1
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
2
|
Lialios P, Alimperti S. Role of E-cadherin in epithelial barrier dysfunction: implications for bacterial infection, inflammation, and disease pathogenesis. Front Cell Infect Microbiol 2025; 15:1506636. [PMID: 40007608 PMCID: PMC11850337 DOI: 10.3389/fcimb.2025.1506636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Epithelial barriers serve as critical defense lines against microbial infiltration and maintain tissue homeostasis. E-cadherin, an essential component of adherens junctions, has emerged as a pivotal molecule that secures epithelial homeostasis. Lately, its pleiotropic role beyond barrier function, including its involvement in immune responses, has become more evident. Herein, we delve into the intricate relationship between (dys)regulation of epithelial homeostasis and the versatile functionality of E-cadherin, describing complex mechanisms that underlie barrier integrity and disruption in disease pathogenesis such as bacterial infection and inflammation, among others. Clinical implications of E-cadherin perturbations in host pathophysiology are emphasized; downregulation, proteolytic phenomena, abnormal localization/signaling and aberrant immune reactions are linked with a broad spectrum of pathology beyond infectious diseases. Finally, potential therapeutic interventions that may harness E-cadherin to mitigate barrier-associated tissue damage are explored. Overall, this review highlights the crucial role of E-cadherin in systemic health, offering insights that could pave the way for strategies to reinforce/restore barrier integrity and treat related diseases.
Collapse
Affiliation(s)
- Peter Lialios
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| |
Collapse
|
3
|
Speziale P, Foster TJ, Arciola CR. The endothelium at the interface between tissues and Staphylococcus aureus in the bloodstream. Clin Microbiol Rev 2025:e0009824. [PMID: 39807893 DOI: 10.1128/cmr.00098-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
SUMMARYStaphylococcus aureus is a major human pathogen. It can cause many types of infections, in particular bacteremia, which frequently leads to infective endocarditis, osteomyelitis, sepsis, and other debilitating diseases. The development of secondary infections is based on the bacterium's ability to associate with endothelial cells lining blood vessels. The success of endothelial colonization and infection by S. aureus relies on its ability to express a wide array of cell wall-anchored and secreted virulence factors. Establishment of endothelial infection by the pathogen is a multistep process involving adhesion, invasion, extravasation, and dissemination of the bacterium into surrounding tissues. The process is dependent on the type of endothelium in different organs (tissues) and pathogenetic potential of the individual strains. In this review, we report an update on the organization of the endothelium in the vessels, the structure and function of the virulence factors of S. aureus, and the several aspects of bacteria-endothelial cell interactions. After these sections, we will discuss recent advances in understanding the specific mechanisms of infections that develop in the heart, bone and joints, lung, and brain. Finally, we describe how neutrophils bind to endothelial cells, migrate to the site of infection to kill bacteria in the tissues, and how staphylococci counteract neutrophils' actions. Knowledge of the molecular details of S. aureus-endothelial cell interactions will promote the development of new therapeutic strategies and tools to combat this formidable pathogen.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Timothy J Foster
- Department of Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Carla Renata Arciola
- Laboratory of Pathology of Implant Infections, Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Li Y, Zhou H, Gele T, Hu C, Liu C, Song W, Wei L, Song D, Jin M, Tang Y, Li Q, Jiang S, Yuan G, Su X. Helicid: A novel Anti-Staphylococcus aureus adjuvant. Biochimie 2024:S0300-9084(24)00295-5. [PMID: 39681184 DOI: 10.1016/j.biochi.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/16/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Staphylocoagulase (Coa) plays a critical role in the pathogenicity of Staphylococcus aureus (S. aureus). The present study was undertaken to investigate the underlying mechanism which helicid (HEL) suppressed the virulence factor Coa, as well as to assess the synergistic inhibitory effects of HEL in conjunction with antibiotics, thereby establishing the potential of HEL as an antibacterial adjuvant. We employed coagulation and biofilm assays to comprehensively assess the inhibitory impact of HEL on S. aureus pathogenicity. The thermal shift assay demonstrated that HEL exerted a direct impact on the protein stability of Coa, evidenced by a 6 °C change in melting temperature (ΔTm) at a concentration of 100 μM. HEL binding to Coa proteins was further validated by molecular dynamics simulations and fluorescence quenching. Molecular docking and point mutation assays identified S23 and D112 as crucial binding sites for HEL and Coa. Furthermore, HEL has been observed to potentiate the bactericidal properties of ceftaroline fosamil (CEF-F), concurrently diminishing the resistance exhibited by S. aureus towards CEF-F, as demonstrated by antibiotic synergy tests and resistance induction assays. The combination of HEL and CEF-F effectively reduced the number of bacteria and improved the survival of both Galleria mellonella larvae and mice. Additionally, a significant decrease was observed in the levels of TNF-α, IL-6, and IFN-γ in mice broncho-alveolar lavage fluid (BALF). Ultimately, our findings confirmed that the direct binding of HEL to Coa could diminish the pathogenicity of S. aureus. Moreover, the combination with CEF-F substantially reduced the lethality associated with S. aureus-infected pneumonia and extended the efficacy of the antibiotic.
Collapse
Affiliation(s)
- Yufen Li
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Haofang Zhou
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Teri Gele
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chunjie Hu
- Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Chang Liu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Lin Wei
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Danning Song
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengli Jin
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yating Tang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Qingjie Li
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Shuang Jiang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Gang Yuan
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xin Su
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
5
|
Shi J, Shen L, Xiao Y, Wan C, Wang B, Zhou P, Zhang J, Han W, Hu R, Yu F, Wang H. Identification and validation of diagnostic biomarkers and immune cell abundance characteristics in Staphylococcus aureus bloodstream infection by integrative bioinformatics analysis. Front Immunol 2024; 15:1450782. [PMID: 39654884 PMCID: PMC11626409 DOI: 10.3389/fimmu.2024.1450782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/01/2024] [Indexed: 12/12/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that could cause life-threatening bloodstream infections. The objective of this study was to identify potential diagnostic biomarkers of S. aureus bloodstream infection. Gene expression dataset GSE33341 was optimized as the discovery dataset, which contained samples from human and mice. GSE65088 dataset was utilized as a validation dataset. First, after overlapping the differentially expressed genes (DEGs) in S. aureus infection samples from GSE33341-human and GSE33341-mice samples, we detected 63 overlapping genes. Subsequently, the hub genes including DRAM1, PSTPIP2, and UPP1 were identified via three machine-learning algorithms: random forest, support vector machine-recursive feature elimination, and least absolute shrinkage and selection operator. Additionally, the receiver operating characteristic curve was leveraged to verify the efficacy of the hub genes. DRAM1 (AUC=1), PSTPIP2 (AUC=1), and UPP1 (AUC=1) were investigated and demonstrated significant expression differences (all P < 0.05) and diagnostic efficacy in the training and validation datasets. Furthermore, the relationship between the diagnostic markers and the abundance of immune cells was assessed using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT). These three diagnostic indicators also correlated with multiple immune cells to varying degrees. The expression of DRAM1 was significantly positively correlated with B cell naive and mast cell activation, and negatively correlated with NK cells and CD4/CD8+ T cells. The expression of PSTPIP2 was significantly positively correlated with macrophage M0, macrophage M1, B cell naive, and dendritic cell activation, while the expression of PSTPIP2 was negatively correlated with NK cells and CD4/CD8+ T cells. Significant negative correlations between UPP1 expression and T cell CD4 memory rest and neutrophils were also observed. Finally, we established a mouse model of S. aureus bloodstream infection and collected the blood samples for RNA-Seq analysis and RT-qPCR experiments. The analysis results in RNA-Seq and RT-qPCR experiments further confirmed the significant expression differences (all P < 0.05) of these three genes. Overall, three candidate hub genes (DRAM1, PSTPIP2, and UPP1) were identified initially for S. aureus bloodstream infection diagnosis. Our study could provide potential diagnostic biomarkers for S. aureus bloodstream infection patients.
Collapse
Affiliation(s)
- Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cailing Wan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiyao Zhou
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rongrong Hu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongxiu Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Sung PH, Yin TC, Chiang JY, Chen CH, Huang CR, Lee MS, Yip HK. Synergic effect of combined xenogeneic mesenchymal stem cells and ceftriaxone on acute septic arthritis. Stem Cells Transl Med 2024; 13:724-737. [PMID: 38894649 PMCID: PMC11328939 DOI: 10.1093/stcltm/szae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/23/2023] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND This study tested the hypothesis that combined ceftriaxone (Cef) and human umbilical cord-derived mesenchymal stem cells (HUCDMSCs) was better than either therapy for alleviating acute septic arthritis (ASA). METHODS AND RESULTS Adult-male C57BL/6 mice were categorized into control group (Clt), group A (ASA only), group B [ASA + Cef (5 mg/kg, IM per day, at days 2 to 16 after ASA induction)], group C [ASA + HUCDMSCs (5 × 105 per mice at days 2, 3, 4 after ASA induction)], and group D (ASA + Cef + HUCDMSCs). Animals were euthanized by day 28. The result demonstrated that the body weight was significantly lower, whereas the ratio of kidney or spleen weight to WB, circulatory WBC count, bacterial colony-formation-unit from circulatory/kidney extraction were significantly higher in group A than in other groups (all P < .001). The proinflammatory cytokines (IL-6/TNF-α) of knee joint fluid were lowest in Clt and significantly and progressively reduced from groups A to D, whereas the circulatory levels of these 2 parameters at the time points of days 3/7/28 exhibited an identical pattern as knee joint fluid among the groups (all P-value < .0001). The scores of vertebral-bone destructions/inflamed synovium were lowest in Clt, highest in group A, significantly higher in group C than in groups B/D, and significantly higher in group C than in group D (all P < .0001). CONCLUSION Combined antibiotics and Cef and HUCDMSCs was superior to just one therapy for suppressing circulatory and tissue levels of inflammation and knee joint destruction in ASA.
