1
|
Manli W, Junwen G, Tong S, Junjie W, Yikai Y, Yicheng Z, Yi Z, Xiaoyu Y, Xuepei L, Jingguo Y, Xuebin Z, Hang Y. Enhancing automatic sleep stage classification with cerebellar EEG and machine learning techniques. Comput Biol Med 2025; 185:109515. [PMID: 39662316 DOI: 10.1016/j.compbiomed.2024.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Sleep disorders have become a significant health concern in modern society. To investigate and diagnose sleep disorders, sleep analysis has emerged as the primary research method. Conventional polysomnography primarily relies on cerebral electroencephalography (EEG) and electromyography (EMG) for sleep stage scoring, but manual scoring is time-consuming and subjective. This study investigated the potential application of cerebellar EEG combined with machine learning in automatic sleep stage classification. Twenty-five male mice underwent 24-h cerebral EEG/cerebellar EEG/EMG recording, and manual sleep staging was performed. Various machine learning models, including Light Gradient Boosting (LGBoost), Extreme Gradient Boosting, Categorical Boosting, Support Vector Machine, Logistic Regression, Random Forest, Long Short-Term Memory and Convolutional Neural Network, were applied for automatic sleep stage classification. The performance of different models and the efficacy of cerebellar EEG, cerebral EEG, and EMG were compared under different training:test set ratios. Cerebellar EEG exhibited significant differences in power spectral density across wakefulness, non-rapid eye movement sleep stages, and rapid eye movement sleep stages, particularly at frequencies >7 Hz. LGBoost, Extreme Gradient Boosting, and Categorical Boosting models showed comparable performance, with LGBoost being selected for further analyses due to its shorter computation time. Cerebral EEG consistently demonstrated the highest precision, recall/sensitivity, and specificity in classifying sleep stages across all training:test set ratios, followed by cerebellar EEG, which outperformed EMG. Combining the top 5 cerebellar EEG features with cerebral EEG features yielded better classification performance than combining EMG features with cerebral EEG features. Using the top 20 features, the model achieved mean area under the receiver operating characteristic curve values of 0.98 ± 0.08, 0.98 ± 0.10, and 0.99 ± 0.07 for wakefulness, non-rapid eye movement sleep stages, and rapid eye movement sleep stages, respectively. The cerebellum may play a unique and important role in sleep-wake regulation. Incorporating cerebellar EEG into polysomnography has the potential to enhance the accuracy and efficiency of sleep stage classification.
Collapse
Affiliation(s)
- Wang Manli
- Clinical Research Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Guan Junwen
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Sun Tong
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Wang Junjie
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Yuan Yikai
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Zhou Yicheng
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Zhang Yi
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Yang Xiaoyu
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Li Xuepei
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Yang Jingguo
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Zhou Xuebin
- Department of Neurosurgery, West China Hospital, Sichuan University, China
| | - Yu Hang
- Clinical Research Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Li YA, Yao J, Li X, Hu KH. Arousal-promoting effect of the parabrachial nucleus and the underlying mechanisms: Recent advances. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111226. [PMID: 39710104 DOI: 10.1016/j.pnpbp.2024.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
The parabrachial nucleus (PBN) is responsible for integrating both internal and external sensory information and controlling/regulating a wide range of physiological processes, such as feeding, thermogenesis, nociceptive and pruritic sensations, and respiration. Recently, the PBN has been found to be involved in mediating wakefulness maintenance, sleep-wake transition, exogenous neuromodulation of awakening, and arousal-promoting process triggered by drastic changes in the internal environments, such as hypercapnia, hypoxia, and hypertension. Multiple neural pathways and subpopulations of neurons are responsible for arousal-promoting effects of the PBN. The medial PBN seems to be more important for the maintenance of physiological arousal, while the lateral PBN are more crucial in mediating interoception-driven arousal. Glutamatergic projection from the PBN to the basal forebrain (BF) and GABAergic projection from the BF to the cerebral cortex GABAergic neurons are the most pivotal neural pathways for awareness-promotion. Here, we review the relevant literature in this field in recent years and emphasize the potential prospects of PBN stimulation in translational medicine for the rehabilitation of disorders of consciousness.
Collapse
Affiliation(s)
- Yang-An Li
- Department of rehabilitation Medicine, SuiNing Central Hospital, The Affiliated Hospital of Chongqing Medical University, SuiNing 629000, China
| | - Juan Yao
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Xuan Li
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Ke-Hui Hu
- Department of rehabilitation Medicine, SuiNing Central Hospital, The Affiliated Hospital of Chongqing Medical University, SuiNing 629000, China.
| |
Collapse
|
3
|
Pani T, Mogavero MP, Ferri R, Lanza G. Unraveling the pathophysiology of restless legs syndrome from multimodal MRI techniques: A systematic review. Sleep Med 2025; 125:31-56. [PMID: 39561671 DOI: 10.1016/j.sleep.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Restless Legs Syndrome (RLS) is a common neurological disorder currently diagnosed based on clinical features only, and characterized by a compulsive urge to move the legs triggered by rest or diminished arousal. This systematic review aimed at integrating all current brain magnetic resonance imaging (MRI) modalities for a convergent pathophysiological understanding of RLS phenomenology. METHODS We performed a MEDLINE (PubMed)-based systematic review for research articles in patients with primary RLS published in English from 2010 till November 2023. Studies meeting the inclusion criteria according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria were systematically assessed for quality using modality-specific checklists, bias using AXIS tool and a narrative synthesis of the results was conducted. RESULTS A total of 49 studies (22 structural, 12 DTI, 7 iron-imaging, 4 spectroscopy with 10 datasets combining multiple approaches) involving 1273 patients (414 males) and 1333 healthy controls (478 males) met the eligibility criteria. Despite participant, technical/device-related and statistical heterogeneity, most agree that patients with primary RLS have structural and metabolite alterations, changes in multiple white matter tract architectures, and disrupted functional connectivity within multiple brain areas. Most of the studies (n = 43, 88 %) have a low-risk of bias on the AXIS scale. Scores on the modality-specific checklist ranged from 46 to 92 %, 70-93 % and 54-92 % for structural MRI, DTI and MRS Datasets, respectively. CONCLUSIONS Notwithstanding the large heterogeneity in the methods employed, global connectivity alterations suggest the utility of casting RLS within a system-level perspective rather than viewing it as related to the dysfunction of a single or particular brain region. A holistic approach and its integration within the framework of molecular vulnerability and neurotransmitter alterations are warranted to disentangle the complex pathophysiology of RLS and to identify new therapeutic targets.
Collapse
Affiliation(s)
- Tapas Pani
- Department of Medicine and Neurology, Hi-Tech Medical College and Hospital, Utkal University, Bhubaneswar, 752101, Odisha, India.
| | - Maria Paola Mogavero
- Vita-Salute San Raffaele University, Milan, Italy; Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Sleep Research Center, Oasi Research Institute-IRCCS, Troina, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Sleep Research Center, Oasi Research Institute-IRCCS, Troina, Italy; Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Embang JEG, Tan YHV, Ng YX, Loyola GJP, Wong LW, Guo Y, Dong Y. Role of sleep and neurochemical biomarkers in synaptic plasticity related to neurological and psychiatric disorders: A scoping review. J Neurochem 2025; 169:e16270. [PMID: 39676063 DOI: 10.1111/jnc.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 12/17/2024]
Abstract
Sleep is vital for maintaining physical and mental well-being, impacting cognitive functions like memory and learning through neuroplasticity. Sleep disturbances prevalent in neurological and psychiatric disorders exacerbate cognitive decline, imposing societal burdens. Exploring the relationship between sleep and neuroplasticity elucidates the mechanisms influencing cognition, particularly amidst the prevalent sleep disturbances in these clinical populations. While existing reviews provide valuable insights, gaps remain in understanding the neurophysiological mechanisms underlying sleep and cognitive function. This scoping review aims to investigate the characteristic patterns of sleep parameters and neurochemical biomarkers in reflecting neuroplasticity changes related to neurological and psychiatric disorders and to explore how these markers interact and influence cognition at the molecular level. Studies involving adults and older adults were included, excluding animal models and the paediatric population. Selected studies explored the relationship between sleep parameter or neurochemical biomarker changes and cognitive impairment, reflecting underlying neuroplasticity changes. Peer-reviewed articles, clinical trials, theses, and dissertations in English were included while excluding secondary research and non-peer-reviewed sources. A three-step search strategy was executed following the updated Joanna Briggs Institute methodology for scoping reviews. Published studies were retrieved from nine databases, grey literature, expert recommendations, and hand-searching of the included studies' bibliography. A basic qualitative content synthesis of 34 studies was conducted per JBI's scoping review guidance. Slow-wave and Rapid-Eye Movement sleep, sleep spindles, sleep cycle disruption, K-Complex(KC) density, Hippocampal sEEG, BDNF, IL-6, iNOS mRNA expression, plasma serotonin, CSF Aβ-42, t-tau and p-tau proteins, and serum cortisol revealed associations with cognitive dysfunction. Examining the relationship between sleep parameters, neurochemical biomarkers, and cognitive function reveals neuronal mechanisms that guide potential therapeutic interventions and enhance quality patient care.
Collapse
Affiliation(s)
- Johann Emilio Gonzales Embang
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Division of Nursing, National University Hospital, Singapore City, Singapore
- National University Health System, Singapore City, Singapore
| | - Ying Hui Valerie Tan
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Division of Nursing, National University Hospital, Singapore City, Singapore
- National University Health System, Singapore City, Singapore
| | - Yu Xuan Ng
- National University Health System, Singapore City, Singapore
- Division of Nursing, Alexandra Hospital, Singapore City, Singapore
| | - Gerard Jude Ponce Loyola
- College of Medicine, University of the Philippines, Manila, Philippines
- Philippine General Hospital, Manila, Philippines
| | - Lik-Wei Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Yuqing Guo
- Sue & Bill Gross School of Nursing, University of California, Irvine, California, USA
| | - Yanhong Dong
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
5
|
Pemberton J, Chadderton P, Costa RP. Cerebellar-driven cortical dynamics can enable task acquisition, switching and consolidation. Nat Commun 2024; 15:10913. [PMID: 39738061 DOI: 10.1038/s41467-024-55315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
The brain must maintain a stable world model while rapidly adapting to the environment, but the underlying mechanisms are not known. Here, we posit that cortico-cerebellar loops play a key role in this process. We introduce a computational model of cerebellar networks that learn to drive cortical networks with task-outcome predictions. First, using sensorimotor tasks, we show that cerebellar feedback in the presence of stable cortical networks is sufficient for rapid task acquisition and switching. Next, we demonstrate that, when trained in working memory tasks, the cerebellum can also underlie the maintenance of cognitive-specific dynamics in the cortex, explaining a range of optogenetic and behavioural observations. Finally, using our model, we introduce a systems consolidation theory in which task information is gradually transferred from the cerebellum to the cortex. In summary, our findings suggest that cortico-cerebellar loops are an important component of task acquisition, switching, and consolidation in the brain.
Collapse
Affiliation(s)
- Joseph Pemberton
- Computational Neuroscience Unit, Intelligent Systems Labs, Faculty of Engineering, University of Bristol, Bristol, UK.
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, UK.
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
| | - Paul Chadderton
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Rui Ponte Costa
- Computational Neuroscience Unit, Intelligent Systems Labs, Faculty of Engineering, University of Bristol, Bristol, UK.
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Jin S, Chen H, Li L, Liu Y, Liu P, Xie A, Liao Y. Resting-state functional connectome predicts sleep quality two months after the first negative COVID-19 antigen test. Sleep Med 2024; 124:727-736. [PMID: 39549632 DOI: 10.1016/j.sleep.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND The COVID-19 pandemic has led to long-term neurological and psychological effects, including sleep disturbances. While prior studies have identified altered brain function post-COVID-19, specific functional connectivity (FC) patterns predicting sleep quality after recovery remain unclear. This study aims to identify FC patterns associated with sleep quality two months after the first negative COVID-19 antigen test. METHODS Using a connectome-based predictive modeling (CPM) approach, we identified the functional connectome regulating sleep quality based on a 164-region parcellation. Significant connections were analyzed using mediation models to examine their role in the relationship between anxiety, depression, and sleep. RESULTS FC between the right cerebellar peduncle and the left VIII of the cerebellum, and between the left middle temporal pole (MTP) and left ventral tegmental area (VTA), significantly predicted Pittsburgh Sleep Quality Index (PSQI) scores for sleep disturbances two months post-recovery (q2 = 0.059, MSE = 0.154, p = 0.017, r = 0.350). Mediation analysis showed a significant indirect effect of FC between the left MTP and VTA on the relationship between generalized anxiety and sleep disturbances (indirect effect = 0.013, 95% CI = [0.002, 0.03], pfdr <0.05). FC between the right dorsal raphe nucleus and ipsilateral regions-including occipital, parietal, and temporal areas-predicted PSQI scores for daytime dysfunction (q2 = 0.092, MSE = 0.678, p = 0.025, r = 0.342). CONCLUSION Post-COVID-19 brain connectivity and anxiety predict sleep quality. These findings highlight the potential for targeted therapeutic strategies to improve sleep and identify patients at risk for prolonged disturbances through FC biomarkers.
