1
|
Agrawal P, Singh P, Singh KP. Vilazodone exposure during pregnancy: Effects on embryo-fetal development, pregnancy outcomes and fetal neurotoxicity by BDNF/Bax-Bcl2/5-HT mediated mechanisms. Neurotoxicology 2024; 105:280-292. [PMID: 39532268 DOI: 10.1016/j.neuro.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The high prevalence of major depressive disorder (MDD) among women of childbearing age necessitates careful consideration of antidepressant use during pregnancy. Although newer antidepressants, such as Vilazodone (VLZ), are preferred for their enhanced therapeutic profiles; however, their safety during pregnancy and long-term effects on offspring brains remain inadequately addressed. Therefore, this study aimed to investigate the reproductive and developmental neurotoxicity of VLZ given at equivalent therapeutic doses during gestation in a rat model. Pregnant Wistar dams were orally administered either with 1 mg/day or 2 mg/day of VLZ from gestation day (GD) 6-21. The dams were sacrificed at GD 21, and the placentas and fetuses were collected. Fetal brains were then subjected to neurohistopathological, neurochemical, and biochemical analysis. Prenatal exposure to VLZ at 2 mg/day resulted in significant maternal, reproductive, and embryo-fetal toxicity, characterized by reduced food intake, diminished weight gain in pregnant dams, and smaller litter sizes, along with decreased fetal and placental weights. These effects were associated with developmental neurotoxicity, which manifested as decreased fetal brain size and weight, a substantial reduction in neocortical layer thickness, brain-derived neurotrophic factor (BDNF) expression, serotonin, dopamine, and norepinephrine neurotransmitter levels (5-HT, DA, and NE), and increased apoptotic activity (Bax and Bcl-2 ratio) and acetylcholinesterase levels in the developing brain. Our findings indicate that prenatal VLZ exposure interfere with crucial brain development processes involving the BDNF/Bax-Bcl2/5-HT signalling pathways, leading to long-lasting neurodevelopmental impairments. This study is the first to document the adverse effects of VLZ on fetal brain development, highlighting the need for further research to assess the safety of VLZ use during pregnancy.
Collapse
Affiliation(s)
- Priyanka Agrawal
- Neurobiology Lab., Department of Zoology, University of Allahabad, Prayagraj, UP 211002, India.
| | - Pallavi Singh
- Neurobiology Lab., Department of Zoology, University of Allahabad, Prayagraj, UP 211002, India.
| | - K P Singh
- Neurobiology Lab., Department of Zoology, University of Allahabad, Prayagraj, UP 211002, India.
| |
Collapse
|
2
|
Wang H, Li X, Li J, Yu F, Li Q, Qin M, Gui L, Qian Y, Huang M. Long-term exposure to ionic liquid [C 8mim]Br induces the potential risk of anxiety and memory deterioration through disturbing neurotransmitter systems. Neurotoxicology 2024; 104:66-74. [PMID: 39084264 DOI: 10.1016/j.neuro.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
1-octyl-3-methylimidazolium bromide ([C8mim]Br), one of the ionic liquids (ILs), has been used in various fields as an alternative green solvent of conventional organic solvents. Increased application and stabilization of imidazole ring structure lead to its release into the aquatic environment and long-term retention. Structure-activity relationship consideration suggested that ILs may be acetylcholinesterase inhibitors; however, neurotoxicity in vivo, especially the underlying mechanisms is rarely studied. In this study, the zebrafish were exposed to 2.5-10 mg/L [C8mim]Br for 28 days to comprehensively evaluate the neurotoxicity of ILs on adult zebrafish from the behavioral profiles and neurotransmitter systems for the first time. The results indicate that zebrafish exhibit suppressed spatial working memory and anxious behaviors. To assess the potential neurotoxic mechanisms underlying the behavioral responses of zebrafish, we measured the levels of neurotransmitters and precursors, key enzyme activities, and expression levels of relevant genes. Nissl staining showed significant neural cell death in zebrafish after 28-day [C8mim]Br exposure, with corresponding decreases in the levels of neurotransmitters (acetylcholine, glutamate, 5-hydroxytryptophan, gamma-aminobutyric acid, dopamine, and norepinephrine). Furthermore, these results were associated with mRNA expression levels of the disrupted neurotransmitter key genes (th, tph2, mao, slc6a3, ache, gad67). Overall, our study determined that [C8mim]Br caused potential mental disorders like anxiety and memory deterioration in zebrafish by impairing neurotransmitter systems, providing recommendations for the industrial production and application of [C8mim]Br.
Collapse
Affiliation(s)
- Huangyingzi Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Xuhua Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Fan Yu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Qi Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Mijia Qin
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Lin Gui
- Shanghai American School, Pudong District, Shanghai 201201, China
| | - Yajie Qian
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Yang H, Chen Y, Tao Q, Shi W, Tian Y, Wei Y, Li S, Zhang Y, Han S, Cheng J. Integrative molecular and structural neuroimaging analyses of the interaction between depression and age of onset: A multimodal magnetic resonance imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111052. [PMID: 38871019 DOI: 10.1016/j.pnpbp.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Depression is a neurodevelopmental disorder that exhibits progressive gray matter volume (GMV) atrophy. Research indicates that brain development is influential in depression-induced GMV alterations. However, the interaction between depression and age of onset is not well understood by the underlying molecular and neuropathological mechanisms. Thus, 152 first-episode depression individuals and matched 130 healthy controls (HCs) were recruited to undergo T1-weighted high-resolution magnetic resonance imaging for this study. By two-way ANOVA, age and diagnosis were used as factors when analyzing the interaction of GMV in the participants. Then, spatial correlations between neurotransmitter maps and factor-related volume maps are established. Results illustrate a pronounced antagonistic interaction between depression and age of onset in the right insula, superior temporal gyrus, anterior cingulate gyrus, and orbitofrontal gyrus. Depression-caused reductions in GMV are mainly distributed in thalamic-limbic-cortical regions, regardless of age. For the main effect of age, adults exhibit brain atrophy in frontal, cerebellum, parietal, and temporal lobe structures. Cross-modal correlations showed that GMV changes in the interactive regions were linked with the serotonergic system and dopaminergic systems. Summarily, our results reveal the interaction between depression and age of onset in neurobiological mechanisms, which provide hints for future treatment of different ages of depression.
Collapse
Affiliation(s)
- Huiting Yang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Wenqing Shi
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Ya Tian
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| |
Collapse
|
4
|
Jin D, Yang H, Chen Z, Hong Y, Ma H, Xu Z, Cao B, Fei F, Zhang Y, Wu W, Tang L, Sun R, Wang C, Li J. Effect of the novel anti-NGF monoclonal antibody DS002 on the metabolomics of pain mediators, cartilage and bone. Front Pharmacol 2024; 15:1396790. [PMID: 39188953 PMCID: PMC11345146 DOI: 10.3389/fphar.2024.1396790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
The anti-nerve growth factor antibody class of drugs interrupts signaling by blocking NGF binding to TrkA receptors for the treatment of pain; however, this target class of drugs has been associated with serious adverse effects in the joints during clinical trials. DS002 is a novel anti-nerve growth factor antibody drug independently developed by Guangdong Dashi Pharmaceuticals. The main purpose of this study is to explore the correlation between DS002 and pain as well as cartilage and bone metabolism with the help of metabolomics technology and the principle of enzyme-linked reaction, and to examine whether DS002 will produce serious adverse effects in joints caused by its same target class of drugs, in order to provide more scientific basis for the safety and efficacy of DS002. Our results showed that DS002 mainly affected the metabolism of aromatic amino acids and other metabolites, of which six metabolites, l -phenylalanine, 5-hydroxytryptophan, 5-hydroxytryptamine hydrochloride, 3-indolepropionic acid, kynuric acid, and kynurenine, were significantly altered, which may be related to the effectiveness of DS002 in treating pain. In addition, there were no significant changes in biological indicators related to cartilage and bone metabolism in vivo, suggesting that DS002 would not have a significant effect on cartilage and bone metabolism, so we hypothesize that DS002 may not produce the serious adverse effects in joints caused by its fellow target analogs. Therefore, the Anti-NGF analgesic drug DS002 has the potential to become a promising drug in the field of analgesia, providing pain patients with an efficient treatment option without adverse effects.
Collapse
Affiliation(s)
- Dandan Jin
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoyi Yang
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyou Chen
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxin Hong
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Hehua Ma
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhenzhen Xu
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bei Cao
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fei Fei
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuwen Zhang
- Department of Phase I Clinical Trials Unit, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Weitao Wu
- Dartsbio Pharmaceuticals Ltd., Zhongshan, Guangdong, China
| | - Lei Tang
- Dartsbio Pharmaceuticals Ltd., Zhongshan, Guangdong, China
| | - Runbin Sun
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Phase I Clinical Trials Unit, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Chunhe Wang
- Dartsbio Pharmaceuticals Ltd., Zhongshan, Guangdong, China
| | - Juan Li
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Department of Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Phase I Clinical Trials Unit, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
5
|
Lu F, Zhang J, Zhong Y, Hong L, Wang J, Du H, Fang J, Fan Y, Wang X, Yang Y, He Z, Jia C, Wang W, Lv X. Neural signatures of default mode network subsystems in first-episode, drug-naive patients with major depressive disorder after 6-week thought induction psychotherapy treatment. Brain Commun 2024; 6:fcae263. [PMID: 39171204 PMCID: PMC11337011 DOI: 10.1093/braincomms/fcae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Evidence indicates that the default mode network (DMN) plays a crucial role in the neuropathology of major depressive disorder (MDD). However, the neural signatures of DMN subsystems in MDD after low resistance Thought Induction Psychotherapy (TIP) remain incompletely understood. We collected functional magnetic resonance imaging data from 20 first-episode, drug-naive MDD and 20 healthy controls (HCs). The DMN was segmented into three subsystems and seed-based functional connectivity (FC) was computed. After 6-week treatment, the significantly reduced FCs with the medial temporal lobe memory subsystem in MDD at baseline were enhanced and were comparable to that in HCs. Changed Hamilton Depression Rating Scale scores were significantly related with changed FC between the posterior cingulate cortex (PCC) and the right precuneus (PCUN). Further, changed serotonin 5-hydroxytryptamine levels were significantly correlated with changed FCs between the PCC and the left PCUN, between the posterior inferior parietal lobule and the left inferior temporal gyrus, and between the retrosplenial cortex and the right inferior frontal gyrus, opercular part. Finally, the support vector machine obtained an accuracy of 67.5% to distinguish between MDD at baseline and HCs. These findings may deepen our understanding of the neural basis of the effects of TIP on DMN subsystems in MDD.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jinhua Zhang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yihua Zhong
- Teaching Department, The Open University of Chengdu, Chengdu 610213, China
| | - Lan Hong
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jian Wang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hui Du
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiliang Fang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yangyang Fan
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaoling Wang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Yang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chen Jia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Weidong Wang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xueyu Lv
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
6
|
Zhao X, Pang J, Zhang W, Peng X, Yang Z, Bai G, Xia Y. Tryptophan metabolism and piglet diarrhea: Where we stand and the challenges ahead. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:123-133. [PMID: 38766516 PMCID: PMC11101943 DOI: 10.1016/j.aninu.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 05/22/2024]
Abstract
The intestinal architecture of piglets is vulnerable to disruption during weaning transition and leads to diarrhea, frequently accompanied by inflammation and metabolic disturbances (including amino acid metabolism). Tryptophan (Trp) plays an essential role in orchestrating intestinal immune tolerance through its metabolism via the kynurenine, 5-hydroxytryptamine, or indole pathways, which could be dictated by the gut microbiota either directly or indirectly. Emerging evidence suggests a strong association between piglet diarrhea and Trp metabolism. Here we aim to summarize the intricate balance of microbiota-host crosstalk by analyzing alterations in both the host and microbial pathways of Trp and discuss how Trp metabolism may affect piglet diarrhea. Overall, this review could provide valuable insights to explore effective strategies for managing piglet diarrhea and the related challenges.
