levels. These results, together with prior findings that PAR genes often exhibit male-dominant expression, imply that the relatively low SHOX expression in female cartilage tissues reflects the partial spread of X chromosome inactivation into PAR. Altogether, this study provides the first indication that sex differences in height are ascribed, at least in part, to the sex-dependent epigenetic regulation of SHOX. Our findings deserve further validation.
Collapse
Affiliation(s)
- Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Atsuhito Seki
- Department of Orthopaedic Surgery, National Medical Center for Children and Mothers, Tokyo, 157-8535, Japan
| | - Naoto Inaba
- Department of Orthopaedic Surgery, National Medical Center for Children and Mothers, Tokyo, 157-8535, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kazue Takeda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kuniko Tatsusmi
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Yasuhiro Naiki
- Division of Endocrinology and Metabolism, National Medical Center for Children and Mothers, Tokyo, 157-8535, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Michiyo Nasu
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, 594-1101, Japan
| | - Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, 432-8580, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan.
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan.
| |
Collapse
|
8
|
Geleta U, Prajapati P, Bachstetter A, Nelson PT, Wang WX. Sex-Biased Expression and Response of microRNAs in Neurological Diseases and Neurotrauma. Int J Mol Sci 2024; 25:2648. [PMID: 38473893 PMCID: PMC10931569 DOI: 10.3390/ijms25052648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Neurological diseases and neurotrauma manifest significant sex differences in prevalence, progression, outcome, and therapeutic responses. Genetic predisposition, sex hormones, inflammation, and environmental exposures are among many physiological and pathological factors that impact the sex disparity in neurological diseases. MicroRNAs (miRNAs) are a powerful class of gene expression regulator that are extensively involved in mediating biological pathways. Emerging evidence demonstrates that miRNAs play a crucial role in the sex dimorphism observed in various human diseases, including neurological diseases. Understanding the sex differences in miRNA expression and response is believed to have important implications for assessing the risk of neurological disease, defining therapeutic intervention strategies, and advancing both basic research and clinical investigations. However, there is limited research exploring the extent to which miRNAs contribute to the sex disparities observed in various neurological diseases. Here, we review the current state of knowledge related to the sexual dimorphism in miRNAs in neurological diseases and neurotrauma research. We also discuss how sex chromosomes may contribute to the miRNA sexual dimorphism phenomenon. We attempt to emphasize the significance of sexual dimorphism in miRNA biology in human diseases and to advocate a gender/sex-balanced science.
Collapse
Affiliation(s)
- Urim Geleta
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Paresh Prajapati
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Adam Bachstetter
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
9
|
Christians JK, Reue K. The role of gonadal hormones and sex chromosomes in sex-dependent effects of early nutrition on metabolic health. Front Endocrinol (Lausanne) 2023; 14:1304050. [PMID: 38189044 PMCID: PMC10770830 DOI: 10.3389/fendo.2023.1304050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Early-life conditions such as prenatal nutrition can have long-term effects on metabolic health, and these effects may differ between males and females. Understanding the biological mechanisms underlying sex differences in the response to early-life environment will improve interventions, but few such mechanisms have been identified, and there is no overall framework for understanding sex differences. Biological sex differences may be due to chromosomal sex, gonadal sex, or interactions between the two. This review describes approaches to distinguish between the roles of chromosomal and gonadal sex, and summarizes findings regarding sex differences in metabolism. The Four Core Genotypes (FCG) mouse model allows dissociation of the sex chromosome genotype from gonadal type, whereas the XY* mouse model can be used to distinguish effects of X chromosome dosage vs the presence of the Y chromosome. Gonadectomy can be used to distinguish between organizational (permanent) and activational (reversible) effects of sex hormones. Baseline sex differences in a variety of metabolic traits are influenced by both activational and organizational effects of gonadal hormones, as well as sex chromosome complement. Thus far, these approaches have not been widely applied to examine sex-dependent effects of prenatal conditions, although a number of studies have found activational effects of estradiol to be protective against the development of hypertension following early-life adversity. Genes that escape X chromosome inactivation (XCI), such as Kdm5c, contribute to baseline sex-differences in metabolism, while Ogt, another XCI escapee, leads to sex-dependent responses to prenatal maternal stress. Genome-wide approaches to the study of sex differences include mapping genetic loci influencing metabolic traits in a sex-dependent manner. Seeking enrichment for binding sites of hormone receptors among genes showing sexually-dimorphic expression can elucidate the relative roles of hormones. Using the approaches described herein to identify mechanisms underlying sex-dependent effects of early nutrition on metabolic health may enable the identification of fundamental mechanisms and potential interventions.
Collapse
Affiliation(s)
- Julian K. Christians
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Women’s Health Research Institute, BC Women’s Hospital and Health Centre, Vancouver, BC, Canada
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Noto NT, Raudsepp T, Kolb E, Hague DW, Lara MM, Rosser MF. A rare finding of double Barr bodies and X-monosomy/X-trisomy mosaicism in a dog with presumed idiopathic epilepsy. Vet Clin Pathol 2023; 52:583-587. [PMID: 37448119 DOI: 10.1111/vcp.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 04/17/2023] [Indexed: 07/15/2023]
Abstract
A 4-year-old spayed female Border Collie dog presented to the Neurology and Neurosurgery service for an approximately five-month history of seizures. A complete neurodiagnostic workup was performed and did not reveal any significant abnormalities. The patient's seizures were well controlled with a combination of anticonvulsants. During a manual blood smear review at a follow-up appointment, double Barr bodies were identified in segmented neutrophils. Karyotyping revealed that the patient is mosaic for X-monosomy and X-trisomy, a finding that has never been reported in a dog and is rarely reported in people. This case demonstrates how the identification of abnormal neutrophil nuclear appendages may correlate with chromosomal abnormalities in dogs.
Collapse
Affiliation(s)
- Nicholas T Noto
- Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, Illinois, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ellie Kolb
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Devon W Hague
- Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, Illinois, USA
| | - Melissa M Lara
- Veterinary Diagnostic Laboratory, University of Illinois College of Veterinary Medicine, Urbana, Illinois, USA
| | - Michael F Rosser
- Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, Illinois, USA
| |
Collapse
|
11
|
Peeters SB, Posynick BJ, Brown CJ. Out of the Silence: Insights into How Genes Escape X-Chromosome Inactivation. EPIGENOMES 2023; 7:29. [PMID: 38131901 PMCID: PMC10742877 DOI: 10.3390/epigenomes7040029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
The silencing of all but one X chromosome in mammalian cells is a remarkable epigenetic process leading to near dosage equivalence in X-linked gene products between the sexes. However, equally remarkable is the ability of a subset of genes to continue to be expressed from the otherwise inactive X chromosome-in some cases constitutively, while other genes are variable between individuals, tissues or cells. In this review we discuss the advantages and disadvantages of the approaches that have been used to identify escapees. The identity of escapees provides important clues to mechanisms underlying escape from XCI, an arena of study now moving from correlation to functional studies. As most escapees show greater expression in females, the not-so-inactive X chromosome is a substantial contributor to sex differences in humans, and we highlight some examples of such impact.
Collapse
Affiliation(s)
| | | | - Carolyn J. Brown
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
12
|
Keniry A, Blewitt ME. Chromatin-mediated silencing on the inactive X chromosome. Development 2023; 150:dev201742. [PMID: 37991053 DOI: 10.1242/dev.201742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In mammals, the second X chromosome in females is silenced to enable dosage compensation between XX females and XY males. This essential process involves the formation of a dense chromatin state on the inactive X (Xi) chromosome. There is a wealth of information about the hallmarks of Xi chromatin and the contribution each makes to silencing, leaving the tantalising possibility of learning from this knowledge to potentially remove silencing to treat X-linked diseases in females. Here, we discuss the role of each chromatin feature in the establishment and maintenance of the silent state, which is of crucial relevance for such a goal.
Collapse
Affiliation(s)
- Andrew Keniry
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
13
|
Jiwrajka N, Toothacre NE, Beethem ZT, Sting S, Forsyth KS, Dubin AH, Driscoll A, Stohl W, Anguera MC. Impaired dynamic X-chromosome inactivation maintenance in T cells is a feature of spontaneous murine SLE that is exacerbated in female-biased models. J Autoimmun 2023; 139:103084. [PMID: 37399593 PMCID: PMC11140471 DOI: 10.1016/j.jaut.2023.103084] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a highly female-biased systemic autoimmune disease, but the molecular basis for this female bias remains incompletely elucidated. B and T lymphocytes from patients with SLE and female-biased mouse models of SLE exhibit features of epigenetic dysregulation on the X chromosome which may contribute to this strong female bias. We therefore examined the fidelity of dynamic X-chromosome inactivation maintenance (dXCIm) in the pathogenesis of two murine models of spontaneous lupus-NZM2328 and MRL/lpr-with disparate levels of female-bias to determine whether impaired dXCIm contributes to the female bias of disease. METHODS CD23+ B cells and CD3+ T cells were purified from age-matched C57BL/6 (B6), MRL/lpr, and NZM2328 male and female mice, activated in vitro, and processed for Xist RNA fluorescence in situ hybridization, H3K27me3 immunofluorescence imaging, qPCR, and RNA sequencing analyses. RESULTS The dynamic relocalization of Xist RNA and the canonical heterochromatin mark, H3K27me3, to the inactive X chromosome was preserved in CD23+ B cells, but impaired in activated CD3+ T cells from the MRL/lpr model (p < 0.01 vs. B6), and even more impaired in the heavily female-biased NZM2328 model (p < 0.001 vs. B6; p < 0.05 vs. MRL/lpr). RNAseq of activated T cells from NZM2328 mice revealed the female-biased upregulation of 32 X-linked genes distributed broadly across the X chromosome, many of which have roles in immune function. Many genes encoding Xist RNA-interacting proteins were also differentially expressed and predominantly downregulated, which may account for the observed mislocalization of Xist RNA to the inactive X chromosome. CONCLUSIONS Although evident in T cells from both the MRL/lpr and NZM2328 models of spontaneous SLE, impaired dXCIm is more severe in the heavily female-biased NZM2328 model. The aberrant X-linked gene dosage in female NZM2328 mice may contribute towards the development of female-biased immune responses in SLE-prone hosts. These findings provide important insights into the epigenetic mechanisms contributing to female-biased autoimmunity.
