1
|
Monory K, de Azua IR, Lutz B. Genetic Tools in Rodents to Study Cannabinoid Functions. Curr Top Behav Neurosci 2024. [PMID: 39680319 DOI: 10.1007/7854_2024_550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During the past 30 years, the endocannabinoid system (ECS) has emerged as a major signalling system in the mammalian brain regulating neurotransmission in numerous brain regions and in various cell populations. Endocannabinoids are able to regulate specific physiological functions and thus modify their behavioural manifestations and allostatic alterations of the ECS linked to different pathological conditions. As discussed in detail in other chapters of this book, endocannabinoids are involved in learning and memory, stress, and anxiety, feeding, energy balance, development, and ageing. Likewise, many CNS disorders (e.g. schizophrenia, epilepsy, substance use disorders, and multiple sclerosis) are associated with dysregulation of the ECS. Discerning the physiological functions of the synthetic and degrading enzymes of endocannabinoids and their receptors is a challenging task because of their distinct and complex expression patterns. Techniques of genetic engineering have been able to shed light on a number of complex ECS-related tasks during the past years. In this chapter, first, we take a critical look at the toolbox available to researchers who would like to investigate cannabinoid effects using genetic engineering techniques, then we comprehensively discuss genetically modified rodent models in various neuronal and non-neuronal cell populations, both within and outside the nervous system.
Collapse
Affiliation(s)
- Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany.
| |
Collapse
|
2
|
Castelli V, Lavanco G, Tringali G, D'Amico C, Feo S, Di Bartolomeo M, D'Addario C, Kuchar M, Brancato A, Cannizzaro C. Prenatal THC exposure drives sex-specific alterations in spatial memory and hippocampal excitatory/inhibitory balance in adolescent rats. Biomed Pharmacother 2024; 181:117699. [PMID: 39571245 DOI: 10.1016/j.biopha.2024.117699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
The interaction between the main psychotropic ingredient of Cannabis, Δ⁹- tetrahydrocannabinol (THC), with the endogenous cannabinoid system (ECS) is a critical and underrated issue that deserves utmost attention. The ECS, indeed, contributes to the formation and regulation of excitatory and inhibitory (E/I) neuronal networks that in the hippocampus underly spatial memory. This study explored sex-specific consequences of prenatal exposure to THC in hippocampus-dependent memory and the underlying cellular and molecular contributors of synaptic plasticity and E/I homeostasis. Sprague Dawley dams were exposed to THC (2 mg/kg) or vehicle, from gestational day 5-20. The adolescent progeny of both sexes was tested for: spatial memory retrieval and flexibility in the Barnes Maze; mRNA expression of relevant players of hippocampal synaptic plasticity; density of cholecystokinin-positive basket cells (CCK+BCs) - a major subtype of hippocampal inhibitory interneurons; mRNA expression of the excitatory and inhibitory synaptic proteins neuroligins (Nlgns), as a proxy of synaptic efficiency. Our results show a sex-specific disruption in spatial memory retrieval and flexibility, a male-specific decrease in CCK+BCs density and increase in the expression of markers of neuroplasticity, and consistent changes in the expression of Nlgn-1 and 3 isoforms. Despite a delay in memory retrieval, flexibility of memory was spared in prenatally-THC-exposed female offspring as well as most of the markers of neuroplasticity; a sex-specific increase in CCK+BCs density, and a consistent expression of Nlgn-3 was observed. The current results highlight a major vulnerability to prenatal exposure to THC on memory processing in the male progeny, and sex-specific alterations in the E/I balance and synaptic plasticity.
Collapse
Affiliation(s)
- Valentina Castelli
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, Palermo 90127, Italy
| | - Gianluca Lavanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Giuseppe Tringali
- Pharmacology Section, Department of Healthcare Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Cesare D'Amico
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, Palermo 90127, Italy
| | - Salvatore Feo
- Department of Biological, Chemical and Pharmaceutical Sciences Technologies, University of Palermo, Palermo, Italy; ATEN Center, University of Palermo, Palermo, Italy
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy; Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia; Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy.
| | - Carla Cannizzaro
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, Palermo 90127, Italy
| |
Collapse
|
3
|
Rodrigues RJ, Marques JM, Köfalvi A. Cannabis, Endocannabinoids and Brain Development: From Embryogenesis to Adolescence. Cells 2024; 13:1875. [PMID: 39594623 PMCID: PMC11593331 DOI: 10.3390/cells13221875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The endocannabinoid signalling system (ECS) plays a critical role from the very beginning of embryogenesis. Accordingly, the ECS is engaged early on in nervous system development, starting from neurulation, supported by the identification of ECS components-both receptors and enzymes controlling endocannabinoid metabolism-at these early stages. In particular, regarding the brain, the ECS is involved in the tightly regulated sequence of events that comprise brain development, from neurogenesis to neuronal migration, morphological guidance for neuronal connectivity, and synaptic circuitry refinement. The importance of this broad role of the ECS across various brain development processes is further underscored by the growing understanding of the consequences of cannabis exposure at different developmental stages. Despite the considerable knowledge we have on the role of the ECS in brain development, significant gaps in our understanding remain, particularly regarding the long-term impact and underlying mechanisms of cannabis exposure at different developmental stages. This review provides an overview of the current state of knowledge on the role of the ECS throughout brain development, from embryogenesis to adulthood, and discusses the impact of cannabis exposure, especially during adolescence-a critical period of circuitry maturation and refinement coinciding with an increased risk of cannabis use.
Collapse
Affiliation(s)
- Ricardo J. Rodrigues
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Joana M. Marques
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Attila Köfalvi
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
4
|
Gao HL, Yang Y, Tian H, Fu LY, Liu KL, Jia XY, Shi XL, Kang YM, Yu XJ. Inhibition of CB1R in the Hypothalamic Paraventricular Nucleus Ameliorates Hypertension Through Wnt/β-Catenin/RAS Pathway. Cardiovasc Toxicol 2024:10.1007/s12012-024-09938-2. [PMID: 39467886 DOI: 10.1007/s12012-024-09938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
The hypothalamic paraventricular nucleus (PVN), as an important integrating center, plays a prominent role in the pathogenesis of hypertension, in maintaining the stability of cardiovascular activity through peripheral sympathetic nervous activity and secretion of various humoral factors. Acknowledging that the mechanistic targets of the endocannabinoid type 1 receptor (CB1R) are the key signaling systems involved in the regulation of hypertension, we sought to clarify whether inhibition of CB1R within the PVN ameliorates hypertension through Wnt/β-catenin/RAS pathway. Spontaneously hypertensive rats (SHRs) and Wistar Kyoto rats were randomly assigned to different groups and treated with bilateral PVN injections of AM251 (CB1R antagonist, 10 µg/h) or vehicle (artificial cerebrospinal fluid, aCSF) for four weeks. Bilateral PVN injections of AM251 significantly decreased the heart rate, the body weight and the mean arterial pressure in SHRs. AM251 lowered the expression of CB1R, Wnt3, active-β-catenin, p-IKKβ, RAS components, pro-inflammatory cytokines and elevated the expression level of Glycogen synthase kinase3β and Superoxide Dismutase in the PVN of hypertensive rats. Our findings suggest that inhibition of CB1R in the PVN ameliorates hypertension through Wnt/β-catenin/RAS pathway and broaden our current understanding of the pathological mechanism and clinical treatment of hypertension.
Collapse
Affiliation(s)
- Hong-Li Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Hua Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
- Department of Diagnosis, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Xiu-Yue Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Xiao-Lian Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
5
|
Ajalin R, Al-Abdulrasul H, Tuisku JM, Hirvonen J, Lahdenpohja S, Rinne JO, Brück A. Impaired Gait, Postural Instability, and Rigidity in Relation to CB1 Receptor Availability in Parkinson's Disease. Mov Disord 2024. [PMID: 39435606 DOI: 10.1002/mds.30042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND In Parkinson's disease (PD), postural instability and gait disorder (PIGD) symptoms are associated with a worse prognosis for an unknown reason. OBJECTIVE The objective was to explore the relationship between cannabinoid receptor type 1 (CB1R) availability and motor symptoms in PD with [18F]FMPEP-d2 positron emission tomography (PET). METHODS Fifteen individuals with PD underwent [18F]FMPEP-d2 PET to measure cerebral CB1R availability. The Unified Parkinson's Disease Rating Scale motor part (UPDRS-III) was used to evaluate the motor symptoms. RESULTS A negative correlation was observed between [18F]FMPEP-d2 VT and PIGD score (P = 0.002) as well as rigidity subscore (P < 0.001). Both clusters covered widespread areas of both hemispheres. In contrast, tremor or bradykinesia did not correlate to [18F]FMPEP-d2 VT. CONCLUSIONS Gait, postural instability, and rigidity in PD are associated with decreased CB1R availability, unlike tremor or bradykinesia, suggesting that the endocannabinoid system has a role in the pathophysiology of different motor symptoms in PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Riikka Ajalin
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
- Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| | - Haidar Al-Abdulrasul
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
- Department of Neurology, Clinical Neurosciences (Neurology), Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jouni M Tuisku
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Salla Lahdenpohja
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
- Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| | - Anna Brück
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
- Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Young-Wolff KC, Kong K, Alexeeff SE, Croen LA, Oberman N, Kirane H, Ansley D, Davignon M, Adams SR, Avalos LA. Prenatal Cannabis Use and Offspring Attention Deficit Hyperactivity Disorder and Disruptive Behavior Disorders: A Retrospective Cohort Study. J Dev Behav Pediatr 2024:00004703-990000000-00212. [PMID: 39400201 DOI: 10.1097/dbp.0000000000001323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To examine whether maternal cannabis use during early pregnancy is associated with offspring attention deficit hyperactivity disorder (ADHD) and disruptive behavior disorders (DBD). METHODS We conducted a population-based retrospective birth cohort study of children (N = 141,570) born between 2011 and 2018 to pregnant individuals (N = 117,130) in Kaiser Permanente Northern California universally screened for any prenatal cannabis use at the entrance to prenatal care (at ∼8-10 wk gestation). Prenatal cannabis use was defined as (1) self-reported use and/or a positive toxicology test, (2) self-reported use, (3) a positive toxicology test, and (4) self-reported use frequency. Cox proportional hazards regression models adjusting for maternal characteristics (sociodemographics, other substance use and substance use disorders, prenatal care initiation, comorbidities) examined associations between prenatal cannabis use and offspring ADHD and DBD diagnosed by age 11 years. RESULTS The sample of pregnant individuals was 27.2% Asian/Pacific Islander, 5.7% Black, 24.5% Hispanic, and 38.8% non-Hispanic White, with a mean (SD) age of 30.9 (5.2) years; 4.6% screened positive for any cannabis use (0.4% daily, 0.5% weekly, 1.1% monthly or less, 2.7% unknown frequency); 3.92% had a positive toxicology test and 1.8% self-reported use; 7.7% of offspring had ADHD and 6.8% had DBD. Maternal prenatal cannabis use was not associated with ADHD (adjusted hazard ratio [aHR]: 0.84, 95% CI, 0.70-1.01), and there was an inverse association with DBD (aHR: 0.83, 95% CI, 0.71-0.97), which remained when cannabis was defined by toxicology testing but not by self-report. Frequency of use was not associated with outcomes. CONCLUSION Maternal prenatal cannabis use was not associated with an increased risk of offspring ADHD or DBD.