Collapse
Affiliation(s)
- Shuyu Jin
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Haobo Chen
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), 61 Jiefang West Road, Changsha, Hunan Province, China
| | - Ling Li
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Yi Liu
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Peng Liu
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), 61 Jiefang West Road, Changsha, Hunan Province, China
| | - An Xie
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), 61 Jiefang West Road, Changsha, Hunan Province, China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), 61 Jiefang West Road, Changsha, Hunan Province, China.
| |
Collapse
|
7
|
Li J, Li S, Zeng S, Wang X, Liu M, Xu G, Ma X. Static and temporal dynamic alterations of local functional connectivity in chronic insomnia. Brain Imaging Behav 2024; 18:1385-1393. [PMID: 39292357 DOI: 10.1007/s11682-024-00928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Several studies have revealed altered intrinsic neural activity in chronic insomnia (CI). However, the temporal variability of intrinsic neural activity in CI is rarely mentioned. This study aimed to explore static and temporal dynamic alterations of regional homogeneity (ReHo) in CI and excavate the potential associations between these changes and clinical characteristics. Eighty-seven patients with CI and seventy-eight healthy controls (HCs) were included. Resting-state functional magnetic resonance imaging was performed on all subjects and both static and dynamic ReHo were used to detect local functional connectivity. We then tested the relationship between altered brain regions, disease duration, and clinical scales. The receiver operating characteristic curve analysis was used to reveal the potential capability of these indicators to screen CI patients from HCs. CI showed increased dynamic ReHo in the right precuneus and decreased static ReHo in the right cerebellum_6. The dynamic ReHo values of the right precuneus were negatively correlated with the self-rating depression score and the static ReHo values of the right cerebellum_6 were positively correlated with the Montreal Cognitive Assessment-Naming score. In addition, the combination of the two metrics showed a potential capacity to distinguish CI patients from HCs, which was better than a single metric alone. The present study has revealed the altered local functional connectivity under static and temporal dynamic conditions in patients with CI, and found the relationships between these changes, mood-related scales, and cognitive-related scales. These may be useful in elucidating the neurological mechanisms of CI and accompanying symptoms.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Nuclear Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Shumei Li
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Shaoqin Zeng
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Xinzhi Wang
- Department of Nuclear Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Mengchen Liu
- Department of Nuclear Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Guang Xu
- Department of Neurology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Xiaofen Ma
- Department of Nuclear Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, No.466 Road XinGang, Guangzhou, 510317, P. R. China.
| |
Collapse
|
8
|
Zhu F, Zhang W, Li L, Wang W, Liu S, Zhao Y, Ji X, Yang Y, Kang Z, Guo X, Deng F. Short-term exposure to indoor artificial light at night during sleep impairs cardiac autonomic function of young healthy adults in China. ENVIRONMENTAL RESEARCH 2024; 262:119786. [PMID: 39142452 DOI: 10.1016/j.envres.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
The artificial light at night (ALAN) exposure has emerged as a significant environmental and public health concern globally. However, there is far less evidence on the health effects of indoor ALAN than on outdoor ALAN. Moreover, evidence on cardiovascular effects of indoor ALAN is more limited. To evaluate the association between short-term exposure to ALAN during sleep with heart rate variability (HRV) in young healthy adults, as well as the mediating role of blood oxygen saturation (SpO2), and to further explore the intervention effects of shading habits, this prospective repeated measurement study was conducted among 81 adults with 150 nights (1324h) of HRV monitoring. HRV and SpO2 were monitored during sleep, concurrently with the measurement of indoor and outdoor ALAN. Shading habits were defined as whether to wear blindfolds or draw bed curtains during sleep, and were collected by questionnaires. Linear mixed-effect model was conducted to assess the association between ALAN exposure and HRV indices. The role of SpO2 in the association was analyzed using mediation analyses. We found that indoor ALAN exposure reduced parasympathetic activity and imbalanced cardiac autonomic function. We also found that the use of outdoor ALAN may underestimate or misestimate the potential health effects of ALAN. A significant mediation effects were observed on standard deviation of normal-to-normal intervals (SDNN; p-value for ACME = 0.014) and the ratio of low frequency power to high frequency power (LF/HF; p-value for ACME = 0.026) through minimum SpO2 after indoor ALAN exposure. The association between indoor ALAN and HRV was more pronounced among participants without shading habits during sleep. This study provides general population-based evidence that short-term exposure to indoor ALAN was significantly associated with impaired HRV, and SpO2 partially mediated the association. Improve shading habits during sleep may mitigate the adverse effects of indoor ALAN.
Collapse
Affiliation(s)
- Fengrui Zhu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Eye Hospital, China Academy of Chinese Medical Sciences, Shijingshan, 100040, Beijing, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yetong Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xuezhao Ji
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yingxin Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zefeng Kang
- Eye Hospital, China Academy of Chinese Medical Sciences, Shijingshan, 100040, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Barbosa LRDS, Camelo-Filho AE, Lima PLGDSB, Moura AEF, Pessoa ALS, Braga-Neto P, Sobreira-Neto MA, Nóbrega PR. Sleep disorders in cerebrotendinous xanthomatosis: A case series. Sleep Med 2024; 124:613-617. [PMID: 39488927 DOI: 10.1016/j.sleep.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Cerebrotendinous xanthomatosis (CTX) is a rare genetic disorder characterized by a variety of neurological and systemic symptoms, including cerebellar ataxia, cataracts, tendon xanthomas, and polyneuropathy. This study aimed to investigate sleep patterns and disorders in four patients diagnosed with cerebrotendinous xanthomatosis. All participants reported significant sleep disturbances, and objective assessments confirmed the presence of insomnia, excessive daytime sleepiness, obstructive sleep apnea, and periodic limb movements. Notably, this is the first study to incorporate sleep assessments into the clinical management of CTX patients, which may be crucial for improving their quality of life. Further research is warranted to deepen our understanding of the potential impact of cholestanol deposits on regions of the central nervous system involved in sleep and circadian rhythm regulation.
Collapse
Affiliation(s)
- Liandra Rayanne de Sousa Barbosa
- Deparment of Neurology, Federal University of Ceara, Fortaleza, Ceara, Brazil. Coronel Nunes de Melo St., 1142, Rodolfo Teofilo, Fortaleza, Ceara, 60416-000, Brazil
| | - Antônio Edvan Camelo-Filho
- Deparment of Neurology, Federal University of Ceara, Fortaleza, Ceara, Brazil. Coronel Nunes de Melo St., 1142, Rodolfo Teofilo, Fortaleza, Ceara, 60416-000, Brazil
| | - Pedro Lucas Grangeiro de Sá Barreto Lima
- Deparment of Neurology, Federal University of Ceara, Fortaleza, Ceara, Brazil. Coronel Nunes de Melo St., 1142, Rodolfo Teofilo, Fortaleza, Ceara, 60416-000, Brazil
| | - Alissa Elen Formiga Moura
- Deparment of Neurology, General Hospital of Ceara, Fortaleza, Ceara, Brazil. Avila Goularte St., 900, Papicu, Fortaleza, Ceara, 60150-160, Brazil
| | - Andre Luis Santos Pessoa
- Deparment of Neurology, Federal University of Ceara, Fortaleza, Ceara, Brazil. Coronel Nunes de Melo St., 1142, Rodolfo Teofilo, Fortaleza, Ceara, 60416-000, Brazil
| | - Pedro Braga-Neto
- Deparment of Neurology, Federal University of Ceara, Fortaleza, Ceara, Brazil. Coronel Nunes de Melo St., 1142, Rodolfo Teofilo, Fortaleza, Ceara, 60416-000, Brazil; Center of Health Sciences, State University of Ceara, Fortaleza, Ceara, Brazil. Dr. Silas Munguba Av., 1700, Itaperi, Fortaleza, Ceara, 60714-903, Brazil
| | - Manoel Alves Sobreira-Neto
- Deparment of Neurology, Federal University of Ceara, Fortaleza, Ceara, Brazil. Coronel Nunes de Melo St., 1142, Rodolfo Teofilo, Fortaleza, Ceara, 60416-000, Brazil.
| | - Paulo Ribeiro Nóbrega
- Deparment of Neurology, Federal University of Ceara, Fortaleza, Ceara, Brazil. Coronel Nunes de Melo St., 1142, Rodolfo Teofilo, Fortaleza, Ceara, 60416-000, Brazil; Centro Universitário Christus, Fortaleza, Ceara, Brazil. Dom Luís Ave., 911, Fortaleza, Ceara, 60160-230, Brazil
| |
Collapse
|
10
|
Westerhuis JAW, Dudink J, Wijnands BECA, De Zeeuw CI, Canto CB. Impact of Intrauterine Insults on Fetal and Postnatal Cerebellar Development in Humans and Rodents. Cells 2024; 13:1911. [PMID: 39594658 PMCID: PMC11592629 DOI: 10.3390/cells13221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Many children suffer from neurodevelopmental aberrations that have long-term effects. To understand the consequences of pathological processes during particular periods in neurodevelopment, one has to understand the differences in the developmental timelines of brain regions. The cerebellum is one of the first brain structures to differentiate during development but one of the last to achieve maturity. This relatively long period of development underscores its vulnerability to detrimental environmental exposures throughout gestation. Moreover, as postnatal functionality of the cerebellum is multifaceted, enveloping sensorimotor, cognitive, and emotional domains, prenatal disruptions in cerebellar development can result in a large variety of neurological and mental health disorders. Here, we review major intrauterine insults that affect cerebellar development in both humans and rodents, ranging from abuse of toxic chemical agents, such as alcohol, nicotine, cannabis, and opioids, to stress, malnutrition, and infections. Understanding these pathological mechanisms in the context of the different stages of cerebellar development in humans and rodents can help us to identify critical and vulnerable periods and thereby prevent the risk of associated prenatal and early postnatal damage that can lead to lifelong neurological and cognitive disabilities. The aim of the review is to raise awareness and to provide information for obstetricians and other healthcare professionals to eventually design strategies for preventing or rescuing related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Judith A. W. Westerhuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Bente E. C. A. Wijnands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| |
Collapse
|
11
|
Wang X, Chen H, Tang T, Zhan X, Qin S, Hang T, Song M. Chronic Sleep Deprivation Altered the Expression of Memory-Related Genes and Caused Cognitive Memory Dysfunction in Mice. Int J Mol Sci 2024; 25:11634. [PMID: 39519186 PMCID: PMC11546330 DOI: 10.3390/ijms252111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Lack of sleep, whether acute or chronic, is quite common and negatively affects an individual's memory and cognitive function. The question of whether chronic sleep deprivation (CSD) causes cognitive impairment to arise and progress is not well studied. To investigate the effects of CSD on memory and cognition, this study began by establishing a CSD mouse model. Behavioral experiments on animals revealed that CSD induced cognitive behavioral abnormalities reminiscent of Alzheimer's disease. Western blot experiments further demonstrated a considerable increase in amyloid-β (Aβ) expression in the mouse brain following CSD. Meanwhile, the hub gene Prkcg was searched for in the cerebellum using RNA-seq and bioinformatics analysis. PKCγ (Prkcg) expression was significantly reduced, as demonstrated by RT-qPCR and Western blot validations. Additionally, CSD was associated with downregulated CREB expression, decreased expression of the endothelin-converting enzyme (ECE1), and increased phosphorylation of ERK1/2 downstream of PKCγ. These findings suggested that CSD down-regulated PKCγ expression, decreased ECE1 expression, impaired Aβ degradation, and affected the PKCγ/ERK/CREB pathway and the synthesis of memory-related proteins. Overall, this study highlighted how CSD modulated PKCγ-related metabolism, impacting Aβ clearance and the production of memory-related proteins. Such insights are crucial for understanding and preventing sporadic Alzheimer's disease (sAD) associated with CSD.