Collapse
Affiliation(s)
- Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wanghong Zhang
- Yunnan Vocational College of Agriculture, Kunming 650211, China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhenguo Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Guangdong Bai
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Kondo T, Okada Y, Shizuya S, Yamaguchi N, Hatakeyama S, Maruyama K. Neuroimmune modulation by tryptophan derivatives in neurological and inflammatory disorders. Eur J Cell Biol 2024; 103:151418. [PMID: 38729083 DOI: 10.1016/j.ejcb.2024.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The nervous and immune systems are highly developed, and each performs specialized physiological functions. However, they work together, and their dysfunction is associated with various diseases. Specialized molecules, such as neurotransmitters, cytokines, and more general metabolites, are essential for the appropriate regulation of both systems. Tryptophan, an essential amino acid, is converted into functional molecules such as serotonin and kynurenine, both of which play important roles in the nervous and immune systems. The role of kynurenine metabolites in neurodegenerative and psychiatric diseases has recently received particular attention. Recently, we found that hyperactivity of the kynurenine pathway is a critical risk factor for septic shock. In this review, we first outline neuroimmune interactions and tryptophan derivatives and then summarized the changes in tryptophan metabolism in neurological disorders. Finally, we discuss the potential of tryptophan derivatives as therapeutic targets for neuroimmune disorders.
Collapse
Affiliation(s)
- Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Saika Shizuya
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan.
| |
Collapse
|
8
|
Hu J, Zhang S, Wu H, Wang L, Zhang Y, Gao H, Li M, Ren H, Xiao H, Guo K, Li W, Liu Q. 1-Methyltryptophan treatment ameliorates high-fat diet-induced depression in mice through reversing changes in perineuronal nets. Transl Psychiatry 2024; 14:228. [PMID: 38816357 PMCID: PMC11139877 DOI: 10.1038/s41398-024-02938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Depression and obesity are prevalent disorders with significant public health implications. In this study, we used a high-fat diet (HFD)-induced obese mouse model to investigate the mechanism underlying HFD-induced depression-like behaviors. HFD-induced obese mice exhibited depression-like behaviors and a reduction in hippocampus volume, which were reversed by treatment with an indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyltryptophan (1-MT). Interestingly, no changes in IDO levels were observed post-1-MT treatment, suggesting that other mechanisms may be involved in the anti-depressive effect of 1-MT. We further conducted RNA sequencing analysis to clarify the potential underlying mechanism of the anti-depressive effect of 1-MT in HFD-induced depressive mice and found a significant enrichment of shared differential genes in the extracellular matrix (ECM) organization pathway between the 1-MT-treated and untreated HFD-induced depressive mice. Therefore, we hypothesized that changes in ECM play a crucial role in the anti-depressive effect of 1-MT. To this end, we investigated perineuronal nets (PNNs), which are ECM assemblies that preferentially ensheath parvalbumin (PV)-positive interneurons and are involved in many abnormalities. We found that HFD is associated with excessive accumulation of PV-positive neurons and upregulation of PNNs, affecting synaptic transmission in PV-positive neurons and leading to glutamate-gamma-aminobutyric acid imbalances in the hippocampus. The 1-MT effectively reversed these changes, highlighting a PNN-related mechanism by which 1-MT exerts its anti-depressive effect.
Collapse
Affiliation(s)
- Juntao Hu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shanshan Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haoran Wu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Leilei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hongyang Gao
- Electron Microscopy Core Laboratory, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Meihui Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hong Ren
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Honglei Xiao
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kun Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai, China.
| | - Wensheng Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China.
| |
Collapse
|
9
|
Yang D, Yu W, Qu J, Shen Y, Yu J, Meng R, Tao Z, Chen J, Du W, Sun HZ, Zhang Y, Chen Y, Zhao M. Environmentally relevant exposure to cotinine induces neurobehavioral toxicity in zebrafish (Danio rerio): A study using neurobehavioral and metabolomic approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123826. [PMID: 38513941 DOI: 10.1016/j.envpol.2024.123826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
As an important psychoactive substance, cotinine is ubiquitous in aquatic environment and poses a threat to aquatic organisms. However, the mechanism of its adverse health impacts remains unclear. We evaluated the effects of cotinine exposure at environmentally relevant concentrations on the development and locomotor behavior of zebrafish (Danio rerio) larvae using neurotransmitters and whole endogenous metabolism. Mild developmental toxicity and significant neurobehavior disorder, such as spontaneous movement (1-1000 μg/L), 48 hpf tactile response (50, 100, and 1000 μg/L), and 144 hpf swimming speed (1, 10, 100, 500, and 1000 μg/L), were observed in zebrafish. Exposure to cotinine led to significant alterations in 11 neurotransmitters, including homogentisic acid, serotonin, glutamic acid and aspartic acid, etc. 298 metabolites were identified and two pathways - linoleic acid metabolism and taurine and hypotaurine metabolism - were delineated. In addition, amino acid neurotransmitters were significantly correlated with metabolites such as arachidonic acid as well as its derivatives, steroidal compounds, and amino acids. Serotonin demonstrates a noteworthy correlation with 31 out of 40 differentially expressed neurotransmitters, encompassing lipids, amino acids, and other compounds. These novel findings contribute to a comprehensive understanding of the ecological risks associated with cotinine contamination in surface waters.
Collapse
Affiliation(s)
- Dan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jiajia Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yuexing Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jingtong Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Ruirui Meng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Zhen Tao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jiangfei Chen
- Institute of Environmental Safety and Human Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming, 650500, PR China
| | - Haitong Zhe Sun
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK; Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang, 324400, PR China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| |
Collapse
|
10
|
Reddy AP, Rawat P, Rohr N, Alvir R, Bisht J, Bushra MA, Luong J, Reddy AP. Role of Serotonylation and SERT Posttranslational Modifications in Alzheimer's Disease Pathogenesis. Aging Dis 2024:AD.2024.0328. [PMID: 39254383 DOI: 10.14336/ad.2024.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) is implicated mainly in Alzheimer's disease (AD) and reported to be responsible for several processes and roles in the human body, such as regulating sleep, food intake, sexual behavior, anxiety, and drug abuse. It is synthesized from the amino acid tryptophan. Serotonin also functions as a signal between neurons to mature, survive, and differentiate. It plays a crucial role in neuronal plasticity, including cell migration and cell contact formation. Various psychiatric disorders, such as depression, schizophrenia, autism, and Alzheimer's disease, have been linked to an increase in serotonin-dependent signaling during the development of the nervous system. Recent studies have found 5-HT and other monoamines embedded in the nuclei of various cells, including immune cells, the peritoneal mast, and the adrenal medulla. Evidence suggests these monoamines to be involved in widespread intracellular regulation by posttranslational modifications (PTMs) of proteins. Serotonylation is the calcium-dependent process in which 5-HT forms a long-lasting covalent bond to small cytoplasmic G-proteins by endogenous transglutaminase 2 (TGM2). Serotonylation plays a role in various biological processes. The purpose of our article is to summarize historical developments and recent advances in serotonin research and serotonylation in depression, aging, AD, and other age-related neurological diseases. We also discussed several of the latest developments with Serotonin, including biological functions, pathophysiological implications and therapeutic strategies to treat patients with depression, dementia, and other age-related conditions.
Collapse
Affiliation(s)
- Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Priyanka Rawat
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Nicholas Rohr
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Razelle Alvir
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jasbir Bisht
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mst Anika Bushra
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jennifer Luong
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Aananya P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
11
|
Ye X, Ghosh S, Shin BC, Ganguly A, Maggiotto L, Jacobs JP, Devaskar SU. Brain serotonin and serotonin transporter expression in male and female postnatal rat offspring in response to perturbed early life dietary exposures. Front Neurosci 2024; 18:1363094. [PMID: 38576870 PMCID: PMC10991790 DOI: 10.3389/fnins.2024.1363094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Serotonin (5-HT) is critical for neurodevelopment and the serotonin transporter (SERT) modulates serotonin levels. Perturbed prenatal and postnatal dietary exposures affect the developing offspring predisposing to neurobehavioral disorders in the adult. We hypothesized that the postnatal brain 5-HT-SERT imbalance associated with gut dysbiosis forms the contributing gut-brain axis dependent mechanism responsible for such ultimate phenotypes. Methods Employing maternal diet restricted (IUGR, n=8) and high fat+high fructose (HFhf, n=6) dietary modifications, rodent brain serotonin was assessed temporally by ELISA and SERT by quantitative Western blot analysis. Simultaneously, colonic microbiome studies were performed. Results At early postnatal (P) day 2 no changes in the IUGR, but a ~24% reduction in serotonin (p = 0.00005) in the HFhf group occurred, particularly in the males (p = 0.000007) revealing a male versus female difference (p = 0.006). No such changes in SERT concentrations emerged. At late P21 the IUGR group reared on HFhf (IUGR/HFhf, (n = 4) diet revealed increased serotonin by ~53% in males (p = 0.0001) and 36% in females (p = 0.023). While only females demonstrated a ~40% decrease in serotonin (p = 0.010), the males only trended lower without a significant change within the HFhf group (p = 0.146). SERT on the other hand was no different in HFhf or IUGR/RC, with only the female IUGR/HFhf revealing a 28% decrease (p = 0.036). In colonic microbiome studies, serotonin-producing Bacteriodes increased with decreased Lactobacillus at P2, while the serotonin-producing Streptococcus species increased in IUGR/HFhf at P21. Sex-specific changes emerged in association with brain serotonin or SERT in the case of Alistipase, Anaeroplasma, Blautia, Doria, Lactococcus, Proteus, and Roseburia genera. Discussion We conclude that an imbalanced 5-HT-SERT axis during postnatal brain development is sex-specific and induced by maternal dietary modifications related to postnatal gut dysbiosis. We speculate that these early changes albeit transient may permanently alter critical neural maturational processes affecting circuitry formation, thereby perturbing the neuropsychiatric equipoise.