Collapse
Affiliation(s)
- Nikhil Jiwrajka
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA; Division of Rheumatology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Natalie E Toothacre
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Zachary T Beethem
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Sarah Sting
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Katherine S Forsyth
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Aimee H Dubin
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Amanda Driscoll
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Wu Y, Wu D, Lan Y, Lan S, Li D, Zheng Z, Wang H, Ma L. Case report: Sex-specific characteristics of epilepsy phenotypes associated with Xp22.31 deletion: a case report and review. Front Genet 2023; 14:1025390. [PMID: 37347056 PMCID: PMC10280017 DOI: 10.3389/fgene.2023.1025390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Deletion in the Xp22.31 region is increasingly suggested to be involved in the etiology of epilepsy. Little is known regarding the genomic and clinical delineations of X-linked epilepsy in the Chinese population or the sex-stratified difference in epilepsy characteristics associated with deletions in the Xp22.31 region. In this study, we reported two siblings with a 1.69 Mb maternally inherited microdeletion at Xp22.31 involving the genes VCX3A, HDHD1, STS, VCX, VCX2, and PNPLA4 presenting with easily controlled focal epilepsy and language delay with mild ichthyosis in a Chinese family with a traceable 4-generation history of skin ichthyosis. Both brain magnetic resonance imaging results were normal, while EEG revealed epileptic abnormalities. We further performed an exhaustive literature search, documenting 25 patients with epilepsy with gene defects in Xp22.31, and summarized the epilepsy heterogeneities between sexes. Males harboring the Xp22.31 deletion mainly manifested with child-onset, easily controlled focal epilepsy accompanied by X-linked ichthyosis; the deletions were mostly X-linked recessive, with copy number variants (CNVs) in the classic region of deletion (863.38 kb-2 Mb). In contrast, epilepsy in females tended to be earlier-onset, and relatively refractory, with pathogenic CNV sizes varying over a larger range (859 kb-56.36 Mb); the alterations were infrequently inherited and almost combined with additional CNVs. A candidate region encompassing STS, HDHD1, and MIR4767 was the likely pathogenic epilepsy-associated region. This study filled in the knowledge gap regarding the genomic and clinical delineations of X-linked recessive epilepsy in the Chinese population and extends the understanding of the sex-specific characteristics of Xp22.31 deletion in regard to epilepsy.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Dan Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Yulong Lan
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shaocong Lan
- Department of clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Duo Li
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zexin Zheng
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hongwu Wang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lian Ma
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Hematology and Oncology, Shenzhen Children’s Hospital of China Medical University, Shenzhen, China
- Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University (The Women and Children’s Hospital of Guangzhou Medical University), Guangzhou, China
| |
Collapse
|
15
|
Krueger K, Lamenza F, Gu H, El-Hodiri H, Wester J, Oberdick J, Fischer AJ, Oghumu S. Sex differences in susceptibility to substance use disorder: Role for X chromosome inactivation and escape? Mol Cell Neurosci 2023; 125:103859. [PMID: 37207894 PMCID: PMC10286730 DOI: 10.1016/j.mcn.2023.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
There is a sex-based disparity associated with substance use disorders (SUDs) as demonstrated by clinical and preclinical studies. Females are known to escalate from initial drug use to compulsive drug-taking behavior (telescoping) more rapidly, and experience greater negative withdrawal effects than males. Although these biological differences have largely been attributed to sex hormones, there is evidence for non-hormonal factors, such as the influence of the sex chromosome, which underlie sex disparities in addiction behavior. However, genetic and epigenetic mechanisms underlying sex chromosome influences on substance abuse behavior are not completely understood. In this review, we discuss the role that escape from X-chromosome inactivation (XCI) in females plays in sex-associated differences in addiction behavior. Females have two X chromosomes (XX), and during XCI, one X chromosome is randomly chosen to be transcriptionally silenced. However, some X-linked genes escape XCI and display biallelic gene expression. We generated a mouse model using an X-linked gene specific bicistronic dual reporter mouse as a tool to visualize allelic usage and measure XCI escape in a cell specific manner. Our results revealed a previously undiscovered X-linked gene XCI escaper (CXCR3), which is variable and cell type dependent. This illustrates the highly complex and context dependent nature of XCI escape which is largely understudied in the context of SUD. Novel approaches such as single cell RNA sequencing will provide a global molecular landscape and impact of XCI escape in addiction and facilitate our understanding of the contribution of XCI escape to sex disparities in SUD.
Collapse
Affiliation(s)
- Kate Krueger
- Department of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Felipe Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Howard Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Heithem El-Hodiri
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Jason Wester
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - John Oberdick
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
16
|
Peeters S, Leung T, Fornes O, Farkas R, Wasserman W, Brown C. Refining the genomic determinants underlying escape from X-chromosome inactivation. NAR Genom Bioinform 2023; 5:lqad052. [PMID: 37260510 PMCID: PMC10227363 DOI: 10.1093/nargab/lqad052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
X-chromosome inactivation (XCI) epigenetically silences one X chromosome in every cell in female mammals. Although the majority of X-linked genes are silenced, in humans 20% or more are able to escape inactivation and continue to be expressed. Such escape genes are important contributors to sex differences in gene expression, and may impact the phenotypes of X aneuploidies; yet the mechanisms regulating escape from XCI are not understood. We have performed an enrichment analysis of transcription factor binding on the X chromosome, providing new evidence for enriched factors at the transcription start sites of escape genes. The top escape-enriched transcription factors were detected at the RPS4X promoter, a well-described human escape gene previously demonstrated to escape from XCI in a transgenic mouse model. Using a cell line model system that allows for targeted integration and inactivation of transgenes on the mouse X chromosome, we further assessed combinations of RPS4X promoter and genic elements for their ability to drive escape from XCI. We identified a small transgenic construct of only 6 kb capable of robust escape from XCI, establishing that gene-proximal elements are sufficient to permit escape, and highlighting the additive effect of multiple elements that work together in a context-specific fashion.
Collapse
Affiliation(s)
- Samantha Peeters
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiffany Leung
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oriol Fornes
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachelle A Farkas
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wyeth W Wasserman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Reale C, Invernizzi F, Panteghini C, Garavaglia B. Genetics, sex, and gender. J Neurosci Res 2023; 101:553-562. [PMID: 34498752 DOI: 10.1002/jnr.24945] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
This review aims to give an overview of what has been discovered so far and what still needs to be analyzed about how sex and gender affect the disease development. These two terms are often confused and indifferently used. In principle, the term "sex" refers to biological differences between males and females, specifically reproductive organs and their functions, while the term "gender" refers to the social context in which people live and which contributes to a subjective sexual identity, masculine or feminine. This dichotomy, however, is not so rigid and both sex and gender influence different aspects of human health, such as brain, health and aging and drug treatment and pharmacokinetics. In particular, we want to focus on genetic differences between men and women: indeed, the expression of the genes mapped on X chromosome or Y chromosome and all epigenetic interactions affect the diseases development. Finally, we will briefly outline sex and gender differences in clinical manifestations of three neurological diseases: Alzheimer's disease, Parkinson's disease, and obsessive compulsive disorder. In the era of personalized medicine, we must not forget the importance of gender medicine to promote personalized care for any kind of patients.
Collapse
Affiliation(s)
- Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| |
Collapse
|
18
|
Strathmann EA, Hölker I, Tschernoster N, Hosseinibarkooie S, Come J, Martinat C, Altmüller J, Wirth B. Epigenetic regulation of plastin 3 expression by the macrosatellite DXZ4 and the transcriptional regulator CHD4. Am J Hum Genet 2023; 110:442-459. [PMID: 36812914 PMCID: PMC10027515 DOI: 10.1016/j.ajhg.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
Dysregulated Plastin 3 (PLS3) levels associate with a wide range of skeletal and neuromuscular disorders and the most common types of solid and hematopoietic cancer. Most importantly, PLS3 overexpression protects against spinal muscular atrophy. Despite its crucial role in F-actin dynamics in healthy cells and its involvement in many diseases, the mechanisms that regulate PLS3 expression are unknown. Interestingly, PLS3 is an X-linked gene and all asymptomatic SMN1-deleted individuals in SMA-discordant families who exhibit PLS3 upregulation are female, suggesting that PLS3 may escape X chromosome inactivation. To elucidate mechanisms contributing to PLS3 regulation, we performed a multi-omics analysis in two SMA-discordant families using lymphoblastoid cell lines and iPSC-derived spinal motor neurons originated from fibroblasts. We show that PLS3 tissue-specifically escapes X-inactivation. PLS3 is located ∼500 kb proximal to the DXZ4 macrosatellite, which is essential for X chromosome inactivation. By applying molecular combing in a total of 25 lymphoblastoid cell lines (asymptomatic individuals, individuals with SMA, control subjects) with variable PLS3 expression, we found a significant correlation between the copy number of DXZ4 monomers and PLS3 levels. Additionally, we identified chromodomain helicase DNA binding protein 4 (CHD4) as an epigenetic transcriptional regulator of PLS3 and validated co-regulation of the two genes by siRNA-mediated knock-down and overexpression of CHD4. We show that CHD4 binds the PLS3 promoter by performing chromatin immunoprecipitation and that CHD4/NuRD activates the transcription of PLS3 by dual-luciferase promoter assays. Thus, we provide evidence for a multilevel epigenetic regulation of PLS3 that may help to understand the protective or disease-associated PLS3 dysregulation.