Collapse
Affiliation(s)
| | | | | | | | | | - Taijun Hang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211100, China; (X.W.); (H.C.); (T.T.); (X.Z.); (S.Q.)
| | - Min Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211100, China; (X.W.); (H.C.); (T.T.); (X.Z.); (S.Q.)
| |
Collapse
|
12
|
Zhang Y, Di Y, Chen J, Du X, Li J, Liu Q, Wang C, Zhang Q. Functional connectivity density of brain in children with primary nocturnal enuresis: results from a resting-state fMRI study. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02586-5. [PMID: 39446154 DOI: 10.1007/s00787-024-02586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Primary nocturnal enuresis (PNE) is a disease characterized by involuntary urination during sleep after the age of five, causing inconvenience and psychological burden to children and their families. The onset of PNE is related to many factors, and in recent years, delayed central nervous system maturation has been considered one of the important causes of PNE. Previous studies have demonstrated functional changes in multiple brain regions in children with PNE. However, these studies either focused on changes in local brain regions or the functional connection (FC) between specific brain regions, and there is currently a lack of research on the whole brain FC in children with PNE. This study analyzed functional connectivity density (FCD) across the entire brain based on voxels and comprehensively evaluated the global FCD (gFCD), local FCD (lFCD), and long-range FCD (lrFCD). Decreased gFCD and lFCD were found in the left temporal lobe and the right posterior cerebellum in the children with PNE compared with the HC. The FCD values in these regions were negatively correlated with the scores of hyperactivity/impulsivity in the children with PNE. This study may help to reveal the neural mechanisms underlying the onset of PNE in children from a new perspective.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yaqin Di
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jing Chen
- Department of Radiology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, 300134, China
| | - Xin Du
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jinqiu Li
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiaohui Liu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunxiang Wang
- Department of Radiology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin, 300134, China.
| | - Quan Zhang
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
13
|
Kwak JS, León-Tapia MÁ, Diblasi C, Manousi D, Grønvold L, Sandvik GK, Saitou M. Functional and regulatory diversification of Period genes responsible for circadian rhythm in vertebrates. G3 (BETHESDA, MD.) 2024; 14:jkae162. [PMID: 39028850 PMCID: PMC11457068 DOI: 10.1093/g3journal/jkae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
The Period genes (Per) play essential roles in modulating the molecular circadian clock timing in a broad range of species, which regulates the physiological and cellular rhythms through the transcription-translation feedback loop. While the Period gene paralogs are widely observed among vertebrates, the evolutionary history and the functional diversification of Per genes across vertebrates are not well known. In this study, we comprehensively investigated the evolution of Per genes at the copy number and sequence levels, including de novo binding motif discovery by comparative genomics. We also determined the lineage-specific transcriptome landscape across tissues and developmental stages and phenotypic effects in public RNA-seq data sets of model species. We observed multiple lineage-specific gain and loss events Per genes, though no simple association was observed between ecological factors and Per gene numbers in each species. Among salmonid fish species, the per3 gene has been lost in the majority, whereas those retaining the per3 gene exhibit not a signature of relaxed selective constraint but rather a signature of intensified selection. We also determined the signature of adaptive diversification of the CRY-binding region in Per1 and Per3, which modulates the circadian rhythm. We also discovered putative regulatory sequences, which are lineage-specific, suggesting that these cis-regulatory elements may have evolved rapidly and divergently across different lineages. Collectively, our findings revealed the evolution of Per genes and their fine-tuned contribution to the plastic and precise regulation of circadian rhythms in various vertebrate taxa.
Collapse
Affiliation(s)
- Jun Soung Kwak
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - M Ángel León-Tapia
- Colección Nacional de Mamíferos, Pabellón Nacional de la Biodiversidad, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Celian Diblasi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Domniki Manousi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Lars Grønvold
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Guro Katrine Sandvik
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Marie Saitou
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
14
|
Salazar Leon LE, Kim LH, Sillitoe RV. Cerebellar deep brain stimulation as a dual-function therapeutic for restoring movement and sleep in dystonic mice. Neurotherapeutics 2024; 21:e00467. [PMID: 39448336 PMCID: PMC11585869 DOI: 10.1016/j.neurot.2024.e00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Dystonia arises with cerebellar dysfunction, which plays a key role in the emergence of multiple pathophysiological deficits that range from abnormal movements and postures to disrupted sleep. Current therapeutic interventions typically do not simultaneously address both the motor and non-motor symptoms of dystonia, underscoring the necessity for a multi-functional therapeutic strategy. Deep brain stimulation (DBS) is effectively used to reduce motor symptoms in dystonia, with existing parallel evidence arguing for its potential to correct sleep disturbances. However, the simultaneous efficacy of DBS for improving sleep and motor dysfunction, specifically by targeting the cerebellum, remains underexplored. Here, we test the effect of cerebellar DBS in two genetic mouse models with dystonia that exhibit sleep defects-Ptf1aCre;Vglut2fx/fx and Pdx1Cre;Vglut2fx/fx-which have overlapping cerebellar circuit miswiring defects but differing severity in motor phenotypes. By targeting DBS to the fiber tracts located between the cerebellar fastigial and the interposed nuclei (FN + INT-DBS), we modulated sleep dysfunction by enhancing sleep quality and timing. This DBS paradigm improved wakefulness and rapid eye movement sleep in both mutants. Additionally, the latency to reach REM sleep, a deficit observed in human dystonia patients, was reduced in both models. Cerebellar DBS also induced alterations in the electrocorticogram (ECoG) patterns that define sleep states. As expected, DBS reduced the severe dystonic twisting motor symptoms that are observed in the Ptf1aCre;Vglut2fx/fx mice. These findings highlight the potential for using cerebellar DBS to simultaneously improve sleep and reduce motor dysfunction in dystonia and uncover its potential as a dual-effect in vivo therapeutic strategy.
Collapse
Affiliation(s)
- Luis E Salazar Leon
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Linda H Kim
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Fotiadis P, Parkes L, Davis KA, Satterthwaite TD, Shinohara RT, Bassett DS. Structure-function coupling in macroscale human brain networks. Nat Rev Neurosci 2024; 25:688-704. [PMID: 39103609 DOI: 10.1038/s41583-024-00846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
Precisely how the anatomical structure of the brain gives rise to a repertoire of complex functions remains incompletely understood. A promising manifestation of this mapping from structure to function is the dependency of the functional activity of a brain region on the underlying white matter architecture. Here, we review the literature examining the macroscale coupling between structural and functional connectivity, and we establish how this structure-function coupling (SFC) can provide more information about the underlying workings of the brain than either feature alone. We begin by defining SFC and describing the computational methods used to quantify it. We then review empirical studies that examine the heterogeneous expression of SFC across different brain regions, among individuals, in the context of the cognitive task being performed, and over time, as well as its role in fostering flexible cognition. Last, we investigate how the coupling between structure and function is affected in neurological and psychiatric conditions, and we report how aberrant SFC is associated with disease duration and disease-specific cognitive impairment. By elucidating how the dynamic relationship between the structure and function of the brain is altered in the presence of neurological and psychiatric conditions, we aim to not only further our understanding of their aetiology but also establish SFC as a new and sensitive marker of disease symptomatology and cognitive performance. Overall, this Review collates the current knowledge regarding the regional interdependency between the macroscale structure and function of the human brain in both neurotypical and neuroatypical individuals.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Anaesthesiology, University of Michigan, Ann Arbor, MI, USA.
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
16
|
Lin Y, Chen Y, Lin Y, Xin S, Ren A, Zhou X, Lin X, Li X. Association between sleep quality and ovarian reserve in women of reproductive age: a cross-sectional study. Fertil Steril 2024:S0015-0282(24)02231-3. [PMID: 39265649 DOI: 10.1016/j.fertnstert.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE To evaluate the association between sleep quality and ovarian reserve among women of reproductive age. DESIGN Cross-sectional study. SETTING Not applicable. PATIENT(S) A total of 1,070 female participants aged 20-40 years enrolled from February 2023 to January 2024. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) A questionnaire was administered to the participants to collect baseline information related to reproductive and lifestyle factors. Pittsburgh Sleep Quality Index (PSQI) was used to measure sleep quality. The assessment was conducted on ovarian reserve, including total antral follicle count (AFC), antimüllerian hormone (AMH) level, and basal sex hormone level. RESULT(S) The study sample of 1,070 women had a mean age of 31.67 ± 4.41 years. A total of 314 participants (29.35%) were classified under the poor sleep group (PSQI score >5). Significant differences were observed in the follicle-stimulating hormone (FSH), luteinizing hormone, estradiol, testosterone, AFC, and AMH between the two groups. The poor sleep group exhibited significantly lower levels of AMH and AFC. The FSH levels in the poor sleep group were higher. After the adjustment for confounding factors, multivariate regression analysis results indicated that the per unit increase in PSQI score was associated with increased odds of diminished ovarian reserve (adjusted odds ratio [AOR] of 1.28 for AMH <1.1 ng/mL; 95% confidence interval [CI], 1.20-1.37; AFC <7; AOR, 1.34; 95% CI, 1.25-1.43; FSH ≥10 mIU/mL; AOR, 1.16; 95% CI, 1.08-1.25; AMH <1.1 ng/mL or AFC <7 or FSH ≥10 mIU/mL; AOR, 1.29; 95% CI, 1.22-1.37). Compared with the PSQI ≤5 group, subjects with PSQI >5 had increased odds of diminished ovarian reserve (odds ratio, 3.80; 95% CI, 2.82-5.13; AOR, 4.43; 95% CI, 3.22-6.14). After stratification by age and body mass index, compared with the PSQI ≤5 group, all subgroups of the PSQI >5 group had increased odds of diminished ovarian reserve, especially <35-year-old and body mass index ≤18.4 kg/m2 subgroups. CONCLUSION(S) Poor sleep quality is associated with diminished ovarian reserve in women of reproductive age.
Collapse
Affiliation(s)
- Yaoxiang Lin
- Clinical Medical College, Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yongchao Chen
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ya Lin
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Sijia Xin
- Clinical Medical College, Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - An Ren
- Clinical Medical College, Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiajing Zhou
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xianhua Lin
- Reproductive Medicine Center, Hospital of Obstetrics and Gynecology affiliated to Fudan University, Shanghai, People's Republic of China; Reproductive Medicine Center, Hangzhou Women's Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangjuan Li
- Reproductive Medicine Center, Hangzhou Women's Hospital, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Wang Z, Diedrichsen J, Saltoun K, Steele C, Arnold-Anteraper SR, Yeo BTT, Schmahmann JD, Bzdok D. Structural covariation between cerebellum and neocortex intrinsic structural covariation links cerebellum subregions to the cerebral cortex. J Neurophysiol 2024; 132:849-869. [PMID: 39052236 PMCID: PMC11427046 DOI: 10.1152/jn.00164.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The human cerebellum is increasingly recognized to be involved in nonmotor and higher-order cognitive functions. Yet, its ties with the entire cerebral cortex have not been holistically studied in a whole brain exploration with a unified analytical framework. Here, we characterized dissociable cortical-cerebellar structural covariation patterns based on regional gray matter volume (GMV) across the brain in n = 38,527 UK Biobank participants. Our results invigorate previous observations in that important shares of cortical-cerebellar structural covariation are described as 1) a dissociation between the higher-level cognitive system and lower-level sensorimotor system and 2) an anticorrelation between the visual-attention system and advanced associative networks within the cerebellum. We also discovered a novel pattern of ipsilateral, rather than contralateral, cerebral-cerebellar associations. Furthermore, phenome-wide association assays revealed key phenotypes, including cognitive phenotypes, lifestyle, physical properties, and blood assays, associated with each decomposed covariation pattern, helping to understand their real-world implications. This systems neuroscience view paves the way for future studies to explore the implications of these structural covariations, potentially illuminating new pathways in our understanding of neurological and cognitive disorders.NEW & NOTEWORTHY Cerebellum's association with the entire cerebral cortex has not been holistically studied in a unified way. Here, we conjointly characterize the population-level cortical-cerebellar structural covariation patterns leveraging ∼40,000 UK Biobank participants whole brain structural scans and ∼1,000 phenotypes. We revitalize the previous hypothesis of an anticorrelation between the visual-attention system and advanced associative networks within the cerebellum. We also discovered a novel ipsilateral cerebral-cerebellar associations. Phenome-wide association (PheWAS) revealed real-world implications of the structural covariation patterns.
Collapse
Affiliation(s)
- Zilong Wang
- McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, The Neuro-Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Jörn Diedrichsen
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Computer Science, Western University, London, Ontario, Canada
- Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
| | - Karin Saltoun
- McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, The Neuro-Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Christopher Steele
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sheeba Rani Arnold-Anteraper
- Advanced Imaging Research Center, UTSW, Dallas, Texas, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - B T Thomas Yeo
- Department of Electrical & Computer Engineering, Centre for Translational MR Research, Centre for Sleep & Cognition, N.1 Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Jeremy D Schmahmann
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, The Neuro-Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Massimini M, Corbetta M, Sanchez-Vives MV, Andrillon T, Deco G, Rosanova M, Sarasso S. Sleep-like cortical dynamics during wakefulness and their network effects following brain injury. Nat Commun 2024; 15:7207. [PMID: 39174560 PMCID: PMC11341729 DOI: 10.1038/s41467-024-51586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
By connecting old and recent notions, different spatial scales, and research domains, we introduce a novel framework on the consequences of brain injury focusing on a key role of slow waves. We argue that the long-standing finding of EEG slow waves after brain injury reflects the intrusion of sleep-like cortical dynamics during wakefulness; we illustrate how these dynamics are generated and how they can lead to functional network disruption and behavioral impairment. Finally, we outline a scenario whereby post-injury slow waves can be modulated to reawaken parts of the brain that have fallen asleep to optimize rehabilitation strategies and promote recovery.
