1
|
Shen Z, Bao N, Chen J, Tang M, Yang L, Yang Y, Zhang H, Han J, Yu P, Zhang S, Yang H, Jiang G. Neuromolecular and behavioral effects of cannabidiol on depressive-associated behaviors and neuropathic pain conditions in mice. Neuropharmacology 2024; 261:110153. [PMID: 39245142 DOI: 10.1016/j.neuropharm.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND AND AIMS Neuropathic pain (NP) has a high incidence in the general population, is closely related to anxiety disorders, and has a negative impact on the quality of life. Cannabidiol (CBD), as a natural product, has been extensively studied for its potential therapeutic effects on symptoms such as pain and depression (DP). However, the mechanism of CBD in improving NP with depression is not fully understood. METHODS First, we used bioinformatics tools to deeply mine the intersection genes associated with NP, DP, and CBD. Secondly, the core targets were screened by Protein-protein interaction network, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes analysis, molecular docking and molecular dynamics simulation. Next, the effects of CBD intervention on pain and depressive behaviors in the spinal nerve ligation (SNL) mouse model were evaluated using behavioral tests, and dose-response curves were plotted. After the optimal intervention dose was determined, the core targets were verified by Western blot (WB) and Quantitative Polymerase Chain Reaction (qPCR). Finally, we investigated the potential mechanism of CBD by Nissl staining, Immunofluorescence (IF) and Transmission Electron Microscopy (TEM). RESULTS A total of five core genes of CBD most associated with NP and DP were screened by bioinformatics analysis, including PTGS2, GPR55, SOD1, CYP1A2 and NQO1. Behavioral test results showed that CBD by intraperitoneal administration 5 mg/kg can significantly improve the pain behavior and depressive state of SNL mice. WB, qPCR, IF, and TEM experiments further confirmed the regulatory effects of CBD on key molecules. CONCLUSION In this study, we found five targets of CBD in the treatment of NP with DP. These findings provide further theoretical and experimental basis for CBD as a potential therapeutic agent.
Collapse
Affiliation(s)
- Ziyi Shen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Nana Bao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Junwen Chen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Ming Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Linfeng Yang
- Institute of Morphology, College of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Yang Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Haoran Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jingyu Han
- Institute of medical imaging, North Sichuan Medical College, Nanchong, China
| | - Peilu Yu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Shushan Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hanfeng Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
2
|
Laaboudi FZ, Rejdali M, Amhamdi H, Salhi A, Elyoussfi A, Ahari M. In the weeds: A comprehensive review of cannabis; its chemical complexity, biosynthesis, and healing abilities. Toxicol Rep 2024; 13:101685. [PMID: 39056093 PMCID: PMC11269304 DOI: 10.1016/j.toxrep.2024.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
For millennia, various cultures have utilized cannabis for food, textile fiber, ethno-medicines, and pharmacotherapy, owing to its medicinal potential and psychotropic effects. An in-depth exploration of its historical, chemical, and therapeutic dimensions provides context for its contemporary understanding. The criminalization of cannabis in many countries was influenced by the presence of psychoactive cannabinoids; however, scientific advances and growing public awareness have renewed interest in cannabis-related products, especially for medical use. Described as a 'treasure trove,' cannabis produces a diverse array of cannabinoids and non-cannabinoid compounds. Recent research focuses on cannabinoids for treating conditions such as anxiety, depression, chronic pain, Alzheimer's, Parkinson's, and epilepsy. Additionally, secondary metabolites like phenolic compounds, terpenes, and terpenoids are increasingly recognized for their therapeutic effects and their synergistic role with cannabinoids. These compounds show potential in treating neuro and non-neuro disorders, and studies suggest their promise as antitumoral agents. This comprehensive review integrates historical, chemical, and therapeutic perspectives on cannabis, highlighting contemporary research and its vast potential in medicine.
Collapse
Affiliation(s)
- Fatima-Zahrae Laaboudi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Mohamed Rejdali
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Hassan Amhamdi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Amin Salhi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Abedellah Elyoussfi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - M.’hamed Ahari
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| |
Collapse
|
3
|
Shurtleff D, Arensdorf A, Still PC, Gust SW, Chideya S, Hopp DC, Belfer I. The National Center for Complementary and Integrative Health: Priorities for Cannabis and Cannabinoid Research. J Pharmacol Exp Ther 2024; 391:159-161. [PMID: 38844364 PMCID: PMC11493444 DOI: 10.1124/jpet.124.002173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 10/20/2024] Open
Abstract
The National Center for Complementary and Integrative Health (NCCIH), which is part of the US National Institutes of Health (NIH), has a broad interest in studying the biologic activities of natural products, especially those for which compelling evidence from preclinical research suggests biologic activities that may be beneficial to health or have a potential role in disease treatment, as well as products used extensively by the American public. As of 2023, use of cannabis for medical purposes is legal in 38 states and Washington, D.C. Such use continues to climb generally without sufficient knowledge regarding risks and benefits. In keeping with NCCIH's natural product research priorities and recognizing this gap in knowledge, NCCIH formally launched a research program in 2019 to expand research on the possible benefits for pain management of certain substances found in cannabis: minor cannabinoids and terpenes. This Viewpoint provides additional details and the rationale for this research priority at NCCIH. In addition, NCCIH's efforts and initiatives to facilitate and coordinate an NIH research agenda focused on cannabis and cannabinoid research are described. SIGNIFICANCE STATEMENT: Use of cannabis for purported medical purposes continues to increase despite insufficient knowledge regarding risks and benefits. Research is needed to help health professionals and patients make knowledgeable decisions about using cannabis and cannabinoids for medical purposes. The National Center for Complementary and Integrative Health, along with other NIH Institutes, Centers, and Offices, is expanding study on the safety, efficacy, and harms of cannabis-a complex mixture of phytochemicals that needs to be studied alone and in combination.
Collapse
Affiliation(s)
- David Shurtleff
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Angela Arensdorf
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Patrick C Still
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Steven W Gust
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Sekai Chideya
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - David Craig Hopp
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Inna Belfer
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Vanegas SO, Zaki A, Dealy CN, Kinsey SG. The Minor Phytocannabinoid Delta-8-Tetrahydrocannabinol Attenuates Collagen-Induced Arthritic Inflammation and Pain-Depressed Behaviors. J Pharmacol Exp Ther 2024; 391:222-230. [PMID: 38834355 PMCID: PMC11493440 DOI: 10.1124/jpet.124.002189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024] Open
Abstract
Patients with arthritis report using cannabis for pain management, and the major cannabinoid delta-9-tetrahydrocannabinol (Δ9-THC) has anti-inflammatory properties, yet the effects of minor cannabinoids on arthritis are largely unknown. The goal of the present study was to determine the antiarthritic potential of the minor cannabinoid delta-8-tetrahydrocannabinol (Δ8-THC) using the collagen-induced arthritis (CIA) mouse model. Adult male DBA/1J mice were immunized and boosted 21 days later with an emulsion of collagen and complete Freund's adjuvant. Beginning on the day of the booster, mice were administered twice-daily injections of Δ8-THC (3 or 30 mg/kg), the steroid dexamethasone (2 mg/kg), or vehicle for two weeks. Dorsal-ventral paw thickness and qualitative measures of arthritis were recorded daily, and latency to fall from an inverted grid was measured on alternating days, to determine arthritis severity and functional impairment. On the final day of testing, spontaneous wire-climbing behavior and temperature preference in a thermal gradient ring were measured to assess CIA-depressed behavior. The Δ8-THC treatment (30 mg/kg) reduced paw swelling and qualitative signs of arthritis. Δ8-THC also blocked CIA-depressed climbing and CIA-induced preference for a heated floor without producing locomotor effects but did not affect latency to fall from a wire grid. In alignment with the morphologic and behavioral assessments in vivo, histology revealed that Δ8-THC reduced synovial inflammation, proteoglycan loss and cartilage and bone erosion in the foot joints in a dose-dependent manner. Together, these findings suggest that Δ8-THC not only blocked morphologic changes but also prevented functional loss caused by collagen-induced arthritis. SIGNIFICANCE STATEMENT: Despite increasing use of cannabis products, the potential effects of minor cannabinoids are largely unknown. Here, the minor cannabinoid delta-8-tetrahydrocannabinol blocked the development of experimentally induced arthritis by preventing both pathophysiological as well as functional effects of the disease model. These data support the development of novel cannabinoid treatments for inflammatory arthritis.