Collapse
Affiliation(s)
- Eike A Strathmann
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Irmgard Hölker
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Nikolai Tschernoster
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Cologne Center for Genomics and West German Genome Center, University of Cologne, 50931 Cologne, Germany
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Julien Come
- INSERM/ UEVE UMR 861, Université Paris Saclay, I-STEM, 91100 Corbeil-Essonnes, France
| | - Cecile Martinat
- INSERM/ UEVE UMR 861, Université Paris Saclay, I-STEM, 91100 Corbeil-Essonnes, France
| | - Janine Altmüller
- Cologne Center for Genomics and West German Genome Center, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Center for Rare Diseases, University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
19
|
Sierra I, Pyfrom S, Weiner A, Zhao G, Driscoll A, Yu X, Gregory BD, Vaughan AE, Anguera MC. Unusual X chromosome inactivation maintenance in female alveolar type 2 cells is correlated with increased numbers of X-linked escape genes and sex-biased gene expression. Stem Cell Reports 2023; 18:489-502. [PMID: 36638790 PMCID: PMC9968984 DOI: 10.1016/j.stemcr.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Sex differences exist for many lung pathologies, including COVID-19 and pulmonary fibrosis, but the mechanistic basis for this remains unclear. Alveolar type 2 cells (AT2s), which play a key role in alveolar lung regeneration, express the X-linked Ace2 gene that has roles in lung repair and SARS-CoV-2 pathogenesis, suggesting that X chromosome inactivation (XCI) in AT2s might impact sex-biased lung pathology. Here we investigate XCI maintenance and sex-specific gene expression profiles using male and female AT2s. Remarkably, the inactive X chromosome (Xi) lacks robust canonical Xist RNA "clouds" and less enrichment of heterochromatic modifications in human and mouse AT2s. We demonstrate that about 68% of expressed X-linked genes in mouse AT2s, including Ace2, escape XCI. There are genome-wide expression differences between male and female AT2s, likely influencing both lung physiology and pathophysiologic responses. These studies support a renewed focus on AT2s as a potential contributor to sex-biased differences in lung disease.
Collapse
Affiliation(s)
- Isabel Sierra
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Pyfrom
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron Weiner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Driscoll
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiang Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Ciesielski TH, Bartlett J, Iyengar SK, Williams SM. Hemizygosity can reveal variant pathogenicity on the X-chromosome. Hum Genet 2023; 142:11-19. [PMID: 35994124 PMCID: PMC9840679 DOI: 10.1007/s00439-022-02478-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/10/2022] [Indexed: 01/24/2023]
Abstract
Pathogenic variants on the X-chromosome can have more severe consequences for hemizygous males, while heterozygote females can avoid severe consequences due to diploidy and the capacity for nonrandom expression. Thus, when an allele is more common in females this could indicate that it increases the probability of early death in the male hemizygous state, which can be considered a measure of pathogenicity. Importantly, large-scale genomic data now makes it possible to compare allele proportions between the sexes. To discover pathogenic variants on the X-chromosome, we analyzed exome data from 125,748 ancestrally diverse participants in the Genome Aggregation Database (gnomAD). After filtering out duplicates and extremely rare variants, 44,606 of the original 348,221 remained for analysis. We divided the proportion of variant alleles in females by the proportion in males for all variant sites, and then placed each variant into one of three a priori categories: (1) Reference (Primarily synonymous and intronic), (2) Unlikely-to-be-tolerated (Primarily missense), and (3) Least-likely-to-be-tolerated (Primarily frameshift). To assess the impact of ploidy, we compared the distribution of these ratios between pseudoautosomal and non-pseudoautosomal regions. In the non-pseudoautosomal regions, mean female-to-male ratios were lowest among Reference (2.40), greater for Unlikely-to-be-tolerated (2.77) and highest for Least-likely-to-be-tolerated (3.28) variants. Corresponding ratios were lower in the pseudoautosomal regions (1.52, 1.57, and 1.68, respectively), with the most extreme ratio being just below 11. Because pathogenic effects in the pseudoautosomal regions should not drive ratio increases, this maximum ratio provides an upper bound for baseline noise. In the non-pseudoautosomal regions, 319 variants had a ratio over 11. In sum, we identified a measure with a dataset specific threshold for identifying pathogenicity in non-pseudoautosomal X-chromosome variants: the female-to-male allele proportion ratio.
Collapse
Affiliation(s)
- Timothy H. Ciesielski
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH,Mary Ann Swetland Center for Environmental Health at Case Western Reserve University School of Medicine, Cleveland, OH,Ronin Institute, Montclair, NJ
| | - Jacquelaine Bartlett
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH
| | - Sudha K. Iyengar
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH,The Department of Genetics and Genome Sciences at Case Western Reserve University School of Medicine, Cleveland, OH,Cleveland Institute for Computational Biology, Cleveland, OH
| | - Scott M. Williams
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH,The Department of Genetics and Genome Sciences at Case Western Reserve University School of Medicine, Cleveland, OH,Cleveland Institute for Computational Biology, Cleveland, OH
| |
Collapse
|
21
|
Hayden LP, Hobbs BD, Busch R, Cho MH, Liu M, Lopes-Ramos CM, Lomas DA, Bakke P, Gulsvik A, Silverman EK, Crapo JD, Beaty TH, Laird NM, Lange C, DeMeo DL. X chromosome associations with chronic obstructive pulmonary disease and related phenotypes: an X chromosome-wide association study. Respir Res 2023; 24:38. [PMID: 36726148 PMCID: PMC9891756 DOI: 10.1186/s12931-023-02337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The association between genetic variants on the X chromosome to risk of COPD has not been fully explored. We hypothesize that the X chromosome harbors variants important in determining risk of COPD related phenotypes and may drive sex differences in COPD manifestations. METHODS Using X chromosome data from three COPD-enriched cohorts of adult smokers, we performed X chromosome specific quality control, imputation, and testing for association with COPD case-control status, lung function, and quantitative emphysema. Analyses were performed among all subjects, then stratified by sex, and subsequently combined in meta-analyses. RESULTS Among 10,193 subjects of non-Hispanic white or European ancestry, a variant near TMSB4X, rs5979771, reached genome-wide significance for association with lung function measured by FEV1/FVC ([Formula: see text] 0.020, SE 0.004, p 4.97 × 10-08), with suggestive evidence of association with FEV1 ([Formula: see text] 0.092, SE 0.018, p 3.40 × 10-07). Sex-stratified analyses revealed X chromosome variants that were differentially trending in one sex, with significantly different effect sizes or directions. CONCLUSIONS This investigation identified loci influencing lung function, COPD, and emphysema in a comprehensive genetic association meta-analysis of X chromosome genetic markers from multiple COPD-related datasets. Sex differences play an important role in the pathobiology of complex lung disease, including X chromosome variants that demonstrate differential effects by sex and variants that may be relevant through escape from X chromosome inactivation. Comprehensive interrogation of the X chromosome to better understand genetic control of COPD and lung function is important to further understanding of disease pathology. Trial registration Genetic Epidemiology of COPD Study (COPDGene) is registered at ClinicalTrials.gov, NCT00608764 (Active since January 28, 2008). Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints Study (ECLIPSE), GlaxoSmithKline study code SCO104960, is registered at ClinicalTrials.gov, NCT00292552 (Active since February 16, 2006). Genetics of COPD in Norway Study (GenKOLS) holds GlaxoSmithKline study code RES11080, Genetics of Chronic Obstructive Lung Disease.
Collapse
Affiliation(s)
- Lystra P. Hayden
- grid.38142.3c000000041936754XDivision of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA
| | - Brian D. Hobbs
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Robert Busch
- grid.417587.80000 0001 2243 3366Division of Pulmonology, Allergy, and Critical Care, U.S. Food and Drug Administration, Silver Spring, MD USA
| | - Michael H. Cho
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Ming Liu
- grid.268323.e0000 0001 1957 0327Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA USA
| | - Camila M. Lopes-Ramos
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - David A. Lomas
- grid.83440.3b0000000121901201UCL Respiratory, University College London, London, UK
| | - Per Bakke
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amund Gulsvik
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Edwin K. Silverman
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - James D. Crapo
- grid.240341.00000 0004 0396 0728Division of Pulmonary Sciences and Critical Care Medicine, National Jewish Health, Denver, CO USA
| | - Terri H. Beaty
- grid.21107.350000 0001 2171 9311Johns Hopkins School of Public Health, Baltimore, MD USA
| | - Nan M. Laird
- grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Christoph Lange
- grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Dawn L. DeMeo
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
22
|
Ma J, Yao Y, Tian Y, Chen K, Liu B. Advances in sex disparities for cancer immunotherapy: unveiling the dilemma of Yin and Yang. Biol Sex Differ 2022; 13:58. [PMID: 36273184 PMCID: PMC9587634 DOI: 10.1186/s13293-022-00469-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
A wide sex disparity has been demonstrated in cancer incidence, tumor aggressiveness, prognosis, and treatment response of different types of cancer. The sex specificity of cancer appears to be a relevant issue in managing the disease, and studies investigating the role of sex and gender are becoming extremely urgent. Immunotherapy plays a leading role in cancer treatment, offering a new perspective on advanced malignancies. Gender has not been considered in standard cancer treatment, suggesting increasing the recognition of sex differences in cancer research and clinical management. This paper provides an overview of sex and gender disparities in cancer immunotherapy efficacy, anti-cancer immune response, predictive biomarkers, and so on. We focus on the molecular differences between male and female patients across a broad range of cancer types to arouse the attention and practice of clinicians and researchers in a sex perspective of new cancer treatment strategies. Sex differences exist in the prevalence, tumor invasiveness, treatment responses, and clinical outcomes of pan-cancer, suggesting that, while not yet incorporated, sex will probably be considered in future practice guidelines. Inherent genetic differences, overlapping epigenetic alterations, and sex hormone influences underpin everything. Androgen receptors influence the sexual differences in TME by regulating epigenetic and transcriptional differentiation programs. It highlights a sex-based therapeutic target for cancer immunotherapy. Proper consideration of sex, age, sex hormones/menopause status, and socio-cultural gender differences in clinical investigation and gene association studies of cancer are needed to fill current gaps and implement precision medicine for patients with cancer.