Collapse
Affiliation(s)
- Xin Ye
- Department of Pediatrics, Division of Neonatology & Developmental Biology and The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Shubhamoy Ghosh
- Department of Pediatrics, Division of Neonatology & Developmental Biology and The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology & Developmental Biology and The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Amit Ganguly
- Department of Pediatrics, Division of Neonatology & Developmental Biology and The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Liesbeth Maggiotto
- Department of Pediatrics, Division of Neonatology & Developmental Biology and The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jonathan P. Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Sherin U. Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology and The Neonatal Research Center of the Children's Discovery & Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
12
|
Lee SH, Jung EM. Adverse effects of early-life stress: focus on the rodent neuroendocrine system. Neural Regen Res 2024; 19:336-341. [PMID: 37488887 PMCID: PMC10503627 DOI: 10.4103/1673-5374.377587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023] Open
Abstract
Early-life stress is associated with a high prevalence of mental illnesses such as post-traumatic stress disorders, attention-deficit/hyperactivity disorder, schizophrenia, and anxiety or depressive behavior, which constitute major public health problems. In the early stages of brain development after birth, events such as synaptogenesis, neuron maturation, and glial differentiation occur in a highly orchestrated manner, and external stress can cause adverse long-term effects throughout life. Our body utilizes multifaceted mechanisms, including neuroendocrine and neurotransmitter signaling pathways, to appropriately process external stress. Newborn individuals first exposed to early-life stress deploy neurogenesis as a stress-defense mechanism; however, in adulthood, early-life stress induces apoptosis of mature neurons, activation of immune responses, and reduction of neurotrophic factors, leading to anxiety, depression, and cognitive and memory dysfunction. This process involves the hypothalamus-pituitary-adrenal axis and neurotransmitters secreted by the central nervous system, including norepinephrine, dopamine, and serotonin. The rodent early-life stress model is generally used to experimentally assess the effects of stress during neurodevelopment. This paper reviews the use of the early-life stress model and stress response mechanisms of the body and discusses the experimental results regarding how early-life stress mediates stress-related pathways at a high vulnerability of psychiatric disorder in adulthood.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
13
|
Deng IB, Follett J, Bu M, Farrer MJ. DNAJC12 in Monoamine Metabolism, Neurodevelopment, and Neurodegeneration. Mov Disord 2024; 39:249-258. [PMID: 38014588 DOI: 10.1002/mds.29677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Recent studies show that pathogenic variants in DNAJC12, a co-chaperone for monoamine synthesis, may cause mild hyperphenylalaninemia with infantile dystonia, young-onset parkinsonism, developmental delay and cognitive deficits. DNAJC12 has been included in newborn screening, most revealingly in Spain, and those results highlight the importance of genetic diagnosis and early intervention in combating human disease. However, practitioners may be unaware of these advances and it is probable that many patients, especially adults, have yet to receive molecular testing for DNAJC12. Hence, this review summarizes genotype-phenotype relationships and treatment paradigms for patients with pathogenic variants in DNAJC12. It provides an overview of the structure of DNAJC12 protein, known genetic variants, domains, and binding partners, and elaborates on its role in monoamine synthesis, disease etiology, and pathogenesis. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Isaac Bul Deng
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Jordan Follett
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Mengfei Bu
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Matthew J Farrer
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Kumari N, Singh D, Singh P, Mishra A, Gond C, Ojha H, Tiwari AK. Biological Evaluation and Binding Mechanism of 5-HT 7 Specific Arylpiperazinyl-Alkyl Benzothiazolone: Radiobiology and Photo-physical Studies. J Fluoresc 2024; 34:341-352. [PMID: 37249676 DOI: 10.1007/s10895-023-03266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Diversely substituted methoxy derivatives of arylpiperazinyl-alkyl benzothiazolone has been evaluated as specific probe for 5HT7. To determine the best methoxy derivative for 5HT7 receptor affinity, we synthesised a number of 2-benzothiazolone arylalkyl piperazine derivatives. In-vitro/vivo studies with C-2 substituted [11C]ABT showed 5HT7 specific binding. The radiochemical purity of [11C]ABT was found to be more than 99% with radiochemical stability persistence for more than 1.5 hr at 25 °C. The interaction of BSA and ABT has been analysed by photophysical studies for better understanding of properties such as adsortion, distribution, metabolism and elemination (ADME). The interaction between ABT and BSA was analyzed by using the UV-vis and fluorescence spectra. UV-vis spectra analyzed the changes in primary structure of BSA on its interaction with ABT. ABT showed quenched fluorescence emission intensity of tryptophan residues in BSA via static quenching mechanism. This study might help to understand how ABT binds to serum protein or subsequently to know the ADME of this drug candidate.
Collapse
Affiliation(s)
- Neelam Kumari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India
- CBRN Protection and decontamination research group, Division of Cyclotron and Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Timarpur, 110054, Delhi, India
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Benito JuarezMarg, New Delhi, 110021, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India
| | - Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India
| | - Akanksha Mishra
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India
| | - Chandraprakash Gond
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India
| | - Himanshu Ojha
- CBRN Protection and decontamination research group, Division of Cyclotron and Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Timarpur, 110054, Delhi, India
| | - Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Uttar Pradesh, Lucknow, 226025, India.
| |
Collapse
|
15
|
van Wamelen DJ, Leta V, Chaudhuri KR, Jenner P. Future Directions for Developing Non-dopaminergic Strategies for the Treatment of Parkinson's Disease. Curr Neuropharmacol 2024; 22:1606-1620. [PMID: 37526188 PMCID: PMC11284721 DOI: 10.2174/1570159x21666230731110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 08/02/2023] Open
Abstract
The symptomatic treatment of Parkinson's disease (PD) has been dominated by the use of dopaminergic medication, but significant unmet need remains, much of which is related to non-motor symptoms and the involvement of non-dopaminergic transmitter systems. As such, little has changed in the past decades that has led to milestone advances in therapy and significantly improved treatment paradigms and patient outcomes, particularly in relation to symptoms unresponsive to levodopa. This review has looked at how pharmacological approaches to treatment are likely to develop in the near and distant future and will focus on two areas: 1) novel non-dopaminergic pharmacological strategies to control motor symptoms; and 2) novel non-dopaminergic approaches for the treatment of non-motor symptoms. The overall objective of this review is to use a 'crystal ball' approach to the future of drug discovery in PD and move away from the more traditional dopamine-based treatments. Here, we discuss promising non-dopaminergic and 'dirty drugs' that have the potential to become new key players in the field of Parkinson's disease treatment.
Collapse
Affiliation(s)
- Daniel J. van Wamelen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
- Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Valentina Leta
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - K. Ray Chaudhuri
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Peter Jenner
- School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| |
Collapse
|
16
|
Asad N, Deodato D, Asad N, Gore S, Dore TM. Multi-Photon-Sensitive Chromophore for the Photorelease of Biologically Active Phenols. ACS Chem Neurosci 2023; 14:4163-4175. [PMID: 37988406 DOI: 10.1021/acschemneuro.3c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Phenols confer bioactivity to a plethora of organic compounds. Protecting the phenolic functionality with photoremovable protecting groups (PPGs) sensitive to two-photon excitation (2PE) can block the bioactivity and provide controlled release of these compounds in a spatially and temporally restricted manner by photoactivation with IR light. To develop an efficient 2PE-sensitive PPG for releasing phenols, the (8-cyano-7-hydroxyquinolin-2-yl)methyl (CyHQ) chromophore was functionalized at the C4 position with methyl, morpholine, methoxy, para-tolyl, and 3,4,5-trimethoxyphenyl groups to provide 4-methyl-CyHQ (Me-CyHQ), 4-morpholino-CyHQ (Mor-CyHQ), 4-methoxy-CyHQ (MeO-CyHQ), 4-(p-tolyl)-CyHQ (pTol-CyHQ), and 4-(3,4,5-trimethoxyphenyl)-CyHQ (TMP-CyHQ) PPGs. The probes possess attributes useful for biological use, including high quantum yield (Φu), hydrolytic stability, and good aqueous solubility in physiological conditions. The MeO-CyHQ PPG enhanced the two-photon uncaging action cross section (δu) of dopamine 3.5-fold (0.85 GM) compared to CyHQ (0.24 GM) at 740 nm and 1.49 GM at 720 nm. MeO-CyHQ was used to mediate photoactivation via 2PE of serotonin, rotigotine, N-vanillyl-nonanoylamide (VNA) (a capsaicin analogue), and eugenol. The constructs except rotigotine showed excellent efficiency in 2PE with δu ranging from 0.75 to 1.01 GM at 740 nm and from 1.31 to 1.36 GM at 720 nm high yielding release of the payloads. These probes also performed well by using conventional single photon excitation (1PE). The spatially and temporally controlled release of dopamine from CyHQ-DA and MeO-CyHQ-DA and serotonin (5-HT) from MeO-CyHQ-5HT was quantified in cell culture by using genetically encoded sensors for dopamine and serotonin, respectively. Calcium imaging was employed to quantify the release of VNA and eugenol (EG) from MeO-CyHQ-VNA and MeO-CyHQ-EG, respectively. These tools will enable experiments to understand the intricate mechanisms involved in neurological signaling and the roles played by neurotransmitters, such as dopamine and serotonin, in the activation of their respective receptors.
Collapse
Affiliation(s)
- Naeem Asad
- New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Davide Deodato
- New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Nadeem Asad
- New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Sangram Gore
- New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Timothy M Dore
- New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
17
|
Delestrée N, Semizoglou E, Pagiazitis JG, Vukojicic A, Drobac E, Paushkin V, Mentis GZ. Serotonergic dysfunction impairs locomotor coordination in spinal muscular atrophy. Brain 2023; 146:4574-4593. [PMID: 37678880 PMCID: PMC10629775 DOI: 10.1093/brain/awad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 09/09/2023] Open
Abstract
Neuromodulation by serotonin regulates the activity of neuronal networks responsible for a wide variety of essential behaviours. Serotonin (or 5-HT) typically activates metabotropic G protein-coupled receptors, which in turn initiate second messenger signalling cascades and induce short and long-lasting behavioural effects. Serotonin is intricately involved in the production of locomotor activity and gait control for different motor behaviours. Although dysfunction of serotonergic neurotransmission has been associated with mood disorders and spasticity after spinal cord injury, whether and to what extent such dysregulation is implicated in movement disorders has not been firmly established. Here, we investigated whether serotonergic neuromodulation is affected in spinal muscular atrophy (SMA), a neurodegenerative disease caused by ubiquitous deficiency of the SMN protein. The hallmarks of SMA are death of spinal motor neurons, muscle atrophy and impaired motor control, both in human patients and mouse models of disease. We used a severe mouse model of SMA, that closely recapitulates the severe symptoms exhibited by type I SMA patients, the most common and most severe form of the disease. Together, with mouse genetics, optogenetics, physiology, morphology and behavioural analysis, we report severe dysfunction of serotonergic neurotransmission in the spinal cord of SMA mice, both at early and late stages of the disease. This dysfunction is followed by reduction of 5-HT synapses on vulnerable motor neurons. We demonstrate that motor neurons innervating axial and trunk musculature are preferentially affected, suggesting a possible cause for the proximo-distal progression of disease, and raising the possibility that it may underlie scoliosis in SMA patients. We also demonstrate that the 5-HT dysfunction is caused by SMN deficiency in serotonergic neurons in the raphe nuclei of the brainstem. The behavioural significance of the dysfunction in serotonergic neuromodulation is underlined by inter-limb discoordination in SMA mice, which is ameliorated when selective restoration of SMN in 5-HT neurons is achieved by genetic means. Our study uncovers an unexpected dysfunction of serotonergic neuromodulation in SMA and indicates that, if normal function is to be restored under disease conditions, 5-HT neuromodulation should be a key target for therapeutic approaches.
Collapse
Affiliation(s)
- Nicolas Delestrée
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Evangelia Semizoglou
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - John G Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Aleksandra Vukojicic
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Estelle Drobac
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Vasilissa Paushkin
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
18
|
Long DR, Kinser A, Olalde-Welling A, Brewer L, Lim J, Matheny D, Long B, Roossien DH. 5-HT1A regulates axon outgrowth in a subpopulation of Drosophila serotonergic neurons. Dev Neurobiol 2023; 83:268-281. [PMID: 37714743 DOI: 10.1002/dneu.22928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Serotonergic neurons produce extensively branched axons that fill most of the central nervous system, where they modulate a wide variety of behaviors. Many behavioral disorders have been correlated with defective serotonergic axon morphologies. Proper behavioral output therefore depends on the precise outgrowth and targeting of serotonergic axons during development. To direct outgrowth, serotonergic neurons utilize serotonin as a signaling molecule prior to it assuming its neurotransmitter role. This process, termed serotonin autoregulation, regulates axon outgrowth, branching, and varicosity development of serotonergic neurons. However, the receptor that mediates serotonin autoregulation is unknown. Here we asked if serotonin receptor 5-HT1A plays a role in serotonergic axon outgrowth and branching. Using cultured Drosophila serotonergic neurons, we found that exogenous serotonin reduced axon length and branching only in those expressing 5-HT1A. Pharmacological activation of 5-HT1A led to reduced axon length and branching, whereas the disruption of 5-HT1A rescued outgrowth in the presence of exogenous serotonin. Altogether this suggests that 5-HT1A is a serotonin autoreceptor in a subpopulation of serotonergic neurons and initiates signaling pathways that regulate axon outgrowth and branching during Drosophila development.