Collapse
Affiliation(s)
- S Olivia Vanegas
- School of Nursing (S.O.V., S.G.K.) and Department of Psychological Sciences (S.O.V.), University of Connecticut, Storrs, Connecticut; Department of Orthodontics (A.Z., C.N.D.) and Department of Biomedical Engineering (C.N.D.), School of Dental Medicine, University of Connecticut, Farmington, Connecticut; and Department of Orthopedic Surgery and Department of Cell Biology, School of Medicine, University of Connecticut, Farmington, Connecticut (C.N.D.)
| | - Arsalan Zaki
- School of Nursing (S.O.V., S.G.K.) and Department of Psychological Sciences (S.O.V.), University of Connecticut, Storrs, Connecticut; Department of Orthodontics (A.Z., C.N.D.) and Department of Biomedical Engineering (C.N.D.), School of Dental Medicine, University of Connecticut, Farmington, Connecticut; and Department of Orthopedic Surgery and Department of Cell Biology, School of Medicine, University of Connecticut, Farmington, Connecticut (C.N.D.)
| | - Caroline N Dealy
- School of Nursing (S.O.V., S.G.K.) and Department of Psychological Sciences (S.O.V.), University of Connecticut, Storrs, Connecticut; Department of Orthodontics (A.Z., C.N.D.) and Department of Biomedical Engineering (C.N.D.), School of Dental Medicine, University of Connecticut, Farmington, Connecticut; and Department of Orthopedic Surgery and Department of Cell Biology, School of Medicine, University of Connecticut, Farmington, Connecticut (C.N.D.)
| | - Steven G Kinsey
- School of Nursing (S.O.V., S.G.K.) and Department of Psychological Sciences (S.O.V.), University of Connecticut, Storrs, Connecticut; Department of Orthodontics (A.Z., C.N.D.) and Department of Biomedical Engineering (C.N.D.), School of Dental Medicine, University of Connecticut, Farmington, Connecticut; and Department of Orthopedic Surgery and Department of Cell Biology, School of Medicine, University of Connecticut, Farmington, Connecticut (C.N.D.)
| |
Collapse
|
5
|
Mobaleghol Eslam H, Hataminia F, Esmaeili F, Salami SA, Ghanbari H, Amani A. Preparation of a nanoemulsion containing active ingredients of cannabis extract and its application for glioblastoma: in vitro and in vivo studies. BMC Pharmacol Toxicol 2024; 25:73. [PMID: 39375818 PMCID: PMC11460059 DOI: 10.1186/s40360-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Recently, the anti-tumor effects of cannabis extract on various cancers have attracted the attention of researchers. Here, we report a nanoemulsion (NE) composition designed to enhance the delivery of two active components in cannabis extracts (∆9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD)) in an animal model of glioblastoma. The efficacy of the NE containing the two drugs (NED) was compared with the bulk drugs and carrier (NE without the drugs) using the C6 tumor model in rats. Hemocompatibility factors (RBC, MCV, MCH, MCHC, RDW, PPP, PT and PTT) were studied to determine the potential in vivo toxicity of NED. The optimized NED with mean ± SD diameter 29 ± 6 nm was obtained. It was shown that by administering the drugs in the form of NED, the hemocompatibility increased. Cytotoxicity studies indicated that the NE without the active components (i.e. mixture of surfactants and oil) was the most cytotoxic group, while the bulk group had no toxicity. From the in vivo MRI and survival studies, the NED group had maximum efficacy (with ~4 times smaller tumor volume on day 7 of treatment, compared with the control. Also, survival time of the control, bulk drug, NE and NED were 9, 4, 12.5 and 51 days, respectively) with no important adverse effects. In conclusion, the NE containing cannabis extract could be introduced as an effective treatment in reducing brain glioblastoma tumor progression.
Collapse
Affiliation(s)
- Houra Mobaleghol Eslam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hataminia
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Salami
- Department of Biotechnology, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
- Industrial and Medical Cannabis Research Institute (IMCRI), Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
6
|
Puighermanal E, Luna-Sánchez M, Gella A, van der Walt G, Urpi A, Royo M, Tena-Morraja P, Appiah I, de Donato MH, Menardy F, Bianchi P, Esteve-Codina A, Rodríguez-Pascau L, Vergara C, Gómez-Pallarès M, Marsicano G, Bellocchio L, Martinell M, Sanz E, Jurado S, Soriano FX, Pizcueta P, Quintana A. Cannabidiol ameliorates mitochondrial disease via PPARγ activation in preclinical models. Nat Commun 2024; 15:7730. [PMID: 39231983 PMCID: PMC11375224 DOI: 10.1038/s41467-024-51884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
Mutations in mitochondrial energy-producing genes lead to a heterogeneous group of untreatable disorders known as primary mitochondrial diseases (MD). Leigh syndrome (LS) is the most common pediatric MD and is characterized by progressive neuromuscular affectation and premature death. Here, we show that daily cannabidiol (CBD) administration significantly extends lifespan and ameliorates pathology in two LS mouse models, and improves cellular function in fibroblasts from LS patients. CBD delays motor decline and neurodegenerative signs, improves social deficits and breathing abnormalities, decreases thermally induced seizures, and improves neuropathology in affected brain regions. Mechanistically, we identify peroxisome proliferator-activated receptor gamma (PPARγ) as a key nuclear receptor mediating CBD's beneficial effects, while also providing proof of dysregulated PPARγ expression and activity as a common feature in both mouse neurons and fibroblasts from LS patients. Taken together, our results provide the first evidence for CBD as a potential treatment for LS.
Collapse
Affiliation(s)
- Emma Puighermanal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Marta Luna-Sánchez
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Gella
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gunter van der Walt
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andrea Urpi
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Royo
- Institute of Neuroscience, CSIC-UMH, San Juan de Alicante, Spain
| | - Paula Tena-Morraja
- Celltec-UB, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Isabella Appiah
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Fabien Menardy
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Patrizia Bianchi
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | | | | | | | - Giovanni Marsicano
- Inserm Université de Bordeaux, U1215 Neurocentre Magendie, Bordeaux, France
| | - Luigi Bellocchio
- Inserm Université de Bordeaux, U1215 Neurocentre Magendie, Bordeaux, France
| | | | - Elisenda Sanz
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sandra Jurado
- Institute of Neuroscience, CSIC-UMH, San Juan de Alicante, Spain
| | - Francesc Xavier Soriano
- Celltec-UB, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | | | - Albert Quintana
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
7
|
Medeiros AC, Medeiros P, Pigatto GR, Maione S, Coimbra NC, de Freitas RL. Cannabidiol in the dorsal hippocampus attenuates emotional and cognitive impairments related to neuropathic pain: The role of prelimbic neocortex-hippocampal connections. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111039. [PMID: 38797491 DOI: 10.1016/j.pnpbp.2024.111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND AND PURPOSE Chronic neuropathic pain (NP) is commonly associated with cognitive and emotional impairments. Cannabidiol (CBD) presents a broad spectrum of action with a potential analgesic effect. This work investigates the CBD effect on comorbidity between chronic NP, depression, and memory impairment. EXPERIMENTAL APPROACH The connection between the neocortex and the hippocampus was investigated with biotinylated dextran amine (BDA) deposits in the prelimbic cortex (PrL). Wistar rats were submitted to chronic constriction injury (CCI) of the sciatic nerve and CA1 treatment with CBD (15, 30, 60 nmol). KEY RESULTS BDA-labeled perikarya and terminal buttons were found in CA1 and dentate gyrus. CCI-induced mechanical and cold allodynia increased c-Fos protein expression in the PrL and CA1. The number of astrocytes in PrL and CA1 increased, and the number of neuroblasts decreased in CA1. Animals submitted to CCI procedure showed increasing depressive-like behaviors, such as memory impairment. CBD (60 nmol) treatment decreased mechanical and cold allodynia, attenuated depressive-associated behaviors, and improved memory performance. Cobalt chloride (CoCl2: 1 nM), WAY-100635 (0.37 nmol), and AM251 (100 nmol) intra-PrL reversed the effect of CA1 treatment with CBD (60 nmol) on nociceptive, cognitive, and depressive behaviors. CONCLUSION CBD represents a promising therapeutic perspective in the pharmacological treatment of chronic NP and associated comorbidities such as depression and memory impairments. The CBD effects possibly recruit the CA1-PrL pathway, inducing neuroplasticity. CBD acute treatment into the CA1 produces functional and molecular morphological improvements.