Collapse
Affiliation(s)
- Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan, ROC
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Kaohsiung 833401, Taiwan, ROC
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung 833401, Taiwan, ROC
| | - Tsung-Cheng Yin
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 833401 Kaohsiung, Taiwan, ROC
- Center for General Education, Cheng Shiu University, Kaohsiung 833301, Taiwan, ROC
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 807378, Taiwan, ROC
| | - Chih-Hung Chen
- Divisions of General Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan, ROC
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan, ROC
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Kaohsiung 833401, Taiwan, ROC
| | - Mel S Lee
- Department of Internal Medicine, Paochien Hospital, Pingtung 900068, Taiwan, ROC
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan, ROC
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Kaohsiung 833401, Taiwan, ROC
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung 833401, Taiwan, ROC
- Department of Nursing, Asia University Taichung 413305, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404333, Taiwan, ROC
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan, ROC
| |
Collapse
|
7
|
Yamazaki Y, Ito T, Tamai M, Nakagawa S, Nakamura Y. The role of Staphylococcus aureus quorum sensing in cutaneous and systemic infections. Inflamm Regen 2024; 44:9. [PMID: 38429810 PMCID: PMC10905890 DOI: 10.1186/s41232-024-00323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is a leading cause of human bacterial infections worldwide. It is the most common causative agent of skin and soft tissue infections, and can also cause various other infections, including pneumonia, osteomyelitis, as well as life-threatening infections, such as sepsis and infective endocarditis. The pathogen can also asymptomatically colonize human skin, nasal cavity, and the intestine. S. aureus colonizes approximately 20-30% of human nostrils, being an opportunistic pathogen for subsequent infection. Its strong ability to silently spread via human contact makes it difficult to eradicate S. aureus. A major concern with S. aureus is its capacity to develop antibiotic resistance and adapt to diverse environmental conditions. The variability in the accessory gene regulator (Agr) region of the genome contributes to a spectrum of phenotypes within the bacterial population, enhancing the likelihood of survival in different environments. Agr functions as a central quorum sensing (QS) system in S. aureus, allowing bacteria to adjust gene expression in response to population density. Depending on Agr expression, S. aureus secretes various toxins, contributing to virulence in infectious diseases. Paradoxically, expressing Agr may be disadvantageous in certain situations, such as in hospitals, causing S. aureus to generate Agr mutants responsible for infections in healthcare settings. MAIN BODY This review aims to demonstrate the molecular mechanisms governing the diverse phenotypes of S. aureus, ranging from a harmless colonizer to an organism capable of infecting various human organs. Emphasis will be placed on QS and its role in orchestrating S. aureus behavior across different contexts. SHORT CONCLUSION The pathophysiology of S. aureus infection is substantially influenced by phenotypic changes resulting from factors beyond Agr. Future studies are expected to give the comprehensive understanding of S. aureus overall profile in various settings.
Collapse
Affiliation(s)
- Yuriko Yamazaki
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka, University, Osaka, 565-0871, Japan
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Tomoka Ito
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Masakazu Tamai
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Seitaro Nakagawa
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yuumi Nakamura
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka, University, Osaka, 565-0871, Japan.
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Slavetinsky J, Lehmann E, Slavetinsky C, Gritsch L, van Dalen R, Kretschmer D, Bleul L, Wolz C, Weidenmaier C, Peschel A. Wall Teichoic Acid Mediates Staphylococcus aureus Binding to Endothelial Cells via the Scavenger Receptor LOX-1. ACS Infect Dis 2023; 9:2133-2140. [PMID: 37910786 DOI: 10.1021/acsinfecdis.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The success of Staphylococcus aureus as a major cause for endovascular infections depends on effective interactions with blood-vessel walls. We have previously shown that S. aureus uses its wall teichoic acid (WTA), a surface glycopolymer, to attach to endothelial cells. However, the endothelial WTA receptor remained unknown. We show here that the endothelial oxidized low-density lipoprotein receptor 1 (LOX-1) interacts with S. aureus WTA and permits effective binding of S. aureus to human endothelial cells. Purified LOX-1 bound to isolated S. aureus WTA. Ectopic LOX-1 expression led to increased binding of S. aureus wild type but not of a WTA-deficient mutant to a cell line, and LOX-1 blockage prevented S. aureus binding to endothelial cells. Moreover, WTA and LOX-1 expression levels correlated with the efficacy of the S. aureus-endothelial interaction. Thus, LOX-1 is an endothelial ligand for S. aureus, whose blockage may help to prevent or treat severe endovascular infections.
Collapse
Affiliation(s)
- Jessica Slavetinsky
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Esther Lehmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christoph Slavetinsky
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
- Pediatric Surgery and Urology, University Children's Hospital Tübingen, Tübingen 72076, Germany
| | - Lisa Gritsch
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Dorothee Kretschmer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christopher Weidenmaier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| |
Collapse
|
9
|
Bright R, Hayles A, Wood J, Palms D, Barker D, Vasilev K. Interplay between Immune and Bacterial Cells on a Biomimetic Nanostructured Surface: A "Race for the Surface" Study. ACS APPLIED BIO MATERIALS 2023; 6:3472-3483. [PMID: 37384836 DOI: 10.1021/acsabm.3c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Biomaterial-associated infection is an ever-increasing risk with devasting consequences for patients. Considerable research has been undertaken to address this issue by imparting antibacterial properties to the surface of biomedical implants. One approach that generated much interest over recent years was the generation of bioinspired bactericidal nanostructures. In the present report, we have investigated the interplay between macrophages and bacteria on antibacterial nanostructured surfaces to determine the outcome of the so-called "race for the surface". Our results showed that macrophages can indeed outcompete Staphylococcus aureus via multiple mechanisms. The early generation of reactive oxygen species by macrophages, downregulation of bacterial virulence gene expression, and the bactericidal nature of the nanostructured surface itself collectively acted to help the macrophage to win the race. This study highlights the potential of nanostructured surfaces to reduce infection rates and improve the long-term success of biomedical implants. This work can also serve as guidance to others to investigate in vitro host-bacteria interactions on other candidate antibacterial surfaces.
Collapse
Affiliation(s)
- Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Andrew Hayles
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Jonathan Wood
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia
| | - Dennis Palms
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Dan Barker
- Corin Australia, Sydney, NSW 2153, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia
| |
Collapse
|
10
|
Kolasinac SS, Griffiths D, Moe L, Sørum H, Rootwelt V. Ductal Architecture: Corrosion Casting of Canine Mammary Glands Using an Intraductal Approach. Animals (Basel) 2023; 13:2932. [PMID: 37760331 PMCID: PMC10525160 DOI: 10.3390/ani13182932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 09/29/2023] Open
Abstract
Detailed knowledge related to the morphology, anatomy, physiology, and pathology of the canine mammary gland is scarce. Mammary tissue undergoes massive changes instructed by hormones multiple times within the lifespan of every bitch, affecting its appearance. To address the ductal system's appearance and to present how different our findings regarding the canine mammary gland are in comparison with the available literature, we obtained cadaveric specimens after euthanasia and mastectomy. All bitches were euthanised due to poor prognosis for their recovery from maladies unrelated to mammae. Using intraductal cannulation ex vivo, milk- or fluid-yielding ducts were perfused using VasQtec (polyurethane resin), which revealed casts, i.e., imprints of ducts and glandular structures in situ. We observed primary, vertically positioned ducts that ascended throughout the teat and continued branching to secondary, tertiary, etc., horizontally positioned ducts, which drained mammary gland lobes under the skin located close to the abdominal wall. The ascendant teat canal could be split into two and could be connected to gland alveoli or end blind. Alveolar formations were located along ducts and ductules in bigger and/or smaller clusters. This study is the first to generate a 3D image of canine ducts and glandular tissue using an intraductal approach.
Collapse
Affiliation(s)
- Sabina Sibcic Kolasinac
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens vei 15, 1433 Aas, Norway; (L.M.); (V.R.)
- Department of Companion Animal Clinical Sciences, Veterinary Faculty, University of Sarajevo, Zmaja od Bosne 90, 71000 Sarajevo, Bosnia and Herzegovina
| | - David Griffiths
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens vei 15, 1433 Aas, Norway;
| | - Lars Moe
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens vei 15, 1433 Aas, Norway; (L.M.); (V.R.)
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens vei 15, 1433 Aas, Norway;
| | - Vibeke Rootwelt
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens vei 15, 1433 Aas, Norway; (L.M.); (V.R.)
| |
Collapse
|
11
|
Weig AW, O'Conner PM, Kwiecinski JM, Marciano OM, Nunag A, Gutierrez AT, Melander RJ, Horswill AR, Melander C. A structure activity relationship study of 3,4'-dimethoxyflavone for ArlRS inhibition in Staphylococcus aureus. Org Biomol Chem 2023; 21:3373-3380. [PMID: 37013457 PMCID: PMC10192164 DOI: 10.1039/d3ob00123g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are difficult to treat due to their resistance to many β-lactam antibiotics, and their highly coordinated excretion of virulence factors. One way in which MRSA accomplishes this is by responding to environmental stimuli using two-component systems (TCS). The ArlRS TCS has been identified as having a key role in regulating virulence in both systemic and local infections caused by S. aureus. We recently disclosed 3,4'-dimethoxyflavone as a selective ArlRS inhibitor. In this study we explore the structure-activity relationship (SAR) of the flavone scaffold for ArlRS inhibition and identify several compounds with increased activity compared to the parent. Additionally, we identify a compound that suppresses oxacillin resistance in MRSA, and begin to probe the mechanism of action behind this activity.
Collapse
Affiliation(s)
- Alexander W Weig
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Patrick M O'Conner
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jakub M Kwiecinski
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Orry M Marciano
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Angelica Nunag
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Andrew T Gutierrez
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
12
|
Ye J, Hou F, Chen G, Zhong T, Xue J, Yu F, Lai Y, Yang Y, Liu D, Tian Y, Huang J. Novel copper-containing ferrite nanoparticles exert lethality to MRSA by disrupting MRSA cell membrane permeability, depleting intracellular iron ions, and upregulating ROS levels. Front Microbiol 2023; 14:1023036. [PMID: 36846790 PMCID: PMC9947852 DOI: 10.3389/fmicb.2023.1023036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Objective The widespread use of antibiotics has inevitably led to the emergence of multidrug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus (MRSA), making treatment of this infection a serious challenge. This study aimed to explore new treatment strategies for MRSA infection. Methods The structure of Fe3O4 NPs with limited antibacterial activity was optimized, and the Fe2+ ↔ Fe3+ electronic coupling was eliminated by replacing 1/2 Fe2+ with Cu2+. A new type of copper-containing ferrite nanoparticles (hereinafter referred to as Cu@Fe NPs) that fully retained oxidation-reduction activity was synthesized. First, the ultrastructure of Cu@Fe NPs was examined. Then, antibacterial activity was determined by testing the minimum inhibitory concentration (MIC) and safety for use as an antibiotic agent. Next, the mechanisms underlying the antibacterial effects of Cu@Fe NPs were investigated. Finally, mice models of systemic and localized MRSA infections was established for in vivo validation. Results It was found that Cu@Fe NPs exhibited excellent antibacterial activity against MRSA with MIC of 1 μg/mL. It effectively inhibited the development of MRSA resistance and disrupted the bacterial biofilms. More importantly, the cell membranes of MRSA exposed to Cu@Fe NPs underwent significant rupture and leakage of the cell contents. Cu@Fe NPs also significantly reduced the iron ions required for bacterial growth and contributed to excessive intracellular accumulation of exogenous reactive oxygen species (ROS). Therefore, these findings may important for its antibacterial effect. Furthermore, Cu@Fe NPs treatment led to a significant reduction in colony forming units within intra-abdominal organs, such as the liver, spleen, kidney, and lung, in mice with systemic MRSA infection, but not for damaged skin in those with localized MRSA infection. Conclusion The synthesized nanoparticles has an excellent drug safety profile, confers high resistant to MRSA, and can effectively inhibit the progression of drug resistance. It also has the potential to exert anti-MRSA infection effects systemically in vivo. In addition, our study revealed a unique multifaceted antibacterial mode of Cu@Fe NPs: (1) an increase in cell membrane permeability, (2) depletion of Fe ions in cells, (3) generation of ROS in cells. Overall, Cu@Fe NPs may be potential therapeutic agents for MRSA infections.