Collapse
Affiliation(s)
- Kelly C Young-Wolff
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA
| | - Kevin Kong
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA
| | - Nina Oberman
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA
| | | | - Deborah Ansley
- The Permanente Medical Group, Regional Offices, Oakland, CA
| | | | - Sara R Adams
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA
| | - Lyndsay A Avalos
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA
| |
Collapse
|
7
|
Poyatos-Pedrosa C, Bernabe-Valero G, Pelacho-Ríos L, Iborra-Marmolejo I. Cannabis and anhedonia: A systematic review. Psychiatry Res 2024; 339:116041. [PMID: 38959579 DOI: 10.1016/j.psychres.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/08/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
This paper employs a systematic review to examine the correlation between anhedonia and marijuana use, exploring whether individuals with anhedonia use marijuana as a coping mechanism or if marijuana use plays a role in the onset of anhedonia. The search utilised PubMed and Web of Science databases, following PRISMA guidelines for paper selection. A total of 21 papers were selected to address this inquiry, and assessments were carried out using the Risk of Bias in Non-randomized Studies of Exposures (ROBINS-E) tool. The results revealed that 17 studies exhibited moderate and low risk of bias. The evaluation encompassed a total of 12,427 participants, including both animals and humans. Experimental animal studies focused on exploring the association between cannabidiol (CBD) and anhedonia, while human studies primarily employed observational research, examining various forms of anhedonia in individuals with or without mental disorders such as depression or psychosis. These studies also delved into understanding the effects of anhedonia during adolescence and explored the causal relationship between these concepts. The findings indicate a reciprocal rather than unidirectional relationship, establishing that initial anhedonia predisposes individuals to cannabis use, and subsequent consumption significantly intensifies the anhedonia experienced. Particularly, the studies placed special emphasis on adolescents and individuals with mental disorders.
Collapse
Affiliation(s)
- C Poyatos-Pedrosa
- Mind, Emotion and Behavior Laboratory (MEB Lab), Faculty of Psychology, Universidad Católica de Valencia, San Vicente Mártir, Spain
| | - G Bernabe-Valero
- Mind, Emotion and Behavior Laboratory (MEB Lab), Faculty of Psychology, Universidad Católica de Valencia, San Vicente Mártir, Spain.
| | - L Pelacho-Ríos
- Mind, Emotion and Behavior Laboratory (MEB Lab), Faculty of Psychology, Universidad Católica de Valencia, San Vicente Mártir, Spain
| | - I Iborra-Marmolejo
- Mind, Emotion and Behavior Laboratory (MEB Lab), Faculty of Psychology, Universidad Católica de Valencia, San Vicente Mártir, Spain
| |
Collapse
|
8
|
Scheggi S, Concas L, Corsi S, Carta M, Melis M, Frau R. Expanding the therapeutic potential of neuro(active)steroids: a promising strategy for hyperdopaminergic behavioral phenotypes. Neurosci Biobehav Rev 2024; 164:105842. [PMID: 39103066 DOI: 10.1016/j.neubiorev.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Imbalances in dopamine activity significantly contribute to the pathophysiology of several neuropsychiatric disorders, including addiction, ADHD, schizophrenia, impulse control disorders, and Parkinson's Disease. Neuro(active)steroids, comprising endogenous steroids that finely modulate neuronal activity, are considered crucial regulators of brain function and behavior, with implications in various physiological processes and pathological conditions. Specifically, subclasses of Neuro(active)steroids belonging to the 5α reductase pathway are prominently involved in brain disorders characterized by dopaminergic signaling imbalances. This review highlights the neuromodulatory effects of Neuro(active)steroids on the dopamine system and related aberrant behavioral phenotypes. We critically appraise the role of pregnenolone, progesterone, and allopregnanolone on dopamine signaling. Additionally, we discuss the impact of pharmacological interventions targeting 5α reductase activity in neuropsychiatric conditions characterized by excessive activation of the dopaminergic system, ranging from psychotic (endo)phenotypes and motor complications to decision-making problems and addiction.
Collapse
Affiliation(s)
- Simona Scheggi
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Luca Concas
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Sara Corsi
- Dept. of Developmental and Regenerative Neurobiology, Lund University, Sweden
| | - Manolo Carta
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Miriam Melis
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Roberto Frau
- Dept. Of Biomedical Sciences, University of Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
9
|
DeVuono MV, Nashed MG, Sarikahya MH, Kocsis A, Lee K, Vanin SR, Hudson R, Lonnee EP, Rushlow WJ, Hardy DB, Laviolette SR. Prenatal tetrahydrocannabinol and cannabidiol exposure produce sex-specific pathophysiological phenotypes in the adolescent prefrontal cortex and hippocampus. Neurobiol Dis 2024; 199:106588. [PMID: 38960101 DOI: 10.1016/j.nbd.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024] Open
Abstract
Clinical and preclinical evidence has demonstrated an increased risk for neuropsychiatric disorders following prenatal cannabinoid exposure. However, given the phytochemical complexity of cannabis, there is a need to understand how specific components of cannabis may contribute to these neurodevelopmental risks later in life. To investigate this, a rat model of prenatal cannabinoid exposure was utilized to examine the impacts of specific cannabis constituents (Δ9-tetrahydrocannabinol [THC]; cannabidiol [CBD]) alone and in combination on future neuropsychiatric liability in male and female offspring. Prenatal THC and CBD exposure were associated with low birth weight. At adolescence, offspring displayed sex-specific behavioural changes in anxiety, temporal order and social cognition, and sensorimotor gating. These phenotypes were associated with sex and treatment-specific neuronal and gene transcriptional alterations in the prefrontal cortex, and ventral hippocampus, regions where the endocannabinoid system is implicated in affective and cognitive development. Electrophysiology and RT-qPCR analysis in these regions implicated dysregulation of the endocannabinoid system and balance of excitatory and inhibitory signalling in the developmental consequences of prenatal cannabinoids. These findings reveal critical insights into how specific cannabinoids can differentially impact the developing fetal brains of males and females to enhance subsequent neuropsychiatric risk.
Collapse
Affiliation(s)
- Marieka V DeVuono
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Mina G Nashed
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Mohammed H Sarikahya
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Andrea Kocsis
- Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Kendrick Lee
- Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Sebastian R Vanin
- Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Roger Hudson
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Eryn P Lonnee
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Walter J Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Psychiatry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Daniel B Hardy
- Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada; Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute (CHRI), Lawson Health Research Institute, St. Joseph's Health Care, London, ON N6C 2R5, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Psychiatry, University of Western Ontario, London, ON N6A 3K7, Canada; Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute (CHRI), Lawson Health Research Institute, St. Joseph's Health Care, London, ON N6C 2R5, Canada
| |
Collapse
|
10
|
Dionne O, Abolghasemi A, Corbin F, Çaku A. Implication of the endocannabidiome and metabolic pathways in fragile X syndrome pathophysiology. Psychiatry Res 2024; 337:115962. [PMID: 38763080 DOI: 10.1016/j.psychres.2024.115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Fragile X Syndrome (FXS) results from the silencing of the FMR1 gene and is the most prevalent inherited cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorder. It is well established that Fragile X individuals are subjected to a wide array of comorbidities, ranging from cognitive, behavioural, and medical origin. Furthermore, recent studies have also described metabolic impairments in FXS individuals. However, the molecular mechanisms linking FMRP deficiency to improper metabolism are still misunderstood. The endocannabinoidome (eCBome) is a lipid-based signalling system that regulates several functions across the body, ranging from cognition, behaviour and metabolism. Alterations in the eCBome have been described in FXS animal models and linked to neuronal hyperexcitability, a core deficit of the disease. However, the potential link between dysregulation of the eCBome and altered metabolism observed in FXS remains unexplored. As such, this review aims to overcome this issue by describing the most recent finding related to eCBome and metabolic dysfunctions in the context of FXS. A better comprehension of this association will help deepen our understanding of FXS pathophysiology and pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Olivier Dionne
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada.
| | - Armita Abolghasemi
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - François Corbin
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - Artuela Çaku
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| |
Collapse
|
11
|
Pedrazzi JFC, Hassib L, Ferreira FR, Hallak JC, Del-Bel E, Crippa JA. Therapeutic potential of CBD in Autism Spectrum Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:149-203. [PMID: 39029984 DOI: 10.1016/bs.irn.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, as well as restricted and repetitive patterns of behavior. Despite extensive research, effective pharmacological interventions for ASD remain limited. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has potential therapeutic effects on several neurological and psychiatric disorders. CBD interacts with the endocannabinoid system, a complex cell-signaling system that plays a crucial role in regulating various physiological processes, maintaining homeostasis, participating in social and behavioral processing, and neuronal development and maturation with great relevance to ASD. Furthermore, preliminary findings from clinical trials indicate that CBD may have a modulatory effect on specific ASD symptoms and comorbidities in humans. Interestingly, emerging evidence suggests that CBD may influence the gut microbiota, with implications for the bidirectional communication between the gut and the central nervous system. CBD is a safe drug with low induction of side effects. As it has a multi-target pharmacological profile, it becomes a candidate compound for treating the central symptoms and comorbidities of ASD.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Lucas Hassib
- Department of Mental Health, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Jaime C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
12
|
Fuentes-Verdugo E, Pellón R, Miguéns M. Repeated Δ-9-Tetrahydrocannabinol administration dose dependently increases stablished schedule-induced drinking. Psychopharmacology (Berl) 2024; 241:1277-1286. [PMID: 38413456 PMCID: PMC11106171 DOI: 10.1007/s00213-024-06563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
RATIONALE Schedule-induced drinking (SID) reproduces an excessive and repetitive behavioural pattern that has led to propose this procedure as an animal model to study compulsive behaviours. Although it is known that cannabis can cause several adverse effects, in recent years there has been great interest in the medical application of cannabis derivatives for obsessive-compulsive related disorders. OBJECTIVES The present study investigated the effects of repeated THC administration on rates of previously acquired SID, as well as the possible alteration of its temporal distribution along inter-food intervals. METHODS Male Wistar rats acquired SID under a 30 min fixed-time 30-sec food delivery schedule (from 30 to 43 sessions to reach a stable level). Thereafter, 5 or 10 mg/kg daily i.p. injections of THC or vehicle were repeatedly administered for 7 days to evaluate the effects on SID. RESULTS Repeated THC administration at a dose of 5 mg/kg resulted in an increase on licking. Surprisingly, no effects on SID were observed with the 10 mg/kg dose. However, magazine entries were reduced with both THC doses. THC also modified the temporal distributions of licking and magazine entries during inter-food intervals. CONCLUSIONS The present results show that repeated THC administration may (i) increase induced licking at moderate doses, (ii) reduce magazine entries, and (iii) affect the temporal pattern of SID. These findings suggest that THC does not appear to be beneficial to reduce compulsive behaviour in this animal model, while another collateral effect of THC -such as a greater habitual-like behaviour- needs to be considered.