Collapse
Affiliation(s)
- Delaney R Long
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Ava Kinser
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | - Luke Brewer
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Juri Lim
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Dayle Matheny
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Breanna Long
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | |
Collapse
|
19
|
Hu Z, Zhu R, Figueroa-Miranda G, Zhou L, Feng L, Offenhäusser A, Mayer D. Truncated Electrochemical Aptasensor with Enhanced Antifouling Capability for Highly Sensitive Serotonin Detection. BIOSENSORS 2023; 13:881. [PMID: 37754115 PMCID: PMC10527390 DOI: 10.3390/bios13090881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
Accurate determination of serotonin (ST) provides insight into neurological processes and enables applications in clinical diagnostics of brain diseases. Herein, we present an electrochemical aptasensor based on truncated DNA aptamers and a polyethylene glycol (PEG) molecule-functionalized sensing interface for highly sensitive and selective ST detection. The truncated aptamers have a small size and adopt a stable stem-loop configuration, which improves the accessibility of the aptamer for the analyte and enhances the sensitivity of the aptasensor. Upon target binding, these aptamers perform a conformational change, leading to a variation in the Faraday current of the redox tag, which was recorded by square wave voltammetry (SWV). Using PEG as blocking molecules minimizes nonspecific adsorption of other interfering molecules and thus endows an enhanced antifouling ability. The proposed electrochemical aptamer sensor showed a wide range of detection lasting from 0.1 nM to 1000 nM with a low limit of detection of 0.14 nM. Owing to the unique properties of aptamer receptors, the aptasensor also exhibits high selectivity and stability. Furthermore, with the reduced unspecific adsorption, assaying of ST in human serum and artificial cerebrospinal fluid (aCSF) showed excellent performance. The reported strategy of utilizing antifouling PEG describes a novel approach to building antifouling aptasensors and holds great potential for neurochemical investigations and clinical diagnosis.
Collapse
Affiliation(s)
- Ziheng Hu
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
- Faculty I, RWTH Aachen University, 52062 Aachen, Germany
| | - Ruifeng Zhu
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| | - Gabriela Figueroa-Miranda
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| | - Lei Zhou
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| | - Lingyan Feng
- Department of Materials Genome Institute, and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; (Z.H.); (R.Z.); (G.F.-M.); (L.Z.); (A.O.)
| |
Collapse
|
20
|
Carkaci-Salli N, Bewley MC, Tekin I, Flanagan JM, Vrana KE. The A328 V/E (rs2887147) polymorphisms in human tryptophan hydroxylase 2 compromise enzyme activity. Biochem Biophys Rep 2023; 35:101527. [PMID: 37608910 PMCID: PMC10440358 DOI: 10.1016/j.bbrep.2023.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Human tryptophan hydroxylase 2 (hTPH2) is the rate-limiting enzyme for serotonin biosynthesis in the brain. A number of naturally-occurring single nucleotide polymorphisms (SNPs) have been reported for hTPH2. We investigated the activity and kinetic characteristics of the most common missense polymorphism rs2887147 (A328 V/E; 0.92% allelic frequency for the two different reported SNPs at the same site) using bacterially expressed hTPH2. The recombinant full-length enzyme A328E had no measurable enzyme activity, but A328V displayed decreased enzyme activity (Vmax). A328V also displayed substrate inhibition and decreased stability compared to the wild-type enzyme. By contrast, in constructs lacking the N-terminal 150 amino acid regulatory domain, the A328V substitution had no effect; that is, there was no substrate inhibition, enzyme stabilities (for wild-type and A328V) were dramatically increased, and Vmax values were not different (while the A328E variant remained inactive). These findings, in combination with molecular modeling, suggest that substitutions at A328 affect catalytic activity by altering the conformational freedom of the regulatory domain. The reduced activity and substrate inhibition resulting from these polymorphisms may ultimately reduce serotonin synthesis and contribute to behavioral perturbations, emotional stress, and eating disorders.
Collapse
Affiliation(s)
- Nurgul Carkaci-Salli
- Departments of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Maria C. Bewley
- Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Izel Tekin
- Departments of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - John M. Flanagan
- Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kent E. Vrana
- Departments of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
21
|
Kaushik S, Ahmad F, Choudhary S, Mathkor DM, Mishra BN, Singh V, Haque S. Critical appraisal and systematic review of genes linked with cocaine addiction, depression and anxiety. Neurosci Biobehav Rev 2023; 152:105270. [PMID: 37271299 DOI: 10.1016/j.neubiorev.2023.105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 05/13/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
Recent lifestyle changes have resulted in tremendous peer pressure and mental stress, and increased the incidences of chronic psychological disorders; like addiction, depression and anxiety (ADA). In this context, the stress-tolerance levels vary amongst individuals and genetic factors play prominent roles. Vulnerable individuals may often be drawn towards drug-addiction to combat stress. This systematic review critically appraises the relationship of various genetic factors linked with the incidences of ADA development. For coherence, we focused solely on cocaine as a substance of abuse in this study. Online scholarly databases were used to screen pertinent literature using apt keywords; and the final retrieval included 42 primary-research articles. The major conclusion drawn from this systematic analysis states that there are 51 genes linked with the development of ADA; and 3 (BDNF, PERIOD2 and SLC6A4) of them are common to all the three aspects of ADA. Further, inter-connectivity analyses of the 51 genes further endorsed the central presence of BDNF and SLC6A4 genes in the development of ADA disorders. The conclusions derived from this systematic study pave the way for future studies for the identification of diagnostic biomarkers and drug targets; and for the development of novel and effective therapeutic regimens against ADA.
Collapse
Affiliation(s)
- Shradhha Kaushik
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021, Uttar Pradesh, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Sunita Choudhary
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021, Uttar Pradesh, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021, Uttar Pradesh, India
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021, Uttar Pradesh, India.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, the United Arab Emirates.
| |
Collapse
|
22
|
Soytürk H, Bozat BG, Pehlivan Karakas F, Coskun H, Firat T. Neuroprotective effects of goji berry (Lycium barbarum L.) polysaccharides on depression-like behavior in ovariectomized rats: behavioral and biochemical evidence. Croat Med J 2023; 64:231-242. [PMID: 37654035 PMCID: PMC10509687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/10/2023] [Indexed: 09/02/2023] Open
Abstract
AIM To assess the protective effects of goji berry (Lycium barbarum L.) polysaccharides (LBP) on depression-like behavior in ovariectomized rats and to elucidate the mechanisms underlying these effects. METHODS One hundred female Wistar albino rats (three months old) were randomly assigned either to ovariectomy (n=50) or sham surgery (n=50). After a 14-day recovery period, the groups were divided into five treatment subgroups (10 per group): high-dose LBP (200 mg/kg), low-dose LBP (20 mg/kg), imipramine (IMP, 2.5 mg/kg), 17-beta estradiol (E2, 1 mg/kg), and distilled water. Then, rats underwent a forced swimming test. We also determined the levels of serum antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde), E2 levels, hippocampal brain-derived neurotrophic factor (BDNF), 5HT2A receptor, and transferase dUTP nick end labeling (TUNEL)-positive cells. RESULTS Both low-dose LBP and imipramine decreased depression-like behavior by increasing serum superoxide dismutase activity and by decreasing serum malondialdehyde level. Furthermore, low-dose LPB, high-dose LBP, and imipramine increased the number of 5-HT2A receptor- and BDNF-positive cells but decreased the number of TUNEL-positive cells in the hippocampus. CONCLUSION This is the first study to show the antidepressant effect of LBP. Although additional research is needed, LBP may be considered a potential new antidepressant.
Collapse
Affiliation(s)
| | | | - Fatma Pehlivan Karakas
- Fatma Pehlivan Karakas, Bolu Abant Izzet Baysal University, Department of Biology, 14280 Bolu, Turkey,
| | | | | |
Collapse
|
23
|
Xue C, Li G, Zheng Q, Gu X, Shi Q, Su Y, Chu Q, Yuan X, Bao Z, Lu J, Li L. Tryptophan metabolism in health and disease. Cell Metab 2023; 35:1304-1326. [PMID: 37352864 DOI: 10.1016/j.cmet.2023.06.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Tryptophan (Trp) metabolism primarily involves the kynurenine, 5-hydroxytryptamine, and indole pathways. A variety of bioactive compounds produced via Trp metabolism can regulate various physiological functions, including inflammation, metabolism, immune responses, and neurological function. Emerging evidence supports an intimate relationship between Trp metabolism disorder and diseases. The levels or ratios of Trp metabolites are significantly associated with many clinical features. Additionally, studies have shown that disease progression can be controlled by modulating Trp metabolism. Indoleamine-2,3-dioxygenase, Trp-2,3-dioxygenase, kynurenine-3-monooxygenase, and Trp hydroxylase are the rate-limiting enzymes that are critical for Trp metabolism. These key regulatory enzymes can be targeted for treating several diseases, including tumors. These findings provide novel insights into the treatment of diseases. In this review, we have summarized the recent research progress on the role of Trp metabolites in health and disease along with their clinical applications.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
24
|
Fujita T, Aoki N, Mori C, Homma KJ, Yamaguchi S. Molecular biology of serotonergic systems in avian brains. Front Mol Neurosci 2023; 16:1226645. [PMID: 37538316 PMCID: PMC10394247 DOI: 10.3389/fnmol.2023.1226645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved neurotransmitter and modulator. Neurons utilizing serotonin have been identified in the central nervous systems of all vertebrates. In the central serotonergic system of vertebrate species examined so far, serotonergic neurons have been confirmed to exist in clusters in the brainstem. Although many serotonin-regulated cognitive, behavioral, and emotional functions have been elucidated in mammals, equivalents remain poorly understood in non-mammalian vertebrates. The purpose of this review is to summarize current knowledge of the anatomical organization and molecular features of the avian central serotonergic system. In addition, selected key functions of serotonin are briefly reviewed. Gene association studies between serotonergic system related genes and behaviors in birds have elucidated that the serotonergic system is involved in the regulation of behavior in birds similar to that observed in mammals. The widespread distribution of serotonergic modulation in the central nervous system and the evolutionary conservation of the serotonergic system provide a strong foundation for understanding and comparing the evolutionary continuity of neural circuits controlling corresponding brain functions within vertebrates. The main focus of this review is the chicken brain, with this type of poultry used as a model bird. The chicken is widely used not only as a model for answering questions in developmental biology and as a model for agriculturally useful breeding, but also in research relating to cognitive, behavioral, and emotional processes. In addition to a wealth of prior research on the projection relationships of avian brain regions, detailed subdivision similarities between avian and mammalian brains have recently been identified. Therefore, identifying the neural circuits modulated by the serotonergic system in avian brains may provide an interesting opportunity for detailed comparative studies of the function of serotonergic systems in mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
25
|
Guma E, Andrýsková L, Brázdil M, Chakravarty MM, Marečková K. Perinatal maternal mental health and amygdala morphology in young adulthood. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110676. [PMID: 36372293 DOI: 10.1016/j.pnpbp.2022.110676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/11/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
The pre- and perinatal environment is thought to play a critical role in shaping brain development. Specifically, maternal mental health and maternal care have been shown to influence offspring brain development in regions implicated in emotional regulation such as the amygdala. In this study, we used data from a neuroimaging follow-up of a prenatal birth-cohort, the European Longitudinal Study of Pregnancy and Childhood, to investigate the impact of early postnatal maternal anxiety/co-dependence, and prenatal and early-postnatal depression and dysregulated mood on amygdala volume and morphology in young adulthood (n = 103). We observed that in typically developing young adults, greater maternal anxiety/co-dependence after birth was significantly associated with lower volume (right: t = -2.913, p = 0.0045, β = -0.523; left: t = -1.471, p = 0.144, β = -0.248) and non-significantly associated with surface area (right: t = -3.502, q = 0.069, <10%FDR, β = -0.090, left: t = -3.137, q = 0.117, <10%FDR, = -0.088) of the amygdala in young adulthood. Conversely, prenatal maternal depression and mood dysregulation in the early postnatal period was not associated with any volumetric or morphological changes in the amygdala in young adulthood. Our findings provide evidence for subtle but long-lasting alterations to amygdala morphology associated with differences in maternal anxiety/co-dependence in early development.