Collapse
Affiliation(s)
- Jinhua Ye
- Analytical Laboratory of Basic Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fangpeng Hou
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Guanyu Chen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, United States
| | - Tianyu Zhong
- Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junxia Xue
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital of Tongji University, Shanghai, China
| | - Yi Lai
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yingjie Yang
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dedong Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yuantong Tian
- Pharmacology Department, Gannan Medical University, Ganzhou, Jiangxi, China,*Correspondence: Yuantong Tian, ✉
| | - Junyun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Junyun Huang, ✉
| |
Collapse
|
13
|
Homogeneous electrochemiluminescence aptasensor based on hybridization chain reaction and magnetic separation assistance for Staphylococcus aureus. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Mohammad M, Ali A, Nguyen MT, Götz F, Pullerits R, Jin T. Staphylococcus aureus lipoproteins in infectious diseases. Front Microbiol 2022; 13:1006765. [PMID: 36262324 PMCID: PMC9574248 DOI: 10.3389/fmicb.2022.1006765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Infections with the Gram-positive bacterial pathogen Staphylococcus aureus remain a major challenge for the healthcare system and demand new treatment options. The increasing antibiotic resistance of S. aureus poses additional challenges, consequently inflicting a huge strain in the society due to enormous healthcare costs. S. aureus expresses multiple molecules, including bacterial lipoproteins (Lpps), which play a role not only in immune response but also in disease pathogenesis. S. aureus Lpps, the predominant ligands of TLR2, are important for bacterial survival as they maintain the metabolic activity of the bacteria. Moreover, Lpps possess many diverse properties that are of vital importance for the bacteria. They also contribute to host cell invasion but so far their role in different staphylococcal infections has not been fully defined. In this review, we summarize the current knowledge about S. aureus Lpps and their distinct roles in various infectious disease animal models, such as septic arthritis, sepsis, and skin and soft tissue infections. The molecular and cellular response of the host to S. aureus Lpp exposure is also a primary focus.
Collapse
Affiliation(s)
- Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Majd Mohammad,
| | - Abukar Ali
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Minh-Thu Nguyen
- Section of Medical and Geographical Infectiology, Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Friedrich Götz
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
15
|
Huang W, Le S, Sun Y, Lin DJ, Yao M, Shi Y, Yan J. Mechanical Stabilization of a Bacterial Adhesion Complex. J Am Chem Soc 2022; 144:16808-16818. [PMID: 36070862 PMCID: PMC9501914 DOI: 10.1021/jacs.2c03961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The adhesions between Gram-positive bacteria and their
hosts are
exposed to varying magnitudes of tensile forces. Here, using an ultrastable
magnetic tweezer-based single-molecule approach, we show the catch-bond
kinetics of the prototypical adhesion complex of SD-repeat protein
G (SdrG) to a peptide from fibrinogen β (Fgβ) over a physiologically
important force range from piconewton (pN) to tens of pN, which was
not technologically accessible to previous studies. At 37 °C,
the lifetime of the complex exponentially increases from seconds at
several pN to ∼1000 s as the force reaches 30 pN, leading to
mechanical stabilization of the adhesion. The dissociation transition
pathway is determined as the unbinding of a critical β-strand
peptide (“latch” strand of SdrG that secures the entire
adhesion complex) away from its binding cleft, leading to the dissociation
of the Fgβ ligand. Similar mechanical stabilization behavior
is also observed in several homologous adhesions, suggesting the generality
of catch-bond kinetics in such bacterial adhesions. We reason that
such mechanical stabilization confers multiple advantages in the pathogenesis
and adaptation of bacteria.
Collapse
Affiliation(s)
- Wenmao Huang
- Department of Physics, National University of Singapore, Singapore 117542.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Shimin Le
- Department of Physics, National University of Singapore, Singapore 117542.,Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Yuze Sun
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Dennis Jingxiong Lin
- Department of Physics, National University of Singapore, Singapore 117542.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Shi
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore 117542.,Mechanobiology Institute, National University of Singapore, Singapore 117411.,Centre for Bioimaging Sciences, National University of Singapore, Singapore 117546
| |
Collapse
|
16
|
Pleiotropic Effects of Statins: New Therapeutic Approaches to Chronic, Recurrent Infection by Staphylococcus aureus. Pharmaceutics 2021; 13:pharmaceutics13122047. [PMID: 34959329 PMCID: PMC8706520 DOI: 10.3390/pharmaceutics13122047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 01/01/2023] Open
Abstract
An emergent approach to bacterial infection is the use of host rather than bacterial-directed strategies. This approach has the potential to improve efficacy in especially challenging infection settings, including chronic, recurrent infection due to intracellular pathogens. For nearly two decades, the pleiotropic effects of statin drugs have been examined for therapeutic usefulness beyond the treatment of hypercholesterolemia. Interest originated after retrospective studies reported decreases in the risk of death due to bacteremia or sepsis for those on a statin regimen. Although subsequent clinical trials have yielded mixed results and earlier findings have been questioned for biased study design, in vitro and in vivo studies have provided clear evidence of protective mechanisms that include immunomodulatory effects and the inhibition of host cell invasion. Ultimately, the benefits of statins in an infection setting appear to require attention to the underlying host response and to the timing of the dosage. From this examination of statin efficacy, additional novel host-directed strategies may produce adjunctive therapeutic approaches for the treatment of infection where traditional antimicrobial therapy continues to yield poor outcomes. This review focuses on the opportunistic pathogen, Staphylococcus aureus, as a proof of principle in examining the promise and limitations of statins in recalcitrant infection.
Collapse
|
17
|
Gonzalez-Chapa JA, Peña-Martinez VM, Vílchez-Cavazos JF, Salinas-Carmona MC, Rosas-Taraco AG. Systemic and Local Cytokines Profile Determine Severity and Prognosis in Human Septic Arthritis: A Pilot Study. Arch Med Res 2021; 53:170-178. [PMID: 34702588 DOI: 10.1016/j.arcmed.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Septic arthritis (SA) is a medical emergency. The most common etiological agents are bacteria, which activate the local immune response coordinated by cytokines; however, little is known about the cytokine profile in human SA. AIM To determine the association of local and systemic cytokine profiles with the severity and prognosis of patients with SA. METHODS Patients with clinical and laboratory diagnosed SA were enrolled as well as a control group. Serum and synovial fluid (SF) samples were obtained for determining cytokines and glucose levels; SF samples were used for histological analysis. Osteochondral damage and general health status and quality of life (SF-36) were evaluated during recruitment day. WOMAC osteoarthritis index score and SF-36 questionnaire were used a year after recruitment day as a follow up. RESULTS A systemic and local proinflammatory cytokine profile was found in patients compared to the control group (p <0.05). IL-6 was 28 and 525 times higher than controls in sera and SF, respectively (p <0.0001). Systemic IL-6 correlated negatively with general mental health score (p = 0.0184) and was associated with a higher osteoarthritis index after one year follow-up in the patients (p = 0.0352). HMGB1 in SF was found higher in patients with SA (p <0.0001), and it was associated with osteochondral damage (p = 0.0042). TNF-α in SF correlated negatively with SF-36 questionnaire one year after patients' recruitment in role limitation score (p = 0.0318), body pain score (p = 0.0315), and general mental health score (p = 0.0197). CONCLUSION Serum and SF cytokine signatures are associated with disease severity and prognosis in patients with SA.
Collapse
Affiliation(s)
- Jorge A Gonzalez-Chapa
- Departamento de Inmunología, Universidad Autónoma de Nuevo León, Facultad de Medicina, Nuevo León, Monterrey, México
| | - Victor M Peña-Martinez
- Servicio de Ortopedia y Traumatología, Universidad Autónoma de Nuevo León, Hospital Universitario, Dr. José Eleuterio González, Nuevo León, Monterrey, México
| | - José F Vílchez-Cavazos
- Servicio de Ortopedia y Traumatología, Universidad Autónoma de Nuevo León, Hospital Universitario, Dr. José Eleuterio González, Nuevo León, Monterrey, México
| | - Mario C Salinas-Carmona
- Departamento de Inmunología, Universidad Autónoma de Nuevo León, Facultad de Medicina, Nuevo León, Monterrey, México
| | - Adrian G Rosas-Taraco
- Departamento de Inmunología, Universidad Autónoma de Nuevo León, Facultad de Medicina, Nuevo León, Monterrey, México.
| |
Collapse
|
18
|
Ahmad-Mansour N, Loubet P, Pouget C, Dunyach-Remy C, Sotto A, Lavigne JP, Molle V. Staphylococcus aureus Toxins: An Update on Their Pathogenic Properties and Potential Treatments. Toxins (Basel) 2021; 13:677. [PMID: 34678970 PMCID: PMC8540901 DOI: 10.3390/toxins13100677] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus aureus is a clinically important pathogen that causes a wide range of human infections, from minor skin infections to severe tissue infection and sepsis. S. aureus has a high level of antibiotic resistance and is a common cause of infections in hospitals and the community. The rising prevalence of community-acquired methicillin-resistant S. aureus (CA-MRSA), combined with the important severity of S. aureus infections in general, has resulted in the frequent use of anti-staphylococcal antibiotics, leading to increasing resistance rates. Antibiotic-resistant S. aureus continues to be a major health concern, necessitating the development of novel therapeutic strategies. S. aureus uses a wide range of virulence factors, such as toxins, to develop an infection in the host. Recently, anti-virulence treatments that directly or indirectly neutralize S. aureus toxins have showed promise. In this review, we provide an update on toxin pathogenic characteristics, as well as anti-toxin therapeutical strategies.
Collapse
Affiliation(s)
- Nour Ahmad-Mansour
- Laboratory of Pathogen Host Interactions, CNRS UMR5235, Université de Montpellier, 34000 Montpellier, France;
| | - Paul Loubet
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Department of Infectious and Tropical Diseases, Université de Montpellier, 30908 Nîmes, France; (P.L.); (A.S.)
| | - Cassandra Pouget
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, 30908 Nîmes, France;
| | - Catherine Dunyach-Remy
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Department of Microbiology and Hospital Hygiene, Université de Montpellier, 30908 Nîmes, France; (C.D.-R.); (J.-P.L.)
| | - Albert Sotto
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Department of Infectious and Tropical Diseases, Université de Montpellier, 30908 Nîmes, France; (P.L.); (A.S.)
| | - Jean-Philippe Lavigne
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Department of Microbiology and Hospital Hygiene, Université de Montpellier, 30908 Nîmes, France; (C.D.-R.); (J.-P.L.)