Collapse
Affiliation(s)
- Esmeralda Fuentes-Verdugo
- Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, Ciudad Universitaria, Madrid, 28040, Spain
| | - Ricardo Pellón
- Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, Ciudad Universitaria, Madrid, 28040, Spain
| | - Miguel Miguéns
- Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), C/ Juan del Rosal 10, Ciudad Universitaria, Madrid, 28040, Spain.
| |
Collapse
|
13
|
Li X, Yennawar M, Wiest A, O'Brien WT, Babrowicz B, White RS, Talos DM, Jensen FE. Cannabidiol attenuates seizure susceptibility and behavioural deficits in adult CDKL5 R59X knock-in mice. Eur J Neurosci 2024; 59:3337-3352. [PMID: 38654472 DOI: 10.1111/ejn.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by a loss-of-function mutation in CDKL5 gene, encoding a serine-threonine kinase highly expressed in the brain. CDD manifests with early-onset epilepsy, autism, motor impairment and severe intellectual disability. While there are no known treatments for CDD, the use of cannabidiol has recently been introduced into clinical practice for neurodevelopmental disorders. Given the increased clinical utilization of cannabidiol, we examined its efficacy in the CDKL5R59X knock-in (R59X) mice, a CDD model based on a human mutation that exhibits both lifelong seizure susceptibility and behavioural deficits. We found that cannabidiol pre-treatment rescued the increased seizure susceptibility in response to the chemoconvulsant pentylenetetrazol (PTZ), attenuated working memory and long-term memory impairments, and rescued social deficits in adult R59X mice. To elucidate a potential mechanism, we compared the developmental hippocampal and cortical expression of common endocannabinoid (eCB) targets in R59X mice and their wild-type littermates, including cannabinoid type 1 receptor (CB1R), transient receptor potential vanilloid type 1 (TRPV1) and 2 (TRPV2), G-coupled protein receptor 55 (GPR55) and adenosine receptor 1 (A1R). Many of these eCB targets were developmentally regulated in both R59X and wild-type mice. In addition, adult R59X mice demonstrated significantly decreased expression of CB1R and TRPV1 in the hippocampus, and TRPV2 in the cortex, while TRPV1 was increased in the cortex. These findings support the potential for dysregulation of eCB signalling as a plausible mechanism and therapeutic target in CDD, given the efficacy of cannabidiol to attenuate hyperexcitability and behavioural deficits in this disorder.
Collapse
Affiliation(s)
- Xiaofan Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Madhumita Yennawar
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alyssa Wiest
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William T O'Brien
- Neurobehavior Testing Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bergan Babrowicz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel S White
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Uthayakumaran K, Sunil M, Ratcliffe EM. Evaluating the Role of the Endocannabinoid System in Axon Guidance: A Literature Review. Cannabis Cannabinoid Res 2024; 9:12-20. [PMID: 38174983 DOI: 10.1089/can.2023.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Introduction: The endocannabinoid system (ECS) mediates the actions of cannabis and has been implicated in playing critical roles in key developmental events, including axon guidance. Although several recent studies have demonstrated ECS involvement in neurodevelopment, an emphasis on its putative role in axon guidance has not been reviewed comprehensively. Objective: The purpose of this literature review is to evaluate the interrelationships between the ECS and axon guidance. Methodology: This literature review analyzes existing literature demonstrating the normal role of endocannabinoid (eCB) signaling in axon guidance, with evidence from diverse animal models. Studies were obtained from a search strategy involving terms related to the ECS and axon guidance, and cross-checking cited literature to ensure a complete evaluation. Discussion: Cannabinoid receptors, as well as eCB synthesis and degradation machinery, appear necessary for normal axon guidance during neurodevelopment. Genetic and/or pharmacological disruption of eCB signaling results in axon growth and guidance errors, implying high sensitivity to exogenous cannabinoids. Conclusion: Overall, this review highlights the intricate connections between the ECS and axon guidance in normal neurodevelopment. The mechanistic evidence discussed suggests that alterations of the ECS through genetic and pharmacological interference disrupt its normal functioning and by extension its normal role in regulating neural circuitry formation. A comprehensive understanding of this topic will be valuable in potentially uncovering the mechanisms responsible for the neurodevelopmental defects associated with pre-natal cannabis use.
Collapse
Affiliation(s)
- Kavina Uthayakumaran
- Department of Pediatrics, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Maria Sunil
- Department of Pediatrics, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Elyanne M Ratcliffe
- Farncombe Family Digestive Health Research Institute, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Kaplan HS, Logeman BL, Zhang K, Santiago C, Sohail N, Naumenko S, Ho Sui SJ, Ginty DD, Ren B, Dulac C. Sensory Input, Sex, and Function Shape Hypothalamic Cell Type Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576835. [PMID: 38328205 PMCID: PMC10849564 DOI: 10.1101/2024.01.23.576835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mammalian behavior and physiology undergo dramatic changes in early life. Young animals rely on conspecifics to meet their homeostatic needs, until weaning and puberty initiate nutritional independence and sex-specific social interactions, respectively. How neuronal populations regulating homeostatic functions and social behaviors develop and mature during these transitions remains unclear. We used paired transcriptomic and chromatin accessibility profiling to examine the developmental trajectories of neuronal populations in the hypothalamic preoptic region, where cell types with key roles in physiological and behavioral control have been identified1-6. These data reveal a remarkable diversity of developmental trajectories shaped by the sex of the animal, and the location and behavioral or physiological function of the corresponding cell types. We identify key stages of preoptic development, including the perinatal emergence of sex differences, postnatal maturation and subsequent refinement of signaling networks, and nonlinear transcriptional changes accelerating at the time of weaning and puberty. We assessed preoptic development in various sensory mutants and find a major role for vomeronasal sensing in the timing of preoptic cell type maturation. These results provide novel insights into the development of neurons controlling homeostatic functions and social behaviors and lay ground for examining the dynamics of these functions in early life.
Collapse
Affiliation(s)
- Harris S. Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Brandon L. Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
- Current address: Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Noor Sohail
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - Serhiy Naumenko
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
- Newborn Screening Ontario, Ottawa, ON, Canada
| | - Shannan J. Ho Sui
- Department of Biostatistics, Harvard Chan School of Public Health, Boston, MA, USA
| | - David D. Ginty
- Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
16
|
Tuvel AL, Winiger EA, Ross JM. A Review of the Effects of Adolescent Cannabis Use on Physical Health. Psychiatr Clin North Am 2023; 46:719-739. [PMID: 37879834 DOI: 10.1016/j.psc.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The current review highlights the available research related to cannabis and indicators of physical health in a variety of domains. Various studies have found associations between cannabis use with pulmonary, cardiovascular, gastrointestinal, and endocrine function as well as body mass index and sleep. At this time, more research is needed to understand the influence of cannabis use on physical health, particularly among adolescent samples.
Collapse
Affiliation(s)
- Abigail L Tuvel
- Department of Psychology and Neuroscience, University of Colorado Boulder, 1777 Exposition Drive, Boulder, CO 80301
| | - Evan A Winiger
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, 1890 N Revere Court, Aurora, CO, 80045
| | - J Megan Ross
- Department of Psychiatry, Division of Addiction Sciences, Treatment and Prevention, University of Colorado Anschutz Medical Campus, 1890 N Revere Court, Aurora, CO, 80045.
| |
Collapse
|
17
|
Skala K, Trabi T, Fuchs M, Gössler R, Haas-Stockmair CW, Kriechbaumer N, Leitner M, Ortner N, Reiter M, Müller C, Wladika W. [Cannabis use in adolescents : Narrative Review and Position paper of the "Addiction Disorders in Adolescents" task force of the Austrian Society for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy (ÖGKJP)]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2023; 37:175-195. [PMID: 35900691 DOI: 10.1007/s40211-022-00424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cannabis is the illegal drug most frequently used by Minors in Austria. Due to the gradual decriminalization and legalization that has taken place in many European countries in recent years, the ÖGKJP would like to take a balanced and scientifically based stand on the complex issue of cannabis use and abuse among young people. METHODS The authors searched the medline for current studies using searches tailored to each specific subtopic. Furthermore, recognized compendiums were quoted. RESULTS While occasional recreational use of cannabis in adults with completed brain maturation and no risk profile for mental disorders is likely to be relatively harmless, early initiation of use with regular use and the increasingly available, highly potent cannabis varieties can lead to explicit and sometimes irreversible neurocognitive brain dysfunction. CONCLUSION Legalisation of cannabis consumption for minors needs to be objected to due to the risks of the expected damage in the area of brain development. At the same time, however, it is important to establish sensible legal regulations in order to be able to adequately counteract the fact that over 30% of all European young people occasionally consume cannabis. We are also clearly recommending to not criminalize cannabis users and provide necessary support to vulnerable and addicted cannabis users.
Collapse
Affiliation(s)
- Katrin Skala
- Univ. Klinik für Kinder und Jugendpsychiatrie, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich.
| | - Thomas Trabi
- Abteilung für Kinder- und Jugendpsychiatrie, LKH Graz II, Graz, Österreich
| | - Martin Fuchs
- Univ. Klinik für Kinder- und Jugendpsychiatrie, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Ralf Gössler
- Abteilung für Kinder- und Jugendpsychiatrie, Klinik Floridsdorf, Floridsdorf, Österreich
| | | | | | - Monika Leitner
- Praxis für Kinder- und Jugendpsychiatrie, Graz, Österreich
| | - Nora Ortner
- Univ. Klinik für Kinder- und Jugendpsychiatrie, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Melanie Reiter
- Univ. Klinik für Kinder- und Jugendpsychiatrie, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Christian Müller
- Ambulatorium für Kinder- u. Jugendpsychiatrie, PSD Einsenstadt, Einsenstadt, Österreich
| | - Wolfgang Wladika
- Abteilung für Neurologie und Psychiatrie des Kindes- und Jugendalters, Klinikum Klagenfurt, Klagenfurt, Österreich
| |
Collapse
|
18
|
Scott JC. Impact of Adolescent Cannabis Use on Neurocognitive and Brain Development. Psychiatr Clin North Am 2023; 46:655-676. [PMID: 37879830 DOI: 10.1016/j.psc.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Research examining associations between frequent cannabis use in adolescence and brain-behavior outcomes has increased substantially over the past 2 decades. This review attempts to synthesize the state of evidence in this area of research while acknowledging challenges in interpretation. Although there is converging evidence that ongoing, frequent cannabis use in adolescence is associated with small reductions in cognitive functioning, there is still significant debate regarding the persistence of reductions after a period of abstinence. Similarly, there is controversy regarding the replicability of structural and functional neuroimaging findings related to frequent cannabis use in adolescence. Larger studies with informative designs are needed.
Collapse
Affiliation(s)
- J Cobb Scott
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, 5th Floor, Philadelphia, PA 19104, USA; VISN4 Mental Illness Research, Education, and Clinical Center at the Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Black T, Baccetto SL, Barnard IL, Finch E, McElroy DL, Austin-Scott FVL, Greba Q, Michel D, Zagzoog A, Howland JG, Laprairie RB. Characterization of cannabinoid plasma concentration, maternal health, and cytokine levels in a rat model of prenatal Cannabis smoke exposure. Sci Rep 2023; 13:21070. [PMID: 38030657 PMCID: PMC10687022 DOI: 10.1038/s41598-023-47861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023] Open
Abstract
Cannabis sativa has gained popularity as a "natural substance", leading many to falsely assume that it is not harmful. This assumption has been documented amongst pregnant mothers, many of whom consider Cannabis use during pregnancy as benign. The purpose of this study was to validate a Cannabis smoke exposure model in pregnant rats by determining the plasma levels of cannabinoids and associated metabolites in the dams after exposure to either Cannabis smoke or injected cannabinoids. Maternal and fetal cytokine and chemokine profiles were also assessed after exposure. Pregnant Sprague-Dawley rats were treated daily from gestational day 6-20 with either room air, i.p. vehicle, inhaled high-Δ9-tetrahydrocannabinol (THC) (18% THC, 0.1% cannabidiol [CBD]) smoke, inhaled high-CBD (0.7% THC, 13% CBD) smoke, 3 mg/kg i.p. THC, or 10 mg/kg i.p. CBD. Our data reveal that THC and CBD, but not their metabolites, accumulate in maternal plasma after repeated exposures. Injection of THC or CBD was associated with fewer offspring and increased uterine reabsorption events. For cytokines and chemokines, injection of THC or CBD up-regulated several pro-inflammatory cytokines compared to control or high-THC smoke or high-CBD smoke in placental and fetal brain tissue, whereas smoke exposure was generally associated with reduced cytokine and chemokine concentrations in placental and fetal brain tissue compared to controls. These results support existing, but limited, knowledge on how different routes of administration contribute to inconsistent manifestations of cannabinoid-mediated effects on pregnancy. Smoked Cannabis is still the most common means of human consumption, and more preclinical investigation is needed to determine the effects of smoke inhalation on developmental and behavioural trajectories.