Collapse
Affiliation(s)
- Junfu Ma
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Yanxin Yao
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Ye Tian
- Department of Senior Ward, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Ben Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
| |
Collapse
|
23
|
Cabrera Zapata LE, Garcia-Segura LM, Cambiasso MJ, Arevalo MA. Genetics and Epigenetics of the X and Y Chromosomes in the Sexual Differentiation of the Brain. Int J Mol Sci 2022; 23:ijms232012288. [PMID: 36293143 PMCID: PMC9603441 DOI: 10.3390/ijms232012288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
For many decades to date, neuroendocrinologists have delved into the key contribution of gonadal hormones to the generation of sex differences in the developing brain and the expression of sex-specific physiological and behavioral phenotypes in adulthood. However, it was not until recent years that the role of sex chromosomes in the matter started to be seriously explored and unveiled beyond gonadal determination. Now we know that the divergent evolutionary process suffered by X and Y chromosomes has determined that they now encode mostly dissimilar genetic information and are subject to different epigenetic regulations, characteristics that together contribute to generate sex differences between XX and XY cells/individuals from the zygote throughout life. Here we will review and discuss relevant data showing how particular X- and Y-linked genes and epigenetic mechanisms controlling their expression and inheritance are involved, along with or independently of gonadal hormones, in the generation of sex differences in the brain.
Collapse
Affiliation(s)
- Lucas E. Cabrera Zapata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Cajal (IC), Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | | | - María Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Cátedra de Biología Celular, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Correspondence: (M.J.C.); (M.A.A.)
| | - Maria Angeles Arevalo
- Instituto Cajal (IC), Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (M.J.C.); (M.A.A.)
| |
Collapse
|
24
|
Yang T, Ou J, Yildirim E. Xist exerts gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis. Nat Commun 2022; 13:4464. [PMID: 35915095 PMCID: PMC9343370 DOI: 10.1038/s41467-022-32273-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/21/2022] [Indexed: 11/12/2022] Open
Abstract
X chromosome inactivation (XCI) is a dosage compensation phenomenon that occurs in females. Initiation of XCI depends on Xist RNA, which triggers silencing of one of the two X chromosomes, except for XCI escape genes that continue to be biallelically expressed. In the soma XCI is stably maintained with continuous Xist expression. How Xist impacts XCI maintenance remains an open question. Here we conditionally delete Xist in hematopoietic system of mice and report differentiation and cell cycle defects in female hematopoietic stem and progenitor cells (HSPCs). By utilizing female HSPCs and mouse embryonic fibroblasts, we find that X-linked genes show variable tolerance to Xist loss. Specifically, XCI escape genes exhibit preferential transcriptional upregulation, which associates with low H3K27me3 occupancy and high chromatin accessibility that accommodates preexisting binding of transcription factors such as Yin Yang 1 (YY1) at the basal state. We conclude that Xist is necessary for gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis. Here the authors investigate the functional relevance of X-chromosome inactivation (XCI) regulator Xist in hematopoiesis. They find that Xist loss leads to changes in the ratio of hematopoietic progenitor cells and results in chromatin accessibility and transcriptional upregulation on the inactive X chromosome, including XCI escape genes known to be associated with cell cycle and immune response.
Collapse
Affiliation(s)
- Tianqi Yang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Duke Regeneration Center, Duke University, Durham, NC, 27710, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jianhong Ou
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Duke Regeneration Center, Duke University, Durham, NC, 27710, USA
| | - Eda Yildirim
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA. .,Duke Regeneration Center, Duke University, Durham, NC, 27710, USA. .,Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
25
|
Jiwrajka N, Anguera MC. The X in seX-biased immunity and autoimmune rheumatic disease. J Exp Med 2022; 219:e20211487. [PMID: 35510951 PMCID: PMC9075790 DOI: 10.1084/jem.20211487] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/31/2022] [Indexed: 01/07/2023] Open
Abstract
Sexual dimorphism in the composition and function of the human immune system has important clinical implications, as males and females differ in their susceptibility to infectious diseases, cancers, and especially systemic autoimmune rheumatic diseases. Both sex hormones and the X chromosome, which bears a number of immune-related genes, play critical roles in establishing the molecular basis for the observed sex differences in immune function and dysfunction. Here, we review our current understanding of sex differences in immune composition and function in health and disease, with a specific focus on the contribution of the X chromosome to the striking female bias of three autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Nikhil Jiwrajka
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Montserrat C. Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
26
|
Lehman NL, Spassky N, Sak M, Webb A, Zumbar CT, Usubalieva A, Alkhateeb KJ, McElroy JP, Maclean KH, Fadda P, Liu T, Gangalapudi V, Carver J, Abdullaev Z, Timmers C, Parker JR, Pierson CR, Mobley BC, Gokden M, Hattab EM, Parrett T, Cooke RX, Lehman TD, Costinean S, Parwani A, Williams BJ, Jensen RL, Aldape K, Mistry AM. Astroblastomas exhibit radial glia stem cell lineages and differential expression of imprinted and X-inactivation escape genes. Nat Commun 2022; 13:2083. [PMID: 35440587 PMCID: PMC9018799 DOI: 10.1038/s41467-022-29302-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Astroblastomas (ABs) are rare brain tumors of unknown origin. We performed an integrative genetic and epigenetic analysis of AB-like tumors. Here, we show that tumors traceable to neural stem/progenitor cells (radial glia) that emerge during early to later brain development occur in children and young adults, respectively. Tumors with MN1-BEND2 fusion appear to present exclusively in females and exhibit overexpression of genes expressed prior to 25 post-conception weeks (pcw), including genes enriched in early ventricular zone radial glia and ependymal tumors. Other, histologically classic ABs overexpress or harbor mutations of mitogen-activated protein kinase pathway genes, outer and truncated radial glia genes, and genes expressed after 25 pcw, including neuronal and astrocyte markers. Findings support that AB-like tumors arise in the context of epigenetic and genetic changes in neural progenitors. Selective gene fusion, variable imprinting and/or chromosome X-inactivation escape resulting in biallelic overexpression may contribute to female predominance of AB molecular subtypes.
Collapse
Affiliation(s)
- Norman L Lehman
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA.
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40202, USA.
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| | - Nathalie Spassky
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École Normale Supérieure, PSL Research University, Paris, France
| | - Müge Sak
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40202, USA
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Cory T Zumbar
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Aisulu Usubalieva
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Khaled J Alkhateeb
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Joseph P McElroy
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Paolo Fadda
- Department of Cancer Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Tom Liu
- Solid Tumor Translational Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Vineela Gangalapudi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jamie Carver
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Cynthia Timmers
- Solid Tumor Translational Science, The Ohio State University, Columbus, OH, 43210, USA
| | - John R Parker
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Murat Gokden
- Department of Pathology and Laboratory Services, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Eyas M Hattab
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Timothy Parrett
- Department of Pathology and Anatomic Sciences, University of Missouri, Columbia, MO, 65212, USA
| | - Ralph X Cooke
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Trang D Lehman
- Department of Family and Community Medicine, Contra Costa County Health System, Martinez, CA, 94553, USA
| | - Stefan Costinean
- Department of Pathology, Banner Gateway Medical Center, MD Anderson Cancer Center, Tempe, AZ, 85284, USA
| | - Anil Parwani
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Brian J Williams
- Department of Neurosurgery, University of Louisville, Louisville, KY, 40202, USA
| | - Randy L Jensen
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, 84132, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Akshitkumar M Mistry
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
27
|
Mammalian X-chromosome inactivation: proposed role in suppression of the male programme in genetic females. J Genet 2022. [DOI: 10.1007/s12041-022-01363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Pasterkamp G, den Ruijter HM, Giannarelli C. False Utopia of One Unifying Description of the Vulnerable Atherosclerotic Plaque: A Call for Recalibration That Appreciates the Diversity of Mechanisms Leading to Atherosclerotic Disease. Arterioscler Thromb Vasc Biol 2022; 42:e86-e95. [PMID: 35139657 DOI: 10.1161/atvbaha.121.316693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerosis is a complex disease characterized by the formation of arterial plaques with a broad diversity of morphological phenotypic presentations. Researchers often apply one description of the vulnerable plaque as a gold standard in preclinical and clinical research that could be applied as a surrogate measure of a successful therapeutic intervention, despite the variability in lesion characteristics that may underly a thrombotic occlusion. The complex mechanistic interplay underlying progression of atherosclerotic disease is a consequence of the broad range of determinants such as sex, risk factors, hemodynamics, medications, and the genetic landscape. Currently, we are facing an overwhelming amount of data based on genetic, transcriptomic, proteomic, and metabolomic studies that all point to heterogeneous molecular profiles of atherosclerotic lesions that lead to a myocardial infarction or stroke. The observed molecular diversity implies that one unifying model cannot fully recapitulate the natural history of atherosclerosis. Despite emerging data obtained from -omics studies, a description of a natural history of atherosclerotic disease in which cell-specific expression of proteins or genes are included is still lacking. This also applies to the insights provided by genome-wide association studies. This review will critically discuss the dogma that the progression of atherosclerotic disease can be captured in one unifying natural history model of atherosclerosis.