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, CNRS UMR5235, Université de Montpellier, 34000 Montpellier, France;
| |
Collapse
|
19
|
Rumpret M, von Richthofen HJ, van der Linden M, Westerlaken GHA, Talavera Ormeño C, van Strijp JAG, Landau M, Ovaa H, van Sorge NM, Meyaard L. Signal inhibitory receptor on leukocytes-1 recognizes bacterial and endogenous amphipathic α-helical peptides. FASEB J 2021; 35:e21875. [PMID: 34533845 DOI: 10.1096/fj.202100812r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 01/31/2023]
Abstract
Signal inhibitory receptor on leukocytes-1 (SIRL-1) is a negative regulator of myeloid cell function and dampens antimicrobial responses. We here show that different species of the genus Staphylococcus secrete SIRL-1-engaging factors. By screening a library of single-gene transposon mutants in Staphylococcus aureus, we identified these factors as phenol-soluble modulins (PSMs). PSMs are amphipathic α-helical peptides involved in multiple aspects of staphylococcal virulence and physiology. They are cytotoxic and activate the chemotactic formyl peptide receptor 2 (FPR2) on immune cells. Human cathelicidin LL-37 is also an amphipathic α-helical peptide with antimicrobial and chemotactic activities, structurally and functionally similar to α-type PSMs. We demonstrate that α-type PSMs from multiple staphylococcal species as well as human cathelicidin LL-37 activate SIRL-1, suggesting that SIRL-1 recognizes α-helical peptides with an amphipathic arrangement of hydrophobicity, although we were not able to show direct binding to SIRL-1. Upon rational peptide design, we identified artificial peptides in which the capacity to ligate SIRL-1 is segregated from cytotoxic and FPR2-activating properties, allowing specific engagement of SIRL-1. In conclusion, we propose staphylococcal PSMs and human LL-37 as a potential new class of natural ligands for SIRL-1.
Collapse
Affiliation(s)
- Matevž Rumpret
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Helen J von Richthofen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Maarten van der Linden
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Geertje H A Westerlaken
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Cami Talavera Ormeño
- Oncode Institute, Utrecht, The Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Meytal Landau
- Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Huib Ovaa
- Oncode Institute, Utrecht, The Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
20
|
Thompson JM, Ashbaugh AG, Wang Y, Miller RJ, Pickett JE, Thorek DLJ, Sterling RS, Miller LS. Predilection for developing a hematogenous orthopaedic implant-associated infection in older versus younger mice. J Orthop Surg Res 2021; 16:556. [PMID: 34521424 PMCID: PMC8439019 DOI: 10.1186/s13018-021-02594-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Background The pathogenesis of hematogenous orthopaedic implant-associated infections (HOIAI) remains largely unknown, with little understanding of the influence of the physis on bacterial seeding. Since the growth velocity in the physis of long bones decreases during aging, we sought to evaluate the role of the physis on influencing the development of Staphylococcus aureus HOIAI in a mouse model comparing younger versus older mice. Methods In a mouse model of HOIAI, a sterile Kirschner wire was inserted retrograde into the distal femur of younger (5–8-week-old) and older (14–21-week-old) mice. After a 3-week convalescent period, a bioluminescent Staphylococcus aureus strain was inoculated intravenously. Bacterial dissemination to operative and non-operative legs was monitored longitudinally in vivo for 4 weeks, followed by ex vivo bacterial enumeration and X-ray analysis. Results In vivo bioluminescence imaging and ex vivo CFU enumeration of the bone/joint tissue demonstrated that older mice had a strong predilection for developing a hematogenous infection in the operative legs but not the non-operative legs. In contrast, this predilection was less apparent in younger mice as the infection occurred at a similar rate in both the operative and non-operative legs. X-ray imaging revealed that the operative legs of younger mice had decreased femoral length, likely due to the surgical and/or infectious insult to the more active physis, which was not observed in older mice. Both age groups demonstrated substantial reactive bone changes in the operative leg due to infection. Conclusions The presence of an implant was an important determinant for developing a hematogenous orthopaedic infection in older but not younger mice, whereas younger mice had a similar predilection for developing periarticular infection whether or not an implant was present. On a clinical scale, diagnosing HOIAI may be difficult particularly in at-risk patients with limited examination or other data points. Understanding the influence of age on developing HOIAI may guide clinical surveillance and decision-making in at-risk patients.
Collapse
Affiliation(s)
- John M Thompson
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Alyssa G Ashbaugh
- School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Julie E Pickett
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Daniel L J Thorek
- Division of Radiological Chemistry and Imaging Laboratory, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert S Sterling
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lloyd S Miller
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA
| |
Collapse
|
21
|
Schuler F, Barth PJ, Niemann S, Schaumburg F. A Narrative Review on the Role of Staphylococcus aureus Bacteriuria in S. aureus Bacteremia. Open Forum Infect Dis 2021; 8:ofab158. [PMID: 34189162 PMCID: PMC8233567 DOI: 10.1093/ofid/ofab158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/25/2021] [Indexed: 11/12/2022] Open
Abstract
Staphylococcus aureus bacteriuria (SABU) can occur in patients with S. aureus bacteremia (SAB). However, little is known on the (molecular) pathomechanisms of the renal passage of S. aureus. This review discusses the epidemiology and pathogenesis of SABU in patients with SAB and identifies knowledge gaps. The literature search was restricted to the English language. The prevalence of SABU in patients with SAB is 7.8%-39% depending on the study design. The main risk factor for SABU is urinary tract catheterization. SABU in SAB patients is associated with increased mortality. Given present evidence, hematogenous seeding-as seen in animal models-and the development of micro-abscesses best describe the translocation of S. aureus from blood to urine. Virulence factors that might be involved are adhesion factors, sortase A, and coagulase, among others. Other potential routes of bacterial translocation (eg, transcytosis, paracytosis, translocation via "Trojan horses") were identified as knowledge gaps.
Collapse
Affiliation(s)
- Franziska Schuler
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Peter J Barth
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
22
|
Bacteria-host transcriptional response during endothelial invasion by Staphylococcus aureus. Sci Rep 2021; 11:6037. [PMID: 33727596 PMCID: PMC7966777 DOI: 10.1038/s41598-021-84050-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is the cause of serious vascular infections such as sepsis and endocarditis. These infections are notoriously difficult to treat, and it is believed that the ability of S. aureus to invade endothelial cells and persist intracellularly is a key mechanism for persistence despite ongoing antibiotic treatment. Here, we used dual RNA sequencing to study the simultaneous transcriptional response of S. aureus and human endothelial cells during in vitro infections. We revealed discrete and shared differentially expressed genes for both host and pathogen at the different stages of infection. While the endothelial cells upregulated genes involved in interferon signalling and antigen presentation during late infection, S. aureus downregulated toxin expression while upregulating genes related to iron scavenging. In conclusion, the presented data provide an important resource to facilitate functional investigations into host–pathogen interaction during S. aureus invasive infection and a basis for identifying novel drug target sites.
Collapse
|
23
|
Yi Y, Wang H, Su L, Wang H, Zhang B, Su Y. A comparative investigation on the role and interaction of EsxA and EsxB in host immune response. Microb Pathog 2021; 154:104843. [PMID: 33691174 DOI: 10.1016/j.micpath.2021.104843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/01/2021] [Accepted: 02/16/2021] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus (S. aureus) is a frequent and major cause of bovine mastitis; it poses a tremendous economic burden to dairy industries of numerous countries. Early-secretion antigen-6 secretion system (ESS) has been viewed as an essential virulence and pathogenic factor of S. aureus. EsxA and EsxB are small acidic proteins secreted by ESS and identified as potential T-cell antigens of S. aureus. Unlike those of Mycobacterium tuberculosis (M. tuberculosis), the EsxA and EsxB of S. aureus do not form a dimer. Instead, EsxA dimerizes with itself or EsaC. Therefore, the interaction of EsxA and EsxB remains incompletely understood. In this study, to explore their interactions, EsxA and EsxB were expressed and used for immunization, alone or in combination, of murine infection models. Both components can interact with each other. Through the analysis of the immune response by immunological method, EsxB could significantly enhance the EsxA-specific IgG2a antibody level and increase the proliferation proportion of CD8+ T cells. These results indicate that when vaccinated with EsxA, EsxB can play a critical role in stimulating T helper 1 immunity by activating IgG2a and CD8+ T cells. We further show that vaccination with the combination of EsxA and EsxB resulted in enhanced stimulation of TLR-4 and improved protection against S. aureus. The findings may help us better understand the role of EsxB in the virulence and pathogenesis of S. aureus.
Collapse
Affiliation(s)
- Yuanyang Yi
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hanqing Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Lingling Su
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hao Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Baojiang Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yan Su
- Department of Microbiology and Immunology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| |
Collapse
|
24
|
Staphylococcus aureus Internalization in Osteoblast Cells: Mechanisms, Interactions and Biochemical Processes. What Did We Learn from Experimental Models? Pathogens 2021; 10:pathogens10020239. [PMID: 33669789 PMCID: PMC7922271 DOI: 10.3390/pathogens10020239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial internalization is a strategy that non-intracellular microorganisms use to escape the host immune system and survive inside the human body. Among bacterial species, Staphylococcus aureus showed the ability to interact with and infect osteoblasts, causing osteomyelitis as well as bone and joint infection, while also becoming increasingly resistant to antibiotic therapy and a reservoir of bacteria that can make the infection difficult to cure. Despite being a serious issue in orthopedic surgery, little is known about the mechanisms that allow bacteria to enter and survive inside the osteoblasts, due to the lack of consistent experimental models. In this review, we describe the current knowledge about S. aureus internalization mechanisms and various aspects of the interaction between bacteria and osteoblasts (e.g., best experimental conditions, bacteria-induced damages and immune system response), focusing on studies performed using the MG-63 osteoblastic cell line, the best traditional (2D) model for the study of this phenomenon to date. At the same time, as it has been widely demonstrated that 2D culture systems are not completely indicative of the dynamic environment in vivo, and more recent 3D models—representative of bone infection—have also been investigated.
Collapse
|
25
|
Roe C, Stegger M, Lilje B, Johannesen TB, Ng KL, Sieber RN, Driebe E, Engelthaler DM, Andersen PS. Genomic analyses of Staphylococcus aureus clonal complex 45 isolates does not distinguish nasal carriage from bacteraemia. Microb Genom 2020; 6:mgen000403. [PMID: 32667872 PMCID: PMC7641415 DOI: 10.1099/mgen.0.000403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a colonizing opportunistic pathogen and a leading cause of bloodstream infection with high morbidity and mortality. S. aureus carriage frequency is reportedly between 20 and 40 % among healthy adults, with S. aureus colonization considered to be a risk factor for S. aureus bacteraemia. It is unknown whether a genetic component of the bacterium is associated with S. aureus bacteraemia in comparison to nasal carriage strains. Previous association studies primarily focusing on the clinical outcome of an S. aureus infection have produced conflicting results, often limited by study design challenged by sample collections and the clonal diversity of S. aureus. To date, no study has investigated whether genomic features separate nasal carriage isolates from S. aureus bacteraemia isolates within a single clonal lineage. Here we have investigated whether genomic features, including single-nucleotide polymorphisms (SNPs), genes, or kmers, distinguish S. aureus nasal carriage isolates from bacteraemia isolates that all belong to the same clonal lineage [clonal complex 45 (CC45)] using whole-genome sequencing (WGS) and a genome-wide association (GWA) approach. From CC45, 100 isolates (50 bacteraemia and 50 nasal carriage, geographically and temporally matched) from Denmark were whole-genome sequenced and subjected to GWA analyses involving gene copy number variation, SNPs, gene content, kmers and gene combinations, while correcting for lineage effects. No statistically significant association involving SNPs, specific genes, gene variants, gene copy number variation, or a combination of genes was identified that could distinguish bacteraemia isolates from nasal carriage isolates. The presented results suggest that all S. aureus nasal CC45 isolates carry the potential to cause invasive disease, as no core or accessory genome content or variations were statistically associated with invasiveness.