Collapse
Affiliation(s)
- Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Sarah L Baccetto
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Ilne L Barnard
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Emma Finch
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Dan L McElroy
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Faith V L Austin-Scott
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| | - Deborah Michel
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada.
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, 3B36, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
20
|
Pinky PD, Bloemer J, Smith WD, Du Y, Heslin RT, Setti SE, Pfitzer JC, Chowdhury K, Hong H, Bhattacharya S, Dhanasekaran M, Dityatev A, Reed MN, Suppiramaniam V. Prenatal Cannabinoid Exposure Elicits Memory Deficits Associated with Reduced PSA-NCAM Expression, Altered Glutamatergic Signaling, and Adaptations in Hippocampal Synaptic Plasticity. Cells 2023; 12:2525. [PMID: 37947603 PMCID: PMC10648717 DOI: 10.3390/cells12212525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
Cannabis is now one of the most commonly used illicit substances among pregnant women. This is particularly concerning since developmental exposure to cannabinoids can elicit enduring neurofunctional and cognitive alterations. This study investigates the mechanisms of learning and memory deficits resulting from prenatal cannabinoid exposure (PCE) in adolescent offspring. The synthetic cannabinoid agonist WIN55,212-2 was administered to pregnant rats, and a series of behavioral, electrophysiological, and immunochemical studies were performed to identify potential mechanisms of memory deficits in the adolescent offspring. Hippocampal-dependent memory deficits in adolescent PCE animals were associated with decreased long-term potentiation (LTP) and enhanced long-term depression (LTD) at hippocampal Schaffer collateral-CA1 synapses, as well as an imbalance between GluN2A- and GluN2B-mediated signaling. Moreover, PCE reduced gene and protein expression of neural cell adhesion molecule (NCAM) and polysialylated-NCAM (PSA-NCAM), which are critical for GluN2A and GluN2B signaling balance. Administration of exogenous PSA abrogated the LTP deficits observed in PCE animals, suggesting PSA mediated alterations in GluN2A- and GluN2B- signaling pathways may be responsible for the impaired hippocampal synaptic plasticity resulting from PCE. These findings enhance our current understanding of how PCE affects memory and how this process can be manipulated for future therapeutic purposes.
Collapse
Affiliation(s)
- Priyanka D. Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY 10036, USA
| | - Warren D. Smith
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Yifeng Du
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Ryan T. Heslin
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Sharay E. Setti
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Jeremiah C. Pfitzer
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Kawsar Chowdhury
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Hao Hong
- Key Laboratory of Neuropsychiatric Diseases, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
- Keck Graduate Institute, School of Pharmacy and Health Sciences, Claremont Colleges, Claremont, CA 91711, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 37075 Magdeburg, Germany
| | - Alexander Dityatev
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 37075 Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Miranda N. Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
21
|
Bernabeu A, Bara A, Murphy Green MN, Manduca A, Wager-Miller J, Borsoi M, Lassalle O, Pelissier-Alicot AL, Chavis P, Mackie K, Manzoni OJ. Sexually Dimorphic Adolescent Trajectories of Prefrontal Endocannabinoid Synaptic Plasticity Equalize in Adulthood, Reflected by Endocannabinoid System Gene Expression. Cannabis Cannabinoid Res 2023; 8:749-767. [PMID: 37015060 PMCID: PMC10701511 DOI: 10.1089/can.2022.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Introduction: How sex influences prefrontal cortexes (PFCs) synaptic development through adolescence remains unclear. Materials and Methods: In this study we describe sex-specific cellular and synaptic trajectories in the rat PFC from adolescence to adulthood. Results: The excitability of PFC layer 5 pyramidal neurons was lower in adult females compared with other developmental stages. The developmental course of endocannabinoid-mediated long-term depression (eCB-LTD) was sexually dimorphic, unlike long-term potentiation or mGluR3-LTD. eCB-LTD was expressed in juvenile females but appeared only at puberty in males. Endovanilloid TRPV1R or eCB receptors were engaged during LTD in a sequential and sexually dimorphic manner. Gene expression of the eCB/vanilloid systems was sequential and sex specific. LTD-incompetent juvenile males had elevated expression levels of the CB1R-interacting inhibitory protein cannabinoid receptor interacting protein 1a and of the 2-arachidonoylglycerol-degrading enzyme ABHD6. Pharmacological inhibition of ABHD6 or MAGL enabled LTD in young males, whereas inhibition of anandamide degradation was ineffective. Conclusions: These results reveal sex differences in the maturational trajectories of the rat PFC.
Collapse
Affiliation(s)
- Axel Bernabeu
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
| | - Anissa Bara
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
| | - Michelle N. Murphy Green
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
- The Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Antonia Manduca
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
| | - Jim Wager-Miller
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
- The Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Milene Borsoi
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
| | - Olivier Lassalle
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
| | - Anne-Laure Pelissier-Alicot
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
- APHM, CHU Timone Adultes, Service de Médecine Légale, Marseille, France
| | - Pascale Chavis
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
| | - Ken Mackie
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
- The Gill Center for Biomolecular Science and Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Olivier J.J. Manzoni
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
22
|
Cinquina V, Keimpema E, Pollak DD, Harkany T. Adverse effects of gestational ω-3 and ω-6 polyunsaturated fatty acid imbalance on the programming of fetal brain development. J Neuroendocrinol 2023; 35:e13320. [PMID: 37497857 PMCID: PMC10909496 DOI: 10.1111/jne.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 06/10/2023] [Indexed: 07/28/2023]
Abstract
Obesity is a key medical challenge of our time. The increasing number of children born to overweight or obese women is alarming. During pregnancy, the circulation of the mother and her fetus interact to maintain the uninterrupted availability of essential nutrients for fetal organ development. In doing so, the mother's dietary preference determines the amount and composition of nutrients reaching the fetus. In particular, the availability of polyunsaturated fatty acids (PUFAs), chiefly their ω-3 and ω-6 subclasses, can change when pregnant women choose a specific diet. Here, we provide a succinct overview of PUFA biochemistry, including exchange routes between ω-3 and ω-6 PUFAs, the phenotypes, and probable neurodevelopmental disease associations of offspring born to mothers consuming specific PUFAs, and their mechanistic study in experimental models to typify signaling pathways, transcriptional, and epigenetic mechanisms by which PUFAs can imprint long-lasting modifications to brain structure and function. We emphasize that the ratio, rather than the amount of individual ω-3 or ω-6 PUFAs, might underpin physiologically correct cellular differentiation programs, be these for neurons or glia, during pregnancy. Thereupon, the PUFA-driven programming of the brain is contextualized for childhood obesity, metabolic, and endocrine illnesses.
Collapse
Affiliation(s)
- Valentina Cinquina
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
| | - Erik Keimpema
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
| | - Daniela D. Pollak
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Tibor Harkany
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
- Deaprtment of NeuroscienceBiomedicum 7D, Karolinska InstitutetStockholmSweden
| |
Collapse
|
23
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538959. [PMID: 37205520 PMCID: PMC10187231 DOI: 10.1101/2023.05.01.538959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNAseq data ob-tained from E12.5 fetal mouse brains 3 hours after VPA administration revealed that VPA significant-ly increased or decreased the expression of approximately 7,300 genes. No significant sex differ-ences in VPA-induced gene expression were observed. Expression of genes associated with neu-rodevelopmental disorders (NDDs) such as autism as well as neurogenesis, axon growth and syn-aptogenesis, GABAergic, glutaminergic and dopaminergic synaptic transmission, perineuronal nets, and circadian rhythms was dysregulated by VPA. Moreover, expression of 399 autism risk genes was significantly altered by VPA as was expression of 252 genes that have been reported to play fundamental roles in the development of the nervous system but are not otherwise linked to autism. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity in the postnatal and adult brain. The set of genes meeting these criteria pro-vides potential targets for future hypothesis-driven approaches to elucidating the proximal underly-ing causes of defective brain connectivity in NDDs such as autism.
Collapse
|
24
|
Oddi S, Fiorenza MT, Maccarrone M. Endocannabinoid signaling in adult hippocampal neurogenesis: A mechanistic and integrated perspective. Prog Lipid Res 2023; 91:101239. [PMID: 37385352 DOI: 10.1016/j.plipres.2023.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/01/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Dentate gyrus of the hippocampus continuously gives rise to new neurons, namely, adult-born granule cells, which contribute to conferring plasticity to the mature brain throughout life. Within this neurogenic region, the fate and behavior of neural stem cells (NSCs) and their progeny result from a complex balance and integration of a variety of cell-autonomous and cell-to-cell-interaction signals and underlying pathways. Among these structurally and functionally diverse signals, there are endocannabinoids (eCBs), the main brain retrograde messengers. These pleiotropic bioactive lipids can directly and/or indirectly influence adult hippocampal neurogenesis (AHN) by modulating, both positively and negatively, multiple molecular and cellular processes in the hippocampal niche, depending on the cell type or stage of differentiation. Firstly, eCBs act directly as cell-intrinsic factors, cell-autonomously produced by NSCs following their stimulation. Secondly, in many, if not all, niche-associated cells, including some local neuronal and nonneuronal elements, the eCB system indirectly modulates the neurogenesis, linking neuronal and glial activity to regulating distinct stages of AHN. Herein, we discuss the crosstalk of the eCB system with other neurogenesis-relevant signal pathways and speculate how the hippocampus-dependent neurobehavioral effects elicited by (endo)cannabinergic medications are interpretable in light of the key regulatory role that eCBs play on AHN.
Collapse
Affiliation(s)
- Sergio Oddi
- Department of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| | - Maria Teresa Fiorenza
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio Snc, 67100 L'Aquila, Italy
| |
Collapse
|
25
|
Gräfe EL, Reid HMO, Shkolnikov I, Conway K, Kit A, Acosta C, Christie BR. Women are Taking the Hit: Examining the Unique Consequences of Cannabis Use Across the Female Lifespan. Front Neuroendocrinol 2023; 70:101076. [PMID: 37217080 DOI: 10.1016/j.yfrne.2023.101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Cannabis use has risen dramatically in recent years due to global decriminalization and a resurgence in the interest of potential therapeutic benefits. While emerging research is shaping our understanding of the benefits and harms of cannabis, there remains a paucity of data specifically focused on how cannabis affects the female population. The female experience of cannabis use is unique, both in the societal context and because of the biological ramifications. This is increasingly important given the rise in cannabis potency, as well as the implications this has for the prevalence of Cannabis Use Disorder (CUD). Therefore, this scoping review aims to discuss the prevalence of cannabis use and CUD in women throughout their lifespan and provide a balanced prospective on the positive and negative consequences of cannabis use. In doing so, this review will highlight the necessity for continued research that goes beyond sex differences.