Collapse
Affiliation(s)
- Ana Carolina Medeiros
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil
| | - Priscila Medeiros
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Department of General and Specialized Nursing, Ribeirão Preto Nursing School of the University of São Paulo (EERP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Glauce Regina Pigatto
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Norberto Cysne Coimbra
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil
| | - Renato Leonardo de Freitas
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy.
| |
Collapse
|
8
|
Murray CH, Gannon BM, Winsauer PJ, Cooper ZD, Delatte MS. The Development of Cannabinoids as Therapeutic Agents in the United States. Pharmacol Rev 2024; 76:915-955. [PMID: 38849155 PMCID: PMC11331953 DOI: 10.1124/pharmrev.123.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Cannabis is one of the oldest and widely used substances in the world. Cannabinoids within the cannabis plant, known as phytocannabinoids, mediate cannabis' effects through interactions with the body's endogenous cannabinoid system. This endogenous system, the endocannabinoid system, has important roles in physical and mental health. These roles point to the potential to develop cannabinoids as therapeutic agents while underscoring the risks related to interfering with the endogenous system during nonmedical use. This scoping narrative review synthesizes the current evidence for both the therapeutic and adverse effects of the major (i.e., Δ9-tetrahydrocannabinol and cannabidiol) and lesser studied minor phytocannabinoids, from nonclinical to clinical research. We pay particular attention to the areas where evidence is well established, including analgesic effects after acute exposures and neurocognitive risks after acute and chronic use. In addition, drug development considerations for cannabinoids as therapeutic agents within the United States are reviewed. The proposed clinical study design considerations encourage methodological standards for greater scientific rigor and reproducibility to ultimately extend our knowledge of the risks and benefits of cannabinoids for patients and providers. SIGNIFICANCE STATEMENT: This work provides a review of prior research related to phytocannabinoids, including therapeutic potential and known risks in the context of drug development within the United States. We also provide study design considerations for future cannabinoid drug development.
Collapse
Affiliation(s)
- Conor H Murray
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Brenda M Gannon
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Peter J Winsauer
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Ziva D Cooper
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Marcus S Delatte
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| |
Collapse
|
9
|
Fatahi N, Jafari-Sabet M, Vahabzadeh G, Komaki A. Role of hippocampal and prefrontal cortical cholinergic transmission in combination therapy valproate and cannabidiol in memory consolidation in rats: involvement of CREB- BDNF signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5029-5047. [PMID: 38189934 DOI: 10.1007/s00210-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE Cognitive disorders are associated with valproate and drugs used to treat neuropsychological diseases. Cannabidiol (CBD) has beneficial effects on cognitive function. This study examined the effects of co-administration of CBD and valproate on memory consolidation, cholinergic transmission, and cyclic AMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling pathway in the prefrontal cortex (PFC) and hippocampus (HPC). METHODS One-trial, step-through inhibitory test was used to evaluate memory consolidation in rats. The intra-CA1 injection of physostigmine and atropine was performed to assess the role of cholinergic transmission in this co-administration. Phosphorylated CREB (p-CREB)/CREB ratio and BDNF levels in the PFC and HPC were evaluated. RESULTS Post-training intraperitoneal (i.p.) valproate injection reduced memory consolidation; however, post-training co-administration of CBD with valproate ameliorated memory impairment induced by valproate. Post-training intra-CA1 injection of physostigmine at the ineffective doses in memory consolidation (0.5 and 1 µg/rat), plus injection of 10 mg/kg of CBD as an ineffective dose, improved memory loss induced by valproate, which was associated with BDNF and p-CREB level enhancement in the PFC and HPC. Conversely, post-training intra-CA1 injection of ineffective doses of atropine (1 and 2 µg/rat) reduced the positive effects of injection of CBD at a dose of 20 mg/kg on valproate-induced memory loss associated with BDNF and p-CREB level reduction in the PFC and HPC. CONCLUSION The results indicated a beneficial interplay between valproate and CBD in the process of memory consolidation, which probably creates this interaction through the BDNF-CREB signaling pathways in the cholinergic transmission of the PFC and HPC regions.
Collapse
Affiliation(s)
- Navid Fatahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Gelareh Vahabzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Crowley K, Kiraga Ł, Miszczuk E, Skiba S, Banach J, Latek U, Mendel M, Chłopecka M. Effects of Cannabinoids on Intestinal Motility, Barrier Permeability, and Therapeutic Potential in Gastrointestinal Diseases. Int J Mol Sci 2024; 25:6682. [PMID: 38928387 PMCID: PMC11203611 DOI: 10.3390/ijms25126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids and their receptors play a significant role in the regulation of gastrointestinal (GIT) peristalsis and intestinal barrier permeability. This review critically evaluates current knowledge about the mechanisms of action and biological effects of endocannabinoids and phytocannabinoids on GIT functions and the potential therapeutic applications of these compounds. The results of ex vivo and in vivo preclinical data indicate that cannabinoids can both inhibit and stimulate gut peristalsis, depending on various factors. Endocannabinoids affect peristalsis in a cannabinoid (CB) receptor-specific manner; however, there is also an important interaction between them and the transient receptor potential cation channel subfamily V member 1 (TRPV1) system. Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) impact gut motility mainly through the CB1 receptor. They were also found to improve intestinal barrier integrity, mainly through CB1 receptor stimulation but also via protein kinase A (PKA), mitogen-associated protein kinase (MAPK), and adenylyl cyclase signaling pathways, as well as by influencing the expression of tight junction (TJ) proteins. The anti-inflammatory effects of cannabinoids in GIT disorders are postulated to occur by the lowering of inflammatory factors such as myeloperoxidase (MPO) activity and regulation of cytokine levels. In conclusion, there is a prospect of utilizing cannabinoids as components of therapy for GIT disorders.
Collapse
Affiliation(s)
- Kijan Crowley
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Edyta Miszczuk
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Sergiusz Skiba
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Joanna Banach
- Department of Research and Processing Seed, Institute of Natural Fibers and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland;
| | - Urszula Latek
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Marta Mendel
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Magdalena Chłopecka
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| |
Collapse
|
11
|
Provenzano R, De Caro C, Vitiello A, Izzo L, Ritieni A, Ungaro F, Quaglia F, Russo E, Miro A, d'Angelo I. Enhancing transmucosal delivery of CBD through nanoemulsion: in vitro and in vivo studies. Drug Deliv Transl Res 2024; 14:1648-1659. [PMID: 38064145 DOI: 10.1007/s13346-023-01481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 04/28/2024]
Abstract
Cannabidiol (CBD) has gained significant attention as a complementary and alternative medicine due to its promising therapeutic properties. However, CBD faces obstacles when administered orally due to its poor solubility in water, leading to limited absorption into the bloodstream and low and variable bioavailability. Therefore, the development of innovative delivery approaches that can enhance CBD's bioavailability, facilitate administration, and promote patient adherence is crucial. We propose a new approach for buccal delivery of CBD based on a self-assembling nanoemulsion (NE) made of a mixture of surfactants (Tween 80 and Labrasol) and medium chain triglycerides (MCTs). The NE formulation showed properties suitable for buccal administration, including appropriate size, CBD content, and surface properties, and, if compared to a CBD-MCT solution, it exhibited better control of administered doses, faster dissolution in buccal medium, and enhanced stability. The CBD-NE effectively released its active load within 5 h, remained stable even when diluted in simulated buccal fluids, and could be easily administered through a commercially available spray, providing consistent and reproducible doses of NE with optimized properties. In vitro permeation studies demonstrated that the CBD-NE facilitated swift and consistent permeation through the buccal mucosa, resulting in a higher concentration in the acceptor compartment compared to CBD-MCT. Furthermore, the in vivo study in mice showed that a single buccal administration of CBD-NE led to a quicker onset of action than a CBD solution in MCT, while maintaining the same plasma levels over time and leading to typically higher plasma concentrations compared to those usually achieved through oral administration. In conclusion, our CBD-NE represents a promising alternative formulation strategy for buccal CBD administration, overcoming the challenges associated with conventional formulations such as variable bioavailability and low control of administered doses.