Collapse
Affiliation(s)
- Chandler Roe
- Translational Genomics Research Institute, Flagstaff, AZ, USA
- Northern Arizona University, Flagstaff, AZ, USA
| | - Marc Stegger
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Berit Lilje
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Kim Lee Ng
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Raphael N. Sieber
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | | | - Paal Skytt Andersen
- Translational Genomics Research Institute, Flagstaff, AZ, USA
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
26
|
Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front Cell Infect Microbiol 2020; 10:107. [PMID: 32257966 PMCID: PMC7089872 DOI: 10.3389/fcimb.2020.00107] [Citation(s) in RCA: 383] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Infectious diseases are the second most important cause of human death worldwide; Staphylococcus aureus (S. aureus) is a very common human pathogenic microorganism that can trigger a variety of infectious diseases, such as skin and soft tissue infections, endocarditis, osteomyelitis, bacteremia, and lethal pneumonia. Moreover, according to the sensitivity to antibiotic drugs, S. aureus can be divided into methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). In recent decades, due to the evolution of bacteria and the abuse of antibiotics, the drug resistance of S. aureus has gradually increased, the infection rate of MRSA has increased worldwide, and the clinical anti-infective treatment for MRSA has become more difficult. Accumulating evidence has demonstrated that the resistance mechanisms of S. aureus are very complex, especially for MRSA, which is resistant to many kinds of antibiotics. Therefore, understanding the drug resistance of MRSA in a timely manner and elucidating its drug resistance mechanism at the molecular level are of great significance for the treatment of S. aureus infection. A large number of researchers believe that analyzing the molecular characteristics of S. aureus can help provide a basis for designing effective prevention and treatment measures against hospital infections caused by S. aureus and further monitor the evolution of S. aureus. This paper reviews the research status of MSSA and MRSA, the detailed mechanisms of the intrinsic antibiotic resistance and the acquired antibiotic resistance, the advanced research on anti-MRSA antibiotics and novel therapeutic strategies for MRSA treatment.
Collapse
Affiliation(s)
- Yunlei Guo
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guanghui Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meiling Sun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Juan Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
27
|
Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front Cell Infect Microbiol 2020; 10:107. [PMID: 32257966 DOI: 10.3389/fcimb.2020.00107/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/27/2020] [Indexed: 05/20/2023] Open
Abstract
Infectious diseases are the second most important cause of human death worldwide; Staphylococcus aureus (S. aureus) is a very common human pathogenic microorganism that can trigger a variety of infectious diseases, such as skin and soft tissue infections, endocarditis, osteomyelitis, bacteremia, and lethal pneumonia. Moreover, according to the sensitivity to antibiotic drugs, S. aureus can be divided into methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). In recent decades, due to the evolution of bacteria and the abuse of antibiotics, the drug resistance of S. aureus has gradually increased, the infection rate of MRSA has increased worldwide, and the clinical anti-infective treatment for MRSA has become more difficult. Accumulating evidence has demonstrated that the resistance mechanisms of S. aureus are very complex, especially for MRSA, which is resistant to many kinds of antibiotics. Therefore, understanding the drug resistance of MRSA in a timely manner and elucidating its drug resistance mechanism at the molecular level are of great significance for the treatment of S. aureus infection. A large number of researchers believe that analyzing the molecular characteristics of S. aureus can help provide a basis for designing effective prevention and treatment measures against hospital infections caused by S. aureus and further monitor the evolution of S. aureus. This paper reviews the research status of MSSA and MRSA, the detailed mechanisms of the intrinsic antibiotic resistance and the acquired antibiotic resistance, the advanced research on anti-MRSA antibiotics and novel therapeutic strategies for MRSA treatment.
Collapse
Affiliation(s)
- Yunlei Guo
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guanghui Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meiling Sun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Juan Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Mackuľak T, Grabic R, Špalková V, Belišová N, Škulcová A, Slavík O, Horký P, Gál M, Filip J, Híveš J, Vojs M, Staňová AV, Medveďová A, Marton M, Birošová L. Hospital wastewaters treatment: Fenton reaction vs. BDDE vs. ferrate(VI). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31812-31821. [PMID: 31487008 DOI: 10.1007/s11356-019-06290-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/26/2019] [Indexed: 05/09/2023]
Abstract
Various types of micropollutants, e.g., pharmaceuticals and their metabolites and resistant strains of pathogenic microorganisms, are usually found in hospital wastewaters. The aim of this paper was to study the presence of 74 frequently used pharmaceuticals, legal and illegal drugs, and antibiotic-resistant bacteria in 5 hospital wastewaters in Slovakia and Czechia and to compare the efficiency of several advanced oxidations processes (AOPs) for sanitation and treatment of such highly polluted wastewaters. The occurrence of micropollutants and antibiotic-resistant bacteria was investigated by in-line SPE-LC-MS/MS technique and cultivation on antibiotic and antibiotic-free selective diagnostic media, respectively. The highest maximum concentrations were found for cotinine (6700 ng/L), bisoprolol (5200 ng/L), metoprolol (2600 ng/L), tramadol (2400 ng/L), sulfamethoxazole (1500 ng/L), and ranitidine (1400 ng/L). In the second part of the study, different advanced oxidation processes, modified Fenton reaction, ferrate(VI), and oxidation by boron-doped diamond electrode were tested in order to eliminate the abovementioned pollutants. Obtained results indicate that the modified Fenton reaction and application of boron-doped diamond electrode were able to eliminate almost the whole spectrum of selected micropollutants with efficiency higher than 90%. All studied methods achieved complete removal of the antibiotic-resistant bacteria present in hospital wastewaters.
Collapse
Affiliation(s)
- Tomáš Mackuľak
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Roman Grabic
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, CZ-389 01, Vodnany, Czech Republic
| | - Viera Špalková
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Noemi Belišová
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Andrea Škulcová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka 129, CZ-165 00, Praha 6-Suchdol, Czech Republic.
- Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka 129, CZ-165 00, Praha 6-Suchdol, Czech Republic
| | - Pavel Horký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka 129, CZ-165 00, Praha 6-Suchdol, Czech Republic
| | - Miroslav Gál
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Jan Filip
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Ján Híveš
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Marian Vojs
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, SK-812 19, Bratislava, Slovakia
| | - Andrea Vojs Staňová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina Ilkovičova 6, SK-842 15, Bratislava, Slovakia
| | - Alžbeta Medveďová
- Institute of Food Science and Nutrition, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Marián Marton
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, SK-812 19, Bratislava, Slovakia
| | - Lucia Birošová
- Institute of Food Science and Nutrition, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| |
Collapse
|
29
|
Abstract
Staphylococcus aureus is responsible for a broad range of infections. This pathogen has a vast arsenal of virulence factors at its disposal, but avirulent strains are frequently isolated as the cause of clinical infections. These isolates have a mutated agr locus and have been believed to have no evolutionary future. Here we show that a fraction of Agr-negative strains can repair their mutated agr locus with mechanisms resembling phase variation. The agr revertants sustain an Agr OFF state as long as they exist as a minority but can activate their Agr system upon phagocytosis. These revertant cells might function as a cryptic insurance strategy to survive immune-mediated host stress that arises during infection. Staphylococcus aureus is an important human pathogen whose success is largely attributed to its vast arsenal of virulence factors that facilitate its invasion into, and survival within, the human host. The expression of these virulence factors is controlled by the quorum sensing accessory gene regulator (Agr) system. However, a large proportion of clinical S. aureus isolates are consistently found to have a mutationally inactivated Agr system. These mutants have a survival advantage in the host but are considered irreversible mutants. Here we show, for the first time, that a fraction of Agr-negative mutants can revert their Agr activity. By serially passaging Agr-negative strains and screening for phenotypic reversion of hemolysis and subsequent sequencing, we identified two mutational events responsible for reversion: a genetic duplication plus inversion event and a poly(A) tract alteration. Additionally, we demonstrate that one clinical Agr-negative methicillin-resistant S. aureus (MRSA) isolate could reproducibly generate Agr-revertant colonies with a poly(A) tract genetic mechanism. We also show that these revertants activate their Agr system upon phagocytosis. We propose a model in which a minor fraction of Agr-negative S. aureus strains are phase variants that can revert their Agr activity and may act as a cryptic insurance strategy against host-mediated stress.
Collapse
|
30
|
Whole-Genome Sequences of Staphylococcus pseudintermedius Isolates from Canine and Human Bacteremia Infections. Microbiol Resour Announc 2019; 8:8/28/e00735-19. [PMID: 31296692 PMCID: PMC6624775 DOI: 10.1128/mra.00735-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Here, we report the complete and draft genome sequences of 8 Staphylococcus pseudintermedius isolates, 4 from human bacteremia infections and 4 from canine bacteremia infections. This species is recognized primarily as an important canine pathogen, but it is increasingly being identified in human infections. Here, we report the complete and draft genome sequences of 8 Staphylococcus pseudintermedius isolates, 4 from human bacteremia infections and 4 from canine bacteremia infections. This species is recognized primarily as an important canine pathogen, but it is increasingly being identified in human infections.
Collapse
|
31
|
Kwiecinski JM, Crosby HA, Valotteau C, Hippensteel JA, Nayak MK, Chauhan AK, Schmidt EP, Dufrêne YF, Horswill AR. Staphylococcus aureus adhesion in endovascular infections is controlled by the ArlRS-MgrA signaling cascade. PLoS Pathog 2019; 15:e1007800. [PMID: 31116795 PMCID: PMC6548404 DOI: 10.1371/journal.ppat.1007800] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/04/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a leading cause of endovascular infections. This bacterial pathogen uses a diverse array of surface adhesins to clump in blood and adhere to vessel walls, leading to endothelial damage, development of intravascular vegetations and secondary infectious foci, and overall disease progression. In this work, we describe a novel strategy used by S. aureus to control adhesion and clumping through activity of the ArlRS two-component regulatory system, and its downstream effector MgrA. Utilizing a combination of in vitro cellular assays, and single-cell atomic force microscopy, we demonstrated that inactivation of this ArlRS—MgrA cascade inhibits S. aureus adhesion to a vast array of relevant host molecules (fibrinogen, fibronectin, von Willebrand factor, collagen), its clumping with fibrinogen, and its attachment to human endothelial cells and vascular structures. This impact on S. aureus adhesion was apparent in low shear environments, and in physiological levels of shear stress, as well as in vivo in mouse models. These effects were likely mediated by the de-repression of giant surface proteins Ebh, SraP, and SasG, caused by inactivation of the ArlRS—MgrA cascade. In our in vitro assays, these giant proteins collectively shielded the function of other surface adhesins and impaired their binding to cognate ligands. Finally, we demonstrated that the ArlRS—MgrA regulatory cascade is a druggable target through the identification of a small-molecule inhibitor of ArlRS signaling. Our findings suggest a novel approach for the pharmacological treatment and prevention of S. aureus endovascular infections through targeting the ArlRS—MgrA regulatory system. Adhesion is central to the success of Staphylococcus aureus as a bacterial pathogen. We describe a novel mechanism through which S. aureus alters adhesion to ligands by regulating expression of giant inhibitory surface proteins. These giant proteins shield normal surface adhesins, preventing binding to ligands commonly found in the bloodstream and vessel walls. Using this unique regulatory scheme, S. aureus can bypass the need for individualized regulation of numerous adhesins to control overall adhesive properties. Our study establishes the importance of these giant proteins for S. aureus pathogenesis and demonstrates that a single regulatory cascade can be targeted for treating infections.