Collapse
Affiliation(s)
- Elisa Guma
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Lenka Andrýsková
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Milan Brázdil
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - M Mallar Chakravarty
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| | - Klára Marečková
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
26
|
Ji GJ, Li J, Liao W, Wang Y, Zhang L, Bai T, Zhang T, Xie W, He K, Zhu C, Dukart J, Baeken C, Tian Y, Wang K. Neuroplasticity-Related Genes and Dopamine Receptors Associated with Regional Cortical Thickness Increase Following Electroconvulsive Therapy for Major Depressive Disorder. Mol Neurobiol 2023; 60:1465-1475. [PMID: 36469225 DOI: 10.1007/s12035-022-03132-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/08/2022] [Indexed: 12/08/2022]
Abstract
Electroconvulsive therapy (ECT) is an effective neuromodulatory therapy for major depressive disorder (MDD). Treatment is associated with regional changes in brain structure and function, indicating activation of neuroplastic processes. To investigate the underlying neurobiological mechanism of macroscopic reorganization following ECT, we longitudinally (before and after ECT in two centers) collected magnetic resonance images for 96 MDD patients. Similar patterns of cortical thickness (CT) changes following ECT were observed in two centers. These CT changes were spatially colocalized with a weighted combination of genes enriched for neuroplasticity-related ontology terms and pathways (e.g., synaptic pruning) as well as with a higher density of D2/3 dopamine receptors. A multiple linear regression model indicated that the region-specific gene expression and receptor density patterns explained 40% of the variance in CT changes after ECT. In conclusion, these findings suggested that dopamine signaling and neuroplasticity-related genes are associated with the ECT-induced morphological reorganization.
Collapse
Affiliation(s)
- Gong-Jun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, 230032, China. .,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, Hefei, 230032, China.
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610000, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610000, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Yingru Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, 230032, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, Hefei, 230032, China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, 230032, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, Hefei, 230032, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, 230032, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, Hefei, 230032, China
| | - Ting Zhang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, Hefei, 230032, China.,Department of Psychiatry, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wen Xie
- Department of Psychiatry, Anhui Mental Health Center, Hefei, 230022, China
| | - Kongliang He
- Department of Psychiatry, Anhui Mental Health Center, Hefei, 230022, China
| | - Chuyan Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, 230032, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, Hefei, 230032, China
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain and Behaviour, Research Centre Jülich, INM-7), Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40210, Düsseldorf, Germany
| | - Chris Baeken
- Experimental Psychiatry Lab, Department of Head and Skin, Ghent University, Ghent, Belgium.,Department of Psychiatry, Free University Brussels, Brussels, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University , Hefei, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, 230032, China. .,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, Hefei, 230032, China. .,Anhui Institute of Translational Medicine, Hefei, China.
| |
Collapse
|
27
|
Saadati H, Ghaheri S, Sadegzadeh F, Sakhaie N, Abdollahzadeh M. Beneficial effects of enriched environment on behavior, cognitive functions, and hippocampal brain-derived neurotrophic factor level following postnatal serotonin depletion in male rats. Int J Dev Neurosci 2023; 83:67-79. [PMID: 36342785 DOI: 10.1002/jdn.10238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The neurotransmitter serotonin (5-HT) is one of the most important modulators of neural circuitry and has a critical role in neural development and functions. Previous studies indicated that changes in serotonergic system signaling in early life critically impact mental health, behavior, the morphology of hippocampal neurons, and cognitive functions across the lifespan. The enriched environment (EE) has indicated beneficial effects on behavior and cognitive functions in the developmental period of life, but its impacts on cognitive impairments and behavioral changes following postnatal serotonin depletion are unknown. Therefore, the present study aimed to evaluate the influences of the EE housing (postnatal days [PNDs] 21-60) following postnatal serotonin depletion (by para-chlorophenylalanine [PCPA], 100 mg/kg, s.c, in PNDs 10-20) on anxiety-related behaviors, cognitive functions, and brain-derived neurotrophic factor (BDNF) mRNA expression in the hippocampus of male rats. Memory and behavioral parameters were examined in early adulthood and after that, the hippocampi of rats were removed to determine the BDNF mRNA expression by PCR (PNDs 60-70). The findings of the present work indicated that adolescent EE exposure alleviated memory impairment, decreased BDNF levels, and anxiety disorders induced by experimental depletion of serotonin. Overall, these results indicate that serotonergic system dysregulation during the developmental periods can be alleviated by adolescent EE exposure.
Collapse
Affiliation(s)
- Hakimeh Saadati
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Ghaheri
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshid Sadegzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nona Sakhaie
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Abdollahzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
28
|
Guma E, Cupo L, Ma W, Gallino D, Moquin L, Gratton A, Devenyi GA, Chakravarty MM. Investigating the "two-hit hypothesis": Effects of prenatal maternal immune activation and adolescent cannabis use on neurodevelopment in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110642. [PMID: 36150422 DOI: 10.1016/j.pnpbp.2022.110642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/09/2022]
Abstract
Prenatal exposure to maternal immune activation (MIA) and chronic adolescent cannabis use are both risk factors for neuropsychiatric disorders. However, exposure to a single risk factor may not result in major mental illness, indicating that multiple exposures may be required for illness onset. Here, we examine whether combined exposure to prenatal MIA and adolescent delta-9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, lead to enduring neuroanatomical and behavioural changes in adulthood. Mice were prenatally exposed to viral mimetic, poly I:C (5 mg/kg), or vehicle at gestational day (GD) 9, and postnatally exposed to chronic THC (5 mg/kg, intraperitoneal) or vehicle during adolescence (postnatal day [PND]28-45). Longitudinal magnetic resonance imaging (MRI) was performed pre-treatment, PND 25, post-treatment, PND 50, and in adulthood, PND85, followed by behavioural tests for anxiety-like, social, and sensorimotor gating. Post-mortem assessment of cannabinoid (CB)1 and 2 receptor expressing cells was performed in altered regions identified by MRI (anterior cingulate and somatosensory cortices, striatum, and hippocampus). Subtle deviations in neurodevelopmental trajectory and subthreshold anxiety-like behaviours were observed in mice exposed to both risk factors. Sex-dependent effects were observed in patterns of shared brain-behaviour covariation, indicative of potential sex differences in response to MIA and THC. Density of CB1 and CB2 receptor positive cells was significantly decreased in all mice exposed to MIA, THC, or both. These findings suggest that there may be a cumulative effect of risk factor exposure on gross neuroanatomical development, and that the endocannabinoid system may be sensitive to both prenatal MIA, adolescent THC, or the combination.
Collapse
Affiliation(s)
- Elisa Guma
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | - Lani Cupo
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Weiya Ma
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Daniel Gallino
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Luc Moquin
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Alain Gratton
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
29
|
Dupuy V, Prieur M, Pizzoccaro A, Margarido C, Valjent E, Bockaert J, Bouschet T, Marin P, Chaumont-Dubel S. Spatiotemporal dynamics of 5-HT 6 receptor ciliary localization during mouse brain development. Neurobiol Dis 2023; 176:105949. [PMID: 36496200 DOI: 10.1016/j.nbd.2022.105949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The serotonin 5-HT6 receptor (5-HT6R) is a promising target to improve cognitive symptoms of psychiatric diseases of neurodevelopmental origin, such as autism spectrum disorders and schizophrenia. However, its expression and localization at different stages of brain development remain largely unknown, due to the lack of specific antibodies to detect endogenous 5-HT6R. Here, we used transgenic mice expressing a GFP-tagged 5-HT6R under the control of its endogenous promoter (Knock-in) as well as embryonic stem cells expressing the GFP-tagged receptor to extensively characterize its expression at cellular and subcellular levels during development. We show that the receptor is already expressed at E13.5 in the cortex, the striatum, the ventricular zone, and to a lesser extent the subventricular zone. In adulthood, it is preferentially found in projection neurons of the hippocampus and cerebral cortex, in striatal medium-sized spiny neurons, as well as in a large proportion of astrocytes, while it is expressed in a minor population of interneurons. Whereas the receptor is almost exclusively detected in the primary cilia of neurons at embryonic and adult stages and in differentiated stem cells, it is located in the somatodendritic compartment of neurons from some brain regions at the neonatal stage and in the soma of undifferentiated stem cells. Finally, knocking-out the receptor induces a shortening of the primary cilium, suggesting that it plays a role in its function. This study provides the first global picture of 5-HT6R expression pattern in the mouse brain at different developmental stages. It reveals dynamic changes in receptor localization in neurons at the neonatal stage, which might underlie its key role in neuronal differentiation and psychiatric disorders of neurodevelopmental origin.
Collapse
Affiliation(s)
- Vincent Dupuy
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Matthieu Prieur
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Anne Pizzoccaro
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Clara Margarido
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Joël Bockaert
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
30
|
Cáceres D, Ochoa M, González-Ortiz M, Bravo K, Eugenín J. Effects of Prenatal Cannabinoids Exposure upon Placenta and Development of Respiratory Neural Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:199-232. [PMID: 37466775 DOI: 10.1007/978-3-031-32554-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cannabis use has risen dangerously during pregnancy in the face of incipient therapeutic use and a growing perception of safety. The main psychoactive compound of the Cannabis sativa plant is the phytocannabinoid delta-9-tetrahydrocannabinol (A-9 THC), and its status as a teratogen is controversial. THC and its endogenous analogues, anandamide (AEA) and 2-AG, exert their actions through specific receptors (eCBr) that activate intracellular signaling pathways. CB1r and CB2r, also called classic cannabinoid receptors, together with their endogenous ligands and the enzymes that synthesize and degrade them, constitute the endocannabinoid system. This system is distributed ubiquitously in various central and peripheral tissues. Although the endocannabinoid system's most studied role is controlling the release of neurotransmitters in the central nervous system, the study of long-term exposure to cannabinoids on fetal development is not well known and is vital for understanding environmental or pathological embryo-fetal or postnatal conditions. Prenatal exposure to cannabinoids in animal models has induced changes in placental and embryo-fetal organs. Particularly, cannabinoids could influence both neural and nonneural tissues and induce embryo-fetal pathological conditions in critical processes such as neural respiratory control. This review aims at the acute and chronic effects of prenatal exposure to cannabinoids on placental function and the embryo-fetal neurodevelopment of the respiratory pattern. The information provided here will serve as a theoretical framework to critically evaluate the teratogen effects of the consumption of cannabis during pregnancy.