Collapse
Affiliation(s)
- Romina Provenzano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Carmen De Caro
- Department of Science of Health, Magna Græcia University, Catanzaro, Italy
| | - Antonella Vitiello
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Emilio Russo
- Department of Science of Health, Magna Græcia University, Catanzaro, Italy
| | - Agnese Miro
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Ivana d'Angelo
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via A. Vivaldi, 43, 81100, Caserta, Italy
| |
Collapse
|
12
|
Kelly LE, Rieder MJ, Finkelstein Y. Medical cannabis for children: Evidence and recommendations. Paediatr Child Health 2024; 29:104-121. [PMID: 38586483 PMCID: PMC10996577 DOI: 10.1093/pch/pxad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/20/2023] [Indexed: 04/09/2024] Open
Abstract
Interest in using cannabis products for a medical purpose in children under the age of 18 years is increasing. There are many medical cannabis products available that can include cannabidiol (CBD) or delta-9-tetrahydrocannabinol (THC), or both. Despite many therapeutic claims, there are few rigorous studies to inform the dosing, safety, and efficacy of medical cannabis in paediatric clinical practice. This statement reviews the current evidence and provides recommendations for using medical cannabis in children. Longer-term (2-year) reports support the sustained tolerability and efficacy of cannabidiol therapy for patients with Lennox-Gastaut and Dravet syndromes. CBD-enriched cannabis extracts containing small amounts of THC have been evaluated in a small number of paediatric patients, and further research is needed to inform clinical practice guidelines. Given the widespread use of medical cannabis in Canada, paediatricians should be prepared to engage in open, ongoing discussions with families about its potential benefits and risks, and develop individualized plans that monitor efficacy, reduce harms, and mitigate drug-drug interactions.
Collapse
Affiliation(s)
- Lauren E Kelly
- Canadian Paediatric Society, Drug Therapy Committee, Ottawa, Ontario, Canada
| | - Michael J Rieder
- Canadian Paediatric Society, Drug Therapy Committee, Ottawa, Ontario, Canada
| | - Yaron Finkelstein
- Canadian Paediatric Society, Drug Therapy Committee, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Kelly LE, Rieder MJ, Finkelstein Y. Les données probantes et les recommandations sur le cannabis à des fins médicales chez les enfants. Paediatr Child Health 2024; 29:104-121. [PMID: 38586491 PMCID: PMC10996578 DOI: 10.1093/pch/pxad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/20/2023] [Indexed: 04/09/2024] Open
Abstract
L'intérêt envers l'utilisation des produits du cannabis à des fins médicales chez les enfants de moins de 18 ans augmente. De nombreux produits du cannabis à des fins médicales contiennent du cannabidiol, du delta-9-tétrahydrocannabinol ou ces deux produits. Malgré les nombreuses prétentions thérapeutiques, peu d'études rigoureuses guident la posologie, l'innocuité et l'efficacité du cannabis à des fins médicales en pédiatrie clinique. Le présent document de principes passe en revue les données probantes à jour et expose les recommandations sur l'utilisation du cannabis à des fins médicales chez les enfants. Les rapports à plus long terme (deux ans) souscrivent à la tolérabilité et à l'efficacité soutenues d'un traitement au cannabidiol chez les patients ayant le syndrome de Lennox-Gastaut ou le syndrome de Dravet. Les extraits de cannabis enrichis de cannabidiol qui renferment de petites quantités de delta-9-tétrahydrocannabinol ont été évalués auprès d'un petit nombre de patients d'âge pédiatrique, et d'autres recherches devront être réalisées pour éclairer les guides de pratique clinique. Étant donné l'utilisation répandue du cannabis à des fins médicales au Canada, les pédiatres devraient être prêts à participer à des échanges ouverts et continus avec les familles au sujet de ses avantages potentiels et de ses risques, ainsi qu'à préparer des plans individuels en vue d'en surveiller l'efficacité, de réduire les méfaits et de limiter les interactions médicamenteuses.
Collapse
Affiliation(s)
- Lauren E Kelly
- Société canadienne de pédiatrie, comité de la pharmacologie, Ottawa (Ontario)Canada
| | - Michael J Rieder
- Société canadienne de pédiatrie, comité de la pharmacologie, Ottawa (Ontario)Canada
| | - Yaron Finkelstein
- Société canadienne de pédiatrie, comité de la pharmacologie, Ottawa (Ontario)Canada
| |
Collapse
|
14
|
Pathak S, Jeyabalan JB, Liu K, Cook P, Lange B, Kim S, Nadar R, Ward K, Watts Alexander CS, Kumar A, Dua K, Moore T, Govindasamy J, Dhanasekaran M. Assessing effects of Cannabis on various neuropathologies: A systematic review. J Ayurveda Integr Med 2024; 15:100911. [PMID: 38876946 PMCID: PMC11282377 DOI: 10.1016/j.jaim.2024.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 06/16/2024] Open
Abstract
Natural bioactives possess a wide range of chemical structures that can exert a plethora of pharmacological and toxicological actions, resulting in neuroprotection or neurotoxicity. These pharmacodynamic properties can positively or negatively impact human and animal global healthcare. Remarkably, Ayurvedic botanical Cannabis has been used worldwide by different ethnicities and religions for spiritual, commercial, recreational, nutraceutical, cosmeceutical, and medicinal purposes for centuries. Cannabis-based congeners have been approved by the United States of America's (USA) Food & Drug Administration (FDA) and other global law agencies for various therapeutic purposes. Surprisingly, the strict laws associated with possessing cannabis products have been mitigated in multiple states in the USA and across the globe for recreational use. This has consequently led to a radical escalation of exposure to cannabis-related substances of abuse. However, there is a lacuna in the literature on the acute and chronic effects of Cannabis and its congeners on various neuropathologies. Moreover, in the post-COVID era, there has been a drastic increase in the incidence and prevalence of numerous neuropathologies, leading to increased morbidity and mortality. There is an impending necessity for a safe, economically viable, multipotent, natural bioactive to prevent and treat various neuropathologies. The ayurvedic herb, Cannabis is one of the oldest botanicals known to humans and has been widely used. However, the comprehensive effect of Cannabis on various neuropathologies is not well established. Hence, this review presents effects of Cannabis on various neuropathologies.
Collapse
Affiliation(s)
- Suhrud Pathak
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Jeyaram Bharathi Jeyabalan
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA; Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Nilgiris, Ooty, Tamil Nadu, 643 001, India
| | - Keyi Liu
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Preston Cook
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Bennett Lange
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Shannon Kim
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Rishi Nadar
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Kiersten Ward
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | | | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy Moore
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | | | | |
Collapse
|
15
|
Daniels R, Yassin OA, Toribio JM, Gascón JA, Sotzing G. Re-Examining Cannabidiol: Conversion to Tetrahydrocannabinol Using Only Heat. Cannabis Cannabinoid Res 2024; 9:486-494. [PMID: 36516105 DOI: 10.1089/can.2022.0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction: In the last decade, the market for Cannabidiol (CBD) has grown to become a near $2 billion dollar industry in the United States alone. This growth can be attributed to a growing social acceptance of marijuana, a more detailed understanding of many health benefits attributed to cannabinoids, and the low cost and wide availibility of hemp-derived cannabinoids. Due to the complex legal histories of marijuana and cannabinoids, the stability and safety of CBD is still an area of interest as research has been restricted globally. Conversion of CBD to its psychoactive isomers, most notably delta-9-Tetrahydrocannabinol (Δ9-THC), presents a significant safety issue for consumers and producers of CBD products. Methods: Previous studies investigating the stability of CBD have focused mainly on replicating conditions experienced during long-term storage at room temperature or lower. Here, we report the thermal stability of CBD at 175°C. Dynamic 1H-NMR experiments and computational electronic structure calculations were used to characterize possible reaction paths from CBD to THC. Results: After 30 minutes of heating, Δ9-THC was produced in detectable amounts in aerobic and anaerobic conditions without an acid catalyst. Conclusions: Our findings support an energetically feasible reaction route that is favorable due to both an increase in phenol acidity at high temperatures and the presence of intramolecular OH-π hydrogen bonding.
Collapse
Affiliation(s)
- Robert Daniels
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Omer A Yassin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - John M Toribio
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - José A Gascón
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Gregory Sotzing
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- Polymer Program, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
16
|
Bo Y, Zhao X, Li L. Cardiotoxic effects of common and emerging drugs: role of cannabinoid receptors. Clin Sci (Lond) 2024; 138:413-434. [PMID: 38505994 DOI: 10.1042/cs20231156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Drug-induced cardiotoxicity has become one of the most common and detrimental health concerns, which causes significant loss to public health and drug resources. Cannabinoid receptors (CBRs) have recently achieved great attention for their vital roles in the regulation of heart health and disease, with mounting evidence linking CBRs with the pathogenesis and progression of drug-induced cardiotoxicity. This review aims to summarize fundamental characteristics of two well-documented CBRs (CB1R and CB2R) from aspects of molecular structure, signaling and their functions in cardiovascular physiology and pathophysiology. Moreover, we describe the roles of CB1R and CB2R in the occurrence of cardiotoxicity induced by common drugs such as antipsychotics, anti-cancer drugs, marijuana, and some emerging synthetic cannabinoids. We highlight the 'yin-yang' relationship between CB1R and CB2R in drug-induced cardiotoxicity and propose future perspectives for CBR-based translational medicine toward cardiotoxicity curation and clinical monitoring.