Collapse
Affiliation(s)
- E L Gräfe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - H M O Reid
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - I Shkolnikov
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - K Conway
- Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada
| | - A Kit
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - C Acosta
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - B R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.
| |
Collapse
|
26
|
Del Rio R, Serrano RG, Gomez E, Martinez JC, Edward MA, Santos RA, Diaz KS, Cohen-Cory S. Cell-autonomous and differential endocannabinoid signaling impacts the development of presynaptic retinal ganglion cell axon connectivity in vivo. Front Synaptic Neurosci 2023; 15:1176864. [PMID: 37252636 PMCID: PMC10213524 DOI: 10.3389/fnsyn.2023.1176864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Cannabis exposure during gestation evokes significant molecular modifications to neurodevelopmental programs leading to neurophysiological and behavioral abnormalities in humans. The main neuronal receptor for Δ9-tetrahydrocannabinol (THC) is the type-1 cannabinoid receptor CB1R, one of the most abundant G-protein-coupled receptors in the nervous system. While THC is the major psychoactive phytocannabinoid, endocannabinoids (eCBs) are the endogenous ligands of CB1R and are known to act as retrograde messengers to modulate synaptic plasticity at different time scales in the adult brain. Accumulating evidence indicates that eCB signaling through activation of CB1R plays a central role in neural development. During development, most CB1R localized to axons of projection neurons, and in mice eCB signaling impacts axon fasciculation. Understanding of eCB-mediated structural plasticity during development, however, requires the identification of the precise spatial and temporal dynamics of CB1R-mediated modifications at the level of individual neurons in the intact brain. Here, the cell-autonomous role of CB1R and the effects of CB1R-mediated eCB signaling were investigated using targeted single-cell knockdown and pharmacologic treatments in Xenopus. We imaged axonal arbors of retinal ganglion cells (RGCs) in real time following downregulation of CB1R via morpholino (MO) knockdown. We also analyzed RGC axons with altered eCB signaling following treatment with URB597, a selective inhibitor of the enzyme that degrades Anandamide (AEA), or JZL184, an inhibitor of the enzyme that blocks 2-Arachidonoylglycerol (2-AG) hydrolysis, at two distinct stages of retinotectal development. Our results demonstrate that CB1R knockdown impacts RGC axon branching at their target and that differential 2-AG and AEA-mediated eCB signaling contributes to presynaptic structural connectivity at the time that axons terminate and when retinotectal synaptic connections are made. Altering CB1R levels through CB1R MO knockdown similarly impacted dendritic morphology of tectal neurons, thus supporting both pre- and postsynaptic cell-autonomous roles for CB1R-mediated eCB signaling.
Collapse
|
27
|
Patthy Á, Hanics J, Zachar G, Kovács GG, Harkany T, Alpár A. Regional redistribution of CB1 cannabinoid receptors in human foetal brains with Down's syndrome and their functional modifications in Ts65Dn +/+ mice. Neuropathol Appl Neurobiol 2023; 49:e12887. [PMID: 36716771 DOI: 10.1111/nan.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
AIMS The endocannabinoid system with its type 1 cannabinoid receptor (CB1 R) expressed in postmitotic neuroblasts is a critical chemotropic guidance module with its actions cascading across neurogenic commitment, neuronal polarisation and synaptogenesis in vertebrates. Here, we present the systematic analysis of regional CB1 R expression in the developing human brain from gestational week 14 until birth. In parallel, we diagrammed differences in CB1 R development in Down syndrome foetuses and identified altered CB1 R signalling. METHODS Foetal brains with normal development or with Down's syndrome were analysed using standard immunohistochemistry, digitalised light microscopy and image analysis (NanoZoomer). CB1 R function was investigated by in vitro neuropharmacology from neonatal Ts65Dn transgenic mice brains carrying an additional copy of ~90 conserved protein-coding gene orthologues of the human chromosome 21. RESULTS We detected a meshwork of fine-calibre, often varicose processes between the subventricular and intermediate zones of the cortical plate in the late first trimester, when telencephalic fibre tracts develop. The density of CB1 Rs gradually decreased during the second and third trimesters in the neocortex. In contrast, CB1 R density was maintained, or even increased, in the hippocampus. We found the onset of CB1 R expression being delayed by ≥1 month in age-matched foetal brains with Down's syndrome. In vitro, CB1 R excitation induced excess microtubule stabilisation and, consequently, reduced neurite outgrowth. CONCLUSIONS We suggest that neuroarchitectural impairments in Down's syndrome brains involve the delayed development and errant functions of the endocannabinoid system, with a particular impact on endocannabinoids modulating axonal wiring.
Collapse
Affiliation(s)
- Ágoston Patthy
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - János Hanics
- Department of Anatomy, Semmelweis University, Budapest, Hungary.,SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Gábor G Kovács
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Biomedicum, Karolinska Institutet, Solna, Sweden
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, Budapest, Hungary.,SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Frau R, Melis M. Sex-specific susceptibility to psychotic-like states provoked by prenatal THC exposure: Reversal by pregnenolone. J Neuroendocrinol 2023; 35:e13240. [PMID: 36810840 DOI: 10.1111/jne.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Sociocultural attitudes towards cannabis legalization contribute to the common misconception that it is a relatively safe drug and its use during pregnancy poses no risk to the fetus. However, longitudinal studies demonstrate that maternal cannabis exposure results in adverse outcomes in the offspring, with a heightened risk for developing psychopathology. One of the most reported psychiatric outcomes is the proneness to psychotic-like experiences during childhood. How exposure to cannabis during gestation increases psychosis susceptibility in children and adolescents remains elusive. Preclinical research has indicated that in utero exposure to the major psychoactive component of cannabis, delta-9-tetrahydrocannabinol (THC), deranges brain developmental trajectories towards vulnerable psychotic-like endophenotypes later in life. Here, we present how prenatal THC exposure (PCE) deregulates mesolimbic dopamine development predisposing the offspring to schizophrenia-relevant phenotypes, exclusively when exposed to environmental challenges, such as stress or THC. Detrimental effects of PCE are sex-specific because female offspring do not display psychotic-like outcomes upon exposure to these challenges. Moreover, we present how pregnenolone, a neurosteroid that showed beneficial properties on the effects elicited by cannabis intoxication, normalizes mesolimbic dopamine function and rescues psychotic-like phenotypes. We, therefore, suggest this neurosteroid as a safe "disease-modifying" aid to prevent the onset of psychoses in vulnerable individuals. Our findings corroborate clinical evidence and highlight the relevance of early diagnostic screening and preventative strategies for young individuals at risk for mental diseases, such as male PCE offspring.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy
- The Guy Everett Laboratory for Neuroscience, University of Cagliari, Cagliari, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato, Italy
| |
Collapse
|
29
|
Guma E, Cupo L, Ma W, Gallino D, Moquin L, Gratton A, Devenyi GA, Chakravarty MM. Investigating the "two-hit hypothesis": Effects of prenatal maternal immune activation and adolescent cannabis use on neurodevelopment in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110642. [PMID: 36150422 DOI: 10.1016/j.pnpbp.2022.110642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/09/2022]
Abstract
Prenatal exposure to maternal immune activation (MIA) and chronic adolescent cannabis use are both risk factors for neuropsychiatric disorders. However, exposure to a single risk factor may not result in major mental illness, indicating that multiple exposures may be required for illness onset. Here, we examine whether combined exposure to prenatal MIA and adolescent delta-9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, lead to enduring neuroanatomical and behavioural changes in adulthood. Mice were prenatally exposed to viral mimetic, poly I:C (5 mg/kg), or vehicle at gestational day (GD) 9, and postnatally exposed to chronic THC (5 mg/kg, intraperitoneal) or vehicle during adolescence (postnatal day [PND]28-45). Longitudinal magnetic resonance imaging (MRI) was performed pre-treatment, PND 25, post-treatment, PND 50, and in adulthood, PND85, followed by behavioural tests for anxiety-like, social, and sensorimotor gating. Post-mortem assessment of cannabinoid (CB)1 and 2 receptor expressing cells was performed in altered regions identified by MRI (anterior cingulate and somatosensory cortices, striatum, and hippocampus). Subtle deviations in neurodevelopmental trajectory and subthreshold anxiety-like behaviours were observed in mice exposed to both risk factors. Sex-dependent effects were observed in patterns of shared brain-behaviour covariation, indicative of potential sex differences in response to MIA and THC. Density of CB1 and CB2 receptor positive cells was significantly decreased in all mice exposed to MIA, THC, or both. These findings suggest that there may be a cumulative effect of risk factor exposure on gross neuroanatomical development, and that the endocannabinoid system may be sensitive to both prenatal MIA, adolescent THC, or the combination.
Collapse
Affiliation(s)
- Elisa Guma
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | - Lani Cupo
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Weiya Ma
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Daniel Gallino
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Luc Moquin
- Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Alain Gratton
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, McGill University, Montréal, Québec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
30
|
Cáceres D, Ochoa M, González-Ortiz M, Bravo K, Eugenín J. Effects of Prenatal Cannabinoids Exposure upon Placenta and Development of Respiratory Neural Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:199-232. [PMID: 37466775 DOI: 10.1007/978-3-031-32554-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cannabis use has risen dangerously during pregnancy in the face of incipient therapeutic use and a growing perception of safety. The main psychoactive compound of the Cannabis sativa plant is the phytocannabinoid delta-9-tetrahydrocannabinol (A-9 THC), and its status as a teratogen is controversial. THC and its endogenous analogues, anandamide (AEA) and 2-AG, exert their actions through specific receptors (eCBr) that activate intracellular signaling pathways. CB1r and CB2r, also called classic cannabinoid receptors, together with their endogenous ligands and the enzymes that synthesize and degrade them, constitute the endocannabinoid system. This system is distributed ubiquitously in various central and peripheral tissues. Although the endocannabinoid system's most studied role is controlling the release of neurotransmitters in the central nervous system, the study of long-term exposure to cannabinoids on fetal development is not well known and is vital for understanding environmental or pathological embryo-fetal or postnatal conditions. Prenatal exposure to cannabinoids in animal models has induced changes in placental and embryo-fetal organs. Particularly, cannabinoids could influence both neural and nonneural tissues and induce embryo-fetal pathological conditions in critical processes such as neural respiratory control. This review aims at the acute and chronic effects of prenatal exposure to cannabinoids on placental function and the embryo-fetal neurodevelopment of the respiratory pattern. The information provided here will serve as a theoretical framework to critically evaluate the teratogen effects of the consumption of cannabis during pregnancy.