Collapse
Affiliation(s)
- Gerard Pasterkamp
- Circulatory Health Laboratories (G.P., H.M.d.R.), University Medical Center Utrecht, the Netherlands.,Central Diagnostics Laboratories (G.P.), University Medical Center Utrecht, the Netherlands
| | - Hester M den Ruijter
- Circulatory Health Laboratories (G.P., H.M.d.R.), University Medical Center Utrecht, the Netherlands.,Laboratory of Experimental Cardiology (H.M.d.R.), University Medical Center Utrecht, the Netherlands
| | - Chiara Giannarelli
- NYU Cardiovascular Research Center (C.G.), New York University Grossman School of Medicine.,Department of Pathology (C.G.), New York University Grossman School of Medicine
| |
Collapse
|
29
|
X-Chromosome Inactivation and Related Diseases. Genet Res (Camb) 2022; 2022:1391807. [PMID: 35387179 PMCID: PMC8977309 DOI: 10.1155/2022/1391807] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
X-chromosome inactivation (XCI) is the form of dosage compensation in mammalian female cells to balance X-linked gene expression levels of the two sexes. Many diseases are related to XCI due to inactivation escape and skewing, and the symptoms and severity of these diseases also largely depend on the status of XCI. They can be divided into 3 types: X-linked diseases, diseases that are affected by XCI escape, and X-chromosome aneuploidy. Here, we review representative diseases in terms of their definition, symptoms, and XCI’s role in the pathogenesis of these diseases.
Collapse
|
30
|
Fisher JL, Jones EF, Flanary VL, Williams AS, Ramsey EJ, Lasseigne BN. Considerations and challenges for sex-aware drug repurposing. Biol Sex Differ 2022; 13:13. [PMID: 35337371 PMCID: PMC8949654 DOI: 10.1186/s13293-022-00420-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/06/2022] [Indexed: 01/09/2023] Open
Abstract
Sex differences are essential factors in disease etiology and manifestation in many diseases such as cardiovascular disease, cancer, and neurodegeneration [33]. The biological influence of sex differences (including genomic, epigenetic, hormonal, immunological, and metabolic differences between males and females) and the lack of biomedical studies considering sex differences in their study design has led to several policies. For example, the National Institute of Health's (NIH) sex as a biological variable (SABV) and Sex and Gender Equity in Research (SAGER) policies to motivate researchers to consider sex differences [204]. However, drug repurposing, a promising alternative to traditional drug discovery by identifying novel uses for FDA-approved drugs, lacks sex-aware methods that can improve the identification of drugs that have sex-specific responses [7, 11, 14, 33]. Sex-aware drug repurposing methods either select drug candidates that are more efficacious in one sex or deprioritize drug candidates based on if they are predicted to cause a sex-bias adverse event (SBAE), unintended therapeutic effects that are more likely to occur in one sex. Computational drug repurposing methods are encouraging approaches to develop for sex-aware drug repurposing because they can prioritize sex-specific drug candidates or SBAEs at lower cost and time than traditional drug discovery. Sex-aware methods currently exist for clinical, genomic, and transcriptomic information [1, 7, 155]. They have not expanded to other data types, such as DNA variation, which has been beneficial in other drug repurposing methods that do not consider sex [114]. Additionally, some sex-aware methods suffer from poorer performance because a disproportionate number of male and female samples are available to train computational methods [7]. However, there is development potential for several different categories (i.e., data mining, ligand binding predictions, molecular associations, and networks). Low-dimensional representations of molecular association and network approaches are also especially promising candidates for future sex-aware drug repurposing methodologies because they reduce the multiple hypothesis testing burden and capture sex-specific variation better than the other methods [151, 159]. Here we review how sex influences drug response, the current state of drug repurposing including with respect to sex-bias drug response, and how model organism study design choices influence drug repurposing validation.
Collapse
Affiliation(s)
- Jennifer L. Fisher
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Emma F. Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Victoria L. Flanary
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Avery S. Williams
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Elizabeth J. Ramsey
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
31
|
Al Adhami H, Bardet AF, Dumas M, Cleroux E, Guibert S, Fauque P, Acloque H, Weber M. A comparative methylome analysis reveals conservation and divergence of DNA methylation patterns and functions in vertebrates. BMC Biol 2022; 20:70. [PMID: 35317801 PMCID: PMC8941758 DOI: 10.1186/s12915-022-01270-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cytosine DNA methylation is a heritable epigenetic mark present in most eukaryotic groups. While the patterns and functions of DNA methylation have been extensively studied in mouse and human, their conservation in other vertebrates remains poorly explored. In this study, we interrogated the distribution and function of DNA methylation in primary fibroblasts of seven vertebrate species including bio-medical models and livestock species (human, mouse, rabbit, dog, cow, pig, and chicken). Results Our data highlight both divergence and conservation of DNA methylation patterns and functions. We show that the chicken genome is hypomethylated compared to other vertebrates. Furthermore, compared to mouse, other species show a higher frequency of methylation of CpG-rich DNA. We reveal the conservation of large unmethylated valleys and patterns of DNA methylation associated with X-chromosome inactivation through vertebrate evolution and make predictions of conserved sets of imprinted genes across mammals. Finally, using chemical inhibition of DNA methylation, we show that the silencing of germline genes and endogenous retroviruses (ERVs) are conserved functions of DNA methylation in vertebrates. Conclusions Our data highlight conserved properties of DNA methylation in vertebrate genomes but at the same time point to differences between mouse and other vertebrate species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01270-x.
Collapse
Affiliation(s)
- Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Anaïs Flore Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Elouan Cleroux
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Sylvain Guibert
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté, Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, 21000, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction - CECOS, 14 rue Gaffarel, 21000, Dijon, France
| | - Hervé Acloque
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France. .,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France.
| |
Collapse
|
32
|
Abstract
Background: Sex dimorphism strongly impacts tumor biology, with most cancers having a male predominance. Uniquely, thyroid cancer (TC) is the only nonreproductive cancer with striking female predominance with three- to four-fold higher incidence among females, although males generally have more aggressive disease. The molecular basis for this observation is not known, and current approaches in treatment and surveillance are not sex specific. Summary: Although TC has overall good prognosis, 6-20% of patients develop regional or distant metastasis, one third of whom are not responsive to conventional treatment approaches and suffer a 10-year survival rate of only 10%. More efficacious treatment strategies are needed for these aggressive TCs, as tyrosine kinase inhibitors and immunotherapy have major toxicities without demonstrable overall survival benefit. Emerging evidence indicates a role of sex hormones, genetics, and the immune system in modulation of both risk for TC and its progression in a sex-specific manner. Conclusion: Greater understanding of the molecular mechanisms underlying sex differences in TC pathogenesis could provide insights into the development of sex-specific, targeted, and effective strategies for prevention, diagnosis, and management. This review summarizes emerging evidence for the importance of sex in the pathogenesis, progression, and response to treatment in differentiated TC with emphasis on the role of sex hormones, genetics, and the immune system.
Collapse
Affiliation(s)
- Leila Shobab
- MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Kenneth D Burman
- MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Leonard Wartofsky
- Medstar Health Research Institute, Washington, District of Columbia, USA
| |
Collapse
|
33
|
Aye IL, Aiken CE, Charnock-Jones DS, Smith GC. Placental energy metabolism in health and disease-significance of development and implications for preeclampsia. Am J Obstet Gynecol 2022; 226:S928-S944. [PMID: 33189710 DOI: 10.1016/j.ajog.2020.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
The placenta is a highly metabolically active organ fulfilling the bioenergetic and biosynthetic needs to support its own rapid growth and that of the fetus. Placental metabolic dysfunction is a common occurrence in preeclampsia although its causal relationship to the pathophysiology is unclear. At the outset, this may simply be seen as an "engine out of fuel." However, placental metabolism plays a vital role beyond energy production and is linked to physiological and developmental processes. In this review, we discuss the metabolic basis for placental dysfunction and propose that the alterations in energy metabolism may explain many of the placental phenotypes of preeclampsia such as reduced placental and fetal growth, redox imbalance, oxidative stress, altered epigenetic and gene expression profiles, and the functional consequences of these aberrations. We propose that placental metabolic reprogramming reflects the dynamic physiological state allowing the tissue to adapt to developmental changes and respond to preeclampsia stress, whereas the inability to reprogram placental metabolism may result in severe preeclampsia phenotypes. Finally, we discuss common tested and novel therapeutic strategies for treating placental dysfunction in preeclampsia and their impact on placental energy metabolism as possible explanations into their potential benefits or harm.
Collapse
|
34
|
Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 2022; 23:231-249. [PMID: 35013589 DOI: 10.1038/s41580-021-00438-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.