Collapse
Affiliation(s)
- Daniela Cáceres
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Martín Ochoa
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Ingeniería, Universidad Autónoma de Chile, Providencia, Chile
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
31
|
Wixey J, Beecher K. Could serotonin play a role in abnormal brain outcomes in fetal growth restriction? Neural Regen Res 2023; 18:543-544. [DOI: 10.4103/1673-5374.346481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
32
|
Richardson B, MacPherson A, Bambico F. Neuroinflammation and neuroprogression in depression: Effects of alternative drug treatments. Brain Behav Immun Health 2022; 26:100554. [DOI: 10.1016/j.bbih.2022.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
|
33
|
Knapp EM, Kaiser A, Arnold RC, Sampson MM, Ruppert M, Xu L, Anderson MI, Bonanno SL, Scholz H, Donlea JM, Krantz DE. Mutation of the Drosophila melanogaster serotonin transporter dSERT impacts sleep, courtship, and feeding behaviors. PLoS Genet 2022; 18:e1010289. [PMID: 36409783 PMCID: PMC9721485 DOI: 10.1371/journal.pgen.1010289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
The Serotonin Transporter (SERT) regulates extracellular serotonin levels and is the target of most current drugs used to treat depression. The mechanisms by which inhibition of SERT activity influences behavior are poorly understood. To address this question in the model organism Drosophila melanogaster, we developed new loss of function mutations in Drosophila SERT (dSERT). Previous studies in both flies and mammals have implicated serotonin as an important neuromodulator of sleep, and our newly generated dSERT mutants show an increase in total sleep and altered sleep architecture that is mimicked by feeding the SSRI citalopram. Differences in daytime versus nighttime sleep architecture as well as genetic rescue experiments unexpectedly suggest that distinct serotonergic circuits may modulate daytime versus nighttime sleep. dSERT mutants also show defects in copulation and food intake, akin to the clinical side effects of SSRIs and consistent with the pleomorphic influence of serotonin on the behavior of D. melanogaster. Starvation did not overcome the sleep drive in the mutants and in male dSERT mutants, the drive to mate also failed to overcome sleep drive. dSERT may be used to further explore the mechanisms by which serotonin regulates sleep and its interplay with other complex behaviors.
Collapse
Affiliation(s)
- Elizabeth M. Knapp
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Andrea Kaiser
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Rebecca C. Arnold
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Maureen M. Sampson
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Manuela Ruppert
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Li Xu
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | | | - Shivan L. Bonanno
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| | - Henrike Scholz
- Department of Biology, Institute of Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| | - Jeffrey M. Donlea
- Department of Neurobiology, University of California, Los Angeles, California, United States of America
| | - David E. Krantz
- Department of Psychiatry, University of California, Los Angeles, California, United States of America
| |
Collapse
|
34
|
Xie Z, Lu G, Yu Y. Early-Stage High-Concentration Thiacloprid Exposure Induced Persistent Behavioral Alterations in Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710920. [PMID: 36078631 PMCID: PMC9518391 DOI: 10.3390/ijerph191710920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 05/04/2023]
Abstract
As a major neonicotinoid insecticide, thiacloprid (THCP) is frequently detected in aquatic environments worldwide due to its heavy use, posing potential threats to aquatic organisms. In this study, zebrafish (Danio rerio) embryos were exposed to THCP (1, 10, 100, 1000 and 10,000 μg/L) for 5 days and then recovered in THCP-free water for 20 days to investigate the effects of early-stage THCP exposure on the development, antioxidant defense, and neurotransmitter systems of zebrafish, and explore their recovery mechanism. The results show that THCP exposure induced developmental toxicity and oxidative stress in zebrafish. The hypoactivity, behavioral alterations (decreased avoidance and edge preference behaviors) and neurotoxicity were found throughout the exposure-recovery experiments. THCP exposure altered the expression of γ-aminobutyric acid (GABA)- and serotonin (5-HT)-related genes accompanied by the decrease in GABA and 5-HT contents. However, after recovery, GABA content returned to the control level, but 5-HT did not, indicating that only the serotonergic system was persistently disrupted. Overall, our results suggest that the disruption of the serotonergic system and oxidative stress may aggravate neurotoxicity and that the former was the main reason for the depressive-like behavior. This study could help to unravel the mechanisms of the behavioral alterations induced by early-stage THCP exposure in zebrafish.
Collapse
|
35
|
Galano M, Ezzat S, Papadopoulos V. SCP2 variant is associated with alterations in lipid metabolism, brainstem neurodegeneration, and testicular defects. Hum Genomics 2022; 16:32. [PMID: 35996156 PMCID: PMC9396802 DOI: 10.1186/s40246-022-00408-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The detoxification of very long-chain and branched-chain fatty acids and the metabolism of cholesterol to form bile acids occur largely through a process called peroxisomal β-oxidation. Mutations in several peroxisomal proteins involved in β-oxidation have been reported, resulting in diseases characterized by neurological defects. The final step of the peroxisomal β-oxidation pathway is catalyzed by sterol carrier protein-x (SCPx), which is encoded by the SCP2 gene. Previously, there have been two reports of SCPx deficiency, which resulted from a homozygous or compound heterozygous SCP2 mutation. We report herein the first patient with a heterozygous SCP2 mutation leading to SCPx deficiency. RESULTS Clinical presentations of the patient included progressive brainstem neurodegeneration, cardiac dysrhythmia, muscle wasting, and azoospermia. Plasma fatty acid analysis revealed abnormal values of medium-, long-, and very long-chain fatty acids. Protein expression of SCPx and other enzymes involved in β-oxidation were altered between patient and normal fibroblasts. RNA sequencing and lipidomic analyses identified metabolic pathways that were altered between patient and normal fibroblasts including PPAR signaling, serotonergic signaling, steroid biosynthesis, and fatty acid degradation. Treatment with fenofibrate or 4-hydroxytamoxifen increased SCPx levels, and certain fatty acid levels in patient fibroblasts. CONCLUSIONS These findings suggest that the patient's SCP2 mutation resulted in decreased protein levels of SCPx, which may be associated with many metabolic pathways. Increasing SCPx levels through pharmacological interventions may reverse some effects of SCPx deficiency. Collectively, this work provides insight into many of the clinical consequences of SCPx deficiency and provides evidence for potential treatment strategies.
Collapse
Affiliation(s)
- Melanie Galano
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90089, USA
| | - Shereen Ezzat
- Department of Medicine, University of Toronto and Princess Margaret Cancer Center, Toronto, ON, M5G 2C1, Canada
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90089, USA.
| |
Collapse
|
36
|
Coray R, Quednow BB. The role of serotonin in declarative memory: A systematic review of animal and human research. Neurosci Biobehav Rev 2022; 139:104729. [PMID: 35691469 DOI: 10.1016/j.neubiorev.2022.104729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The serotonergic system is involved in diverse cognitive functions including memory. Of particular importance to daily life are declarative memories that contain information about personal experiences, general facts, and events. Several psychiatric or neurological diseases, such as depression, attention-deficit-hyperactivity disorder (ADHD), and dementia, show alterations in serotonergic signalling and attendant memory disorders. Nevertheless, understanding serotonergic neurotransmission and its influence on memory remained a challenge until today. In this systematic review, we summarize recent psychopharmacological studies in animals and humans from a psychological memory perspective, in consideration of task-specific requirements. This approach has the advantage that comparisons between serotonin (5-HT)-related neurochemical mechanisms and manipulations are each addressing specific mnemonic circuits. We conclude that applications of the same 5-HT-related treatments can differentially affect unrelated tasks of declarative memories. Moreover, the analysis of specific mnemonic phases (e.g., encoding vs. consolidation) reveals opposing impacts of increased or decreased 5-HT tones, with low 5-HT supporting spatial encoding but impairing the consolidation of objects and verbal memories. Promising targets for protein synthesis-dependent consolidation enhancements include 5-HT4 receptor agonists and 5-HT6 receptor antagonists, with the latter being of special interest for the treatment of age-related decline. Further implications are pointed out as base for the development of novel therapeutic targets for memory impairment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland.
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| |
Collapse
|
37
|
Guedes Linhares SS, da Silva Rodrigues Meurer Y, Aquino A, Aquino Câmara D, Mateus Brandão LE, Dierschnabel AL, Porto Fiuza F, Hypólito Lima R, Engelberth RC, Cavalcante JS. Effects of prenatal exposure to fluoxetine on circadian rhythmicity in the locomotor activity and neuropeptide Y and 5-HT expression in male and female adult Wistar rats. Int J Dev Neurosci 2022; 82:407-422. [PMID: 35481929 DOI: 10.1002/jdn.10189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 11/07/2022] Open
Abstract
Serotonin (5-HT) reuptake inhibitors, such as fluoxetine, are the most prescribed antidepressant for maternal depression. In this sense, it exposes mothers and the brains of infants to increased modulatory and trophic effects of serotonergic neurotransmission. 5-HT promotes essential brain changes throughout its development, which include neuron migration, differentiation, and organization of neural circuitries related to emotional, cognitive, and circadian behavior. Early exposure to the SSRIs induces long-term effects on behavioral and neural serotonergic signalization. We have aimed to evaluate the circadian rhythm of locomotor activity and the neurochemical content, neuropeptide Y (NPY) and 5-HT in three brain areas: intergeniculate leaflet (IGL), suprachiasmatic nuclei (SCN) and raphe nuclei (RN), at two zeitgebers (ZT6 and ZT18), in male and female rat's offspring early exposed (developmental period GD13-GD21) to fluoxetine (20mg/kg). First, we have conducted daily records of the locomotor activity rhythm using activity sensors coupled to individual cages over four weeks. We have lastly evaluated the immunoreactivity of NPY in both SCN and IGL, and as well the 5-HT expression in the dorsal and medial RN. In summary, our results showed that (1) prenatal fluoxetine affects phase entrainment of the rest/activity rhythm at ZT6 and ZT18, more in male than female specimens, and (2) modulates the NPY and 5-HT expression. Here, we show male rats are more susceptible to phase entrainment and the NPY and 5-HT misexpression compared to female ones. The sex differences induced by early exposure to fluoxetine in both the circadian rhythm of locomotor activity and the neurochemical expression into SCN, IGL, and midbrain raphe are an important highlight in the present work. Thus, our results may help to improve the knowledge on neurobiological mechanisms of circadian rhythms and are relevant to understanding the "broken brains" and behavioral abnormalities of offspring early exposed to antidepressants.
Collapse
Affiliation(s)
- Sara Sophia Guedes Linhares
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ywlliane da Silva Rodrigues Meurer
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Antonio Aquino
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Diego Aquino Câmara
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Aline Lima Dierschnabel
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Felipe Porto Fiuza
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Graduate Program in Neuroengineering, Macaíba, Brazil
| | - Ramon Hypólito Lima
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Graduate Program in Neuroengineering, Macaíba, Brazil
| | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jeferson Souza Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
38
|
Vanicek T, Reed MB, Unterholzner J, Klöbl M, Godbersen GM, Handschuh PA, Spurny-Dworak B, Ritter V, Gryglewski G, Kraus C, Winkler D, Lanzenberger R, Seiger R. Escitalopram administration, relearning, and neuroplastic effects: A diffusion tensor imaging study in healthy individuals. J Affect Disord 2022; 301:426-432. [PMID: 35016914 DOI: 10.1016/j.jad.2021.12.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Neuroplastic processes are influenced by serotonergic agents, which reportedly alter white matter microstructure in humans in conjunction with learning. The goal of this double-blind, placebo-controlled imaging study was to investigate the neuroplastic properties of escitalopram and cognitive training on white matter plasticity during (re)learning as a model for antidepressant treatment and environmental factors. METHODS Seventy-one healthy individuals (age=25.6 ± 5.0, 43 females) underwent three diffusion magnetic resonance imaging scans: at baseline, after 3 weeks of associative learning (emotional/non-emotional content), and after relearning shuffled associations for an additional 3 weeks. During the relearning phase, participants received a daily dose of 10 mg escitalopram or placebo orally. Fractional anisotropy (FA), and mean (MD), axial (AD), and radial diffusivity (RD) were calculated within the FMRIB software library and analyzed using tract-based spatial statistics. RESULTS In a three-way repeated-measures marginal model with sandwich estimator standard errors, we found no significant effects of escitalopram and content on AD, FA, MD, and RD during both learning and relearning periods (pFDR>0.05). When testing for escitalopram or content effects separately, we also demonstrated no significant findings (pFDR>0.05) for any of the diffusion tensor imaging metrics. LIMITATIONS The intensity of the study interventions might have been too brief to induce detectable white matter changes. DISCUSSION Previous studies examining the effects of SSRIs on white matter tracts in humans have yielded inconclusive outcomes. Our results indicate that relearning under escitalopram does not affect the white matter microstructures in healthy individuals when administered for 3 weeks.