Collapse
Affiliation(s)
- Daniela Cáceres
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Martín Ochoa
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Ingeniería, Universidad Autónoma de Chile, Providencia, Chile
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
31
|
Faraj MM, Evanski J, Zundel CG, Peters C, Brummelte S, Lundahl L, Marusak H. Impact of prenatal cannabis exposure on functional connectivity of the salience network in children. J Neurosci Res 2023; 101:162-171. [PMID: 36226844 PMCID: PMC10015638 DOI: 10.1002/jnr.25136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
Cannabis use among pregnant people has increased over the past decade. This is of concern as prenatal cannabis exposure (PCE) is associated with cognitive, motor, and social deficits among offspring. Here, we examined resting-state functional connectivity (rsFC) of the salience network (SN)-a core neurocognitive network that integrates emotional and sensory information-in children with (vs. without) PCE. Using neuroimaging and developmental history data collected from 10,719 children (M ± SD = 9.92 ± 0.62 years; 47.9% female) from the Adolescent Brain Cognitive Development study, we assessed the impact of parent-reported PCE (before or after knowledge of pregnancy) on rsFC within and between the SN and five other core neurocognitive networks. We also evaluated whether SN rsFC mediated the association between PCE and child psychopathology. Results showed that PCE before (but not after) knowledge of pregnancy was associated with lower SN-ventral attention network (VAN) rsFC. Furthermore, psychotic-like experiences mediated the association between PCE and SN-VAN rsFC, and reversal of the model was also significant, such that SN-VAN rsFC mediated the association between PCE and psychotic-like symptoms. However, these mediation effects were no longer significant after the inclusion of covariates. Taken together, these findings suggest that developmental alterations in SN-VAN interactions may explain the previously reported association between PCE and elevated risk of child psychopathology.
Collapse
Affiliation(s)
- Mohammed M. Faraj
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA, 48201
- School of Medicine, Wayne State University, Detroit, Michigan, USA, 48201
| | - Julia Evanski
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA, 48201
| | - Clara G. Zundel
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA, 48201
| | - Craig Peters
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA, 48201
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, Michigan, USA, 48201
| | - Leslie Lundahl
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA, 48201
| | - Hilary Marusak
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA, 48201
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA, 48201
| |
Collapse
|
32
|
Abstract
Research examining associations between frequent cannabis use in adolescence and brain-behavior outcomes has increased substantially over the past 2 decades. This review attempts to synthesize the state of evidence in this area of research while acknowledging challenges in interpretation. Although there is converging evidence that ongoing, frequent cannabis use in adolescence is associated with small reductions in cognitive functioning, there is still significant debate regarding the persistence of reductions after a period of abstinence. Similarly, there is controversy regarding the replicability of structural and functional neuroimaging findings related to frequent cannabis use in adolescence. Larger studies with informative designs are needed.
Collapse
Affiliation(s)
- J Cobb Scott
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, 5th Floor, Philadelphia, PA 19104, USA; VISN4 Mental Illness Research, Education, and Clinical Center at the Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Xiao J, Zhou Y, Sun L, Wang H. Role of integrating cannabinoids and the endocannabinoid system in neonatal hypoxic-ischaemic encephalopathy. Front Mol Neurosci 2023; 16:1152167. [PMID: 37122621 PMCID: PMC10130673 DOI: 10.3389/fnmol.2023.1152167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
Neonatal hypoxic-ischaemic events, which can result in long-term neurological impairments or even cell death, are among the most significant causes of brain injury during neurodevelopment. The complexity of neonatal hypoxic-ischaemic pathophysiology and cellular pathways make it difficult to treat brain damage; hence, the development of new neuroprotective medicines is of great interest. Recently, numerous neuroprotective medicines have been developed to treat brain injuries and improve long-term outcomes based on comprehensive knowledge of the mechanisms that underlie neuronal plasticity following hypoxic-ischaemic brain injury. In this context, understanding of the medicinal potential of cannabinoids and the endocannabinoid system has recently increased. The endocannabinoid system plays a vital neuromodulatory role in numerous brain regions, ensuring appropriate control of neuronal activity. Its natural neuroprotection against adult brain injury or acute brain injury also clearly demonstrate the role of endocannabinoid signalling in modulating neuronal activity in the adult brain. The goal of this review is to examine how cannabinoid-derived compounds can be used to treat neonatal hypoxic-ischaemic brain injury and to assess the critical function of the endocannabinoid system and its potential for use as a new neuroprotective treatment for neonatal hypoxic-ischaemic brain injury.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Pathology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Yue Zhou
- Department of Pharmacy, Xindu District People’s Hospital of Chengdu, Chengdu, China
| | - Luqiang Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haichuan Wang
- Department of Paediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Haichuan Wang,
| |
Collapse
|
34
|
Abstract
The current review highlights the available research related to cannabis and indicators of physical health in a variety of domains. Various studies have found associations between cannabis use with pulmonary, cardiovascular, gastrointestinal, and endocrine function as well as body mass index and sleep. At this time, more research is needed to understand the influence of cannabis use on physical health, particularly among adolescent samples.
Collapse
Affiliation(s)
- Abigail L Tuvel
- Department of Psychology and Neuroscience, University of Colorado Boulder, 1777 Exposition Drive, Boulder, CO 80301
| | - Evan A Winiger
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, 1890 N Revere Court, Aurora, CO, 80045
| | - J Megan Ross
- Department of Psychiatry, Division of Addiction Sciences, Treatment and Prevention, University of Colorado Anschutz Medical Campus, 1890 N Revere Court, Aurora, CO, 80045.
| |
Collapse
|
35
|
Role of cyclin-dependent kinase 5 in psychosis and the modulatory effects of cannabinoids. Neurobiol Dis 2023; 176:105942. [PMID: 36473591 DOI: 10.1016/j.nbd.2022.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine kinase that has emerged as a key regulator of neurotransmission in complex cognitive processes. Its expression is altered in treated schizophrenia patients, and cannabinoids modulate CDK5 levels in the brain of rodents. However, the role of this kinase, and its interaction with cannabis use in first-episode psychosis (FEP) patients is still not known. Hence, we studied the expression changes of CDK5 and its signaling partner, postsynaptic density protein 95 (PSD95) in olfactory neuroepithelial (ON) cells of FEP patients with (FEP/c) and without (FEP/nc) prior cannabis use, and in a dual-hit mouse model of psychosis. In this model, adolescent mice were exposed to the cannabinoid receptor 1 agonist (CB1R) WIN-55,212-2 (WIN: 1 mg/kg) during 21 days, and to the N-methyl-d-aspartate receptor (NMDAR) blocker phencyclidine (PCP: 10 mg/kg) during 10 days. FEP/c showed less social functioning deficits, lower CDK5 and higher PSD95 levels than FEP/nc. These changes correlated with social skills, but not cognitive deficits. Consistently, exposure of ON cells from FEP/nc patients to WIN in vitro reduced CDK5 levels. Convergent results were obtained in mice, where PCP by itself induced more sociability deficits, and PSD95/CDK5 alterations in the prefrontal cortex and hippocampus than exposure to PCP-WIN. In addition, central blockade of CDK5 activity with roscovitine in PCP-treated mice restored both sociability impairments and PSD95 levels. We provide translational evidence that increased CDK5 could be an early indicator of psychosis associated with social deficits, and that this biomarker is modulated by prior cannabis use.
Collapse
|
36
|
Iezzi D, Caceres-Rodriguez A, Chavis P, Manzoni OJJ. In utero exposure to cannabidiol disrupts select early-life behaviors in a sex-specific manner. Transl Psychiatry 2022; 12:501. [PMID: 36470874 PMCID: PMC9722662 DOI: 10.1038/s41398-022-02271-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD), one of the main components of cannabis, is generally considered safe. CBD crosses the placenta and its use during pregnancy is steadily increasing, the impact of gestational CBD's effects on prenatal life and neurodevelopment are poorly understood. Here, we combined behavioral approaches and deep learning analysis to assess the sex-dependent neonatal behavior of CBD exposed progeny. Gestating C57BL6/J dams were exposed daily with vehicle or CBD (3 mg/Kg, s.c.), from gestational day 5 to 18. Body weight, pup ultrasound vocalizations (USVs, PND 10) and homing behavior (PND 13) were quantified in the progeny. Thus, male (but not female) pups from CBD-treated dams gained more weight than sham. There were sex-dependent differences in the coarse characteristics of ultrasonic vocalizations. Prenatally-CBD exposed male pups emitted shorter calls, whereas CBD females made more high frequency calls when compared with their control counterparts. There were significant qualitative changes in the syllabic USV repertoire reflected in call typologies and communication patterns. Finally, the homing behavior test showed that CBD-exposed females presented a greater vulnerability to gestational CBD than males. Only CBD-exposed female pups showed reduced motor and discriminatory abilities. Together the results suggest a sexual divergence in the consequences of in utero CBD exposure on neonates at early developmental ages, which may be predictive of adult psychopathology. Given the extent of cannabis and CBD use worldwide, these findings challenge the idea that CBD is a universally safe compound and reveal the need for additional studies on the effect of perinatal CBD exposure.
Collapse
Affiliation(s)
- Daniela Iezzi
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab "Cannabinoids Neuroscience Research International Associated Laboratory". INSERM-Aix-Marseille University/Indiana University, Marseille, France
| | - Alba Caceres-Rodriguez
- INMED, INSERM U1249, Marseille, France
- Aix-Marseille University, Marseille, France
- Cannalab "Cannabinoids Neuroscience Research International Associated Laboratory". INSERM-Aix-Marseille University/Indiana University, Marseille, France
| | - Pascale Chavis
- INMED, INSERM U1249, Marseille, France.
- Aix-Marseille University, Marseille, France.
- Cannalab "Cannabinoids Neuroscience Research International Associated Laboratory". INSERM-Aix-Marseille University/Indiana University, Marseille, France.
| | - Olivier J J Manzoni
- INMED, INSERM U1249, Marseille, France.
- Aix-Marseille University, Marseille, France.
- Cannalab "Cannabinoids Neuroscience Research International Associated Laboratory". INSERM-Aix-Marseille University/Indiana University, Marseille, France.
| |
Collapse
|
37
|
Ruiz-Contreras HA, Santamaría A, Arellano-Mendoza MG, Sánchez-Chapul L, Robles-Bañuelos B, Rangel-López E. Modulatory Activity of the Endocannabinoid System in the Development and Proliferation of Cells in the CNS. Neurotox Res 2022; 40:1690-1706. [PMID: 36522511 DOI: 10.1007/s12640-022-00592-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 12/23/2022]
Abstract
The Endocannabinoid System (ECS, also known as Endocannabinoidome) plays a key role in the function of the Central Nervous System, though the participation of this system on the early development - specifically in neuroprotection and proliferation of nerve cells - has been poorly studied. Here, we collect and describe evidence regarding how cannabinoid receptors CB1R and CB2R regulate several cell markers related to proliferation. While CB1R participates in the modulation of neuronal and glial proliferation, CB2R is involved in the proliferation of glial cells. The endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) exert significant effects on nerve cell proliferation. AEA generated during embryogenesis induces major effects on the differentiation of neuronal progenitor cells, whereas 2-AG participates in modulating cell migration events rather than affecting the neural proliferation rate. However, although the ECS has been demonstrated to participate in neuroprotection, more characterization on its role in neuronal and glial proliferation and differentiation is needed, especially in brain areas with recognized high neurogenesis rates. This has encouraged scientists to elucidate and propose specific mechanisms related with these cell proliferation mechanisms to better understand some neurodegenerative disorders such as Parkinson, Huntington and Alzheimer diseases, in which neuronal loss and poor neurogenesis are crucial factors for their onset and progression. In this review, we collect and present recent evidence published pointing to an active role of the ECS in the development and proliferation of nerve cells.