Collapse
Affiliation(s)
- Yiming Bo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xin Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Zhang Q, Zhao Y, Wu J, Zhong W, Huang W, Pan Y. The progress of small molecules against cannabinoid 2 receptor (CB 2R). Bioorg Chem 2024; 144:107075. [PMID: 38218067 DOI: 10.1016/j.bioorg.2023.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
The two subtypes of cannabinoid receptors (CBR), namely CB1R and CB2R, belong to the G protein-coupled receptor (GPCR) superfamily and are confirmed as potential therapeutic targets for a variety of diseases such as inflammation, neuropathic pain, and immune-related disorders. Since CB1R is mainly distributed in the central nervous system (CNS), it could produce severe psychiatric adverse reactions and addiction. In contrast, CB2R are predominantly distributed in the peripheral immune system with minimal CNS-related side effects. Therefore, more attention has been devoted to the discovery of CB2R ligands. In view of the favorable profile of CB2R, many high-binding affinity and selectivity CB2R ligands have been developed recently. This paper reviews recent research progress on CB2R ligands, including endogenous CB2R ligands, natural compounds, and novel small molecules, in order to provide a reference for subsequent CB2R ligand development.
Collapse
Affiliation(s)
| | - Ying Zhao
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianan Wu
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | - Wenhai Huang
- Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Youlu Pan
- Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Dos Santos Pereira M, Maitan Santos B, Gimenez R, Guimarães FS, Raisman-Vozari R, Del Bel E, Michel PP. The two synthetic cannabinoid compounds 4'-F-CBD and HU-910 efficiently restrain inflammatory responses of brain microglia and astrocytes. Glia 2024; 72:529-545. [PMID: 38013496 DOI: 10.1002/glia.24489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
To study the anti-inflammatory potential of the two synthetic cannabinoids 4'-F-CBD and HU-910, we used post-natal brain cultures of mouse microglial cells and astrocytes activated by reference inflammogens. We found that 4'-F-CBD and HU-910 efficiently curtailed the release of TNF-α, IL-6, and IL-1β in microglia and astrocytes activated by the bacterial Toll-Like Receptor (TLR)4 ligand LPS. Upon LPS challenge, 4'-F-CBD and HU-910 also prevented the activation of phenotypic activation markers specific to microglia and astrocytes, that is, Iba-1 and GFAP, respectively. In microglial cells, the two test compounds also efficiently restrained LPS-stimulated release of glutamate, a non-cytokine inflammation marker for these cells. The immunosuppressive effects of the two cannabinoid compounds were concentration-dependent and observable between 1 and 10 μM. These effects were not dependent on cannabinoid or cannabinoid-like receptors. Both 4'-F-CBD and HU-910 were also capable of restraining the inflammogenic activity of Pam3CSK4, a lipopeptide that activates TLR2, and of BzATP, a prototypic agonist of P2X7 purinergic receptors, suggesting that these two cannabinoids could exert immunosuppressive effects against a variety of inflammatory stimuli. Using LPS-stimulated microglia and astrocytes, we established that the immunosuppressive action of 4'-F-CBD and HU-910 resulted from the inhibition of ROS produced by NADPH oxidase and subsequent repression of NF-κB-dependent signaling events. Our results suggest that 4'-F-CBD and HU-910 may have therapeutic utility in pathological conditions where neuroinflammatory processes are prominent.
Collapse
Affiliation(s)
- Maurício Dos Santos Pereira
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Bruna Maitan Santos
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Rocio Gimenez
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
- IREN Center, National Technological University, Buenos Aires, Argentina
| | | | - Rita Raisman-Vozari
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
| | - Patrick Pierre Michel
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| |
Collapse
|
19
|
Michel T, Loyet C, Boulho R, Eveno M, Audo G. Investigation of alternative two-phase solvent systems for purification of natural products by centrifugal partition chromatography. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:401-408. [PMID: 37872711 DOI: 10.1002/pca.3298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Centrifugal partition chromatography (CPC) is a liquid-liquid chromatography characterised by its solvent flexibility. The compounds undergoing separation are subjected to a continuous partition process between two immiscible phases in a column space free of solid support. In the context of green chemistry, it is important to substitute halogenated and petroleum-based solvents commonly used in purification processes. OBJECTIVES The main goal of the current study was to replace classical solvents used in CPC (e.g., hexane and methanol) by green and renewable alternatives. METHODS Solvents were first selected based on literature. Their commercial availability, price, recyclability, toxicity and ability to form two phases were particularly sought after. KEY FINDINGS The new two-phase solvent systems were evaluated for the purification of two compounds of interest: piperine and cannabidiol. Using these alternative two-phase solvent systems allows us to isolate natural products with a high purity level (> 95%). CONCLUSION Substituting petroleum-based solvents with bio-sourced, renewable alternatives reduces the environmental impact of CPC. Herein, new biphasic solvent systems were built using hexamethyldisiloxane, ethyl isobutyrate and 2-methyl tetrahydrofuran in combination with ethanol and water. Furthermore, this research provides a scientific basis for developing new and sustainable solvent systems in CPC.
Collapse
|
20
|
Mohammad T, Ghogare R, Morton LB, Dhingra A, Potlakayala S, Rudrabhatla S, Dhir SK. Evaluation of Parameters Affecting Agrobacterium-Mediated Transient Gene Expression in Industrial Hemp ( Cannabis sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:664. [PMID: 38475511 DOI: 10.3390/plants13050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Industrial hemp Cannabis sativa L. is an economically important crop mostly grown for its fiber, oil, and seeds. Due to its increasing applications in the pharmaceutical industry and a lack of knowledge of gene functions in cannabinoid biosynthesis pathways, developing an efficient transformation platform for the genetic engineering of industrial hemp has become necessary to enable functional genomic and industrial application studies. A critical step in the development of Agrobacterium tumefaciens-mediated transformation in the hemp genus is the establishment of optimal conditions for T-DNA gene delivery into different explants from which whole plantlets can be regenerated. As a first step in the development of a successful Agrobacterium tumefaciens-mediated transformation method for hemp gene editing, the factors influencing the successful T-DNA integration and expression (as measured by transient β-glucuronidase (GUS) and Green Florescent Protein (GFP) expression) were investigated. In this study, the parameters for an agroinfiltration system in hemp, which applies to the stable transformation method, were optimized. In the present study, we tested different explants, such as 1- to 3-week-old leaves, cotyledons, hypocotyls, root segments, nodal parts, and 2- to 3-week-old leaf-derived calli. We observed that the 3-week-old leaves were the best explant for transient gene expression. Fully expanded 2- to 3-week-old leaf explants, in combination with 30 min of immersion time, 60 µM silver nitrate, 0.5 µM calcium chloride, 150 µM natural phenolic compound acetosyringone, and a bacterial density of OD600nm = 0.4 resulted in the highest GUS and GFP expression. The improved method of genetic transformation established in the present study will be useful for the introduction of foreign genes of interest, using the latest technologies such as genome editing, and studying gene functions that regulate secondary metabolites in hemp.