Collapse
Grants
- The authors thank Dr Ezequiel Mikulan, Dr Silvia Casarotto, Dr Andrea Pigorini, Dr Simone Russo, and Dr Pilleriin Sikka for their help and comments on the manuscript draft and illustrations. This work was financially supported by the following entities: ERC-2022-SYG Grant number 101071900 Neurological Mechanisms of Injury and Sleep-like Cellular Dynamics (NEMESIS); Italian National Recovery and Resilience Plan (NRRP), M4C2, funded by the European Union - NextGenerationEU (Project IR0000011, CUP B51E22000150006, “EBRAINS-Italy”); European Union’s Horizon 2020 Framework Program for Research and Innovation under the Specific Grant Agreement No.945539 (Human Brain Project SGA3); Tiny Blue Dot Foundation; Canadian Institute for Advanced Research (CIFAR), Canada; Italian Ministry for Universities and Research (PRIN 2022); Fondazione Regionale per la Ricerca Biomedica (Regione Lombardia), Project ERAPERMED2019–101, GA 779282; CORTICOMOD PID2020-112947RB-I00 financed by MCIN/ AEI /10.13039/501100011033; Fondazione Cassa di Risparmio di Padova e Rovigo (CARIPARO) Grant Agreement number 55403; Ministry of Health, Italy (RF-2008 -12366899) Brain connectivity measured with high-density electroencephalography: a novel neurodiagnostic tool for stroke- NEUROCONN; BIAL foundation grant (Grant Agreement number 361/18); H2020 European School of Network Neuroscience (euSNN); H2020 Visionary Nature Based Actions For Heath, Wellbeing & Resilience in Cities (VARCITIES); Ministry of Health Italy (RF-2019-12369300): Eye-movement dynamics during free viewing as biomarker for assessment of visuospatial functions and for closed-loop rehabilitation in stroke (EYEMOVINSTROKE).
Collapse
Affiliation(s)
- Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Thomas Andrillon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Mov'it team, Inserm, CNRS, Paris, France
- Monash Centre for Consciousness and Contemplative Studies, Faculty of Arts, Monash University, Melbourne, VIC, Australia
| | - Gustavo Deco
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience Group, Barcelona, Spain
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Abstract
The cerebellum has a well-established role in controlling motor functions, including coordination, posture, and the learning of skilled movements. The mechanisms for how it carries out motor behavior remain under intense investigation. Interestingly though, in recent years the mechanisms of cerebellar function have faced additional scrutiny since nonmotor behaviors may also be controlled by the cerebellum. With such complexity arising, there is now a pressing need to better understand how cerebellar structure, function, and behavior intersect to influence behaviors that are dynamically called upon as an animal experiences its environment. Here, we discuss recent experimental work that frames possible neural mechanisms for how the cerebellum shapes disparate behaviors and why its dysfunction is catastrophic in hereditary and acquired conditions-both motor and nonmotor. For these reasons, the cerebellum might be the ideal therapeutic target.
Collapse
Affiliation(s)
- Linda H Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA;
| | - Detlef H Heck
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, Minnesota, USA
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Roy V Sillitoe
- Departments of Neuroscience and Pediatrics, Program in Developmental Biology, and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
20
|
Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm (Beijing) 2024; 5:e638. [PMID: 39006764 PMCID: PMC11245631 DOI: 10.1002/mco2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Guangdong Liu
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Xi Chen
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Weidong Le
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
21
|
Miletínová E, Kliková M, Dostalíková A, Bušková J. Morphological characteristics of cerebellum, pons and thalamus in Reccurent isolated sleep paralysis - A pilot study. Front Neuroanat 2024; 18:1396829. [PMID: 38962392 PMCID: PMC11219576 DOI: 10.3389/fnana.2024.1396829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Recurrent isolated sleep paralysis (RISP) is a rapid eye movement sleep (REM) parasomnia, characterized by the loss of voluntary movements upon sleep onset and/or awakening with preserved consciousness. Evidence suggests microstructural changes of sleep in RISP, although the mechanism of this difference has not been clarified yet. Our research aims to identify potential morphological changes in the brain that can reflect these regulations. Materials and methods We recruited 10 participants with RISP (8 women; mean age 24.7 years; SD 2.4) and 10 healthy control subjects (w/o RISP; 3 women; mean age 26.3 years; SD 3.7). They underwent video-polysomnography (vPSG) and sleep macrostructure was analyzed. After that participants underwent magnetic resonance imaging (MRI) of the brain. We focused on 2-dimensional measurements of cerebellum, pons and thalamus. Statistical analysis was done in SPSS program. After analysis for normality we performed Mann-Whitney U test to compare our data. Results We did not find any statistically significant difference in sleep macrostructure between patients with and w/o RISP. No evidence of other sleep disturbances was found. 2-dimensional MRI measurements revealed statistically significant increase in cerebellar vermis height (p = 0.044) and antero-posterior diameter of midbrain-pons junction (p = 0.018) in RISP compared to w/o RISP. Discussion Our results suggest increase in size of cerebellum and midbrain-pons junction in RISP. This enlargement could be a sign of an over-compensatory mechanism to otherwise dysfunctional regulatory pathways. Further research should be done to measure these differences in time and with closer respect to the frequency of RISP episodes.
Collapse
Affiliation(s)
- Eva Miletínová
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Praha, Czechia
| | | | | | - Jitka Bušková
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Praha, Czechia
| |
Collapse
|
22
|
Ensel S, Uhrig L, Ozkirli A, Hoffner G, Tasserie J, Dehaene S, Van De Ville D, Jarraya B, Pirondini E. Transient brain activity dynamics discriminate levels of consciousness during anesthesia. Commun Biol 2024; 7:716. [PMID: 38858589 PMCID: PMC11164921 DOI: 10.1038/s42003-024-06335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
The awake mammalian brain is functionally organized in terms of large-scale distributed networks that are constantly interacting. Loss of consciousness might disrupt this temporal organization leaving patients unresponsive. We hypothesize that characterizing brain activity in terms of transient events may provide a signature of consciousness. For this, we analyze temporal dynamics of spatiotemporally overlapping functional networks obtained from fMRI transient activity across different anesthetics and levels of anesthesia. We first show a striking homology in spatial organization of networks between monkeys and humans, indicating cross-species similarities in resting-state fMRI structure. We then track how network organization shifts under different anesthesia conditions in macaque monkeys. While the spatial aspect of the networks is preserved, their temporal dynamics are highly affected by anesthesia. Networks express for longer durations and co-activate in an anesthetic-specific configuration. Additionally, hierarchical brain organization is disrupted with a consciousness-level-signature role of the default mode network. In conclusion, large-scale brain network temporal dynamics capture differences in anesthetic-specific consciousness-level, paving the way towards a clinical translation of these cortical signature.
Collapse
Affiliation(s)
- Scott Ensel
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynn Uhrig
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Ayberk Ozkirli
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Guylaine Hoffner
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
| | - Jordy Tasserie
- Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Collège de France, Paris, France
| | - Dimitri Van De Ville
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Béchir Jarraya
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Université Paris-Saclay (UVSQ), Saclay, France
- Neuroscience Pole, Foch Hospital, Suresnes, France
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Xu M, Li B, Wang S, Chen C, Liu Z, Ji Y, Liu K, Niu Y. The brain in chronic insomnia and anxiety disorder: a combined structural and functional fMRI study. Front Psychiatry 2024; 15:1364713. [PMID: 38895035 PMCID: PMC11184054 DOI: 10.3389/fpsyt.2024.1364713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Background Chronic insomnia disorder (CID) is usually associated with Generalized Anxiety Disorder (GAD), which may change brain structure and function. However, the possible brain markers, imaging characteristics, and pathophysiology are unknown. Objective To look at the probable brain markers, imaging characteristics, and pathogenesis of CID in combination with GAD. Methods A total of 57 patients with CID concomitant GAD and 57 healthy controls (HC) were enrolled. Voxel-based morphometry (VBM) and functional connectivity (FC) were utilized to measure gray matter volume (GMV) and functional changes. Correlation analysis was utilized to identify relationships between brain changes and clinical characteristics. Results Patients had decreased GMV in the left cerebellum, right cerebellar peduncle, and left insula; increased FC between the left cerebellum and right angular gyrus, as well as between the left insula and anterior left cingulate gyrus; and decreased FC in several areas, including the left cerebellum with the middle left cingulate gyrus and the left insula with the left superior postcentral gyrus. These brain changes related to CID and GAD. These data could be used to identify relevant brain markers, imaging features, and to better understand the etiology. Conclusion The intensity of insomnia in patients was strongly related to the severity of anxiety. The lower GMV in the cerebellum could be interpreted as an imaging characteristic of CID. Reduced GMV in the insula, as well as aberrant function in the cingulate gyrus and prefrontal lobe, may contribute to the pathophysiology of CID and GAD. Abnormal function in the postcentral gyrus and angular gyrus may be associated with patients' clinical complaints.
Collapse
Affiliation(s)
- Minghe Xu
- Jinzhou Medical University, Jinzhou, China
| | - Bo Li
- Department of Radiology, The 960th Hospital of People’s Liberation Army Joint Logistic Support Force, Jinan, China
| | | | | | - Zhe Liu
- Department of Radiology, The 960th Hospital of People’s Liberation Army Joint Logistic Support Force, Jinan, China
| | - Yuqing Ji
- Department of Radiology, The 960th Hospital of People’s Liberation Army Joint Logistic Support Force, Jinan, China
| | - Kai Liu
- Department of Radiology, The 960th Hospital of People’s Liberation Army Joint Logistic Support Force, Jinan, China
| | - Yujun Niu
- Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
24
|
Salazar Leon LE, Brown AM, Kaku H, Sillitoe RV. Purkinje cell dysfunction causes disrupted sleep in ataxic mice. Dis Model Mech 2024; 17:dmm050379. [PMID: 38563553 PMCID: PMC11190574 DOI: 10.1242/dmm.050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Purkinje cell dysfunction disrupts movement and causes disorders such as ataxia. Recent evidence suggests that Purkinje cell dysfunction may also alter sleep regulation. Here, we used an ataxic mouse model generated by silencing Purkinje cell neurotransmission (L7Cre;Vgatfx/fx) to better understand how cerebellar dysfunction impacts sleep physiology. We focused our analysis on sleep architecture and electrocorticography (ECoG) patterns based on their relevance to extracting physiological measurements during sleep. We found that circadian activity was unaltered in the mutant mice, although their sleep parameters and ECoG patterns were modified. The L7Cre;Vgatfx/fx mutant mice had decreased wakefulness and rapid eye movement (REM) sleep, whereas non-REM sleep was increased. The mutants had an extended latency to REM sleep, which is also observed in human patients with ataxia. Spectral analysis of ECoG signals revealed alterations in the power distribution across different frequency bands defining sleep. Therefore, Purkinje cell dysfunction may influence wakefulness and equilibrium of distinct sleep stages in ataxia. Our findings posit a connection between cerebellar dysfunction and disrupted sleep and underscore the importance of examining cerebellar circuit function in sleep disorders.
Collapse
Affiliation(s)
- Luis E. Salazar Leon
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Amanda M. Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Heet Kaku
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roy V. Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
25
|
Tononi G, Boly M, Cirelli C. Consciousness and sleep. Neuron 2024; 112:1568-1594. [PMID: 38697113 PMCID: PMC11105109 DOI: 10.1016/j.neuron.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Sleep is a universal, essential biological process. It is also an invaluable window on consciousness. It tells us that consciousness can be lost but also that it can be regained, in all its richness, when we are disconnected from the environment and unable to reflect. By considering the neurophysiological differences between dreaming and dreamless sleep, we can learn about the substrate of consciousness and understand why it vanishes. We also learn that the ongoing state of the substrate of consciousness determines the way each experience feels regardless of how it is triggered-endogenously or exogenously. Dreaming consciousness is also a window on sleep and its functions. Dreams tell us that the sleeping brain is remarkably lively, recombining intrinsic activation patterns from a vast repertoire, freed from the requirements of ongoing behavior and cognitive control.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| |
Collapse
|
26
|
Luo Z, Yin E, Yan Y, Zhao S, Xie L, Shen H, Zeng LL, Wang L, Hu D. Sleep deprivation changes frequency-specific functional organization of the resting human brain. Brain Res Bull 2024; 210:110925. [PMID: 38493835 DOI: 10.1016/j.brainresbull.2024.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies have widely explored the temporal connection changes in the human brain following long-term sleep deprivation (SD). However, the frequency-specific topological properties of sleep-deprived functional networks remain virtually unclear. In this study, thirty-seven healthy male subjects underwent resting-state fMRI during rested wakefulness (RW) and after 36 hours of SD, and we examined frequency-specific spectral connection changes (0.01-0.08 Hz, interval = 0.01 Hz) caused by SD. First, we conducted a multivariate pattern analysis combining linear SVM classifiers with a robust feature selection algorithm, and the results revealed that accuracies of 74.29%-84.29% could be achieved in the classification between RW and SD states in leave-one-out cross-validation at different frequency bands, moreover, the spectral connection at the lowest and highest frequency bands exhibited higher discriminative power. Connection involving the cingulo-opercular network increased most, while connection involving the default-mode network decreased most following SD. Then we performed a graph-theoretic analysis and observed reduced low-frequency modularity and high-frequency global efficiency in the SD state. Moreover, hub regions, which were primarily situated in the cerebellum and the cingulo-opercular network after SD, exhibited high discriminative power in the aforementioned classification consistently. The findings may indicate the frequency-dependent effects of SD on the functional network topology and its efficiency of information exchange, providing new insights into the impact of SD on the human brain.