Collapse
Affiliation(s)
- Hipolito A Ruiz-Contreras
- Maestría en Ciencias en Farmacología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular Y Nanotecnología, Instituto Nacional de Neurología Y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, 14269, Mexico City, Mexico.
| | - Mónica G Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico Degenerativas, Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Laura Sánchez-Chapul
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Benjamín Robles-Bañuelos
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular Y Nanotecnología, Instituto Nacional de Neurología Y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, 14269, Mexico City, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular Y Nanotecnología, Instituto Nacional de Neurología Y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, 14269, Mexico City, Mexico.
| |
Collapse
|
38
|
Cannabinoid receptor 2 (Cb2r) mediates cannabinol (CBN) induced developmental defects in zebrafish. Sci Rep 2022; 12:20251. [PMID: 36424484 PMCID: PMC9691751 DOI: 10.1038/s41598-022-23495-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
Of the three primary cannabinoids in cannabis: Δ9-Tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and cannabinol (CBN), very little is known about the actions of CBN, the primary oxidative metabolite of THC. Our goal was to determine if CBN exposure during gastrulation alters embryonic development, and if so, does it act via the canonical cannabinoid receptors. Zebrafish embryos were exposed to CBN during gastrulation and exhibited dose-dependent malformations, increased mortality, decreased locomotion and a reduction in motor neuron branching. Moreover, larva showed a significant reduction in the response to sound stimuli. CBN exposure altered the development of hair cells associated with otic vesicles and the lateral line. Pharmacological block of Cb2rs with AM 630 or JTE 907 prevented many of the CBN-induced developmental defects, while block of Cb1rs with AM 251 or CP 945598 had little or no effect. Altogether we show that embryonic exposure to CBN results in alterations in embryonic growth, neuronal and hair cell development, physiology and behavior via Cb2r-mediated mechanisms.
Collapse
|
39
|
Vallés AS, Barrantes FJ. The synaptic lipidome in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184033. [PMID: 35964712 DOI: 10.1016/j.bbamem.2022.184033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters. The spine is further compartmentalized into nanodomains that facilitate the execution of temporo-spatially separate functions in the synapse. Lipids play important roles in this structural and functional compartmentalization and in mechanisms that impact on synaptic transmission. This review analyzes the structural and dynamic processes involving lipids at the synapse, highlighting the importance of their homeostatic balance for the physiology of this complex and highly specialized structure, and underscoring the pathologies associated with disbalances of lipid metabolism, particularly in the perinatal and late adulthood periods of life. Although small variations of the lipid profile in the brain take place throughout the adult lifespan, the pathophysiological consequences are clinically manifested mostly during late adulthood. Disturbances in lipid homeostasis in the perinatal period leads to alterations during nervous system development, while in late adulthood they favor the occurrence of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Sofia Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), 8000 Bahía Blanca, Argentina.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina.
| |
Collapse
|
40
|
Peters KZ, Naneix F. The role of dopamine and endocannabinoid systems in prefrontal cortex development: Adolescence as a critical period. Front Neural Circuits 2022; 16:939235. [PMID: 36389180 PMCID: PMC9663658 DOI: 10.3389/fncir.2022.939235] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/14/2022] [Indexed: 01/07/2023] Open
Abstract
The prefrontal cortex plays a central role in the control of complex cognitive processes including action control and decision making. It also shows a specific pattern of delayed maturation related to unique behavioral changes during adolescence and allows the development of adult cognitive processes. The adolescent brain is extremely plastic and critically vulnerable to external insults. Related to this vulnerability, adolescence is also associated with the emergence of numerous neuropsychiatric disorders involving alterations of prefrontal functions. Within prefrontal microcircuits, the dopamine and the endocannabinoid systems have widespread effects on adolescent-specific ontogenetic processes. In this review, we highlight recent advances in our understanding of the maturation of the dopamine system and the endocannabinoid system in the prefrontal cortex during adolescence. We discuss how they interact with GABA and glutamate neurons to modulate prefrontal circuits and how they can be altered by different environmental events leading to long-term neurobiological and behavioral changes at adulthood. Finally, we aim to identify several future research directions to help highlight gaps in our current knowledge on the maturation of these microcircuits.
Collapse
Affiliation(s)
- Kate Zara Peters
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Fabien Naneix
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom,*Correspondence: Fabien Naneix
| |
Collapse
|
41
|
Watts JJ, Guma E, Chavez S, Tyndale RF, Ross RA, Houle S, Wilson AA, Chakravarty M, Rusjan PM, Mizrahi R. In vivo brain endocannabinoid metabolism is related to hippocampus glutamate and structure - a multimodal imaging study with PET, 1H-MRS, and MRI. Neuropsychopharmacology 2022; 47:1984-1991. [PMID: 35906490 PMCID: PMC9485131 DOI: 10.1038/s41386-022-01384-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023]
Abstract
Dysregulation of hippocampus glutamatergic neurotransmission and reductions in hippocampal volume have been associated with psychiatric disorders. The endocannabinoid system modulates glutamate neurotransmission and brain development, including hippocampal remodeling. In humans, elevated levels of anandamide and lower activity of its catabolic enzyme fatty acid amide hydrolase (FAAH) are associated with schizophrenia diagnosis and psychotic symptom severity, respectively (Neuropsychopharmacol, 29(11), 2108-2114; Biol. Psychiatry 88 (9), 727-735). Although preclinical studies provide strong evidence linking anandamide and FAAH to hippocampus neurotransmission and structure, these relationships remain poorly understood in humans. We recruited young adults with and without psychotic disorders and measured FAAH activity, hippocampal glutamate and glutamine (Glx), and hippocampal volume using [11C]CURB positron emission tomography (PET), proton magnetic resonance spectroscopy (1H-MRS) and T1-weighted structural MRI, respectively. We hypothesized that higher FAAH activity would be associated with greater hippocampus Glx and lower hippocampus volume, and that these effects would differ in patients with psychotic disorders relative to healthy control participants. After attrition and quality control, a total of 37 participants (62% male) completed [11C]CURB PET and 1H-MRS of the left hippocampus, and 45 (69% male) completed [11C]CURB PET and hippocampal volumetry. Higher FAAH activity was associated with greater concentration of hippocampal Glx (F1,36.36 = 9.17, p = 0.0045; Cohen's f = 0.30, medium effect size) and smaller hippocampal volume (F1,44.70 = 5.94, p = 0.019, Cohen's f = 0.26, medium effect size). These effects did not differ between psychosis and healthy control groups (no group interaction). This multimodal imaging study provides the first in vivo evidence linking hippocampal Glx and hippocampus volume with endocannabinoid metabolism in the human brain.
Collapse
Affiliation(s)
- Jeremy J Watts
- Research Centre, CHU Sainte-Justine, Montreal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montreal, QC, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Elisa Guma
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Rachel F Tyndale
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Alan A Wilson
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mallar Chakravarty
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Pablo M Rusjan
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Romina Mizrahi
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
42
|
Niknam Y, Iyer P, Campbell MA, Moran F, Sandy MS, Zeise L. Animal evidence considered in determination of cannabis smoke and Δ 9 -tetrahydrocannabinol as causing reproductive toxicity (developmental endpoint): Part III. Proposed neurodevelopmental mechanisms of action. Birth Defects Res 2022; 114:1169-1185. [PMID: 36125082 DOI: 10.1002/bdr2.2088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/09/2022]
Abstract
This review summarizes the most common potential pathways of neurodevelopmental toxicity due to perinatal exposure to Δ9 -tetrahydrocannabinol (Δ9 -THC) that lead to behavioral and other adverse outcomes (AOs). This is Part III in a set of reviews highlighting the animal-derived data considered by California's Developmental and Reproductive Toxicant Identification Committee (DARTIC) in 2019. The Hazard Identification Document (HID) provided to the DARTIC included a summary of human, whole animal, and mechanistic data on the neurodevelopmental toxicity of cannabis smoke and Δ9 -THC. The literature search for mechanistic data has been updated through 2020. We focus on mechanistic pathways relating to behavioral and other neurodevelopmental outcomes of perinatal exposure to Δ9 -THC. The endocannabinoid system (EC system) plays a crucial role in many processes involved in neurodevelopment and exposure to Δ9 -THC can alter these processes. Whole animal studies report changes in cognitive ability, behavior, and motor function after prenatal exposure to Δ9 -THC. Findings from mechanistic studies add to this evidence and further provide information regarding the pathways leading to these outcomes. Neuromechanistic studies can bridge the gaps between molecular initiating events and apical neurodevelopmental endpoints caused by a chemical. They offer insight into potential alterations in the same pathways by other chemicals that can also result in AOs. Studies of cannabinoid receptor agonist-induced molecular alterations and provide deep biological plausibility at the mechanistic level for the cognitive, behavioral, and motor impairments observed in animal studies after perinatal exposure to Δ9 -THC.
Collapse
Affiliation(s)
- Yassaman Niknam
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Poorni Iyer
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Marlissa A Campbell
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Francisco Moran
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment (OEHHA)/Reproductive and Cancer Hazard Assessment Branch (RCHAB), California Environmental Protection Agency, Sacramento, California, USA
| |
Collapse
|
43
|
Kaczocha M, Haj-Dahmane S. Mechanisms of endocannabinoid transport in the brain. Br J Pharmacol 2022; 179:4300-4310. [PMID: 33786823 PMCID: PMC8481389 DOI: 10.1111/bph.15469] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide are among the best studied lipid messengers in the brain. By activating cannabinoid receptors in the CNS, endocannabinoids tune synaptic function, thereby influencing a variety of physiological and behavioural processes. Extensive research conducted over the last few decades has considerably enhanced our understanding of the molecular mechanisms and physiological functions of the endocannabinoid system. It is now well-established that endocannabinoids are synthesized by postsynaptic neurons and serve as retrograde messengers that suppress neurotransmitter release at central synapses. While the detailed mechanisms by which endocannabinoids gate synaptic function and behavioural processes are relatively well characterized, the mechanisms governing endocannabinoid transport at central synapses remain ill defined. Recently, several studies have begun to unravel the mechanisms governing intracellular and intercellular endocannabinoid transport. In this review, we will focus on new advances in the mechanisms of intracellular and synaptic endocannabinoid transport in the CNS. LINKED ARTICLES: This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.
Collapse
Affiliation(s)
- Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
- Neuroscience Program, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
44
|
Breit KR, Rodriguez CG, Lei A, Hussain S, Thomas JD. Effects of prenatal alcohol and delta-9-tetrahydrocannabinol exposure via electronic cigarettes on motor development. Alcohol Clin Exp Res 2022; 46:1408-1422. [PMID: 35722858 PMCID: PMC9427686 DOI: 10.1111/acer.14892] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Prenatal alcohol exposure can lead to a wide range of neurological and behavioral deficits, including alterations in motor domains. However, much less is known about the effects of prenatal cannabis exposure on motor development, despite cannabis being the most consumed illicit drug among women. Cannabis use among pregnant women has become increasingly popular given the widespread perception that consumption is safe during pregnancy. Moreover, alcohol and cannabis are commonly used together, even among pregnant women. Yet few studies have explored the potential consequences of combined prenatal exposure on behavioral domains. METHODS Using our previously established model, during gestational days 5 to 20, four groups of pregnant Sprague-Dawley rats were exposed to vaporized alcohol, delta-9-Tetrahydrocannabinol (THC) via electronic (e-) cigarettes, the combination of alcohol and THC, or a vehicle. Following birth, offspring were tested on early sensorimotor development, adolescent motor coordination, and adolescent activity levels. RESULTS Prenatal THC e-cigarette exposure delayed sensorimotor development early in life and impaired motor coordination later in early adolescence; combined prenatal alcohol and THC exposure did not have additive effects on sensorimotor development. However, combined prenatal exposure produced hyperactivity among male offspring. CONCLUSIONS Prenatal cannabis exposure may lead to impaired motor skills throughout early development and combined exposure with alcohol during gestation may lead to hyperactivity in early adolescence. These findings have important implications for informing pregnant women of the risks to the fetus associated with prenatal cannabis exposure, with and without alcohol, and could influence public policy.