Collapse
Affiliation(s)
- Tasnim Mohammad
- Center for Biotechnology, Department of Agricultural Sciences, Fort Valley State University, 113, Alva Tabor Building, Fort Valley, GA 31030, USA
| | - Rishikesh Ghogare
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lauren B Morton
- Center for Biotechnology, Department of Agricultural Sciences, Fort Valley State University, 113, Alva Tabor Building, Fort Valley, GA 31030, USA
| | - Amit Dhingra
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Shobha Potlakayala
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA 17057, USA
| | - Sairam Rudrabhatla
- The Central Pennsylvania Research and Teaching Laboratory for Biofuels, Penn State Harrisburg, Middletown, PA 17057, USA
| | - Sarwan K Dhir
- Center for Biotechnology, Department of Agricultural Sciences, Fort Valley State University, 113, Alva Tabor Building, Fort Valley, GA 31030, USA
| |
Collapse
|
21
|
Chalmé RL, Frankot MA, Anderson KG. Discriminative-stimulus effects of cannabidiol oil in Sprague-Dawley rats. Behav Pharmacol 2024; 35:36-46. [PMID: 38085665 PMCID: PMC10922827 DOI: 10.1097/fbp.0000000000000762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Cannabidiol (CBD) is one of the major centrally active phytocannabinoid components of cannabis, and has been approved by the FDA only for the treatment of seizures associated with three rare disorders. It has also been touted as a potential treatment for anxiety in place of more traditional treatments like benzodiazepines. Although there is some evidence of anxiolytic effects of CBD, its suitability as a substitute for benzodiazepines is unknown. This experiment was designed to assess the extent to which CBD shares interoceptive discriminative-stimulus properties with the anxiolytic drug chlordiazepoxide (CDP), a benzodiazepine. In the present experiment, a range of doses (0-1569 mg/kg) of over-the-counter CBD oil was administered (i.g.) in male Sprague-Dawley rats trained to discriminate 5.6 mg/kg CDP from saline. Due to the long time-course effects of CBD, generalization tests were conducted at 90 and 120 min post-CBD administration. The two highest doses of CBD tested (1064 and 1569 mg/kg) were found to partially substitute for 5.6 mg/kg CDP, with mean percent responding on the CDP-associated lever reaching above 20% at time 2 (120 min post-CBD administration), suggesting that high doses of the over-the-counter CBD oils used in this experiment share interoceptive discriminative-stimulus properties to some degree with CDP. These results are novel in comparison to existing research into stimulus effects of CBD, in which substitution for benzodiazepines has not previously been observed.
Collapse
Affiliation(s)
- Rebecca L. Chalmé
- Division on Substance Use Disorders, New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons of Columbia University, New York
| | - Michelle A. Frankot
- Department of Psychology, West Virginia University, Morgantown, West Virginia
| | - Karen G. Anderson
- Department of Psychology, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
22
|
Yang X, Lee D, Kim HW, Park BH, Lim C, Bae EJ. Cannabidiol Inhibits IgE-Mediated Mast Cell Degranulation and Anaphylaxis in Mice. Mol Nutr Food Res 2024; 68:e2300136. [PMID: 38059783 DOI: 10.1002/mnfr.202300136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/31/2023] [Indexed: 12/08/2023]
Abstract
SCOPE Cannabidiol (CBD), the most abundant non-psychoactive constituent of the plant Cannabis sativa, is known to possess immune modulatory properties. This study investigates the effects of CBD on mast cell degranulation in human and mouse primary mast cells and passive cutaneous anaphylaxis in mice. METHODS AND RESULTS Mouse bone marrow-derived mast cells and human cord-blood derived mast cells are generated. CBD suppressed antigen-stimulated mast cell degranulation in a concentration-dependent manner. Mechanistically, CBD inhibited both the phosphorylation of FcεRI downstream signaling molecules and calcium mobilization in mast cells, while exerting no effect on FcεRI expression and IgE binding to FcεRI. These suppressive effects are preserved in the mast cells that are depleted of type 1 (CB1) and type 2 (CB2) cannabinoid receptors, as well as in the presence of CB1 agonist, CB2 agonist, CB1 inverse agonist, and CB2 inverse agonist. CBD also inhibited the development of mast cells in a long-term culture. The intraperitoneal administration of CBD suppressed passive cutaneous anaphylaxis in mice as evidenced by a reduction in ear swelling and decrease in the number of degranulated mast cells. CONCLUSION Based on these results, the administration of CBD is a new therapeutic intervention in mast cell-associated anaphylactic diseases.
Collapse
Affiliation(s)
- Xiaohui Yang
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dohyeon Lee
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun-Woo Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Changjin Lim
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
23
|
Holst P, Kristensen AT, Arendt ML. Danish dog owners' use and the perceived effect of unlicensed cannabis products in dogs. PLoS One 2024; 19:e0296698. [PMID: 38295012 PMCID: PMC10830036 DOI: 10.1371/journal.pone.0296698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
The interest in the use of medical cannabis has increased in recent years in both human and veterinary fields. In Denmark, there are no veterinary-licensed medical cannabis or cannabinoid supplements, and it is illegal to prescribe or sell cannabinoids intended for the treatment of veterinary patients. This study aimed to explore the unlicensed cannabinoid use in Danish dogs, by questioning dog owners about usage, indication for use, way of purchase, and their perceived effect of the cannabinoid treatment. An anonymous online survey was distributed via social media. The total number of respondents were 2,002, of which 38% indicated using or having administered cannabinoids to their dog. The majority of the respondents confirming the use of cannabinoids (93%) had used cannabidiol drops/oil and only few (4%) reported using Δ9-tetrahydrocannabinol-based products. Most owners (67%) purchased the products online. The three most common indications for use were pain alleviation, behavioural issues, and allergy. When asked about the respondent-perceived effect the majority reported a good or very good effect. The indication with the highest percentage of owner-perceived positive effect (77%) was pain alleviation. This study shows that, despite no licensed veterinary cannabinoid products being available in Denmark, dog owners do supplement their dogs with cannabinoids and the majority of these perceive that the treatment had a positive effect. This supports the need for more evidence-based knowledge in veterinary cannabinoid therapy.
Collapse
Affiliation(s)
- Pernille Holst
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annemarie Thuri Kristensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maja Louise Arendt
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Eichler F, Ehrle A, Machnik M, Jensen KC, Wagner S, Baudisch N, Bolk J, Pötzsch M, Thevis M, Bäumer W, Lischer C, Wiegard M. Behavioral observations, heart rate and cortisol monitoring in horses following multiple oral administrations of a cannabidiol containing paste (part 2/2). Front Vet Sci 2024; 10:1305873. [PMID: 38234983 PMCID: PMC10791836 DOI: 10.3389/fvets.2023.1305873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 01/19/2024] Open
Abstract
As a remedy against stress and anxiety, cannabidiol (CBD) products are of increasing interest in veterinary medicine. Limited data is available describing the actual effectiveness of CBD in horses. The aim of this study (part 2 of 2) was to analyze stress parameters via behavioral observation, heart rate monitoring and assessment of blood and saliva cortisol levels in healthy horses treated repeatedly with a CBD containing paste. Twelve horses were randomly assigned to a treatment or a control group. Two pastes were orally administered in a double-blinded study design, one paste containing CBD and one paste without active ingredient. Both pastes were administered twice daily over 15 days (dose: 3 mg CBD/kg). Behavioral observations were conducted daily using a sedation score and a rating of facial expressions, based on the previously described facial sedation scale for horses (FaceSed) and the Horse Grimace Scale. Blood and saliva samples were obtained regularly to determine cortisol levels throughout the study. Cortisol levels were analyzed by means of liquid chromatography/tandem mass spectrometry (LC/MS/MS). Behavioral observations and cortisol levels were compared between groups. Prior to paste administration, a novel object test was performed and the horses' reaction to loading on a trailer was recorded. Both tests were repeated after 13 days of paste application. Movement patterns such as different gaits during the novel object test were evaluated and an ethogram was designed to assess exhibited behavioral traits. Cardiac beat-to-beat (R-R) intervals were recorded throughout and evaluated using heart rate (HR) and heart rate variability (HRV) parameters. Blood and saliva samples for cortisol analysis were taken before and after the tests. Daily behavioral observations and cortisol levels did not differ between the treatment and the control group. Similarly, analysis of movement patterns, HR, HRV and cortisol levels during the novel object test and trailer test did not identify significant differences between the groups. Regularly administered oral CBD (3 mg/kg BID over 15 days) had no statistically significant effect on behavioral observations, cortisol levels, HR and HRV in horses. Further research is required to establish adequate doses and indications for the use of CBD in horses.