Collapse
Affiliation(s)
- Zhiguo Luo
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China; College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Erwei Yin
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China.
| | - Ye Yan
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Shaokai Zhao
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Liang Xie
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China; Intelligent Game and Decision Laboratory, Beijing 100071, China; Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Lubin Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 102206, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
| |
Collapse
|
27
|
Fleischer P, Abbasi A, Gulati T. Modulation of neural spiking in motor cortex-cerebellar networks during sleep spindles. eNeuro 2024; 11:ENEURO.0150-23.2024. [PMID: 38641414 DOI: 10.1523/eneuro.0150-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024] Open
Abstract
Sleep spindles appear to play an important role in learning new motor skills. Motor skill learning engages several regions in the brain with two important areas being the motor cortex (M1) and the cerebellum. However, the neurophysiological processes in these areas during sleep, especially how spindle oscillations affect local and cross-region spiking, are not fully understood. We recorded activity from the M1 and cerebellar cortex in 8 rats during spontaneous activity to investigate how sleep spindles in these regions are related to local spiking as well as cross-region spiking. We found that M1 firing was significantly changed during both M1 and cerebellum spindles and this spiking occurred at a preferred phase of the spindle. On average, M1 and cerebellum neurons showed most spiking at the M1 or cerebellum spindle peaks. These neurons also developed a preferential phase-locking to local or cross-area spindles with the greatest phase-locking value at spindle peaks; however, this preferential phase-locking wasn't significant for cerebellar neurons when compared to cerebellum spindles. Additionally, we found the percentage of task-modulated cells in the M1 and cerebellum that fired with non-uniform spike-phase distribution during M1/ cerebellum spindle peaks were greater in the rats that learned a reach-to-grasp motor task robustly. Finally, we found that spindle-band LFP coherence (for M1 and cerebellum LFPs) showed a positive correlation with success rate in the motor task. These findings support the idea that sleep spindles in both the M1 and cerebellum recruit neurons that participate in the awake task to support motor memory consolidation.Significance Statement Neural processing during sleep spindles is linked to memory consolidation. However, little is known about sleep activity in the cerebellum and whether cerebellum spindles can affect spiking activity in local or distant areas. We report the effect of sleep spindles on neuron activity in the M1 and cerebellum-specifically their firing rate and phase-locking to spindle oscillations. Our results indicate that awake practice neuronal activity is tempered during local M1 and cerebellum spindles, and during cross-region spindles, which may support motor skill learning. We describe spiking dynamics in motor networks spindle oscillations that may aid in the learning of skills. Our results support the sleep reactivation hypothesis and suggest that awake M1 activity may be reactivated during cerebellum spindles.
Collapse
Affiliation(s)
- Pierson Fleischer
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
| | - Aamir Abbasi
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
| | - Tanuj Gulati
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
- Department of Neurology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
- Department of Medicine, David Geffen School of Medicine; and Department of Bioengineering, Henry Samueli School of Engineering, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095
| |
Collapse
|
28
|
Lokossou HA, Rabuffo G, Bernard M, Bernard C, Viola A, Perles-Barbacaru TA. Impact of the day/night cycle on functional connectome in ageing male and female mice. Neuroimage 2024; 290:120576. [PMID: 38490583 DOI: 10.1016/j.neuroimage.2024.120576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024] Open
Abstract
To elucidate how time of day, sex, and age affect functional connectivity (FC) in mice, we aimed to examine whether the mouse functional connectome varied with the day/night cycle and whether it depended on sex and age. We explored C57Bl6/J mice (6♀ and 6♂) at mature age (5 ± 1 months) and middle-age (14 ± 1 months). Each mouse underwent Blood Oxygen-Level-Dependent (BOLD) resting-state functional MRI (rs-fMRI) on a 7T scanner at four different times of the day, two under the light condition and two under the dark condition. Data processing consisted of group independent component analysis (ICA) and region-level analysis using resting-state networks (RSNs) derived from literature. Linear mixed-effect models (LMEM) were used to assess the effects of sex, lighting condition and their interactions for each RSN obtained with group-ICA (RSNs-GICA) and six bilateral RSNs adapted from literature (RSNs-LIT). Our study highlighted new RSNs in mice related to day/night alternation in addition to other networks already reported in the literature. In mature mice, we found sex-related differences in brain activation only in one RSNs-GICA comprising the cortical, hippocampal, midbrain and cerebellar regions of the right hemisphere. In males, brain activity was significantly higher in the left hippocampus, the retrosplenial cortex, the superior colliculus, and the cerebellum regardless of lighting condition; consistent with the role of these structures in memory formation and integration, sleep, and sex-differences in memory processing. Experimental constraints limited the analysis to the impact of light/dark cycle on the RSNs for middle-aged females. We detected significant activation in the pineal gland during the dark condition, a finding in line with the nocturnal activity of this gland. For the analysis of RSNs-LIT, new variables "sexage" (sex and age combined) and "edges" (pairs of RSNs) were introduced. FC was calculated as the Pearson correlation between two RSNs. LMEM revealed no effect of sexage or lighting condition. The FC depended on the edges, but there were no interaction effects between sexage, lighting condition and edges. Interaction effects were detected between i) sex and lighting condition, with higher FC in males under the dark condition, ii) sexage and edges with higher FC in male brain regions related to vision, memory, and motor action. We conclude that time of day and sex should be taken into account when designing, analyzing, and interpreting functional imaging studies in rodents.
Collapse
Affiliation(s)
- Houéfa Armelle Lokossou
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France; Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France.
| | - Giovanni Rabuffo
- Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France
| | - Monique Bernard
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France
| | - Christophe Bernard
- Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France.
| | - Angèle Viola
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France
| | | |
Collapse
|
29
|
Chen R, Wang S, Hu Q, Kang N, Xie H, Liu M, Shan H, Long Y, Hao Y, Qin B, Su H, Zhuang Y, Li L, Li W, Sun W, Wu D, Cao W, Mai X, Chen G, Wang D, Zou Q. Exercise intervention in middle-aged and elderly individuals with insomnia improves sleep and restores connectivity in the motor network. Transl Psychiatry 2024; 14:159. [PMID: 38519470 PMCID: PMC10959941 DOI: 10.1038/s41398-024-02875-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Exercise is a potential treatment to improve sleep quality in middle-aged and elderly individuals. Understanding exercise-induced changes in functional plasticity of brain circuits that underlie improvements in sleep among middle-aged and older adults can inform treatment of sleep problems. The aim of the study is to identify the effects of a 12-week exercise program on sleep quality and brain functional connectivity in middle-aged and older adults with insomnia. The trial was registered with Chinese Clinical Trial Register (ChiCTR2000033652). We recruited 84 healthy sleepers and 85 individuals with insomnia. Participants with insomnia were assigned to receive either a 12-week exercise intervention or were placed in a 12-week waitlist control condition. Thirty-seven middle-aged and older adults in the exercise group and 30 in the waitlist group completed both baseline and week 12 assessments. We found that middle-aged and older adults with insomnia showed significantly worse sleep quality than healthy sleepers. At the brain circuit level, insomnia patients showed decreased connectivity in the widespread motor network. After exercise intervention, self-reported sleep was increased in the exercise group (P < 0.001) compared to that in the waitlist group. We also found increased functional connectivity of the motor network with the cerebellum in the exercise group (P < 0.001). Moreover, we observed significant correlations between improvement in subjective sleep indices and connectivity changes within the motor network. We highlight exercise-induced improvement in sleep quality and functional plasticity of the aging brain.
Collapse
Affiliation(s)
- Rongrong Chen
- Department of Psychology, Renmin University of China, Beijing, China
| | - Shilei Wang
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Applied Brain and Cognitive Sciences, School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Qinzi Hu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Ning Kang
- Institute of Population Research, Peking University, Beijing, China
| | - Haijiang Xie
- Department of Physical Education, Peking University, Beijing, China
| | - Meng Liu
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Hongyu Shan
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Yujie Long
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Yizhe Hao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Bolin Qin
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Hao Su
- The School of Sports Science, Beijing Sport University, Beijing, China
| | | | - Li Li
- Peking University Hospital, Beijing, China
| | - Weiju Li
- Peking University Hospital, Beijing, China
| | - Wei Sun
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Dong Wu
- China Wushu School, Beijing Sport University, Beijing, China
| | - Wentian Cao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Xiaoqin Mai
- Department of Psychology, Renmin University of China, Beijing, China
| | - Gong Chen
- Institute of Population Research, Peking University, Beijing, China
| | - Dongmin Wang
- Department of Physical Education, Peking University, Beijing, China.
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.
| |
Collapse
|
30
|
Kim J, Lee HJ, Lee DA, Park KM. Cerebellar volumes and the intrinsic cerebellar network in patients with obstructive sleep apnea. Sleep Breath 2024; 28:301-309. [PMID: 37710027 DOI: 10.1007/s11325-023-02916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE This research aimed to explore changes in both cerebellar volume and the intrinsic cerebellar network in patients with obstructive sleep apnea (OSA). METHODS Newly diagnosed OSA patients and healthy controls were included in the study. All participants underwent three-dimensional T1-weighted imaging using a 3-T MRI scanner. Cerebellar volumes, both overall and subdivided, were quantified using the ACAPULCO program. The intrinsic cerebellar network was assessed using the BRAPH program, which applied graph theory to the cerebellar volume subdivision. Comparisons were drawn between the patients with OSA and healthy controls. RESULTS The study revealed that the 26 patients with OSA exhibited a notably lower total cerebellar volume compared to the 28 healthy controls (8.330 vs. 9.068%, p < 0.001). The volume of the left lobule VIIB was reduced in patients with OSA compared to healthy controls (0.339 vs. 0.407%, p = 0.001). Among patients with OSA, there was a negative correlation between the volume of the left lobule X and apnea-hypopnea index during non-rapid eye movement sleep (r = - 0.536, p = 0.005). However, no significant differences were observed in the intrinsic cerebellar network between patients and healthy controls. CONCLUSION This study established that patients with OSA exhibited decreased total cerebellar volumes and particularly reduced volumes in subdivisions such as the left lobule VIIB compared to healthy controls. These findings suggest potential involvement of the cerebellum in the underlying mechanisms of OSA.
Collapse
Affiliation(s)
- Jinseung Kim
- Department of Family Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-Ro 875, Haeundae-Gu, 48108, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-Ro 875, Haeundae-Gu, 48108, Busan, Republic of Korea.
| |
Collapse
|
31
|
Morrison CL, Winiger EA, Wright KP, Friedman NP. Multivariate genome-wide association study of sleep health demonstrates unity and diversity. Sleep 2024; 47:zsad320. [PMID: 38109788 PMCID: PMC10851865 DOI: 10.1093/sleep/zsad320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
There has been a recent push to focus sleep research less on disordered sleep and more on the dimensional sleep health. Sleep health incorporates several dimensions of sleep: chronotype, efficiency, daytime alertness, duration, regularity, and satisfaction with sleep. A previous study demonstrated sleep health domains correlate only moderately with each other at the genomic level (|rGs| = 0.11-0.51) and show unique relationships with psychiatric domains (controlling for shared variances, duration, alertness, and non-insomnia independently related to a factor for internalizing psychopathology). Of the domains assessed, circadian preference was the least genetically correlated with all other facets of sleep health. This pattern is important because it suggests sleep health should be considered a multifaceted construct rather than a unitary construct. Prior genome-wide association studies (GWASs) have vastly increased our knowledge of the biological underpinnings of specific sleep traits but have only focused on univariate analyses. We present the first multivariate GWAS of sleep and circadian health (multivariate circadian preference, efficiency, and alertness factors, and three single-indicator factors of insomnia, duration, and regularity) using genomic structural equation modeling. We replicated loci found in prior sleep GWASs, but also discovered "novel" loci for each factor and found little evidence for genomic heterogeneity. While we saw overlapping genomic enrichment in subcortical brain regions and shared associations with external traits, much of the genetic architecture (loci, mapped genes, and enriched pathways) was diverse among sleep domains. These results confirm sleep health as a family of correlated but genetically distinct domains, which has important health implications.