Collapse
|
35
|
Konwar C, Asiimwe R, Inkster AM, Merrill SM, Negri GL, Aristizabal MJ, Rider CF, MacIsaac JL, Carlsten C, Kobor MS. Risk-focused differences in molecular processes implicated in SARS-CoV-2 infection: corollaries in DNA methylation and gene expression. Epigenetics Chromatin 2021; 14:54. [PMID: 34895312 PMCID: PMC8665859 DOI: 10.1186/s13072-021-00428-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Understanding the molecular basis of susceptibility factors to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health imperative. It is well-established that males are more likely to acquire SARS-CoV-2 infection and exhibit more severe outcomes. Similarly, exposure to air pollutants and pre-existing respiratory chronic conditions, such as asthma and chronic obstructive respiratory disease (COPD) confer an increased risk to coronavirus disease 2019 (COVID-19). METHODS We investigated molecular patterns associated with risk factors in 398 candidate genes relevant to COVID-19 biology. To accomplish this, we downloaded DNA methylation and gene expression data sets from publicly available repositories (GEO and GTEx Portal) and utilized data from an empirical controlled human exposure study conducted by our team. RESULTS First, we observed sex-biased DNA methylation patterns in autosomal immune genes, such as NLRP2, TLE1, GPX1, and ARRB2 (FDR < 0.05, magnitude of DNA methylation difference Δβ > 0.05). Second, our analysis on the X-linked genes identified sex associated DNA methylation profiles in genes, such as ACE2, CA5B, and HS6ST2 (FDR < 0.05, Δβ > 0.05). These associations were observed across multiple respiratory tissues (lung, nasal epithelia, airway epithelia, and bronchoalveolar lavage) and in whole blood. Some of these genes, such as NLRP2 and CA5B, also exhibited sex-biased gene expression patterns. In addition, we found differential DNA methylation patterns by COVID-19 status for genes, such as NLRP2 and ACE2 in an exploratory analysis of an empirical data set reporting on human COVID-9 infections. Third, we identified modest DNA methylation changes in CpGs associated with PRIM2 and TATDN1 (FDR < 0.1, Δβ > 0.05) in response to particle-depleted diesel exhaust in bronchoalveolar lavage. Finally, we captured a DNA methylation signature associated with COPD diagnosis in a gene involved in nicotine dependence (COMT) (FDR < 0.1, Δβ > 0.05). CONCLUSION Our findings on sex differences might be of clinical relevance given that they revealed molecular associations of sex-biased differences in COVID-19. Specifically, our results hinted at a potentially exaggerated immune response in males linked to autosomal genes, such as NLRP2. In contrast, our findings at X-linked loci such as ACE2 suggested a potentially distinct DNA methylation pattern in females that may interact with its mRNA expression and inactivation status. We also found tissue-specific DNA methylation differences in response to particulate exposure potentially capturing a nitrogen dioxide (NO2) effect-a contributor to COVID-19 susceptibility. While we identified a molecular signature associated with COPD, all COPD-affected individuals were smokers, which may either reflect an association with the disease, smoking, or may highlight a compounded effect of these two risk factors in COVID-19. Overall, our findings point towards a molecular basis of variation in susceptibility factors that may partly explain disparities in the risk for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Rebecca Asiimwe
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Amy M Inkster
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- The Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Sarah M Merrill
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Gian L Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Maria J Aristizabal
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
- The Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Department of Biology, Queen' University, Kingston, ON, K7L 3N6, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Christopher F Rider
- The Department of Respiratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Julie L MacIsaac
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Christopher Carlsten
- The Department of Respiratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada.
- Program in Child and Brain Development, CIFAR, MaRS Centre, 661 University Ave, Toronto, ON, M5G 1M1, Canada.
- The Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
36
|
Spiering AE, de Vries TJ. Why Females Do Better: The X Chromosomal TLR7 Gene-Dose Effect in COVID-19. Front Immunol 2021; 12:756262. [PMID: 34858409 PMCID: PMC8632002 DOI: 10.3389/fimmu.2021.756262] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
A male sex bias has emerged in the COVID-19 pandemic, fitting to the sex-biased pattern in other viral infections. Males are 2.84 times more often admitted to the ICU and mortality is 1.39 times higher as a result of COVID-19. Various factors play a role in this, and novel studies suggest that the gene-dose of Toll-Like Receptor (TLR) 7 could contribute to the sex-skewed severity. TLR7 is one of the crucial pattern recognition receptors for SARS-CoV-2 ssRNA and the gene-dose effect is caused by X chromosome inactivation (XCI) escape. Female immune cells with TLR7 XCI escape have biallelic TLR7 expression and produce more type 1 interferon (IFN) upon TLR7 stimulation. In COVID-19, TLR7 in plasmacytoid dendritic cells is one of the pattern recognition receptors responsible for IFN production and a delayed IFN response has been associated with immunopathogenesis and mortality. Here, we provide a hypothesis that females may be protected to some extend against severe COVID-19, due to the biallelic TLR7 expression, allowing them to mount a stronger and more protective IFN response early after infection. Studies exploring COVID-19 treatment via the TLR7-mediated IFN pathway should consider this sex difference. Various factors such as age, sex hormones and escape modulation remain to be investigated concerning the TLR7 gene-dose effect.
Collapse
Affiliation(s)
- Anna E. Spiering
- Amsterdam University College, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Teun J. de Vries
- Amsterdam University College, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
37
|
Lipoldová M, Demant P. Gene-Specific Sex Effects on Susceptibility to Infectious Diseases. Front Immunol 2021; 12:712688. [PMID: 34721380 PMCID: PMC8553003 DOI: 10.3389/fimmu.2021.712688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an integral part of defense against most infectious diseases. These pathogen-induced immune responses are in very many instances strongly influenced by host’s sex. As a consequence, sexual dimorphisms were observed in susceptibility to many infectious diseases. They are pathogen dose-dependent, and their outcomes depend on pathogen and even on its species or subspecies. Sex may differentially affect pathology of various organs and its influence is modified by interaction of host’s hormonal status and genotype: sex chromosomes X and Y, as well as autosomal genes. In this Mini Review we summarize the major influences of sex in human infections and subsequently focus on 22 autosomal genes/loci that modify in a sex-dependent way the response to infectious diseases in mouse models. These genes have been observed to influence susceptibility to viruses, bacteria, parasites, fungi and worms. Some sex-dependent genes/loci affect susceptibility only in females or only in males, affect both sexes, but have stronger effect in one sex; still other genes were shown to affect the disease in both sexes, but with opposite direction of effect in females and males. The understanding of mechanisms of sex-dependent differences in the course of infectious diseases may be relevant for their personalized management.
Collapse
Affiliation(s)
- Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
38
|
X-linked histone H3K27 demethylase Kdm6a regulates sexually dimorphic differentiation of hypothalamic neurons. Cell Mol Life Sci 2021; 78:7043-7060. [PMID: 34633482 PMCID: PMC8558156 DOI: 10.1007/s00018-021-03945-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022]
Abstract
Several X-linked genes are involved in neuronal differentiation and may contribute to the generation of sex dimorphisms in the brain. Previous results showed that XX hypothalamic neurons grow faster, have longer axons, and exhibit higher expression of the neuritogenic gene neurogenin 3 (Ngn3) than XY before perinatal masculinization. Here we evaluated the participation of candidate X-linked genes in the development of these sex differences, focusing mainly on Kdm6a, a gene encoding for an H3K27 demethylase with functions controlling gene expression genome-wide. We established hypothalamic neuronal cultures from wild-type or transgenic Four Core Genotypes mice, a model that allows evaluating the effect of sex chromosomes independently of gonadal type. X-linked genes Kdm6a, Eif2s3x and Ddx3x showed higher expression in XX compared to XY neurons, regardless of gonadal sex. Moreover, Kdm6a expression pattern with higher mRNA levels in XX than XY did not change with age at E14, P0, and P60 in hypothalamus or under 17β-estradiol treatment in culture. Kdm6a pharmacological blockade by GSK-J4 reduced axonal length only in female neurons and decreased the expression of neuritogenic genes Neurod1, Neurod2 and Cdk5r1 in both sexes equally, while a sex-specific effect was observed in Ngn3. Finally, Kdm6a downregulation using siRNA reduced axonal length and Ngn3 expression only in female neurons, abolishing the sex differences observed in control conditions. Altogether, these results point to Kdm6a as a key mediator of the higher axogenesis and Ngn3 expression observed in XX neurons before the critical period of brain masculinization.
Collapse
|
39
|
Mank JE, Rideout EJ. Developmental mechanisms of sex differences: from cells to organisms. Development 2021; 148:272484. [PMID: 34647574 DOI: 10.1242/dev.199750] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Male-female differences in many developmental mechanisms lead to the formation of two morphologically and physiologically distinct sexes. Although this is expected for traits with prominent differences between the sexes, such as the gonads, sex-specific processes also contribute to traits without obvious male-female differences, such as the intestine. Here, we review sex differences in developmental mechanisms that operate at several levels of biological complexity - molecular, cellular, organ and organismal - and discuss how these differences influence organ formation, function and whole-body physiology. Together, the examples we highlight show that one simple way to gain a more accurate and comprehensive understanding of animal development is to include both sexes.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
40
|
Fang H, Deng X, Disteche CM. X-factors in human disease: Impact of gene content and dosage regulation. Hum Mol Genet 2021; 30:R285-R295. [PMID: 34387327 DOI: 10.1093/hmg/ddab221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The gene content of the X and Y chromosomes has dramatically diverged during evolution. The ensuing dosage imbalance within the genome of males and females has led to unique chromosome-wide regulatory mechanisms with significant and sex-specific impacts on X-linked gene expression. X inactivation or silencing of most genes on one X chromosome chosen at random in females profoundly affects the manifestation of X-linked diseases, as males inherit a single maternal allele, while females express maternal and paternal alleles in a mosaic manner. An additional complication is the existence of genes that escape X inactivation and thus are ubiquitously expressed from both alleles in females. The mosaic nature of X-linked gene expression and the potential for escape can vary between individuals, tissues, cell types, and stages of life. Our understanding of the specialized nature of X-linked genes and of the multilayer epigenetic regulation that influence their expression throughout the organism has been helped by molecular studies conducted by tissue-specific and single-cell-specific approaches. In turn, the definition of molecular events that control X silencing has helped develop new approaches for the treatment of some X-linked disorders. This review focuses on the peculiarities of the X chromosome genetic content and epigenetic regulation in shaping the manifestation of congenital and acquired X-linked disorders in a sex-specific manner.