Collapse
Affiliation(s)
- Fabienne Eichler
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anna Ehrle
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Marc Machnik
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Katharina Charlotte Jensen
- Institute of Veterinary Epidemiology and Biostatistics, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sabrina Wagner
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Natalie Baudisch
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Julia Bolk
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Magdalena Pötzsch
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Wolfgang Bäumer
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Christoph Lischer
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Mechthild Wiegard
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
25
|
Arthur P, Kalvala AK, Surapaneni SK, Singh MS. Applications of Cannabinoids in Neuropathic Pain: An Updated Review. Crit Rev Ther Drug Carrier Syst 2024; 41:1-33. [PMID: 37824417 PMCID: PMC11228808 DOI: 10.1615/critrevtherdrugcarriersyst.2022038592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuropathic pain is experienced due to injury to the nerves, underlying disease conditions or toxicity induced by chemotherapeutics. Multiple factors can contribute to neuropathic pain such as central nervous system (CNS)-related autoimmune and metabolic disorders, nerve injury, multiple sclerosis and diabetes. Hence, development of pharmacological interventions to reduce the drawbacks of existing chemotherapeutics and counter neuropathic pain is an urgent unmet clinical need. Cannabinoid treatment has been reported to be beneficial for several disease conditions including neuropathic pain. Cannabinoids act by inhibiting the release of neurotransmitters from presynaptic nerve endings, modulating the excitation of postsynaptic neurons, activating descending inhibitory pain pathways, reducing neural inflammation and oxidative stress and also correcting autophagy defects. This review provides insights on the various preclinical and clinical therapeutic applications of cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN) in various diseases and the ongoing clinical trials for the treatment of chronic and acute pain with cannabinoids. Pharmacological and genetic experimental strategies have well demonstrated the potential neuroprotective effects of cannabinoids and also elaborated their mechanism of action for the therapy of neuropathic pain.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Anil Kumar Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Mandip Sachdeva Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| |
Collapse
|
26
|
Miller G, Pareek O, Penman SL, Thanos PK. The Effects of Nicotine and Cannabinoids on Cytokines. Curr Pharm Des 2024; 30:2468-2484. [PMID: 38859790 DOI: 10.2174/0113816128293077240529111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND The usage of nicotine and cannabinoids has rapidly grown in popularity, leading to increased research into how they can affect people's health, both positively and negatively. Nicotine, Cannabidiol (CBD), and Δ9-tetrahydrocannabinol (THC) have been shown to have significant effects on cytokine function and inflammatory response. OBJECTIVE This study aimed to review and summarize the current literature on the effects of nicotine and cannabinoids on cytokines, including interleukins, TNF, IFN, and TGF-β. METHODS Literature search was conducted on Medline/PubMed electronic databases utilizing the search terms "nicotine" OR "cannabis" OR "cannabinoids" AND "cytokine" AND "inflammation" AND "stress" AND "immune" from 11/1973 to 02/2024. RESULTS THC and CBD usage have been associated with conflicting impacts on immune response, and observed to both exacerbate and inhibit inflammation. Nicotine has been shown to be generally proinflammatory with regards to cytokines. These responses have been reported to have significant effects on bodily response to inflammation-related diseases. Nicotine usage is associated with worsened outcomes for some conditions, like chronic pain, but improved outcomes for others, like arthritis. The impacts of cannabinoid usage tend to be more positive, exerting anti-inflammatory effects across a wide range of diseases. Given the widespread usage of these substances, it is important to understand the nature of their consequences on immune functions and the underlying mechanisms by which they act. CONCLUSION This review has covered how cannabinoids and nicotine affect inflammation directly and how these effects can be attributed to the treatment of inflammatory diseases. In summary, the existing research studying the effects of cannabinoids and nicotine supports the major relationship between nicotine and cannabis use and inflammatory diseases.
Collapse
Affiliation(s)
- Grace Miller
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Ojas Pareek
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Samantha L Penman
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Panayotis K Thanos
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| |
Collapse
|
27
|
Beletsky A, Liu C, Lochte B, Samuel N, Grant I. Cannabis and Anxiety: A Critical Review. Med Cannabis Cannabinoids 2024; 7:19-30. [PMID: 38406383 PMCID: PMC10890807 DOI: 10.1159/000534855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/24/2023] [Indexed: 02/27/2024] Open
Abstract
Introduction Cannabis has been reported to have both anxiogenic and anxiolytic effects. Habitual cannabis use has been associated with anxiety disorders (AD). The causal pathways and mechanisms underlying the association between cannabis use (CU)/cannabis use disorder (CUD) and anxiety remain unclear. We examined the literature via a systematic review to investigate the link between cannabis and anxiety. The hypotheses studied include causality, the common factor theory, and the self-medication hypothesis. Methods Critical systematic review of published literature examining the relationship of CU/CUD to AD or state-anxiety, including case reports, literature reviews, observational studies, and preclinical and clinical studies. A systematic MEDline search was conducted of terms including: [anxiety], [anxiogenic], [anxiolytic], [PTSD], [OCD], [GAD], [cannabis], [marijuana], [tetrahydrocannabinol], [THC]. Results While several case-control and cohort studies have reported no correlation between CU/CUD and AD or state anxiety (N = 5), other cross-sectional, and longitudinal studies report significant relationships (N = 20). Meta-analysis supports anxiety correlating with CU (N = 15 studies, OR = 1.24, 95% CI: 1.06-1.45, p = 0.006) or CUD (N = 13 studies, OR = 1.68, 95% CI: 1.23-2.31, p = 0.001). PATH analysis identifies the self-medication hypothesis (N = 8) as the model that best explains the association between CU/CUD and AD or state-anxiety. Despite the support of multiple large cohort studies, causal interpretations (N = 17) are less plausible, while the common factor theory (N = 5), stress-misattribution hypothesis, and reciprocal feedback theory lack substantial evidential support. Conclusion The association between cannabis and anxiety is best explained by anxiety predisposing individuals toward CU as a method of self-medication. A causal relationship in which CU causes AD incidence is less likely despite multiple longitudinal studies suggesting so.
Collapse
Affiliation(s)
| | - Cherry Liu
- Riverside Community Hospital (RCH), San Diego, CA, USA
| | | | | | - Igor Grant
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
28
|
Motamedy S, Soltani B, Kameshki H, Kermani AA, Amleshi RS, Nazeri M, Shabani M. The Therapeutic Potential and Molecular Mechanisms Underlying the Neuroprotective Effects of Sativex ® - A Cannabis-derived Spray. Mini Rev Med Chem 2024; 24:1427-1448. [PMID: 38318827 DOI: 10.2174/0113895575285934240123110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
Sativex is a cannabis-based medicine that comes in the form of an oromucosal spray. It contains equal amounts of Δ9-tetrahydrocannabinol and cannabidiol, two compounds derived from cannabis plants. Sativex has been shown to have positive effects on symptoms of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and sleep disorders. It also has analgesic, antiinflammatory, antitumoral, and neuroprotective properties, which make it a potential treatment option for other neurological disorders. The article reviews the results of recent preclinical and clinical studies that support the therapeutic potential of Sativex and the molecular mechanisms behind its neuroprotective benefits in various neurological disorders. The article also discusses the possible advantages and disadvantages of using Sativex as a neurotherapeutic agent, such as its safety, efficacy, availability, and legal status.
Collapse
Affiliation(s)
- Sina Motamedy
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Bahareh Soltani
- Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Halimeh Kameshki
- Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Reza Saboori Amleshi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Nazeri
- Department of Anesthesiology, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
29
|
Liao YY, Zhang H, Shen Q, Cai C, Ding Y, Shen DD, Guo J, Qin J, Dong Y, Zhang Y, Li XM. Snapshot of the cannabinoid receptor 1-arrestin complex unravels the biased signaling mechanism. Cell 2023; 186:5784-5797.e17. [PMID: 38101408 DOI: 10.1016/j.cell.2023.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/08/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Cannabis activates the cannabinoid receptor 1 (CB1), which elicits analgesic and emotion regulation benefits, along with adverse effects, via Gi and β-arrestin signaling pathways. However, the lack of understanding of the mechanism of β-arrestin-1 (βarr1) coupling and signaling bias has hindered drug development targeting CB1. Here, we present the high-resolution cryo-electron microscopy structure of CB1-βarr1 complex bound to the synthetic cannabinoid MDMB-Fubinaca (FUB), revealing notable differences in the transducer pocket and ligand-binding site compared with the Gi protein complex. βarr1 occupies a wider transducer pocket promoting substantial outward movement of the TM6 and distinctive twin toggle switch rearrangements, whereas FUB adopts a different pose, inserting more deeply than the Gi-coupled state, suggesting the allosteric correlation between the orthosteric binding pocket and the partner protein site. Taken together, our findings unravel the molecular mechanism of signaling bias toward CB1, facilitating the development of CB1 agonists.