Collapse
Affiliation(s)
- T Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - J Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - P A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - B Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - V Ritter
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - C Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - D Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| | - R Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
39
|
Ghaheri S, Niapour A, Sakhaie N, Sadegzadeh F, Saadati H. Postnatal depletion of serotonin affects the morphology of neurons and the function of the hippocampus in male rats. Int J Dev Neurosci 2022; 82:222-230. [PMID: 35181916 DOI: 10.1002/jdn.10174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
Serotonin (5-HT) is an essential neurotransmitter for the refined organization of the cerebral cortex. Studies have suggested that altered serotonin signaling contributes to cognitive impairment and psychiatric disorders. However, the exact role of this neurotransmitter on the development of hippocampal neurons is not recognized. Here we aimed to examine the effects of the para- chlorophenylalanine (PCPA; 100mg/kg/daily, s.c during the postnatal days 10-20), a reversible inhibitor of 5-HT synthesis, on the serotonin level of the hippocampal and prefrontal cortex. We also focused on the morphology of the neurons in the hippocampus and spatial learning and memory. Our results indicated that the administration of PCPA led to a decrease in serotonin levels in the hippocampus and prefrontal cortex. Postnatal serotonin depletion also induced subtle alterations in the neuronal populations of the hippocampus and impaired spatial memory in the adulthood period of life. We found that critical developmental periods of serotonin depletion caused degeneration and swelling of neurons as well as significant neuronal loss in the hippocampal CA1, CA3, and dentate gyrus (DG) areas. Thus, serotonin, a strikingly important neurotransmitter, can affect neuronal morphology, development, and hippocampal-dependent memory.
Collapse
Affiliation(s)
- Safa Ghaheri
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nona Sakhaie
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshid Sadegzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
40
|
Serotonergic modulation of effective connectivity in an associative relearning network during task and rest. Neuroimage 2022; 249:118887. [PMID: 34999203 DOI: 10.1016/j.neuroimage.2022.118887] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
An essential core function of one's cognitive flexibility is the use of acquired knowledge and skills to adapt to ongoing environmental changes. Animal models have highlighted the influence serotonin has on neuroplasticity. These effects have been predominantly demonstrated during emotional relearning which is theorized as a possible model for depression. However, translation of these mechanisms is in its infancy. To this end, we assessed changes in effective connectivity at rest and during associative learning as a proxy of neuroplastic changes in healthy volunteers. 76 participants underwent 6 weeks of emotional or non-emotional (re)learning (face-matching or Chinese character-German noun matching). During relearning participants either self-administered 10 mg/day of the selective serotonin reuptake inhibitor (SSRI) escitalopram or placebo in a double-blind design. Associative learning tasks, resting-state and structural images were recorded before and after both learning phases (day 1, 21 and 42). Escitalopram intake modulated relearning changes in a network encompassing the right insula, anterior cingulate cortex and right angular gyrus. Here, the process of relearning during SSRI intake showed a greater decrease in effective connectivity from the right insula to both the anterior cingulate cortex and right angular gyrus, with increases in the opposite direction when compared to placebo. In contrast, intrinsic connections and those at resting-state were only marginally affected by escitalopram. Further investigation of gray matter volume changes in these functionally active regions revealed no significant SSRI-induced structural changes. These findings indicate that the right insula plays a central role in the process of relearning and SSRIs further potentiate this effect. In sum, we demonstrated that SSRIs amplify learning-induced effective connections rather than affecting the intrinsic task connectivity or that of resting-state.
Collapse
|
41
|
Haynes RL, Kinney HC, Haas EA, Duncan JR, Riehs M, Trachtenberg F, Armstrong DD, Alexandrescu S, Cryan JB, Hefti MM, Krous HF, Goldstein RD, Sleeper LA. Medullary Serotonergic Binding Deficits and Hippocampal Abnormalities in Sudden Infant Death Syndrome: One or Two Entities? Front Pediatr 2021; 9:762017. [PMID: 34993162 PMCID: PMC8724302 DOI: 10.3389/fped.2021.762017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022] Open
Abstract
Sudden infant death syndrome (SIDS) is understood as a syndrome that presents with the common phenotype of sudden death but involves heterogenous biological causes. Many pathological findings have been consistently reported in SIDS, notably in areas of the brain known to play a role in autonomic control and arousal. Our laboratory has reported abnormalities in SIDS cases in medullary serotonin (5-HT) receptor 1A and within the dentate gyrus of the hippocampus. Unknown, however, is whether the medullary and hippocampal abnormalities coexist in the same SIDS cases, supporting a biological relationship of one abnormality with the other. In this study, we begin with an analysis of medullary 5-HT1A binding, as determined by receptor ligand autoradiography, in a combined cohort of published and unpublished SIDS (n = 86) and control (n = 22) cases. We report 5-HT1A binding abnormalities consistent with previously reported data, including lower age-adjusted mean binding in SIDS and age vs. diagnosis interactions. Utilizing this combined cohort of cases, we identified 41 SIDS cases with overlapping medullary 5-HT1A binding data and hippocampal assessment and statistically addressed the relationship between abnormalities at each site. Within this SIDS analytic cohort, we defined abnormal (low) medullary 5-HT1A binding as within the lowest quartile of binding adjusted for age and we examined three specific hippocampal findings previously identified as significantly more prevalent in SIDS compared to controls (granular cell bilamination, clusters of immature cells in the subgranular layer, and single ectopic cells in the molecular layer of the dentate gyrus). Our data did not find a strong statistical relationship between low medullary 5-HT1A binding and the presence of any of the hippocampal abnormalities examined. It did, however, identify a subset of SIDS (~25%) with both low medullary 5-HT1A binding and hippocampal abnormalities. The subset of SIDS cases with both low medullary 5-HT1A binding and single ectopic cells in the molecular layer was associated with prenatal smoking (p = 0.02), suggesting a role for the exposure in development of the two abnormalities. Overall, our data present novel information on the relationship between neuropathogical abnormalities in SIDS and support the heterogenous nature and overall complexity of SIDS pathogenesis.
Collapse
Affiliation(s)
- Robin L. Haynes
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Hannah C. Kinney
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Elisabeth A. Haas
- Department of Research, Rady's Children's Hospital, San Diego, CA, United States
| | | | - Molly Riehs
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Dawna D. Armstrong
- Department of Pathology (Emeritus), Baylor College of Medicine, Houston, TX, United States
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jane B. Cryan
- Department of Neuropathology, Children's Health Ireland and Beaumont Hospitals, Dublin, Ireland
| | - Marco M. Hefti
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Henry F. Krous
- Department of Pathology (Emeritus), Rady Children's Hospital, San Diego, CA, United States
- Department of Pediatrics (Emeritus), University of California, San Diego, San Diego, CA, United States
| | - Richard D. Goldstein
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Robert's Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Lynn A. Sleeper
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Department of Cardiology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
42
|
Escitalopram modulates learning content-specific neuroplasticity of functional brain networks. Neuroimage 2021; 247:118829. [PMID: 34923134 DOI: 10.1016/j.neuroimage.2021.118829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
Learning-induced neuroplastic changes, further modulated by content and setting, are mirrored in brain functional connectivity (FC). In animal models, selective serotonin reuptake inhibitors (SSRIs) have been shown to facilitate neuroplasticity. This is especially prominent during emotional relearning, such as fear extinction, which may translate to clinical improvements in patients. To investigate a comparable modulation of neuroplasticity in humans, 99 healthy subjects underwent three weeks of emotional (matching faces) or non-emotional learning (matching Chinese characters to unrelated German nouns). Shuffled pairings of the original content were subsequently relearned for the same time. During relearning, subjects received either a daily dose of the SSRI escitalopram or placebo. Resting-state functional magnetic resonance imaging was performed before and after the (re-)learning phases. FC changes in a network comprising Broca's area, the medial prefrontal cortex, the right inferior temporal and left lingual gyrus were modulated by escitalopram intake. More specifically, it increased the bidirectional connectivity between medial prefrontal cortex and lingual gyrus for non-emotional and the connectivity from medial prefrontal cortex to Broca's area for emotional relearning. The context dependence of these effects together with behavioral correlations supports the assumption that SSRIs in clinical practice improve neuroplasticity rather than psychiatric symptoms per se. Beyond expanding the complexities of learning, these findings emphasize the influence of external factors on human neuroplasticity.
Collapse
|
43
|
John Jayakumar JAK, Panicker MM. The roles of serotonin in cell adhesion and migration, and cytoskeletal remodeling. Cell Adh Migr 2021; 15:261-271. [PMID: 34494935 PMCID: PMC8437456 DOI: 10.1080/19336918.2021.1963574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/04/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
Serotonin is well known as a neurotransmitter. Its roles in neuronal processes such as learning, memory or cognition are well established, and also in disorders such as depression, schizophrenia, bipolar disorder, and dementia. However, its effects on adhesion and cytoskeletal remodelling which are strongly affected by 5-HT receptors, are not as well studied with some exceptions for e.g. platelet aggregation. Neuronal function is strongly dependent on cell-cell contacts and adhesion-related processes. Therefore the role played by serotonin in psychiatric illness, as well as in the positive and negative effects of neuropsychiatric drugs through cell-related adhesion can be of great significance. In this review, we explore the role of serotonin in some of these aspects based on recent findings.
Collapse
Affiliation(s)
- Joe Anand Kumar John Jayakumar
- Manipal Academy of Higher Education, Manipal, India
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Mitradas M. Panicker
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
- Present Address - Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, USA
| |
Collapse
|
44
|
Baudat M, de Kort AR, van den Hove DLA, Joosten EA. Early-life exposure to selective serotonin reuptake inhibitors: Long-term effects on pain and affective comorbidities. Eur J Neurosci 2021; 55:295-317. [PMID: 34841582 PMCID: PMC9299880 DOI: 10.1111/ejn.15544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
A growing body of evidence indicates that early‐life exposure to selective serotonin reuptake inhibitor has long‐term consequences on the offspring's pain in addition to affective disorders like anxiety disorder and major depression. Serotonin, besides its role in regulating pain and emotions, promotes neuronal network formation. The prefrontal cortex and the amygdala are two key brain regions involved in the modulation of pain and its affective comorbidities. Thus, the aim of this review is to understand how early‐life selective serotonin reuptake inhibitor exposure alters the developing prefrontal cortex and amygdala and thereby underlies the long‐term changes in pain and its affective comorbidities in later life. While there is still limited data on the effects of early‐life selective serotonin reuptake inhibitor exposure on pain, there is a substantial body of evidence on its affective comorbidities. From this perspective paper, four conclusions emerged. First, early‐life selective serotonin reuptake inhibitor exposure results in long‐term nociceptive effects, which needs to be consistently studied to clarify. Second, it results in enhanced depressive‐like behaviour and diminished exploratory behaviour in adult rodents. Third, early‐life selective serotonin reuptake inhibitor exposure alters serotonergic levels, transcription factors expression, and brain‐derived neurotrophic factor levels, resulting in hyperconnectivity within the amygdala and the prefrontal cortex. Finally, it affects antinociceptive inputs of the prefrontal cortex and the amygdala in the spinal cord. We conclude that early‐life selective serotonin reuptake inhibitor exposure affects the maturation of prefrontal cortex and amygdala circuits and thereby enhances their antinociceptive inputs in the spinal cord.