Collapse
Affiliation(s)
- Claire L Morrison
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Evan A Winiger
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kenneth P Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Naomi P Friedman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
32
|
Kim SS, Truong B, Jagadeesh K, Dey KK, Shen AZ, Raychaudhuri S, Kellis M, Price AL. Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types. Nat Commun 2024; 15:563. [PMID: 38233398 PMCID: PMC10794712 DOI: 10.1038/s41467-024-44742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Prioritizing disease-critical cell types by integrating genome-wide association studies (GWAS) with functional data is a fundamental goal. Single-cell chromatin accessibility (scATAC-seq) and gene expression (scRNA-seq) have characterized cell types at high resolution, and studies integrating GWAS with scRNA-seq have shown promise, but studies integrating GWAS with scATAC-seq have been limited. Here, we identify disease-critical fetal and adult brain cell types by integrating GWAS summary statistics from 28 brain-related diseases/traits (average N = 298 K) with 3.2 million scATAC-seq and scRNA-seq profiles from 83 cell types. We identified disease-critical fetal (respectively adult) brain cell types for 22 (respectively 23) of 28 traits using scATAC-seq, and for 8 (respectively 17) of 28 traits using scRNA-seq. Significant scATAC-seq enrichments included fetal photoreceptor cells for major depressive disorder, fetal ganglion cells for BMI, fetal astrocytes for ADHD, and adult VGLUT2 excitatory neurons for schizophrenia. Our findings improve our understanding of brain-related diseases/traits and inform future analyses.
Collapse
Affiliation(s)
- Samuel S Kim
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, UK.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, UK.
| | - Buu Truong
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, UK.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, UK.
| | - Karthik Jagadeesh
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, UK
| | - Kushal K Dey
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, UK
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amber Z Shen
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Soumya Raychaudhuri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Manolis Kellis
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, UK
| | - Alkes L Price
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, UK.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, UK.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, UK.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
33
|
Huang Y, Shen C, Zhao W, Shang Y, Wang Y, Zhang HT, Ouyang R, Liu J. Genes Associated with Altered Brain Structure and Function in Obstructive Sleep Apnea. Biomedicines 2023; 12:15. [PMID: 38275376 PMCID: PMC10812994 DOI: 10.3390/biomedicines12010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Obstructive sleep apnea (OSA) has been widely reported to cause abnormalities in brain structure and function, but the genetic mechanisms behind these changes remain largely unexplored. Our research aims to investigate the relationship between sleep characteristics, cognitive impairments, genetic factors, and brain structure and function in OSA. Using structural and resting-state functional magnetic resonance imaging data, we compared cortical morphology and spontaneous brain activity between 28 patients with moderate-to-severe OSA and 34 healthy controls (HCs) utilizing voxel-based morphology (VBM) and the amplitude of low-frequency fluctuations (ALFF) analyses. In conjunction with the Allen Human Brain Atlas, we used transcriptome-neuroimaging spatial correlation analyses to investigate gene expression patterns associated with changes in gray matter volume (GMV) and ALFF in OSA. Compared to the HCs, the OSA group exhibited increased ALFF values in the left hippocampus (t = 5.294), amygdala (t = 4.176), caudate (t = 4.659), cerebellum (t = 5.896), and decreased ALFF values in the left precuneus (t = -4.776). VBM analysis revealed increased GMV in the right inferior parietal lobe (t = 5.158) in OSA. Additionally, functional enrichment analysis revealed that genes associated with both ALFF and GMV cross-sampling were enriched in gated channel activity and synaptic transmission, glutamatergic synapse, and neuron.
Collapse
Affiliation(s)
- Yijie Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.H.); (W.Z.); (Y.S.); (Y.W.)
| | - Chong Shen
- Department of Respiratory and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.H.); (W.Z.); (Y.S.); (Y.W.)
- Clinical Research Center for Medical Imaging, Changsha 410011, China
- Department of Radiology Quality Control Center, Changsha 410011, China
| | - Youlan Shang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.H.); (W.Z.); (Y.S.); (Y.W.)
| | - Yisong Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.H.); (W.Z.); (Y.S.); (Y.W.)
| | - Hui-Ting Zhang
- MR Research Collaboration Team, Siemens Healthineers, Wuhan 430000, China;
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.H.); (W.Z.); (Y.S.); (Y.W.)
- Clinical Research Center for Medical Imaging, Changsha 410011, China
- Department of Radiology Quality Control Center, Changsha 410011, China
| |
Collapse
|
34
|
Park KM, Kim KT, Lee DA, Cho YW. Redefining the role of the cerebellum in restless legs syndrome. Sleep Med 2023; 112:256-261. [PMID: 37925852 DOI: 10.1016/j.sleep.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES We aimed to investigate alterations in cerebellar volume and the intrinsic cerebellar network in patients with restless legs syndrome (RLS). METHODS We recruited 69 patients with RLS and 50 healthy controls who underwent brain magnetic resonance imaging (MRI), including three-dimensional T1-weighted imaging. The total cerebellar volume and cerebellar volume subdivisions were analyzed through automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization program. The intrinsic cerebellar network was calculated through brain analysis using a graph theory program based on the cerebellar volume subdivisions. The cerebellar volumes and intrinsic cerebellar networks were compared between patients with RLS and healthy controls. RESULTS The cerebellar volume and subdivisions in patients with RLS did not show significant differences compared to those in healthy controls. However, significant alterations were observed in the intrinsic cerebellar network of patients with RLS. Increased mean clustering coefficient (0.185 vs. 0.114; p = 0.047) and small-worldness index (0.927 vs. 0.800; p = 0.047) were observed in patients with RLS. Additionally, total cerebellar volume was negatively correlated with the Pittsburgh Sleep Quality Index (r = -0.398; p = 0.020) and Insomnia Severity Index (ISI; r = -0.396; p = 0.011). Negative correlations were additionally observed between the right X lobule volume and the International Restless Legs Syndrome Severity Scale (r = -0.425; p = 0.008) and between the vermis VIII volume and ISI score (r = -0.399; p = 0.011). CONCLUSION We demonstrated alterations in the intrinsic cerebellar network in patients with RLS compared with healthy controls, showing increased connectivity with increased segregation in patients with RLS. This suggests a potential role of the cerebellum in RLS pathophysiology.
Collapse
Affiliation(s)
- Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Keun Tae Kim
- Department of Neurology, Keimyung University School of Medicine, Daegu, South Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Yong Won Cho
- Department of Neurology, Keimyung University School of Medicine, Daegu, South Korea.
| |
Collapse
|
35
|
Rudolph S, Badura A, Lutzu S, Pathak SS, Thieme A, Verpeut JL, Wagner MJ, Yang YM, Fioravante D. Cognitive-Affective Functions of the Cerebellum. J Neurosci 2023; 43:7554-7564. [PMID: 37940582 PMCID: PMC10634583 DOI: 10.1523/jneurosci.1451-23.2023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic brain in health and disease.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Stefano Lutzu
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, D-45147, Germany
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Diasynou Fioravante
- Center for Neuroscience, University of California-Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, California 95618
| |
Collapse
|
36
|
Leon LES, Kim LH, Sillitoe RV. Cerebellar deep brain stimulation as a dual-function therapeutic for restoring movement and sleep in dystonic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564790. [PMID: 37961355 PMCID: PMC10635001 DOI: 10.1101/2023.10.30.564790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dystonia arises with cerebellar dysfunction, which plays a key role in the emergence of multiple pathophysiological deficits that range from abnormal movements and postures to disrupted sleep. Current therapeutic interventions typically do not simultaneously address both the motor and non-motor (sleep-related) symptoms of dystonia, underscoring the necessity for a multi-functional therapeutic strategy. Deep brain stimulation (DBS) is effectively used to reduce motor symptoms in dystonia, with existing parallel evidence arguing for its potential to correct sleep disturbances. However, the simultaneous efficacy of DBS for improving sleep and motor dysfunction, specifically by targeting the cerebellum, remains underexplored. Here, we test the effect of cerebellar DBS in two genetic mouse models with dystonia that exhibit sleep defects- Ptf1a Cre ;Vglut2 fx/fx and Pdx1 Cre ;Vglut2 fx/fx -which have overlapping cerebellar circuit miswiring defects but differing severity in motor phenotypes. By targeting DBS to the cerebellar fastigial and interposed nuclei, we modulated sleep dysfunction by enhancing sleep quality and timing in both models. This DBS paradigm improved wakefulness (decreased) and rapid eye movement (REM) sleep (increased) in both mutants. Additionally, the latency to reach REM sleep, a deficit observed in human dystonia patients, was reduced in both models. Cerebellar DBS also induced alterations in the electrocorticogram (ECoG) patterns that define sleep states. As expected, DBS reduced the severe dystonic twisting motor symptoms that are observed in the Ptf1a Cre ;Vglut2 fx/fx mutant mice. These findings highlight the potential for using cerebellar DBS to improve sleep and reduce motor dysfunction in dystonia and uncover its potential as a dual-effect in vivo therapeutic strategy.
Collapse
|
37
|
Li T, Le W, Jankovic J. Linking the cerebellum to Parkinson disease: an update. Nat Rev Neurol 2023; 19:645-654. [PMID: 37752351 DOI: 10.1038/s41582-023-00874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
Parkinson disease (PD) is characterized by heterogeneous motor and non-motor symptoms, resulting from neurodegeneration involving various parts of the central nervous system. Although PD pathology predominantly involves the nigral-striatal system, growing evidence suggests that pathological changes extend beyond the basal ganglia into other parts of the brain, including the cerebellum. In addition to a primary involvement in motor control, the cerebellum is now known to also have an important role in cognitive, sleep and affective processes. Over the past decade, an accumulating body of research has provided clinical, pathological, neurophysiological, structural and functional neuroimaging findings that clearly establish a link between the cerebellum and PD. This Review presents an overview and update on the involvement of the cerebellum in the clinical features and pathogenesis of PD, which could provide a novel framework for a better understanding the heterogeneity of the disease.
Collapse
Affiliation(s)
- Tianbai Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.
- Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial Hospital, Chengdu, China.
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
38
|
DÜZKALIR HG, GENÇ B, SAĞER SG, TÜRKYILMAZ A, GÜNBEY HP. Microstructural evaluation of the brain with advanced magnetic resonance imaging techniques in cases of electrical status epilepticus during sleep (ESES). Turk J Med Sci 2023; 53:1840-1851. [PMID: 38813507 PMCID: PMC10760578 DOI: 10.55730/1300-0144.5754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/12/2023] [Accepted: 10/25/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim The cause and treatment of electrical status epilepticus during sleep (ESES), one of the epileptic encephalopathies of childhood, is unclear. The aim of this study was to evaluate possible microstructural abnormalities in the brain using advanced magnetic resonance imaging (MRI) techniques in ESES patients with and without genetic mutations. Materials and methods This research comprised 12 ESES patients without structural thalamic lesions (6 with genetic abnormalities and 6 without) and 12 healthy children. Whole-exome sequencing was used for the genetic mutation analysis. Brain MRI data were evaluated using tractus-based spatial statistics, voxel-based morphometry, a local gyrification index, subcortical shape analysis, FreeSurfer volume, and cortical thickness. The data of the groups were compared. Results The mean age in the control group was 9.05 ± 1.85 years, whereas that in the ESES group was 9.45 ± 2.72 years. Compared to the control group, the ESES patients showed higher mean thalamus diffusivity (p < 0.05). ESES patients with genetic mutations had lower axial diffusivity in the superior longitudinal fasciculus and gray matter volume in the entorhinal region, accumbens area, caudate, putamen, cerebral white matter, and outer cerebellar areas. The superior and middle temporal cortical thickness increased in the ESES patients. Conclusion This study is important in terms of presenting the microstructural evaluation of the brain in ESES patients with advanced MRI analysis methods as well as comparing patients with and without genetic mutations. These findings may be associated with corticostriatal transmission, ictogenesis, epileptogenesis, neuropsychiatric symptoms, cognitive impairment, and cerebellar involvement in ESES. Expanded case-group studies may help to understand the physiology of the corticothalamic circuitry in its etiopathogenesis and develop secondary therapeutic targets for ESES.