Collapse
Affiliation(s)
- He Fang
- Department of Laboratory Medicine and Pathology
| | | | - Christine M Disteche
- Department of Laboratory Medicine and Pathology.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
41
|
Inkster AM, Fernández-Boyano I, Robinson WP. Sex Differences Are Here to Stay: Relevance to Prenatal Care. J Clin Med 2021; 10:3000. [PMID: 34279482 PMCID: PMC8268816 DOI: 10.3390/jcm10133000] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
Sex differences exist in the incidence and presentation of many pregnancy complications, including but not limited to pregnancy loss, spontaneous preterm birth, and fetal growth restriction. Sex differences arise very early in development due to differential gene expression from the X and Y chromosomes, and later may also be influenced by the action of gonadal steroid hormones. Though offspring sex is not considered in most prenatal diagnostic or therapeutic strategies currently in use, it may be beneficial to consider sex differences and the associated mechanisms underlying pregnancy complications. This review will cover (i) the prevalence and presentation of sex differences that occur in perinatal complications, particularly with a focus on the placenta; (ii) possible mechanisms underlying the development of sex differences in placental function and pregnancy phenotypes; and (iii) knowledge gaps that should be addressed in the development of diagnostic or risk prediction tools for such complications, with an emphasis on those for which it would be important to consider sex.
Collapse
Affiliation(s)
- Amy M. Inkster
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (A.M.I.); (I.F.-B.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Icíar Fernández-Boyano
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (A.M.I.); (I.F.-B.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (A.M.I.); (I.F.-B.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
42
|
Balaton BP, Brown CJ. Contribution of genetic and epigenetic changes to escape from X-chromosome inactivation. Epigenetics Chromatin 2021; 14:30. [PMID: 34187555 PMCID: PMC8244145 DOI: 10.1186/s13072-021-00404-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/17/2021] [Indexed: 01/26/2023] Open
Abstract
Background X-chromosome inactivation (XCI) is the epigenetic inactivation of one of two X chromosomes in XX eutherian mammals. The inactive X chromosome is the result of multiple silencing pathways that act in concert to deposit chromatin changes, including DNA methylation and histone modifications. Yet over 15% of genes escape or variably escape from inactivation and continue to be expressed from the otherwise inactive X chromosome. To the extent that they have been studied, epigenetic marks correlate with this expression. Results Using publicly available data, we compared XCI status calls with DNA methylation, H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3. At genes subject to XCI we found heterochromatic marks enriched, and euchromatic marks depleted on the inactive X when compared to the active X. Genes escaping XCI were more similar between the active and inactive X. Using sample-specific XCI status calls, we found some marks differed significantly with variable XCI status, but which marks were significant was not consistent between genes. A model trained to predict XCI status from these epigenetic marks obtained over 75% accuracy for genes escaping and over 90% for genes subject to XCI. This model made novel XCI status calls for genes without allelic differences or CpG islands required for other methods. Examining these calls across a domain of variably escaping genes, we saw XCI status vary across individual genes rather than at the domain level. Lastly, we compared XCI status calls to genetic polymorphisms, finding multiple loci associated with XCI status changes at variably escaping genes, but none individually sufficient to induce an XCI status change. Conclusion The control of expression from the inactive X chromosome is multifaceted, but ultimately regulated at the individual gene level with detectable but limited impact of distant polymorphisms. On the inactive X, at silenced genes euchromatic marks are depleted while heterochromatic marks are enriched. Genes escaping inactivation show a less significant enrichment of heterochromatic marks and depletion of H3K27ac. Combining all examined marks improved XCI status prediction, particularly for genes without CpG islands or polymorphisms, as no single feature is a consistent feature of silenced or expressed genes. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00404-9.
Collapse
Affiliation(s)
- Bradley P Balaton
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
43
|
Pacini G, Dunkel I, Mages N, Mutzel V, Timmermann B, Marsico A, Schulz EG. Integrated analysis of Xist upregulation and X-chromosome inactivation with single-cell and single-allele resolution. Nat Commun 2021; 12:3638. [PMID: 34131144 PMCID: PMC8206119 DOI: 10.1038/s41467-021-23643-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
To ensure dosage compensation between the sexes, one randomly chosen X chromosome is silenced in each female cell in the process of X-chromosome inactivation (XCI). XCI is initiated during early development through upregulation of the long non-coding RNA Xist, which mediates chromosome-wide gene silencing. Cell differentiation, Xist upregulation and gene silencing are thought to be coupled at multiple levels to ensure inactivation of exactly one out of two X chromosomes. Here we perform an integrated analysis of all three processes through allele-specific single-cell RNA-sequencing. Specifically, we assess the onset of random XCI in differentiating mouse embryonic stem cells, and develop dedicated analysis approaches. By exploiting the inter-cellular heterogeneity of XCI onset, we identify putative Xist regulators. Moreover, we show that transient Xist upregulation from both X chromosomes results in biallelic gene silencing right before transitioning to the monoallelic state, confirming a prediction of the stochastic model of XCI. Finally, we show that genetic variation modulates the XCI process at multiple levels, providing a potential explanation for the long-known X-controlling element (Xce) effect, which leads to preferential inactivation of a specific X chromosome in inter-strain crosses. We thus draw a detailed picture of the different levels of regulation that govern the initiation of XCI. The experimental and computational strategies we have developed here will allow us to profile random XCI in more physiological contexts, including primary human cells in vivo.
Collapse
Affiliation(s)
- Guido Pacini
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Norbert Mages
- Sequencing core facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing core facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annalisa Marsico
- Institute for Computational Biology, Helmholtz Center, München, Germany.
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
44
|
Migliore L, Nicolì V, Stoccoro A. Gender Specific Differences in Disease Susceptibility: The Role of Epigenetics. Biomedicines 2021; 9:652. [PMID: 34200989 PMCID: PMC8228628 DOI: 10.3390/biomedicines9060652] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 01/08/2023] Open
Abstract
Many complex traits or diseases, such as infectious and autoimmune diseases, cancer, xenobiotics exposure, neurodevelopmental and neurodegenerative diseases, as well as the outcome of vaccination, show a differential susceptibility between males and females. In general, the female immune system responds more efficiently to pathogens. However, this can lead to over-reactive immune responses, which may explain the higher presence of autoimmune diseases in women, but also potentially the more adverse effects of vaccination in females compared with in males. Many clinical and epidemiological studies reported, for the SARS-CoV-2 infection, a gender-biased differential response; however, the majority of reports dealt with a comparable morbidity, with males, however, showing higher COVID-19 adverse outcomes. Although gender differences in immune responses have been studied predominantly within the context of sex hormone effects, some other mechanisms have been invoked: cellular mosaicism, skewed X chromosome inactivation, genes escaping X chromosome inactivation, and miRNAs encoded on the X chromosome. The hormonal hypothesis as well as other mechanisms will be examined and discussed in the light of the most recent epigenetic findings in the field, as the concept that epigenetics is the unifying mechanism in explaining gender-specific differences is increasingly emerging.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (V.N.); (A.S.)
- Department of Laboratory Medicine, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (V.N.); (A.S.)
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (V.N.); (A.S.)
| |
Collapse
|
45
|
Wang J, Lan Y, He L, Tang R, Li Y, Huang Y, Liang S, Gao Z, Price M, Yue B, He M, Guo T, Fan Z. Sex-specific gene expression in the blood of four primates. Genomics 2021; 113:2605-2613. [PMID: 34116169 DOI: 10.1016/j.ygeno.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Blood is an important non-reproductive tissue, but little is known about the sex-specific gene expressions in the blood. Therefore, we investigated sex-specific gene expression differences in the blood tissues of four primates, rhesus macaques (Macaca mulatta), Tibetan macaques (M. thibetana), yellow baboons (Papio cynocephalus), and humans. We identified seven sex-specific differentially expressed genes (SDEGs) in each non-human primate and 31 SDEGs in humans. The four primates had only one common SDEG, MAP7D2. In humans, immune-related SDEGs were identified as up-regulated, but also down-regulated in females. We also found that most of the X-Y gene pairs had similar expression levels between species, except pair EIF1AY/EIF1AX. The expression level of X-Y gene pairs of rhesus and Tibetan macaques showed no significant differential expression levels, while humans had six significant XY-biased and three XX-biased X-Y gene pairs. Our observed sex differences in blood should increase understanding of sex differences in primate blood tissue.
Collapse
Affiliation(s)
- Jiao Wang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yue Lan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Lewei He
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ruixiang Tang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuhui Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu 610052, Sichuan, China
| | - Yuan Huang
- Medical Laboratory Department of West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Shan Liang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu 610052, Sichuan, China
| | - Zhan Gao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu 610052, Sichuan, China
| | - Megan Price
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Miao He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu 610052, Sichuan, China.
| | - Tao Guo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
46
|
Deegan DF, Nigam P, Engel N. Sexual Dimorphism of the Heart: Genetics, Epigenetics, and Development. Front Cardiovasc Med 2021; 8:668252. [PMID: 34124200 PMCID: PMC8189176 DOI: 10.3389/fcvm.2021.668252] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
The democratization of genomic technologies has revealed profound sex biases in expression patterns in every adult tissue, even in organs with no conspicuous differences, such as the heart. With the increasing awareness of the disparities in cardiac pathophysiology between males and females, there are exciting opportunities to explore how sex differences in the heart are established developmentally. Although sexual dimorphism is traditionally attributed to hormonal influence, expression and epigenetic sex biases observed in early cardiac development can only be accounted for by the difference in sex chromosome composition, i.e., XX in females and XY in males. In fact, genes linked to the X and Y chromosomes, many of which encode regulatory factors, are expressed in cardiac progenitor cells and at every subsequent developmental stage. The effect of the sex chromosome composition may explain why many congenital heart defects originating before gonad formation exhibit sex biases in presentation, mortality, and morbidity. Some transcriptional and epigenetic sex biases established soon after fertilization persist in cardiac lineages, suggesting that early epigenetic events are perpetuated beyond early embryogenesis. Importantly, when sex hormones begin to circulate, they encounter a cardiac genome that is already functionally distinct between the sexes. Although there is a wealth of knowledge on the effects of sex hormones on cardiac function, we propose that sex chromosome-linked genes and their downstream targets also contribute to the differences between male and female hearts. Moreover, identifying how hormones influence sex chromosome effects, whether antagonistically or synergistically, will enhance our understanding of how sex disparities are established. We also explore the possibility that sexual dimorphism of the developing heart predicts sex-specific responses to environmental signals and foreshadows sex-biased health-related outcomes after birth.