Collapse
Affiliation(s)
- Jakub M. Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Heidi A. Crosby
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Claire Valotteau
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Joseph A. Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Manasa K. Nayak
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Anil K. Chauhan
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Eric P. Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Yves F. Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Veterans Affairs Eastern Colorado Healthcare System, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
32
|
Grønnemose RB, Saederup KL, Kolmos HJ, Hansen SWK, Asferg CA, Rasmussen KJ, Palarasah Y, Andersen TE. A novel in vitro model for haematogenous spreading ofS. aureusdevice biofilms demonstrating clumping dispersal as an advantageous dissemination mechanism. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/28/2017] [Indexed: 01/07/2023]
Affiliation(s)
- R. B. Grønnemose
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| | - K. L. Saederup
- Department of Cancer and Inflammation Research; University of Southern Denmark; Odense Denmark
| | - H. J. Kolmos
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| | - S. W. K. Hansen
- Department of Cancer and Inflammation Research; University of Southern Denmark; Odense Denmark
| | - C. A. Asferg
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| | - K. J. Rasmussen
- Department of Cancer and Inflammation Research; University of Southern Denmark; Odense Denmark
| | - Y. Palarasah
- Unit for Thrombosis Research, Department of Clinical Biochemistry; University of Southern Denmark; Esbjerg Denmark
| | - T. E. Andersen
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| |
Collapse
|
33
|
Dai Y, Wang Y, Liu Q, Gao Q, Lu H, Meng H, Qin J, Hu M, Li M. A Novel ESAT-6 Secretion System-Secreted Protein EsxX of Community-Associated Staphylococcus aureus Lineage ST398 Contributes to Immune Evasion and Virulence. Front Microbiol 2017; 8:819. [PMID: 28529509 PMCID: PMC5418362 DOI: 10.3389/fmicb.2017.00819] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/21/2017] [Indexed: 11/13/2022] Open
Abstract
The ESAT-6 secretion system (ESS) has been reported to contribute to the virulence and pathogenicity of several Staphylococcus aureus strains such as USA300 and Newman. However, the role of the ESS in community-associated S. aureus (CA-SA) lineage ST398 in China is not well understood. By comparing the ess locus of ST398 with the published S. aureus sequence in the NCBI database, we found one gene in the ess locus encoding a novel WXG superfamily protein that is highly conserved only in ST398. LC-MS/MS and Western blot analysis revealed that this protein is a novel secreted protein controlled by the ST398 ESS, and we named the protein EsxX. Although EsxX was not under the control of the accessory gene regulator like many other virulence factors and had no influence on several phenotypes of ST398, such as growth, hemolysis, and biofilm formation, it showed important impacts on immune evasion and virulence in ST398. An esxX deletion mutant led to significantly reduced resistance to neutrophil killing and decreased virulence in murine skin and blood infection models, indicating its essential contribution to the evasion of innate host defense and virulence to support the pathogenesis of ST398 infections. The function of this novel secreted protein EsxX might help us better understand the role of the ESS in the virulence and epidemic success of the CA-SA lineage ST398.
Collapse
Affiliation(s)
- Yingxin Dai
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Yanan Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Qianqian Gao
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Huiying Lu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Hongwei Meng
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Juanxiu Qin
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Mo Hu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking UniversityBeijing, China
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
34
|
Torre C, Abnave P, Tsoumtsa LL, Mottola G, Lepolard C, Trouplin V, Gimenez G, Desrousseaux J, Gempp S, Levasseur A, Padovani L, Lemichez E, Ghigo E. Staphylococcus aureus Promotes Smed-PGRP-2/Smed-setd8-1 Methyltransferase Signalling in Planarian Neoblasts to Sensitize Anti-bacterial Gene Responses During Re-infection. EBioMedicine 2017; 20:150-160. [PMID: 28456423 PMCID: PMC5478204 DOI: 10.1016/j.ebiom.2017.04.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022] Open
Abstract
Little is known about how organisms exposed to recurrent infections adapt their innate immune responses. Here, we report that planarians display a form of instructed immunity to primo-infection by Staphylococcus aureus that consists of a transient state of heightened resistance to re-infection that persists for approximately 30 days after primo-infection. We established the involvement of stem cell-like neoblasts in this instructed immunity using the complementary approaches of RNA-interference-mediated cell depletion and tissue grafting-mediated gain of function. Mechanistically, primo-infection leads to expression of the peptidoglycan receptor Smed-PGRP-2, which in turn promotes Smed-setd8-1 histone methyltransferase expression and increases levels of lysine methylation in neoblasts. Depletion of neoblasts did not affect S. aureus clearance in primo-infection but, in re-infection, abrogated the heightened elimination of bacteria and reduced Smed-PGRP-2 and Smed-setd8-1 expression. Smed-PGRP-2 and Smed-setd8-1 sensitize animals to heightened expression of Smed-p38 MAPK and Smed-morn2, which are downstream components of anti-bacterial responses. Our study reveals a central role of neoblasts in innate immunity against S. aureus to establish a resistance state facilitating Smed-sted8-1-dependent expression of anti-bacterial genes during re-infection. Planarians initiate a genetic program of instructed immunity during S. aureus infection. Planarians neoblasts have a critical function in controlling the heightened expression of Smed-PGRP-2 and Smed-setd8-1. Instructed immunity can be grafted onto naive animals.
Research in context Little is known about how organisms exposed to recurrent infections adapt their innate immune responses. Most studies addressing this question in vertebrates have been performed on immune cells which are already trained for immune function. We established that planarians are endowed with instructed immunity allowing them to clear S. aureus with a higher efficacy during re-infection. We define the central role of neoblasts and Smed-PGRP-2 for establishing a resistance state against S. aureus that is controlled by Smed-sted8 for facilitated expression of anti-bacterial genes during re-infection. This shed light on the role of stem cells and epigenetic determinant in controlling innate immune memory.
Collapse
Affiliation(s)
- Cedric Torre
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin 13385, Marseille, Cedex 05, France
| | - Prasad Abnave
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin 13385, Marseille, Cedex 05, France
| | - Landry Laure Tsoumtsa
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin 13385, Marseille, Cedex 05, France
| | - Giovanna Mottola
- UMR MD2, Faculté de Médecine Nord, Aix Marseille University and Institute of Research in Biology of the French Army Marseille, France; Laboratory of Biochemistry, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Catherine Lepolard
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin 13385, Marseille, Cedex 05, France
| | - Virginie Trouplin
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin 13385, Marseille, Cedex 05, France
| | - Gregory Gimenez
- Otago Genomics & Bioinformatics Facility, Department of Biochemistry, University of Otago, PO Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Julie Desrousseaux
- APHM, Timone Hospital, Department of Radiotherapy, Marseille 13005, France
| | - Stephanie Gempp
- APHM, Timone Hospital, Department of Radiotherapy, Marseille 13005, France
| | - Anthony Levasseur
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin 13385, Marseille, Cedex 05, France
| | - Laetitia Padovani
- APHM, Timone Hospital, Department of Radiotherapy, Marseille 13005, France
| | - Emmanuel Lemichez
- UCA, Inserm, U1065, C3M, Université de Nice Sophia-Antipolis, Equipe labellisée Ligue Contre le Cancer, 06204 Nice Cedex 3, France
| | - Eric Ghigo
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin 13385, Marseille, Cedex 05, France.
| |
Collapse
|
35
|
Teng F, Deng P, Song Z, Zhou F, Feng R, Liu N. In vitro characterization of pH-sensitive azithromycin-loaded methoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) micelles. J Colloid Interface Sci 2017; 496:16-25. [PMID: 28209540 DOI: 10.1016/j.jcis.2017.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
In order to improve azithromycin's antibacterial activity in acidic medium, monomethoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) copolymer was synthesized through allylation, free radical addition, ring-opening polymerization and amidation reactions with methoxy poly (ethylene glycol) as raw material. Drug loading capacity and encapsulation efficiency of azithromycin-loaded micelles prepared via thin film hydration method were 11.58±0.86% and 96.06±1.93%, respectively. The drug-loaded micelles showed pH-dependent property in the respects of particle size, zeta potential at the range of pH 5.5-7.8. It could control drug in vitro release and demonstrate higher release rate at pH 6.0 than that at pH 7.4. In vitro antibacterial experiment indicated that the activity of azithromycin-loaded micelles against S. aureus was superior to free azithromycin in medium at both pH 6.0 and pH 7.4. Using fluorescein as substitute with pH-dependent fluorescence decrease property, laser confocal fluorescence microscopy analysis confirmed that cellular uptake of micelles was improved due to protonation of copolymer's imidazole groups at pH 6.0. The enhanced cellular uptake and release of drug caused its activity enhancement in acidic medium when compared with free drug. The micellar drug delivery system should be potential application in the field of bacterial infection treatment.
Collapse
Affiliation(s)
- Fangfang Teng
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, No. 16866 East Road of Jingshi, Jinan 250200, Shandong Province, PR China; Shandong Academy of Medical Sciences, No. 18877 Jingshi Road, Jinan 250062, Shandong Province, PR China.
| | - Peizong Deng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China.
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China.
| | - Feilong Zhou
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China.
| | - Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China.
| | - Na Liu
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China.
| |
Collapse
|
36
|
Staphylococcus aureus-dependent septic arthritis in murine knee joints: local immune response and beneficial effects of vaccination. Sci Rep 2016; 6:38043. [PMID: 27901071 PMCID: PMC5128924 DOI: 10.1038/srep38043] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is the major cause of human septic arthritis and osteomyelitis, which deserve special attention due to their rapid evolution and resistance to treatment. The progression of the disease depends on both bacterial presence in situ and uncontrolled disruptive immune response, which is responsible for chronic disease. Articular and bone infections are often the result of blood bacteremia, with the knees and hips being the most frequently infected joints showing the worst clinical outcome. We report the development of a hematogenous model of septic arthritis in murine knees, which progresses from an acute to a chronic phase, similarly to what occurs in humans. Characterization of the local and systemic inflammatory and immune responses following bacterial infection brought to light specific signatures of disease. Immunization of mice with the vaccine formulation we have recently described (4C-Staph), induced a strong antibody response and specific CD4+ effector memory T cells, and resulted in reduced bacterial load in the knee joints, a milder general inflammatory state and protection against bacterial-mediated cellular toxicity. Possible correlates of protection are finally proposed, which might contribute to the development of an effective vaccine for human use.