Collapse
Affiliation(s)
| | - Barış GENÇ
- Department of Radiology, Samsun Education and Research Hospital, Samsun,
Turkiye
| | - Safiye Güneş SAĞER
- Department of Pediatric Neurology, Kartal Dr. Lütfi Kırdar City Hospital, İstanbul,
Turkiye
| | - Ayberk TÜRKYILMAZ
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon,
Turkiye
| | - Hediye Pınar GÜNBEY
- Department of Radiology, Kartal Dr. Lütfi Kırdar City Hospital, İstanbul,
Turkiye
| |
Collapse
|
39
|
Zhang J, Zhang J, Sun H, Yang J, Ma Y, Chen K, Su J, Yu X, Yang F, Zhang Z, Zhao T, Hu X, Zhai Y, Liu Q, Wang J, Liu C, Wang Z. Cerebellum drives functional dysfunctions in restless leg syndrome. Sleep Med 2023; 110:172-178. [PMID: 37595434 DOI: 10.1016/j.sleep.2023.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/04/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Restless legs syndrome (RLS) has serious effects on patients' sleep quality, physical and mental health. However, the pathophysiological mechanisms of RLS remain unclear. This study utilized both static and dynamic functional activity and connectivity analyses approaches as well as effective connectivity analysis to reveal the neurophysiological basis of RLS. METHODS The resting-state functional MRI (rs-fMRI) data from 32 patients with RLS and 33 age-, and gender-matched healthy control (HC) were collected. Dynamic and static amplitude of low frequency fluctuation (ALFF), functional connectivity (FC), and Granger causality analysis (GCA) were employed to reveal the abnormal functional activities and couplings in patients with RLS. RESULTS RLS patients showed over-activities in left parahippocampus and right cerebellum, hyper-connectivities of right cerebellum with left basal ganglia, left postcentral gyrus and right precentral gyrus, and enhanced effective connectivity from right cerebellum to left postcentral gyrus compared to HC. CONCLUSIONS Abnormal cerebellum-basal ganglia-sensorimotor cortex circuit may be the underlying neuropathological basis of RLS. Our findings highlight the important role of right cerebellum in the onset of RLS and suggest right cerebellum may be a potential target for precision therapy.
Collapse
Affiliation(s)
- Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jingyue Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yingzi Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Kexuan Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jing Su
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Xiaohui Yu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Futing Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Zhiwei Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Tianyu Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Xiuying Hu
- Med-X Center for Informatics, Sichuan University, Chengdu, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yiran Zhai
- College of Electrical Engineering, Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Qihong Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neuromodulation, Beijing, China.
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
| |
Collapse
|
40
|
Scammell BH, Tchio C, Song Y, Nishiyama T, Louie TL, Dashti HS, Nakatochi M, Zee PC, Daghlas I, Momozawa Y, Cai J, Ollila HM, Redline S, Wakai K, Sofer T, Suzuki S, Lane JM, Saxena R. Multi-ancestry genome-wide analysis identifies shared genetic effects and common genetic variants for self-reported sleep duration. Hum Mol Genet 2023; 32:2797-2807. [PMID: 37384397 PMCID: PMC10656946 DOI: 10.1093/hmg/ddad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Both short (≤6 h per night) and long sleep duration (≥9 h per night) are associated with increased risk of chronic diseases. Despite evidence linking habitual sleep duration and risk of disease, the genetic determinants of sleep duration in the general population are poorly understood, especially outside of European (EUR) populations. Here, we report that a polygenic score of 78 European ancestry sleep duration single-nucleotide polymorphisms (SNPs) is associated with sleep duration in an African (n = 7288; P = 0.003), an East Asian (n = 13 618; P = 6 × 10-4) and a South Asian (n = 7485; P = 0.025) genetic ancestry cohort, but not in a Hispanic/Latino cohort (n = 8726; P = 0.71). Furthermore, in a pan-ancestry (N = 483 235) meta-analysis of genome-wide association studies (GWAS) for habitual sleep duration, 73 loci are associated with genome-wide statistical significance. Follow-up of five loci (near HACD2, COG5, PRR12, SH3RF1 and KCNQ5) identified expression-quantitative trait loci for PRR12 and COG5 in brain tissues and pleiotropic associations with cardiovascular and neuropsychiatric traits. Overall, our results suggest that the genetic basis of sleep duration is at least partially shared across diverse ancestry groups.
Collapse
Affiliation(s)
- B H Scammell
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02215, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02141, USA
| | - C Tchio
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02215, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02141, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Y Song
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02215, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02141, USA
| | - T Nishiyama
- Department of Public Health, Nagoya City University Graduate School of Medicine, Nagoya 467-8701, Japan
| | - T L Louie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - H S Dashti
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02215, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02141, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - M Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 467-8701, Japan
| | - P C Zee
- Center for Circadian and Sleep Medicine, Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - I Daghlas
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02215, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02141, USA
| | - Y Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - J Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - H M Ollila
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02215, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02141, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Institute for Molecular Medicine, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - S Redline
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - K Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya 467-8701, Japan
| | - T Sofer
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - S Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medicine, Nagoya 467-8701, Japan
| | - J M Lane
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02215, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02141, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - R Saxena
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02215, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02141, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
41
|
Ma Y, Fu S, Ye X, Yang Y, Yin Y, Xu G, Liu M, Jiang G. Aberrant single-subject morphological cerebellar connectome in chronic insomnia. Neuroimage Clin 2023; 39:103492. [PMID: 37603949 PMCID: PMC10458694 DOI: 10.1016/j.nicl.2023.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND To systematically investigate the topological organisation of morphological networks of the cerebellum using structural MRI and examine their clinical relevance in chronic insomnia (CI). METHODS One hundred and one patients with CI and 102 healthy controls (HCs) were recruited in this study. Individual morphological networks of the cerebellum were constructed based on regional grey matter volume, and topologically characterised using weighted graph theory-based network approaches. Between-group comparisons were performed using permutation tests, and Spearman's correlation was used to examine the relationships between topological alterations and clinical variables. RESULTS Compared with HCs, patients with CI exhibited a lower normalised clustering coefficient. Locally, CI patients exhibited lower nodal efficiency in the cerebellar lobule VIIb and vermis regions, but higher nodal efficiency in the right cerebellar lobule VIIIa regions. No correlations were observed between network alterations and clinical variables. CONCLUSIONS Individual morphological network analysis provides a new strategy for investigating cerebellar morphometric changes in CI, and our findings may have important implications in establishing diagnostic and categorical biomarkers.
Collapse
Affiliation(s)
- Yuqin Ma
- Guangzhou Medical University, Guangzhou 51495, PR China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Xi Ye
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Yuping Yang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510317, PR China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Guang Xu
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Mengchen Liu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China.
| |
Collapse
|
42
|
Chen Y, Li W. Rapid eye movement sleep contributes to the formation of new axonal varicosities in mouse cerebellar parallel fibers after motor training. Neurosci Lett 2023; 810:137349. [PMID: 37327855 DOI: 10.1016/j.neulet.2023.137349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Synaptic structural plasticity is essential for the development, learning and memory. It is well established that sleep plays important roles in synaptic plasticity after motor learning. In cerebellar cortex, parallel fibers of granule cells make excitatory synapses to the dendrites of Purkinje cells. However, the synaptic structural dynamics between parallel and Purkinje cells after motor training and the function of sleep in cerebellar synaptic plasticity remain unclear. Here, we used two-photon microscopy to examine presynaptic axonal structural dynamics at parallel fiber-Purkinje cell synapses and investigated the effect of REM sleep in synaptic plasticity of mouse cerebellar cortex following motor training. We found that motor training induces higher formation of new axonal varicosities in cerebellar parallel fibers. Our results also indicate that calcium activities of granule cells significantly increase during REM sleep, and REM sleep deprivation prevents motor training-induced formation of axonal varicosities in parallel fibers, suggesting that higher calcium activity of granule cells was crucial for promoting newly formed axonal varicosities after motor training. Together, these findings reveal the effect of motor training on parallel fiber presynaptic structural modification and the important role of REM sleep in synaptic plasticity in cerebellar cortex.
Collapse
Affiliation(s)
- Yu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
43
|
Salazar Leon LE, Brown AM, Kaku H, Sillitoe RV. Purkinje cell dysfunction causes disrupted sleep in ataxic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547586. [PMID: 37461479 PMCID: PMC10350025 DOI: 10.1101/2023.07.03.547586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Purkinje cell dysfunction causes movement disorders such as ataxia, however, recent evidence suggests that Purkinje cell dysfunction may also alter sleep regulation. Here, we used an ataxia mouse model generated by silencing Purkinje cell neurotransmission ( L7 Cre ;Vgat fx/fx ) to better understand how cerebellar dysfunction impacts sleep physiology. We focused our analysis on sleep architecture and electrocorticography (ECoG) patterns based on their relevance to extracting physiological measurements during sleep. We found that circadian activity is unaltered in the mutant mice, although their sleep parameters and ECoG patterns are modified. The L7 Cre ;Vgat fx/fx mutant mice have decreased wakefulness and rapid eye movement (REM) sleep, while non-rapid eye movement (NREM) sleep is increased. The mutant mice have an extended latency to REM sleep, which is also observed in human ataxia patients. Spectral analysis of ECoG signals revealed alterations in the power distribution across different frequency bands defining sleep. Therefore, Purkinje cell dysfunction may influence wakefulness and equilibrium of distinct sleep stages in ataxia. Our findings posit a connection between cerebellar dysfunction and disrupted sleep and underscore the importance of examining cerebellar circuit function in sleep disorders. Summary Statement Utilizing a precise genetic mouse model of ataxia, we provide insights into the cerebellum's role in sleep regulation, highlighting its potential as a therapeutic target for motor disorders-related sleep disruptions.
Collapse
|
44
|
Ekmen A, Doulazmi M, Méneret A, Jegatheesan P, Hervé A, Damier P, Gras D, Roubertie A, Piard J, Mutez E, Tarrano C, Welniarz Q, Vidailhet M, Worbe Y, Gallea C, Roze E. Non-Motor Symptoms and Quality of Life in Patients with PRRT2-Related Paroxysmal Kinesigenic Dyskinesia. Mov Disord Clin Pract 2023; 10:1082-1089. [PMID: 37476308 PMCID: PMC10354617 DOI: 10.1002/mdc3.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/23/2023] [Accepted: 05/01/2023] [Indexed: 07/22/2023] Open
Abstract
Background Monoallelic pathogenic variants of PRRT2 often result in paroxysmal kinesigenic dyskinesia (PKD). Little is known about health-related quality of life (HrQoL), non-motor manifestations, self-esteem, and stigma in patients with PKD. Objectives We investigated non-motor symptoms and how they related to HrQoL in a genetically homogeneous group of PRRT2-PKD patients. We paid special attention to perceived stigmatization and self-esteem. Methods We prospectively enrolled 21 consecutive PKD patients with a pathogenic variant of PRRT2, and 21 healthy controls matched for age and sex. They were evaluated with dedicated standardized tests for non-motor symptoms, HrQoL, anxiety, depression, stigma, self-esteem, sleep, fatigue, pain, and psychological well-being. Results Patients reported an alteration of the physical aspects of HrQoL, regardless of the presence of residual paroxysmal episodes. Non-motor manifestations were frequent, and were an important determinant of the alteration of HrQoL. In addition, patients perceived a higher level of stigmatization which positively correlated with a delay in diagnosis (ρ = 0.615, P = 0.003) and the fear of being judged (ρ = 0.452, P = 0.04), but not with the presence of paroxysmal episodes (ρ = 0.203, P = 0.379). Conclusions Our findings have important implications for care givers concerning patient management and medical education about paroxysmal dyskinesia. PRRT2-PKD patients should be screened for non-motor disorders in routine care. A long history of misdiagnosis may play a role in the high level of perceived stigmatization. Improving knowledge about diagnostic clues suggestive of PKD is mandatory.