Collapse
Affiliation(s)
| | | | - Nora Engel
- Lewis Katz School of Medicine, Fels Institute for Cancer Research, Temple University, Philadelphia, PA, United States
| |
Collapse
|
47
|
Couger MB, Roy SW, Anderson N, Gozashti L, Pirro S, Millward LS, Kim M, Kilburn D, Liu KJ, Wilson TM, Epps CW, Dizney L, Ruedas LA, Campbell P. Sex chromosome transformation and the origin of a male-specific X chromosome in the creeping vole. Science 2021; 372:592-600. [PMID: 33958470 DOI: 10.1126/science.abg7019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022]
Abstract
The mammalian sex chromosome system (XX female/XY male) is ancient and highly conserved. The sex chromosome karyotype of the creeping vole (Microtus oregoni) represents a long-standing anomaly, with an X chromosome that is unpaired in females (X0) and exclusively maternally transmitted. We produced a highly contiguous male genome assembly, together with short-read genomes and transcriptomes for both sexes. We show that M. oregoni has lost an independently segregating Y chromosome and that the male-specific sex chromosome is a second X chromosome that is largely homologous to the maternally transmitted X. Both maternally inherited and male-specific sex chromosomes carry fragments of the ancestral Y chromosome. Consequences of this recently transformed sex chromosome system include Y-like degeneration and gene amplification on the male-specific X, expression of ancestral Y-linked genes in females, and X inactivation of the male-specific chromosome in male somatic cells. The genome of M. oregoni elucidates the processes that shape the gene content and dosage of mammalian sex chromosomes and exemplifies a rare case of plasticity in an ancient sex chromosome system.
Collapse
Affiliation(s)
- Matthew B Couger
- Department of Thoracic Surgery, Brigham and Women's Hospital, Boston MA, 02115, USA
| | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, CA 94117, USA.,Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA
| | - Noelle Anderson
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA
| | - Landen Gozashti
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Stacy Pirro
- Iridian Genomes, Inc., Bethesda, MD 20817, USA
| | - Lindsay S Millward
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97330, USA
| | | | | | | | - Todd M Wilson
- US Forest Service, PNW Research Station, Corvallis, OR 97331, USA
| | - Clinton W Epps
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97330, USA
| | - Laurie Dizney
- Department of Biology, University of Portland, Portland, OR 97203, USA
| | - Luis A Ruedas
- Department of Biology and Museum of Natural History, Portland State University, Portland, OR 97207, USA
| | - Polly Campbell
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
48
|
Favilla BP, Meloni VA, Perez AB, Moretti-Ferreira D, de Souza DH, Bellucco FT, Melaragno MI. Spread of X-chromosome inactivation into autosomal regions in patients with unbalanced X-autosome translocations and its phenotypic effects. Am J Med Genet A 2021; 185:2295-2305. [PMID: 33913603 DOI: 10.1002/ajmg.a.62228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022]
Abstract
Patients with unbalanced X-autosome translocations are rare and usually present a skewed X-chromosome inactivation (XCI) pattern, with the derivative chromosome being preferentially inactivated, and with a possible spread of XCI into the autosomal regions attached to it, which can inactivate autosomal genes and affect the patients' phenotype. We describe three patients carrying different unbalanced X-autosome translocations, confirmed by G-banding karyotype and array techniques. We analyzed their XCI pattern and inactivation spread into autosomal regions, through HUMARA, ZDHHC15 gene assay and the novel 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, and identified an extremely skewed XCI pattern toward the derivative chromosomes for all the patients, and a variable pattern of late-replication on the autosomal regions of the derivative chromosomes. All patients showed phenotypical overlap with patients presenting deletions of the autosomal late-replicating regions, suggesting that the inactivation of autosomal segments may be responsible for their phenotype. Our data highlight the importance of the XCI spread into autosomal regions for establishing the clinical picture in patients carrying unbalanced X-autosome translocations, and the incorporation of EdU as a novel and precise tool to evaluate the inactivation status in such patients.
Collapse
Affiliation(s)
- Bianca Pereira Favilla
- Department of Morphology and Genetics, UNIFESP-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Ayres Meloni
- Department of Morphology and Genetics, UNIFESP-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Beatriz Perez
- Department of Morphology and Genetics, UNIFESP-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Danilo Moretti-Ferreira
- Department of Chemical and Biological Sciences, Biosciences Institute, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Deise Helena de Souza
- Department of Chemical and Biological Sciences, Biosciences Institute, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | | | - Maria Isabel Melaragno
- Department of Morphology and Genetics, UNIFESP-Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Brenes AJ, Yoshikawa H, Bensaddek D, Mirauta B, Seaton D, Hukelmann JL, Jiang H, Stegle O, Lamond AI. Erosion of human X chromosome inactivation causes major remodeling of the iPSC proteome. Cell Rep 2021; 35:109032. [PMID: 33910018 PMCID: PMC8097692 DOI: 10.1016/j.celrep.2021.109032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/26/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
X chromosome inactivation (XCI) is a dosage compensation mechanism in female mammals whereby transcription from one X chromosome is repressed. Analysis of human induced pluripotent stem cells (iPSCs) derived from female donors identified that low levels of XIST RNA correlated strongly with erosion of XCI. Proteomic analysis, RNA sequencing (RNA-seq), and polysome profiling showed that XCI erosion resulted in amplified RNA and protein expression from X-linked genes, providing a proteomic characterization of skewed dosage compensation. Increased protein expression was also detected from autosomal genes without an mRNA increase, thus altering the protein-RNA correlation between the X chromosome and autosomes. XCI-eroded lines display an ∼13% increase in total cell protein content, with increased ribosomal proteins, ribosome biogenesis and translation factors, and polysome levels. We conclude that XCI erosion in iPSCs causes a remodeling of the proteome, affecting the expression of a much wider range of proteins and disease-linked loci than previously realized.
Collapse
Affiliation(s)
- Alejandro J Brenes
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK; Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK.
| | - Harunori Yoshikawa
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK; Division of Cell Signalling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Dalila Bensaddek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK; Biosciences Core Labs, Proteomics, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bogdan Mirauta
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Daniel Seaton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Jens L Hukelmann
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK; Immatics Biotechnologies, Paul-Ehrlich-Str. 15, Tuebingen 72076, Germany
| | - Hao Jiang
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK; European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany; Division of Computational Genomics and Systems Genetic, German Cancer Research Center, Heidelberg, Germany
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK.
| |
Collapse
|
50
|
Qi S, Al Mamun A, Ngwa C, Romana S, Ritzel R, Arnold AP, McCullough LD, Liu F. X chromosome escapee genes are involved in ischemic sexual dimorphism through epigenetic modification of inflammatory signals. J Neuroinflammation 2021; 18:70. [PMID: 33712031 PMCID: PMC7953638 DOI: 10.1186/s12974-021-02120-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Stroke is a sexually dimorphic disease. Previous studies have found that young females are protected against ischemia compared to males, partially due to the protective effect of ovarian hormones, particularly estrogen (E2). However, there are also genetic and epigenetic effects of X chromosome dosage that contribute to stroke sensitivity and neuroinflammation after injury, especially in the aged. Genes that escape from X chromosome inactivation (XCI) contribute to sex-specific phenotypes in many disorders. Kdm5c and kdm6a are X escapee genes that demethylate H3K4me3 and H3K27me3, respectively. We hypothesized that the two demethylases play critical roles in mediating the stroke sensitivity. METHODS To identify the X escapee genes involved in stroke, we performed RNA-seq in flow-sorted microglia from aged male and female wild type (WT) mice subjected to middle cerebral artery occlusion (MCAO). The expression of these genes (kdm5c/kdm6a) were confirmed in four core genotypes (FCG) mice and in post-mortem human stroke brains by immunohistochemistry (IHC), Western blot, and RT-PCR. Chromatin immunoprecipitation (ChIP) assays were conducted to detect DNA levels of inflammatory interferon regulatory factor (IRF) 4/5 precipitated by histone H3K4 and H3K27 antibodies. Manipulation of kdm5c/kdm6a expression with siRNA or lentivirus was performed in microglial culture, to determine downstream pathways and examine the regulatory roles in inflammatory cytokine production. RESULTS Kdm5c and kdm6a mRNA levels were significantly higher in aged WT female vs. male microglia, and the sex difference also existed in ischemic brains from FCG mice and human stroke patients. The ChIP assay showed the IRF 4/5 had higher binding levels to demethylated H3K4 or H3K27, respectively, in female vs. male ischemic microglia. Knockdown or over expression of kdm5c/kdm6a with siRNA or lentivirus altered the methylation of H3K4 or H3K27 at the IRF4/5 genes, which in turn, impacted the production of inflammatory cytokines. CONCLUSIONS The KDM-Histone-IRF pathways are suggested to mediate sex differences in cerebral ischemia. Epigenetic modification of stroke-related genes constitutes an important mechanism underlying the ischemic sexual dimorphism.
Collapse
Affiliation(s)
- Shaohua Qi
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Abdullah Al Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Conelius Ngwa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Sharmeen Romana
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Rodney Ritzel
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, UCLA, 610 Charles Young Drive South, Los Angeles, CA, 90095, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|