Collapse
|
37
|
Is it true that plant-derived polyphenols are always beneficial for the human? In vitro study on Leonurus cardiaca extract properties in the context of the pathogenesis of Staphylococcus aureus infections. J Med Microbiol 2016; 65:1171-1181. [DOI: 10.1099/jmm.0.000332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
38
|
Sadowska B, Kuźma Ł, Micota B, Budzyńska A, Wysokińska H, Kłys A, Więckowska-Szakiel M, Różalska B. New biological potential of abietane diterpenoids isolated from Salvia austriaca against microbial virulence factors. Microb Pathog 2016; 98:132-9. [DOI: 10.1016/j.micpath.2016.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/05/2016] [Indexed: 12/01/2022]
|
39
|
Rauch L, Hennings K, Trasak C, Röder A, Schröder B, Koch-Nolte F, Rivera-Molina F, Toomre D, Aepfelbacher M. Staphylococcus aureus recruits Cdc42GAP through recycling endosomes and the exocyst to invade human endothelial cells. J Cell Sci 2016; 129:2937-49. [PMID: 27311480 DOI: 10.1242/jcs.186213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023] Open
Abstract
Activation and invasion of the vascular endothelium by Staphylococcus aureus is a major cause of sepsis and endocarditis. For endothelial cell invasion, S. aureus triggers actin polymerization through Cdc42, N-WASp (also known as WASL) and the Arp2/3 complex to assemble a phagocytic cup-like structure. Here, we show that after stimulating actin polymerization staphylococci recruit Cdc42GAP (also known as ARHGAP1) which deactivates Cdc42 and terminates actin polymerization in the phagocytic cups. Cdc42GAP is delivered to the invading bacteria on recycling endocytic vesicles in concert with the exocyst complex. When Cdc42GAP recruitment by staphylococci was prevented by blocking recycling endocytic vesicles or the exocyst complex, or when Cdc42 was constitutively activated, phagocytic cup closure was impaired and endothelial cell invasion was inhibited. Thus, to complete invasion of the endothelium, staphylococci reorient recycling endocytic vesicles to recruit Cdc42GAP, which terminates Cdc42-induced actin polymerization in phagocytic cups. Analogous mechanisms might govern other Cdc42-dependent cell functions.
Collapse
Affiliation(s)
- Liane Rauch
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Kirsten Hennings
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Claudia Trasak
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Anja Röder
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Barbara Schröder
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, Neuherberg 85764, Germany Institute for Biological Imaging, Technical University of Munich, Arcisstrasse 21, Munich 80333, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| |
Collapse
|
40
|
Selle M, Hertlein T, Oesterreich B, Klemm T, Kloppot P, Müller E, Ehricht R, Stentzel S, Bröker BM, Engelmann S, Ohlsen K. Global antibody response to Staphylococcus aureus live-cell vaccination. Sci Rep 2016; 6:24754. [PMID: 27103319 PMCID: PMC4840433 DOI: 10.1038/srep24754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration.
Collapse
Affiliation(s)
- Martina Selle
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| | - Tobias Hertlein
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| | - Babett Oesterreich
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| | - Theresa Klemm
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| | - Peggy Kloppot
- University Greifswald, Institute for Microbiology, Greifswald, Germany
| | - Elke Müller
- Alere Technologies GmbH, Jena, Germany.,InfectoGnostics Research Campus Jena, Germany
| | - Ralf Ehricht
- Alere Technologies GmbH, Jena, Germany.,InfectoGnostics Research Campus Jena, Germany
| | - Sebastian Stentzel
- University Medicine Greifswald, Department of Immunology, Greifswald, Germany
| | - Barbara M Bröker
- University Medicine Greifswald, Department of Immunology, Greifswald, Germany
| | - Susanne Engelmann
- Technical University Braunschweig, Institute for Microbiology, Braunschweig, Germany.,Helmholtz-Zentrum für Infektionsforschung, Mikrobielle Proteomik, Braunschweig, Germany
| | - Knut Ohlsen
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| |
Collapse
|
41
|
Colavite PM, Ishikawa LLW, Zorzella-Pezavento SFG, Oliveira LRCD, França TGD, da Rosa LC, Chiuso-Minicucci F, Vieira AE, Francisconi CF, da Cunha MDLRDS, Garlet GP, Sartori A. Cloxacillin control of experimental arthritis induced by SEC(+) Staphylococcus aureus is associated with downmodulation of local and systemic cytokines. Cell Microbiol 2015; 18:998-1008. [PMID: 26695535 DOI: 10.1111/cmi.12563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/23/2015] [Accepted: 12/17/2015] [Indexed: 01/20/2023]
Abstract
Staphylococcus aureus is the most common agent of septic arthritis (SA) that is a severe, rapidly progressive and erosive disease. In this work we investigated the clinical, histopathological and immunological characteristics of the SA triggered by an enterotoxin C producer S. aureus strain. The effect of a β-lactamic antibiotic over disease evolution and cytokine production was also evaluated. After confirmation that ATCC 19095 SEC(+) strain preserved its ability to produce enterotoxin C, this bacteria was used to infect C57BL/6 male mice. Body weight, clinical score and disease prevalence were daily evaluated during 14 days. Cytokine production by splenocytes, cytokine mRNA expression in arthritic lesions, transcription factors mRNA expression in inguinal lymph nodes and histopathological analysis were performed 7 and 14 days after infection. ATCC 19095 SEC(+) strain caused a severe arthritis characterized by weight loss, high clinical scores and a 100% disease prevalence. Histopathological analysis revealed inflammation, pannus formation and bone erosion. Arthritis aggravation was associated with elevated production of pro-inflammatory cytokines, higher local mRNA expression of these cytokines and also higher mRNA expression of T-bet, ROR-γ and GATA-3. Disease control by cloxacillin was associated with decreased production of pro-inflammatory cytokines but not of IL-10. These findings indicate that the ATCC 19095 SEC(+) strain is able to initiate a severe septic arthritis in mice associated with elevated cytokine production that can be, however, controlled by cloxacillin.
Collapse
Affiliation(s)
- Priscila Maria Colavite
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Larissa Lumi Watanabe Ishikawa
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | - Larissa Ragozo Cardoso de Oliveira
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Thaís Graziela Donegá França
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Larissa Camargo da Rosa
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Fernanda Chiuso-Minicucci
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Andreia Espíndola Vieira
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University-FOB/USP, Bauru, São Paulo, Brazil
| | - Carolina Fávaro Francisconi
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University-FOB/USP, Bauru, São Paulo, Brazil
| | | | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University-FOB/USP, Bauru, São Paulo, Brazil
| | - Alexandrina Sartori
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
42
|
Hellings IR, Ekman S, Hultenby K, Dolvik NI, Olstad K. Discontinuities in the endothelium of epiphyseal cartilage canals and relevance to joint disease in foals. J Anat 2015; 228:162-75. [PMID: 26471892 PMCID: PMC4694163 DOI: 10.1111/joa.12391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 12/01/2022] Open
Abstract
Cartilage canals have been shown to contain discontinuous blood vessels that enable circulating bacteria to bind to cartilage matrix, leading to vascular occlusion and associated pathological changes in pigs and chickens. It is also inconsistently reported that cartilage canals are surrounded by a cellular or acellular wall that may influence whether bacterial binding can occur. It is not known whether equine cartilage canals contain discontinuous endothelium or are surrounded by a wall. This study aimed to examine whether there were discontinuities in the endothelium of cartilage canal vessels, and whether canals had a cellular or acellular wall, in the epiphyseal growth cartilage of foals. Epiphyseal growth cartilage from the proximal third of the medial trochlear ridge of the distal femur from six healthy foals that were 1, 24, 35, 47, 118 and 122 days old and of different breeds and sexes was examined by light microscopy (LM), transmission electron microscopy (TEM) and immunohistochemistry. The majority of patent cartilage canals contained blood vessels that were lined by a thin layer of continuous endothelium. Fenestrations were found in two locations in one venule in a patent cartilage canal located deep in the growth cartilage and close to the ossification front in the 118-day-old foal. Chondrifying cartilage canals in all TEM-examined foals contained degenerated endothelial cells that were detached from the basement membrane, resulting in gap formation. Thirty-three percent of all canals were surrounded by a hypercellular rim that was interpreted as contribution of chondrocytes to growth cartilage. On LM, 69% of all cartilage canals were surrounded by a ring of matrix that stained intensely eosinophilic and consisted of collagen fibres on TEM that were confirmed to be collagen type I by immunohistochemistry. In summary, two types of discontinuity were observed in the endothelium of equine epiphyseal cartilage canal vessels: fenestrations were observed in a patent cartilage canal in the 118-day-old foal; and gaps were observed in chondrifying cartilage canals in all TEM-examined foals. Canals were not surrounded by any cellular wall, but a large proportion was surrounded by an acellular wall consisting of collagen type I. Bacterial binding can therefore probably occur in horses by mechanisms that are similar to those previously demonstrated in pigs and chickens.
Collapse
Affiliation(s)
- Ingunn Risnes Hellings
- Department of Companion Animal Clinical Sciences, Equine Section, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Stina Ekman
- Department of Biomedical Sciences and Veterinary Public Health, Section of Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institutet and University Hospital, Huddinge, Sweden
| | - Nils Ivar Dolvik
- Department of Companion Animal Clinical Sciences, Equine Section, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristin Olstad
- Department of Companion Animal Clinical Sciences, Equine Section, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
43
|
EDIN-B Promotes the Translocation of Staphylococcus aureus to the Bloodstream in the Course of Pneumonia. Toxins (Basel) 2015; 7:4131-42. [PMID: 26501320 PMCID: PMC4626725 DOI: 10.3390/toxins7104131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022] Open
Abstract
It is crucial to define risk factors that contribute to host invasion by Staphylococcusaureus. Here, we demonstrate that the chromosomally encoded EDIN-B isoform from S. aureus contributes to the onset of bacteremia during the course of pneumonia. Deletion of edinB in a European lineage community-acquired methicillin resistant S. aureus (CA-MRSA) strain (ST80-MRSA-IV) dramatically decreased the frequency and magnitude of bacteremia in mice suffering from pneumonia. This deletion had no effect on the bacterial burden in both blood circulation and lung tissues. Re-expression of wild-type EDIN-B, unlike the catalytically inactive mutant EDIN-R185E, restored the invasive characteristics of ST80-MRSA-IV.