Collapse
Affiliation(s)
- Mathilde Baudat
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Anne R de Kort
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Elbert A Joosten
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
45
|
Glinert A, Turjeman S, Elliott E, Koren O. Microbes, metabolites and (synaptic) malleability, oh my! The effect of the microbiome on synaptic plasticity. Biol Rev Camb Philos Soc 2021; 97:582-599. [PMID: 34734461 PMCID: PMC9298272 DOI: 10.1111/brv.12812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/10/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
The microbiome influences the emotional and cognitive phenotype of its host, as well as the neurodevelopment and pathophysiology of various brain processes and disorders, via the well‐established microbiome–gut–brain axis. Rapidly accumulating data link the microbiome to severe neuropsychiatric disorders in humans, including schizophrenia, Alzheimer's and Parkinson's. Moreover, preclinical work has shown that perturbation of the microbiome is closely associated with social, cognitive and behavioural deficits. The potential of the microbiome as a diagnostic and therapeutic tool is currently undercut by a lack of clear mechanistic understanding of the microbiome–gut–brain axis. This review establishes the hypothesis that the mechanism by which this influence is carried out is synaptic plasticity – long‐term changes to the physical and functional neuronal structures that enable the brain to undertake learning, memory formation, emotional regulation and more. By examining the different constituents of the microbiome–gut–brain axis through the lens of synaptic plasticity, this review explores the diverse aspects by which the microbiome shapes the behaviour and mental wellbeing of the host. Key elements of this complex bi‐directional relationship include neurotransmitters, neuronal electrophysiology, immune mediators that engage with both the central and enteric nervous systems and signalling cascades that trigger long‐term potentiation of synapses. The importance of establishing mechanistic correlations along the microbiome–gut–brain axis cannot be overstated as they hold the potential for furthering current understanding regarding the vast fields of neuroscience and neuropsychiatry. This review strives to elucidate the promising theory of microbiome‐driven synaptic plasticity in the hope of enlightening current researchers and inspiring future ones.
Collapse
Affiliation(s)
- Ayala Glinert
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| |
Collapse
|
46
|
Ahmadi-Mahmoodabadi N, Emamghoreishi M, Nasehi M, Zarrindast MR. The bidirectional effect of prelimbic 5-hydroxytryptamine type-4 (5-HT4) receptors on ACPA-mediated aversive memory impairment in adult male Sprague-Dawley rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:726-733. [PMID: 34630949 PMCID: PMC8487599 DOI: 10.22038/ijbms.2021.49501.11317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 05/01/2021] [Indexed: 11/06/2022]
Abstract
Objectives This study aimed at investigating the effect of serotonergic 5-HT4 receptor agonist/antagonist on memory consolidation deficit induced by ACPA (a potent, selective CB1 cannabinoid receptor agonist) in the pre-limbic (PL) cortex. Materials and Methods We used the step-through passive avoidance test to evaluate memory consolidation of male Sprague-Dawley (SD) rats. Bilateral post-training microinjections of the drugs were done in a volume of 0.6 μl/rat into the PL area (0.3 μl per side). Results The results showed a significant interaction between RS67333 hydrochloride (5-HT4 receptor agonist) or RS23597-190 hydrochloride (5-HT4 receptor antagonist) and ACPA on consolidation of aversive memory. RS67333 hydrochloride (0.5 μg/rat) enhanced consolidation of memory and its co-administration at the ineffective dose of 0.005 μg/rat with ineffective (0.001 μg/rat) or effective (0.1 μg/rat) doses of ACPA improved and prevented impairment of memory caused by ACPA, respectively. In other words, RS67333 had a bidirectional effect on ACPA-caused amnesia. While RS23597-190 hydrochloride had no effect on memory at the doses used (0.005, 0.01, 0.1, or 0.5 μg/rat); but its concomitant use with an effective dose of ACPA (0.1 μg/rat) potentiated amnesia. None of the drugs had an effect on locomotor activity. Conclusion This study revealed that activation or deactivation of the 5-HT4 receptors in the PL may mediate the IA memory impairment induced by ACPA indicating a modulatory role for the 5-HT4 serotonergic receptors.
Collapse
Affiliation(s)
- Nargol Ahmadi-Mahmoodabadi
- Institute for Cognitive Science Studies, Tehran, Iran.,Department of Basic Sciences, Campus of Shahid Bahonar, Farhangian University of Shiraz, Shiraz, Iran
| | - Masoumeh Emamghoreishi
- Department of Pharmacology, School of Medicine and Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies, Tehran, Iran.,Cognitive and Neuroscience Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| |
Collapse
|
47
|
Zarini-Gakiye E, Amini J, Sanadgol N, Vaezi G, Parivar K. Recent Updates in the Alzheimer's Disease Etiopathology and Possible Treatment Approaches: A Narrative Review of Current Clinical Trials. Curr Mol Pharmacol 2021; 13:273-294. [PMID: 32321414 DOI: 10.2174/1874467213666200422090135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent subtype of incurable neurodegenerative dementias and its etiopathology is still not clearly elucidated. OBJECTIVE Outline the ongoing clinical trials (CTs) in the field of AD, in order to find novel master regulators. METHODS We strictly reviewed all scientific reports from Clinicaltrials.gov and PubMed databases from January 2010 to January 2019. The search terms were "Alzheimer's disease" or "dementia" and "medicine" or "drug" or "treatment" and "clinical trials" and "interventions". Manuscripts that met the objective of this study were included for further evaluations. RESULTS Drug candidates have been categorized into two main groups including antibodies, peptides or hormones (such as Ponezumab, Interferon β-1a, Solanezumab, Filgrastim, Levemir, Apidra, and Estrogen), and naturally-derived ingredients or small molecules (such as Paracetamol, Ginkgo, Escitalopram, Simvastatin, Cilostazo, and Ritalin-SR). The majority of natural candidates acted as anti-inflammatory or/and anti-oxidant and antibodies exert their actions via increasing amyloid-beta (Aβ) clearance or decreasing Tau aggregation. Among small molecules, most of them that are present in the last phases act as specific antagonists (Suvorexant, Idalopirdine, Intepirdine, Trazodone, Carvedilol, and Risperidone) or agonists (Dextromethorphan, Resveratrol, Brexpiprazole) and frequently ameliorate cognitive dysfunctions. CONCLUSION The presences of a small number of candidates in the last phase suggest that a large number of candidates have had an undesirable side effect or were unable to pass essential eligibility for future phases. Among successful treatment approaches, clearance of Aβ, recovery of cognitive deficits, and control of acute neuroinflammation are widely chosen. It is predicted that some FDA-approved drugs, such as Paracetamol, Risperidone, Escitalopram, Simvastatin, Cilostazoand, and Ritalin-SR, could also be used in off-label ways for AD. This review improves our ability to recognize novel treatments for AD and suggests approaches for the clinical trial design for this devastating disease in the near future.
Collapse
Affiliation(s)
- Elahe Zarini-Gakiye
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Amini
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran,Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
48
|
Vuong HE, Coley EJL, Kazantsev M, Cooke ME, Rendon TK, Paramo J, Hsiao EY. Interactions between maternal fluoxetine exposure, the maternal gut microbiome and fetal neurodevelopment in mice. Behav Brain Res 2021; 410:113353. [PMID: 33979656 DOI: 10.1016/j.bbr.2021.113353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 01/16/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most widely used treatment by women experiencing depression during pregnancy. However, the effects of maternal SSRI use on early offspring development remain poorly understood. Recent studies suggest that SSRIs can modify the gut microbiota and interact directly with particular gut bacteria, raising the question of whether the gut microbiome impacts host responses to SSRIs. In this study, we investigate effects of prenatal SSRI exposure on fetal neurodevelopment and further evaluate potential modulatory influences of the maternal gut microbiome. We demonstrate that maternal treatment with the SSRI fluoxetine induces widespread alterations in the fetal brain transcriptome during midgestation, including increases in the expression of genes relevant to synaptic organization and neuronal signaling and decreases in the expression of genes related to DNA replication and mitosis. Notably, maternal fluoxetine treatment from E7.5 to E14.5 has no overt effects on the composition of the maternal gut microbiota. However, maternal pretreatment with antibiotics to deplete the gut microbiome substantially modifies transcriptional responses of the fetal brain to maternal fluoxetine treatment. In particular, maternal fluoxetine treatment elevates localized expression of the opioid binding protein/cell adhesion molecule like gene Opcml in the fetal thalamus and lateral ganglionic eminence, which is prevented by maternal antibiotic treatment. Together, these findings reveal that maternal fluoxetine treatment alters gene expression in the fetal brain through pathways that are impacted, at least in part, by the presence of the maternal gut microbiota.
Collapse
Affiliation(s)
- Helen E Vuong
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Elena J L Coley
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Maria Kazantsev
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michaela E Cooke
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Tomiko K Rendon
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jorge Paramo
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
49
|
Mouradian GC, Kilby M, Alvarez S, Kaplan K, Hodges MR. Mortality and ventilatory effects of central serotonin deficiency during postnatal development depend on age but not sex. Physiol Rep 2021; 9:e14946. [PMID: 34228894 PMCID: PMC8259800 DOI: 10.14814/phy2.14946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Serotonin (5-HT) influences brain development and has predominantly excitatory neuromodulatory effects on the neural respiratory control circuitry. Infants that succumb to sudden infant death syndrome (SIDS) have reduced brainstem 5-HT levels and Tryptophan hydroxylase 2 (Tph2). Furthermore, there are age- and sex-dependent risk factors associated with SIDS. Here we utilized our established Dark Agouti transgenic rat lacking central serotonin KO to test the hypotheses that CNS 5-HT deficiency leads to: (1) high mortality in a sex-independent manner, (2) age-dependent alterations in other CNS aminergic systems, and (3) age-dependent impairment of chemoreflexes during post-natal development. KO rat pups showed high neonatal mortality but not in a sex-dependent manner and did not show altered hypoxic or hypercapnic ventilatory chemoreflexes. However, KO rat pups had increased apnea-related metrics during a specific developmental age (P12-16), which were preceded by transient increases in dopaminergic system activity (P7-8). These results support and extend the concept that 5-HT per se is a critical factor in supporting respiratory control during post-natal development.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Madeline Kilby
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Santiago Alvarez
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Kara Kaplan
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Matthew R. Hodges
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWIUSA
| |
Collapse
|
50
|
Postnatal Fluoxetine Treatment Alters Perineuronal Net Formation and Maintenance in the Hippocampus. eNeuro 2021; 8:ENEURO.0424-20.2021. [PMID: 33622703 PMCID: PMC8046023 DOI: 10.1523/eneuro.0424-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/20/2023] Open
Abstract
Elevation of serotonin via postnatal fluoxetine (PNFlx) treatment during critical temporal windows is hypothesized to perturb the development of limbic circuits thus establishing a substratum for persistent disruption of mood-related behavior. We examined the impact of PNFlx treatment on the formation and maintenance of perineuronal nets (PNNs), extracellular matrix (ECM) structures that deposit primarily around inhibitory interneurons, and mark the closure of critical period plasticity. PNFlx treatment evoked a significant decline in PNN number, with a robust reduction in PNNs deposited around parvalbumin (PV) interneurons, within the CA1 and CA3 hippocampal subfields at postnatal day (P)21 in Sprague Dawley rat pups. While the reduction in CA1 subfield PNN number was still observed in adulthood, we observed no change in colocalization of PV-positive interneurons with PNNs in the hippocampi of adult PNFlx animals. PNFlx treatment did not alter hippocampal PV, calretinin (CalR), or Reelin-positive neuron numbers in PNFlx animals at P21 or in adulthood. We did observe a small, but significant increase in somatostatin (SST)-positive interneurons in the DG subfield of PNFlx-treated animals in adulthood. This was accompanied by altered GABA-A receptor subunit composition, increased dendritic complexity of apical dendrites of CA1 pyramidal neurons, and enhanced neuronal activation revealed by increased c-Fos-positive cell numbers within hippocampi of PNFlx-treated animals in adulthood. These results indicate that PNFlx treatment alters the formation of PNNs within the hippocampus, raising the possibility of a disruption of excitation-inhibition (E/I) balance within this key limbic brain region.
Collapse
|