Collapse
Affiliation(s)
- Kristen R. Breit
- Department of Psychology, Center for Behavioral TeratologySan Diego State UniversitySan DiegoCaliforniaUSA
- Department of PsychologyWest Chester UniversityWest ChesterPennsylvaniaUSA
| | - Cristina G. Rodriguez
- Department of Psychology, Center for Behavioral TeratologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Annie Lei
- Department of Psychology, Center for Behavioral TeratologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Samirah Hussain
- Department of Psychology, Center for Behavioral TeratologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Jennifer D. Thomas
- Department of Psychology, Center for Behavioral TeratologySan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
45
|
Benevento M, Hökfelt T, Harkany T. Ontogenetic rules for the molecular diversification of hypothalamic neurons. Nat Rev Neurosci 2022; 23:611-627. [PMID: 35906427 DOI: 10.1038/s41583-022-00615-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
The hypothalamus is an evolutionarily conserved endocrine interface that, among other roles, links central homeostatic control to adaptive bodily responses by releasing hormones and neuropeptides from its many neuronal subtypes. In its preoptic, anterior, tuberal and mammillary subdivisions, a kaleidoscope of magnocellular and parvocellular neuroendocrine command neurons, local-circuit neurons, and neurons that project to extrahypothalamic areas are intermingled in partially overlapping patches of nuclei. Molecular fingerprinting has produced data of unprecedented mass and depth to distinguish and even to predict the synaptic and endocrine competences, connectivity and stimulus selectivity of many neuronal modalities. These new insights support eminent studies from the past century but challenge others on the molecular rules that shape the developmental segregation of hypothalamic neuronal subtypes and their use of morphogenic cues for terminal differentiation. Here, we integrate single-cell RNA sequencing studies with those of mouse genetics and endocrinology to describe key stages of hypothalamus development, including local neurogenesis, the direct terminal differentiation of glutamatergic neurons, transition cascades for GABAergic and GABAergic cell-derived dopamine cells, waves of local neuronal migration, and sequential enrichment in neuropeptides and hormones. We particularly emphasize how transcription factors determine neuronal identity and, consequently, circuit architecture, and whether their deviations triggered by environmental factors and hormones provoke neuroendocrine illnesses.
Collapse
Affiliation(s)
- Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria. .,Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
46
|
Effects of endocannabinoid system modulation on social behaviour: A systematic review of animal studies. Neurosci Biobehav Rev 2022; 138:104680. [PMID: 35513169 DOI: 10.1016/j.neubiorev.2022.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/09/2022]
Abstract
There is a clear link between psychiatric disorders and social behaviour, and evidence suggests the involvement of the endocannabinoid system (ECS). A systematic review of preclinical literature was conducted using MEDLINE (PubMed) and PsychINFO databases to examine whether pharmacological and/or genetic manipulations of the ECS alter social behaviours in wildtype (WT) animals or models of social impairment (SIM). Eighty studies were included. Risk of bias (RoB) was assessed using SYRCLE's RoB tool. While some variability was evident, studies most consistently found that direct cannabinoid receptor (CBR) agonism decreased social behaviours in WT animals, while indirect CBR activation via enzyme inhibition or gene-knockout increased social behaviours. Direct and, more consistently, indirect CBR activation reversed social deficits in SIM. These CBR-mediated effects were often sex- and developmental-phase-dependent and blocked by CBR antagonism. Overall, ECS enzyme inhibition may improve social behaviour in SIM, suggesting the potential usefulness of ECS enzyme inhibition as a therapeutic approach for social deficits. Future research should endeavour to elucidate ECS status in neuropsychiatric disorders characterized by social deficits.
Collapse
|
47
|
Ajalin RM, Al-Abdulrasul H, Tuisku JM, Hirvonen JES, Vahlberg T, Lahdenpohja S, Rinne JO, Brück AE. Cannabinoid Receptor Type 1 in Parkinson's Disease: A Positron Emission Tomography Study with [ 18 F]FMPEP-d 2. Mov Disord 2022; 37:1673-1682. [PMID: 35674270 PMCID: PMC9544132 DOI: 10.1002/mds.29117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background The endocannabinoid system is a widespread neuromodulatory system affecting several biological functions and processes. High densities of type 1 cannabinoid (CB1) receptors and endocannabinoids are found in basal ganglia, which makes them an interesting target group for drug development in basal ganglia disorders such as Parkinson's disease (PD). Objective The aim of this study was to investigate CB1 receptors in PD with [18F]FMPEP‐d2 positron emission tomography (PET) and the effect of dopaminergic medication on the [18F]FMPEP‐d2 binding. Methods The data consisted of 16 subjects with PD and 10 healthy control subjects (HCs). All participants underwent a [18F]FMPEP‐d2 high‐resolution research tomograph PET examination for the quantitative assessment of cerebral binding to CB1 receptors. To investigate the effect of dopaminergic medication on the [18F]FMPEP‐d2 binding, 15 subjects with PD underwent [18F]FMPEP‐d2 PET twice, both on and off antiparkinsonian medication. Results [18F]FMPEP‐d2 distribution volume was significantly lower in the off scan compared with the on scan in basal ganglia, thalamus, hippocampus, and amygdala (P < 0.05). Distribution volume was lower in subjects with PD off than in HCs globally (P < 0.05), but not higher than in HCs in any brain region. Conclusions Subjects with PD have lower CB1 receptor availability compared with HCs. PD medication increases CB1 receptor toward normal levels. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Riikka M Ajalin
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| | - Haidar Al-Abdulrasul
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Jouni M Tuisku
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
| | - Jussi E S Hirvonen
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tero Vahlberg
- Department of Biostatistics, University of Turku, Turku, Finland
| | - Salla Lahdenpohja
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| | - Anna E Brück
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
48
|
Hussain S, Breit KR, Thomas JD. The effects of prenatal nicotine and THC E-cigarette exposure on motor development in rats. Psychopharmacology (Berl) 2022; 239:1579-1591. [PMID: 35338387 DOI: 10.1007/s00213-022-06095-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/13/2022] [Indexed: 10/18/2022]
Abstract
RATIONALE In the USA, nicotine and cannabis are the most common licit and illicit drugs used among pregnant women. Importantly, nicotine and cannabis are now being combined for consumption via e-cigarettes, an increasingly popular delivery device. Both nicotine and tetrahydrocannabinol (THC), the primary psychoactive component of cannabis, cross the placenta barrier. However, the consequences of prenatal cannabis use are not well understood, and less is known about potential combination effects when consumed with nicotine, especially via e-cigarettes. OBJECTIVE The present study used a rodent model to examine how prenatal e-cigarette exposure to nicotine, THC, and the combination impacts motor development among offspring. METHODS Pregnant Sprague-Dawley rats were exposed to nicotine (36 mg/mL), THC (100 mg/mL), the combination, or vehicle via e-cigarette inhalation from gestational days (GD) 5-20. One sex pair per litter was tested on an early sensorimotor development task (postnatal days [PD] 12-20) and a parallel bar motor coordination task (PD 30-32). RESULTS Combined prenatal exposure to nicotine and THC delayed sensorimotor development, even though neither drug produced impairments on their own. In contrast, prenatal exposure to either nicotine or THC impaired motor coordination, whereas combined exposure exacerbated these effects, particularly among females. CONCLUSIONS These data illustrate that prenatal exposure to either nicotine or THC may alter motor development, and that the combination may produce more severe effects. These findings have important implications for pregnant women as we better understand the teratogenic effects of these drugs consumed via e-cigarettes.
Collapse
Affiliation(s)
- S Hussain
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, CA, San Diego, USA
| | - K R Breit
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, CA, San Diego, USA.,Department of Psychology, West Chester University of Pennsylvania, West Chester, PA, USA
| | - J D Thomas
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, CA, San Diego, USA.
| |
Collapse
|
49
|
Stankovic IN, Colak D. Prenatal Drugs and Their Effects on the Developing Brain: Insights From Three-Dimensional Human Organoids. Front Neurosci 2022; 16:848648. [PMID: 35401083 PMCID: PMC8990163 DOI: 10.3389/fnins.2022.848648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Decades of research have unequivocally demonstrated that fetal exposure to both recreational and prescription drugs in utero negatively impacts the developing brain. More recently, the application of cutting-edge techniques in neurodevelopmental research has attempted to identify how the fetal brain responds to specific environmental stimuli. Meanwhile, human fetal brain studies still encounter ethical considerations and technical limitations in tissue collection. Human-induced pluripotent stem cell (iPSC)-derived brain organoid technology has emerged as a powerful alternative to examine fetal neurobiology. In fact, human 3D organoid tissues recapitulate cerebral development during the first trimester of pregnancy. In this review, we aim to provide a comprehensive summary of fetal brain metabolic studies related to drug abuse in animal and human models. Additionally, we will discuss the current challenges and prospects of using brain organoids for large-scale metabolomics. Incorporating cutting-edge techniques in human brain organoids may lead to uncovering novel molecular and cellular mechanisms of neurodevelopment, direct novel therapeutic approaches, and raise new exciting questions.
Collapse
Affiliation(s)
- Isidora N. Stankovic
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States
- *Correspondence: Isidora N. Stankovic,
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States
- Gale & Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, Cornell University, New York, NY, United States
- Dilek Colak,
| |
Collapse
|
50
|
Philippot G, Hosseini K, Yakub A, Mhajar Y, Hamid M, Buratovic S, Fredriksson R. Paracetamol (Acetaminophen) and its Effect on the Developing Mouse Brain. FRONTIERS IN TOXICOLOGY 2022; 4:867748. [PMID: 35391823 PMCID: PMC8981466 DOI: 10.3389/ftox.2022.867748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
Paracetamol, or acetaminophen (AAP), is the most commonly used analgesic during pregnancy and early life. While therapeutic doses of AAP are considered harmless during these periods, recent findings in both humans and rodents suggest a link between developmental exposure to AAP and behavioral consequences later in life. The aim of this study is to evaluate the impact of neonatal exposure to clinically relevant doses of AAP on adult spontaneous behavior, habituation, memory, learning, and cognitive flexibility later in life using a mouse model. Markers of oxidative stress, axon outgrowth, and glutamatergic transmission were also investigated in the hippocampus during the first 24 h after exposure. In addition, potential long-term effects on synaptic density in the hippocampus have been investigated. In a home cage setting, mice neonatally exposed to AAP (30 + 30 mg/kg, 4 h apart) on postnatal day 10 displayed altered spontaneous behavior and changed habituation patterns later in life compared to controls. These mice also displayed reduced memory, learning and cognitive flexibility compared to control animals in the Morris water maze. An increase of markers for oxidative stress was observed in the hippocampus 6 h after AAP exposure. As AAP is the first choice treatment for pain and/or fever during pregnancy and early life, these results may be of great importance for risk assessment. Here we show that AAP can have persistent negative effects on brain development and suggest that AAP, despite the relatively low doses, is capable to induce acute oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Gaëtan Philippot
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Biomedical Center, Uppsala University, Uppsala, Sweden
- *Correspondence: Gaëtan Philippot,
| | - Kimia Hosseini
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Armine Yakub
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Yasser Mhajar
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Mariam Hamid
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Sonja Buratovic
- Department of Organismal Biology, Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|