Collapse
|
44
|
Deplanche M, Filho RAEA, Alekseeva L, Ladier E, Jardin J, Henry G, Azevedo V, Miyoshi A, Beraud L, Laurent F, Lina G, Vandenesch F, Steghens JP, Le Loir Y, Otto M, Götz F, Berkova N. Phenol-soluble modulin α induces G2/M phase transition delay in eukaryotic HeLa cells. FASEB J 2015; 29:1950-9. [PMID: 25648996 DOI: 10.1096/fj.14-260513] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus is a gram-positive bacterium responsible for a wide range of infections. Host cell cycle alteration is a sophisticated mechanism used by pathogens to hijack the defense functions of host cells. We previously demonstrated that S. aureus MW2 (USA400) bacteria induced a G2/M phase transition delay in HeLa cells. We demonstrate here that this activity is triggered by culture supernatant compounds. Using size exclusion chromatography of the MW2 supernatant, followed by mass spectroscopy analysis of corresponding peaks, we identified phenol-soluble modulin α (PSMα) peptides as the likely candidates for this effect. Indeed, synthetic PSMα1 and PSMα3 caused a G2/M phase transition delay. The implication of PSMα in cell cycle alteration was confirmed by comparison of S. aureus Los Angeles County clone (LAC) wild-type with the isogenic mutant LAC∆psmα, which lacks the psmα operon encoding PSMα1-4. PSMα-induced G2/M transition delay correlated with a decrease in the defensin genes expression suggesting a diminution of antibacterial functions of epithelial cells. By testing the supernatant of S. aureus human clinical isolates, we found that the degree of G2/M phase transition delay correlated with PSMα1 production. We show that PSMs secreted by S. aureus alter the host cell cycle, revealing a newly identified mechanism for fostering an infection.
Collapse
Affiliation(s)
- Martine Deplanche
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Rachid Aref El-Aouar Filho
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Ludmila Alekseeva
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Emilie Ladier
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Julien Jardin
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Gwénaële Henry
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Vasco Azevedo
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Anderson Miyoshi
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Laetitia Beraud
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Frederic Laurent
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Gerard Lina
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - François Vandenesch
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Jean-Paul Steghens
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Yves Le Loir
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Michael Otto
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Friedrich Götz
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Nadia Berkova
- *Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche1253 STLO, Rennes, France; Instituto de Ciências Biológicas- Universidade Federal de Minas Gerais , Belo Horizonte- Minas Gerais, Brazil; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique Unité Mixtes de Recherche5308, Université Lyon 1, Lyon, France; Hospices Civil de Lyon, Lyon, France; Laboratory of Human Bacterial Pathogenesis, National Institutes of Health, Bethesda, Maryland, USA; and **Microbial Genetics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
45
|
Große C, Bergner N, Dellith J, Heller R, Bauer M, Mellmann A, Popp J, Neugebauer U. Label-Free Imaging and Spectroscopic Analysis of Intracellular Bacterial Infections. Anal Chem 2015; 87:2137-42. [DOI: 10.1021/ac503316s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christina Große
- Center
for Sepsis Control and Care, Jena University Hospital, Erlanger Allee
101, D-07747 Jena, Thuringia, Germany
- Leibniz Institute
of Photonic Technology, Albert-Einstein-Straße
9, D-07745 Jena, Thuringia, Germany
| | - Norbert Bergner
- Leibniz Institute
of Photonic Technology, Albert-Einstein-Straße
9, D-07745 Jena, Thuringia, Germany
| | - Jan Dellith
- Leibniz Institute
of Photonic Technology, Albert-Einstein-Straße
9, D-07745 Jena, Thuringia, Germany
| | - Regine Heller
- Center
for Sepsis Control and Care, Jena University Hospital, Erlanger Allee
101, D-07747 Jena, Thuringia, Germany
- Institute
for Molecular Cell Biology, Jena University Hospital, Hans-Knöll-Straße
2, D-07745 Jena, Thuringia, Germany
| | - Michael Bauer
- Center
for Sepsis Control and Care, Jena University Hospital, Erlanger Allee
101, D-07747 Jena, Thuringia, Germany
| | - Alexander Mellmann
- Institute
of Hygiene, University of Münster, Robert-Koch-Straße 41, D-48149 Münster, North Rhine-Westphalia, Germany
| | - Jürgen Popp
- Center
for Sepsis Control and Care, Jena University Hospital, Erlanger Allee
101, D-07747 Jena, Thuringia, Germany
- Leibniz Institute
of Photonic Technology, Albert-Einstein-Straße
9, D-07745 Jena, Thuringia, Germany
- Institute
of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, D-07743 Jena, Thuringia, Germany
| | - Ute Neugebauer
- Center
for Sepsis Control and Care, Jena University Hospital, Erlanger Allee
101, D-07747 Jena, Thuringia, Germany
- Leibniz Institute
of Photonic Technology, Albert-Einstein-Straße
9, D-07745 Jena, Thuringia, Germany
| |
Collapse
|
46
|
Gastrointestinal dissemination and transmission of Staphylococcus aureus following bacteremia. Infect Immun 2014; 83:372-8. [PMID: 25385792 DOI: 10.1128/iai.02272-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations that alter virulence and antibiotic susceptibility arise and persist during Staphylococcus aureus bacteremia. However, an experimental system demonstrating transmission following bacteremia has been lacking, and thus implications of within-host adaptation for between-host transmission are unknown. We report that S. aureus disseminates to the gastrointestinal tract of mice following intravenous injection and readily transmits to cohoused naive mice. Both intestinal dissemination and transmission were linked to the production of virulence factors based on gene deletion studies of the sae and agr two-component systems. Furthermore, antimicrobial selection for antibiotic-resistant S. aureus displaced susceptible S. aureus from the intestine of infected hosts, which led to the preferential transmission and dominance of antibiotic-resistant bacteria among cohoused untreated mice. These findings establish an animal model to investigate gastrointestinal dissemination and transmission of S. aureus and suggest that adaptation during the course of systemic infection has implications beyond the level of a single host.
Collapse
|
47
|
Painter KL, Krishna A, Wigneshweraraj S, Edwards AM. What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? Trends Microbiol 2014; 22:676-85. [PMID: 25300477 DOI: 10.1016/j.tim.2014.09.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is a major cause of bacteremia, which frequently results in serious secondary infections such as infective endocarditis, osteomyelitis, and septic arthritis. The ability of S. aureus to cause such a wide range of infections has been ascribed to its huge armoury of different virulence factors, many of which are under the control of the quorum-sensing accessory gene regulator (Agr) system. However, a significant fraction of S. aureus bacteremia cases are caused by agr-defective isolates, calling into question the role of Agr in invasive staphylococcal infections. This review draws on recent work to define the role of Agr during bacteremia and explain why the loss of this major virulence regulator is sometimes a price worth paying for S. aureus.
Collapse
Affiliation(s)
- Kimberley L Painter
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College, Armstrong Road, London SW7 2AZ, UK
| | - Aishwarya Krishna
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College, Armstrong Road, London SW7 2AZ, UK
| | - Sivaramesh Wigneshweraraj
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College, Armstrong Road, London SW7 2AZ, UK
| | - Andrew M Edwards
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College, Armstrong Road, London SW7 2AZ, UK.
| |
Collapse
|
48
|
Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells. Infect Immun 2014; 82:4144-53. [PMID: 25047846 DOI: 10.1128/iai.01576-14] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Staphylococcus aureus is one of the major causes of health care-associated infections. S. aureus is primarily an extracellular pathogen, but it was recently reported to invade and replicate in several host cell types. The ability of S. aureus to persist within cells has been implicated in resistance to antimicrobials and recurrent infections. However, few staphylococcal proteins that mediate intracellular survival have been identified. Here we examine if EsxA and EsxB, substrates of the ESAT-6-like secretion system (Ess), are important during intracellular S. aureus infection. The Esx proteins are required for staphylococcal virulence, but their functions during infection are unclear. While isogenic S. aureus esxA and esxB mutants were not defective for epithelial cell invasion in vitro, a significant increase in early/late apoptosis was observed in esxA mutant-infected cells compared to wild-type-infected cells. Impeding secretion of EsxA by deleting C-terminal residues of the protein also resulted in a significant increase of epithelial cell apoptosis. Furthermore, cells transfected with esxA showed an increased protection from apoptotic cell death. A double mutant lacking both EsxA and EsxB also induced increased apoptosis but, remarkably, was unable to escape from cells as efficiently as the single mutants or the wild type. Thus, using in vitro models of intracellular staphylococcal infection, we demonstrate that EsxA interferes with host cell apoptotic pathways and, together with EsxB, mediates the release of S. aureus from the host cell.
Collapse
|
49
|
Septic arthritis: immunopathogenesis, experimental models and therapy. J Venom Anim Toxins Incl Trop Dis 2014; 20:19. [PMID: 24822058 PMCID: PMC4017707 DOI: 10.1186/1678-9199-20-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/22/2014] [Indexed: 11/16/2022] Open
Abstract
Septic arthritis is an inflammatory disease of the joints that is started by an infection whose most common agent is Staphylococcus aureus. In this review we discuss some of the most arthritogenic bacterial factors and the contribution of innate and specific immune mechanisms to joint destruction. Special emphasis is given to the induction of experimental arthritis by S. aureus in mice. The improvement of therapy by association of antibiotics with down-modulation of immunity is also included.
Collapse
|
50
|
Stemberk V, Jones RPO, Moroz O, Atkin KE, Edwards AM, Turkenburg JP, Leech AP, Massey RC, Potts JR. Evidence for steric regulation of fibrinogen binding to Staphylococcus aureus fibronectin-binding protein A (FnBPA). J Biol Chem 2014; 289:12842-51. [PMID: 24627488 PMCID: PMC4007472 DOI: 10.1074/jbc.m113.543546] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The adjacent fibrinogen (Fg)- and fibronectin (Fn)-binding sites on Fn-binding protein A (FnBPA), a cell surface protein from Staphylococcus aureus, are implicated in the initiation and persistence of infection. FnBPA contains a single Fg-binding site (that also binds elastin) and multiple Fn-binding sites. Here, we solved the structure of the N2N3 domains containing the Fg-binding site of FnBPA in the apo form and in complex with a Fg peptide. The Fg binding mechanism is similar to that of homologous bacterial proteins but without the requirement for "latch" strand residues. We show that the Fg-binding sites and the most N-terminal Fn-binding sites are nonoverlapping but in close proximity. Although Fg and a subdomain of Fn can form a ternary complex on an FnBPA protein construct containing a Fg-binding site and single Fn-binding site, binding of intact Fn appears to inhibit Fg binding, suggesting steric regulation. Given the concentrations of Fn and Fg in the plasma, this mechanism might result in targeting of S. aureus to fibrin-rich thrombi or elastin-rich tissues.
Collapse
Affiliation(s)
| | | | - Olga Moroz
- Chemistry, University of York, York YO10 5DD, United Kingdom and
| | | | - Andrew M. Edwards
- the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | - Ruth C. Massey
- the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Jennifer R. Potts
- From the Departments of Biology and , Recipient of British Heart Foundation Senior Basic Science Research Fellowship FS/12/36/29588. To whom correspondence should be addressed. Tel.: 44-1904-328679; E-mail:
| |
Collapse
|