Collapse
Affiliation(s)
- Asya Ekmen
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| | - Mohamed Doulazmi
- Sorbonne University, Adaptation Biologique et Vieillissement (UMR8256), Institut de Biologie Paris Seine, CNRSParisFrance
| | - Aurélie Méneret
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| | - Prasanthi Jegatheesan
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| | - Anais Hervé
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
| | | | - Domitille Gras
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
| | - Agathe Roubertie
- Département NeuropédiatrieINM, Université de Montpellier, INSERM, CHU MontpellierMontpellierFrance
| | - Juliette Piard
- Centre de Génétique Humaine, CHUBesançonFrance
- INSERM UMR1231, Génétique des Anomalies du DéveloppementUniversité de BourgogneDijonFrance
| | - Eugenie Mutez
- Univ. Lille, Inserm, CHU Lille, U1172—LilNCog—Lille Neuroscience and CognitionLilleFrance
| | - Clément Tarrano
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| | - Quentin Welniarz
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| | - Marie Vidailhet
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| | - Yulia Worbe
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| | - Cécile Gallea
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
| | - Emmanuel Roze
- Sorbonne Université, INSERM, CNRS, Paris Brain InstituteParisFrance
- APHP Hôpital de La Pitié Salpetriêre et Saint‐AntoineParisFrance
| |
Collapse
|
45
|
Xu M, Wang Q, Li B, Qian S, Wang S, Wang Y, Chen C, Liu Z, Ji Y, Liu K, Xin K, Niu Y. Cerebellum and hippocampus abnormalities in patients with insomnia comorbid depression: a study on cerebral blood perfusion and functional connectivity. Front Neurosci 2023; 17:1202514. [PMID: 37397441 PMCID: PMC10311636 DOI: 10.3389/fnins.2023.1202514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
Chronic insomnia disorder and major depressive disorder are highly-occurred mental diseases with extensive social harm. The comorbidity of these two diseases is commonly seen in clinical practice, but the mechanism remains unclear. To observe the characteristics of cerebral blood perfusion and functional connectivity in patients, so as to explore the potential pathogenesis and biological imaging markers, thereby improving the understanding of their comorbidity mechanism. 44 patients with chronic insomnia disorder comorbid major depressive disorder and 43 healthy controls were recruited in this study. The severity of insomnia and depression were assessed by questionnaire. The cerebral blood perfusion and functional connectivity values of participants were obtained to, analyze their correlation with questionnaire scores. The cerebral blood flow in cerebellum, vermis, right hippocampus, left parahippocampal gyrus of patients were reduced, which was negatively related to the severity of insomnia or depression. The connectivities of left cerebellum-right putamen and right hippocampus-left inferior frontal gyrus were increased, showing positive correlations with the severity of insomnia and depression. Decreased connectivities of left cerebellum-left fusiform gyrus, left cerebellum-left occipital lobe, right hippocampus-right paracentral lobule, right hippocampus-right precentral gyrus were partially associated with insomnia or depression. The connectivity of right hippocampus-left inferior frontal gyrus may mediate between insomnia and depression. Insomnia and depression can cause changes in cerebral blood flow and brain function. Changes in the cerebellar and hippocampal regions are the result of insomnia and depression. They reflect abnormalities in sleep and emotion regulation. That may be involved in the pathogenesis of comorbidity.
Collapse
Affiliation(s)
- Minghe Xu
- Postgraduate Training Base of the 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinzhou Medical University, Jinan, China
| | - Qian Wang
- Department of Radiology, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, China
| | - Bo Li
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Shaowen Qian
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Shuang Wang
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Yu Wang
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Chunlian Chen
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Zhe Liu
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Yuqing Ji
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Kai Liu
- Department of Radiology, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Kuolin Xin
- Sleep Clinic, The 960th Hospital of People's Liberation Army Joint Logistic Support Force, Jinan, China
| | - Yujun Niu
- Department of Radiology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
46
|
Gao J, Zhao L, Li D, Li Y, Wang H. Enriched environment ameliorates postsurgery sleep deprivation-induced cognitive impairments through the AMPA receptor GluA1 subunit. Brain Behav 2023; 13:e2992. [PMID: 37095708 PMCID: PMC10275526 DOI: 10.1002/brb3.2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND As a common postsurgery complication, sleep deprivation (SD) can severely deteriorate the cognitive function of patients. Enriched environment (EE) exposure can increase children's cognitive ability, and whether EE exposure could be utilized to alleviate postsurgery SD-induced cognitive impairments is investigated in this study. METHODS Open inguinal hernia repair surgery without skin/muscle retraction was performed on Sprague-Dawley male rats (9-week-old), which were further exposed to EE or standard environment (SE). Elevated plus maze (EPM), novel object recognition (NOR), object location memory (OLM), and Morris Water Maze assays were utilized to monitor cognitive functions. Cresyl violet acetate staining in the Cornusammonis 3 (CA3) region of rat hippocampus was used to detect neuron loss. The relative expression of brain-derived neurotrophic factor (BDNF) and synaptic glutamate receptor 1 (GluA1) subunits in the hippocampus were detected with quantitative reverse transcription polymerase chain reaction (RT-qPCR), Western blots, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence. RESULTS EE restored normal levels of time spent in the center, time in distal open arms, open/total arms ratio, and total distance traveled in the EPM test; EE restored normal levels of recognition index in the NOR and OLM test; EE restored normal levels of time in the target quadrant, escape latencies, and platform site crossings in the Morris Water Maze test. EE exposure decreased neuron loss in the CA3 region of the hippocampus with increased BDNF and phosphorylated (p)-GluA1 (ser845) expression. CONCLUSION EE ameliorates postsurgery SD-induced cognitive impairments, which may be mediated by the axis of BDNF/GluA1. EE exposure could be considered as an aid in promoting cognitive function in postsurgery SD.
Collapse
Affiliation(s)
- Jie Gao
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
- Department of AnesthesiologyTianjin Haihe HospitalTianjinChina
| | - Lina Zhao
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Dedong Li
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Yun Li
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Haiyun Wang
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| |
Collapse
|
47
|
Yu H, Wang M, Yang Q, Xu X, Zhang R, Chen X, Le W. The electrophysiological and neuropathological profiles of cerebellum in APP swe /PS1 ΔE9 mice: A hypothesis on the role of cerebellum in Alzheimer's disease. Alzheimers Dement 2023; 19:2365-2375. [PMID: 36469008 DOI: 10.1002/alz.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 12/11/2022]
Abstract
We propose the hypothesis that the cerebellar electrophysiology and sleep-wake cycles may be altered at the early stage of Alzheimer's disease (AD), proceeding the amyloid-β neuropathological hallmarks. The electrophysiologic characteristics of cerebellum thereby might be served as a biomarker in the prepathological detection of AD. Sleep disturbances are common in preclinical AD patients, and the cerebellum has been implicated in sleep-wake regulation by several pioneer studies. Additionally, recent studies suggest that the structure and function of the cerebellum may be altered at the early stages of AD, indicating that the cerebellum may be involved in the disease's progression. We used APPswe /PS1ΔE9 mice as a model of AD, monitored and analyzed electroencephalogram data, and assessed neuropathological profiles in the cerebellum of AD mice. Our hypothesis may establish a linkage between the cerebellum and AD, thereby potentially providing new perspectives on the pathogenesis of the disease.
Collapse
Affiliation(s)
- Hang Yu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Manli Wang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qiu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiaojiao Xu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Rong Zhang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
48
|
Shao H, Li N, Chen M, Zhang J, Chen H, Zhao M, Yang J, Xia J. A voxel-based morphometry investigation of brain structure variations in late-life depression with insomnia. Front Psychiatry 2023; 14:1201256. [PMID: 37275990 PMCID: PMC10232904 DOI: 10.3389/fpsyt.2023.1201256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
Background Late-life depression (LLD) is linked to various medical conditions and influenced by aging-related processes. Sleep disturbances and insomnia symptoms may be early indicators or risk factors for depression. Neuroimaging studies have attempted to understand the neural mechanisms underlying LLD, focusing on different brain networks. This study aims to further delineate discriminative brain structural profiles for LLD with insomnia using MRI. Methods We analyzed 24 cases in the LLD with insomnia group, 26 cases in the LLD group, and 26 in the healthy control (HC) group. Patients were evaluated using the Hamilton Depression Rating Scale (HAMD-17), Hamilton Anxiety Rating Scale (HAMA), Mini-Mental State Examination (MMSE), and Pittsburgh Sleep Quality Index (PSQI). Structural MRI data were gathered and analyzed using voxel-based morphometry (VBM) to identify differences in gray matter volume (GMV) among the groups. Correlation analyses were conducted to explore the relationships between GMV and clinical characteristics. Results Significant difference in sex distribution was observed across the groups (p = 0.029). However, no significant differences were detected in age and MMSE scores among the groups. LLD with insomnia group exhibited significantly higher HAMA (p = 0.041) and PSQI scores (p < 0.05) compared to the LLD group. ANOVA identified significant difference in GMV of anterior lobe of cerebellum (peak MNI coordinate: x = 52, y = -40, z = -30) among HC, LLD, and LLD with insomnia. Post-hoc two-sample t-tests revealed that the significant difference in GMV was only found between the LLD group and the HC group (p < 0.05). The mean GMV in the cerebellum was positively correlated with HAMA scale in LLD patients (r = 0.47, p < 0.05). Conclusion There is significant difference in GMV in the LLD group, the association between late-life depression and insomnia may be linked to anxiety. This study provides insights into the discriminative brain structural profiles of LLD and LLD with insomnia, advancing the understanding of the underlying neural mechanisms and potential targets for intervention.
Collapse
Affiliation(s)
- Heng Shao
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Na Li
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meiling Chen
- Department of Clinical Psychology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jie Zhang
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of MRI, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Hui Chen
- Department of Clinical Psychology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Minjun Zhao
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Geriatrics, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Jingjing Yang
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Geriatrics, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Jian Xia
- School of Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
49
|
Holub F, Petri R, Schiel J, Feige B, Rutter MK, Tamm S, Riemann D, Kyle SD, Spiegelhalder K. Associations between insomnia symptoms and functional connectivity in the UK Biobank cohort (n = 29,423). J Sleep Res 2023; 32:e13790. [PMID: 36528860 DOI: 10.1111/jsr.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/13/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
An increasing number of studies harness resting-state fMRI functional connectivity analysis to investigate the neurobiological mechanisms of insomnia. The results to date are inconsistent and the detection of minor and widely distributed alterations in functional connectivity requires large sample sizes. The present study investigated associations between insomnia symptoms and resting-state functional connectivity at the whole-brain level in the largest sample to date. This cross-sectional analysis used resting-state imaging data from the UK Biobank, a large scale, population-based biomedical database. The analysis included 29,423 participants (age: 63.1 ± 7.5 years, 54.3% female), comprising 9210 with frequent insomnia symptoms and 20,213 controls without. Linear models were adjusted for relevant clinical, imaging, and socio-demographic variables. The Akaike information criterion was used for model selection. Multiple comparisons were corrected using the false discovery rate with a significance level of q < 0.05. Frequent insomnia symptoms were associated with increased connectivity within the default mode network and frontoparietal network, increased negative connectivity between the default mode network and the frontoparietal network, and decreased connectivity between the salience network and a node of the default mode network. Furthermore, frequent insomnia symptoms were associated with altered functional connectivity between nodes comprising sensory areas and the cerebellum. These functional alterations of brain networks may underlie dysfunctional affective and cognitive processing in insomnia and contribute to subjectively and objectively impaired sleep. However, it must be noted that the item that was used to assess frequent insomnia symptoms in this study did not assess all the characteristics of clinically diagnosed insomnia.
Collapse
Affiliation(s)
- Florian Holub
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roxana Petri
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Schiel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin K Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Sandra Tamm
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon D Kyle
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
50
|
Ballard HK, Jackson TB, Hicks TH, Cox SJ, Symm A, Maldonado T, Bernard JA. Hormone-sleep interactions predict cerebellar connectivity and behavior in aging females. Psychoneuroendocrinology 2023; 150:106034. [PMID: 36709633 PMCID: PMC10149037 DOI: 10.1016/j.psyneuen.2023.106034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Sex hormones fluctuate over the course of the female lifespan and are associated with brain health and cognition. Thus, hormonal changes throughout female adulthood, and with menopause in particular, may contribute to sex differences in brain function and behavior. Further, sex hormones have been correlated with sleep patterns, which also exhibit sex-specific impacts on the brain and behavior. As such, the interplay between hormones and sleep may contribute to late-life brain and behavioral outcomes in females. Here, in a sample of healthy adult females (n = 79, ages 35-86), we evaluated the effect of hormone-sleep interactions on cognitive and motor performance as well as cerebellar-frontal network connectivity. Salivary samples were used to measure 17β-estradiol, progesterone, and testosterone levels while overnight actigraphy was used to quantify sleep patterns. Cognitive behavior was quantified using the composite average of standardized scores on memory, processing speed, and attentional tasks, and motor behavior was indexed with sequence learning, balance, and dexterity tasks. We analyzed resting-state connectivity correlations for two specific cerebellar-frontal networks: a Crus I to dorsolateral prefrontal cortex network and a Lobule V to primary motor cortex network. In sum, results indicate that sex hormones and sleep patterns interact to predict cerebellar-frontal connectivity and behavior in aging females. Together, the current findings further highlight the potential consequences of endocrine aging in females and suggest that the link between sex hormones and sleep patterns may contribute, in part, to divergent outcomes between sexes in advanced age.
Collapse
Affiliation(s)
- Hannah K Ballard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA.
| | - T Bryan Jackson
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Tracey H Hicks
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Sydney J Cox
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Abigail Symm
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Ted Maldonado
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA; Department of Psychology, Indiana State University, Terre Haute, IN, USA
| | - Jessica A Bernard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|