Collapse
Affiliation(s)
- Yu-Ying Liao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Qingya Shen
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Chenxi Cai
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Yu Ding
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Jia Guo
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Jiao Qin
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Yingjun Dong
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Yan Zhang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou 310058, China; Lingang Laboratory, Shanghai 200031, China.
| |
Collapse
|
30
|
Bartončíková M, Lapčíková B, Lapčík L, Valenta T. Hemp-Derived CBD Used in Food and Food Supplements. Molecules 2023; 28:8047. [PMID: 38138537 PMCID: PMC10745805 DOI: 10.3390/molecules28248047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Cannabis sativa L., a plant historically utilized for textile fibers, oil, and animal feed, is progressively being recognized as a potential food source. This review elucidates the nutritional and functional attributes of hemp and cannabidiol (CBD) within the context of food science. Hemp is characterized by the presence of approximately 545 secondary metabolites, among which around 144 are bioactive cannabinoids of primary importance. The study looks in detail at the nutritional components of cannabis and the potential health benefits of CBD, encompassing anti-inflammatory, anxiolytic, and antipsychotic effects. The review deals with the legislation and potential applications of hemp in the food industry and with the future directions of cannabis applications as well. The paper emphasizes the need for more scientific investigation to validate the safety and efficacy of hemp components in food products, as current research suggests that CBD may have great benefits for a wide range of consumers.
Collapse
Affiliation(s)
- Michaela Bartončíková
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
| | - Barbora Lapčíková
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Lubomír Lapčík
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Tomáš Valenta
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nám. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic; (M.B.); (T.V.)
| |
Collapse
|
31
|
Eichler F, Ehrle A, Jensen KC, Baudisch N, Petersen H, Bäumer W, Lischer C, Wiegard M. Behavioral observations, heart rate and heart rate variability in horses following oral administration of a cannabidiol containing paste in three escalating doses (part 1/2). Front Vet Sci 2023; 10:1305868. [PMID: 38149295 PMCID: PMC10750369 DOI: 10.3389/fvets.2023.1305868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023] Open
Abstract
Cannabidiol (CBD) products have been proposed to exert stress- and anxiety-relieving effects in animals. Despite the increasing popularity of CBD for veterinary use, the available research detailing the effects of CBD in horses is limited. The aim of this study (part 1 of 2) was to analyze stress parameters via behavioral observations and heart rate monitoring in healthy horses following single oral administration of a CBD containing paste in different doses. Study products were two pastes for oral administration, one containing CBD and one containing no active ingredient. Pastes were applied as single administrations in consecutive trials with escalating dosages (doses: 0.2, 1.0, 3.0 mg CBD/kg) to a treatment (trial 1: n = 3, trial 2: n = 3, trial 3: n = 5 horses) and a control group (trial 1: n = 3, trial 2: n = 3, trial 3: n = 6 horses) with minimum wash-out periods of seven days in between. Behavioral parameters were evaluated using video recordings to score the levels of sedation including the horses' reactions to acoustic and visual stimuli. Facial expression was assessed using photographs. Evaluation was based on the previously described facial sedation scale for horses (FaceSed) and the Horse Grimace Scale. For baseline values, identical observations were recorded on the day before each paste administration. Both paste administration and behavioral evaluation were performed double blinded. Cardiac beat-to-beat (R-R) intervals were continuously recorded throughout the trial and assessed using heart rate and heart rate variability parameters. Statistical analysis included comparison between treatment and control group over escalating doses and time points using linear mixed models. The CBD paste was well tolerated, and no side effects were observed. Analysis of sedation scores and facial expressions did not indicate significant differences between treatment and control group over the escalating doses. The heart rate was neither reduced, nor were significant changes in heart rate variability observed compared to the control group. Main limitation of this study is the small sample size. Further research is required to determine adequate doses and indications for the use of CBD products in horses.
Collapse
Affiliation(s)
- Fabienne Eichler
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anna Ehrle
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Katharina Charlotte Jensen
- Institute of Veterinary Epidemiology and Biostatistics, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Natalie Baudisch
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hannah Petersen
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Wolfgang Bäumer
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Christoph Lischer
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Mechthild Wiegard
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
32
|
Mohammadpanah M, Farrokhi S, Sani M, Moghaddam MH, Bayat AH, Boroujeni ME, Abdollahifar MA, Fathi M, Vakili K, Nikpour F, Omran HS, Ahmadirad H, Ghorbani Z, Peyvandi AA, Aliaghaei A. Exposure to Δ9-tetrahydrocannabinol leads to a rise in caspase-3, morphological changes in microglial, and astrocyte reactivity in the cerebellum of rats. Toxicol Res (Camb) 2023; 12:1077-1094. [PMID: 38145099 PMCID: PMC10734605 DOI: 10.1093/toxres/tfad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 10/06/2023] [Indexed: 12/26/2023] Open
Abstract
The present study aimed to elucidate the effect of 10 mg/kg Δ9-tetrahydrocannabinol (THC) on cerebellar neuronal and glial morphology, apoptosis and inflammatory gene expression using a series of histological assays including stereology, Sholl analysis, immunofluorescence and real-time qPCR in male Wistar rats. A decrease in the number of Purkinje neurons and the thickness of the granular layer in the cerebellum was reported in THC-treated rats. Increased expression of Iba-1 and arborization of microglial processes were evidence of microgliosis and morphological changes in microglia. In addition, astrogliosis and changes in astrocyte morphology were other findings associated with THC administration. THC also led to an increase in caspase-3 positive cells and a decrease in autophagy and inflammatory gene expression such as mTOR, BECN1 and LAMP2. However, there were no significant changes in the volume of molecular layers and white matter, the spatial arrangement of granular layers and white matter, or the spatial arrangement of granular layers and white matter in the cerebellum. Taken together, our data showed both neuroprotective and neurodegenerative properties of THC in the cerebellum, which require further study in the future.
Collapse
Affiliation(s)
- Mojtaba Mohammadpanah
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sheida Farrokhi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Sani
- Department of Educational Neuroscience, Aras International Campus, University of Tabriz, Tabriz, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Amir-Hossein Bayat
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Eskandarian Boroujeni
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nikpour
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Salehi Omran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ahmadirad
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Ghorbani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Sooda K, Allison SJ, Javid FA. Investigation of the cytotoxicity induced by cannabinoids on human ovarian carcinoma cells. Pharmacol Res Perspect 2023; 11:e01152. [PMID: 38100640 PMCID: PMC10723784 DOI: 10.1002/prp2.1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 12/17/2023] Open
Abstract
Cannabinoids have been shown to induce anti-tumor activity in a variety of carcinoma cells such as breast, prostate, and brain. The aim of the present study is to investigate the anti-tumor activity of cannabinoids, CBD (cannbidiol), and CBG (cannabigerol) in ovarian carcinoma cells sensitive and resistant to chemotherapeutic drugs. Sensitive A2780 cells and resistant A2780/CP70 carcinoma cells and non-carcinoma cells were exposed to varying concentrations of CBD, CBG, carboplatin or CB1 and CB2 receptor antagonists, AM251 and AM630, respectively, alone or in combination, at different exposure times and cytotoxicity was measured by MTT assay. The mechanism of action of CBD and CB in inducing cytotoxicity was investigated involving a variety of apoptotic and cell cycle assays. Treatment with CBD and CBG selectively, dose and time dependently reduced cell viability and induced apoptosis. The effect of CBD was stronger than CBG in all cell lines tested. Both CBD and CBG induced stronger cytotoxicity than afforded by carboplatin in resistant cells. The cytotoxicity induced by CBD was not CB1 or CB2 receptor dependent in both carcinoma cells, however, CBG-induced cytotoxicity may involve CB1 receptor activity in cisplatin-resistant carcinoma cells. A synergistic effect was observed when cannabinoids at sublethal doses were combined with carboplatin in both carcinoma cells. The apoptotic event may involve loss of mitochondrial membrane potential, Annexin V, caspase 3/7, ROS activities, and cell cycle arrest. Further studies are required to investigate whether these results are translatable in the clinic. Combination therapies with conventional cancer treatments using cannabinoids are suggested.
Collapse
Affiliation(s)
- Kartheek Sooda
- Department of Pharmacy, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Simon J. Allison
- Department of Biological & Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Farideh A. Javid
- Department of Pharmacy, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| |
Collapse
|
34
|
Bomfim AJDL, Zuze SMF, Fabrício DDM, Pessoa RMDP, Crippa JAS, Chagas MHN. Effects of the Acute and Chronic Administration of Cannabidiol on Cognition in Humans and Animals: A Systematic Review. Cannabis Cannabinoid Res 2023; 8:955-973. [PMID: 37792394 DOI: 10.1089/can.2023.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Introduction: The effects of cannabidiol (CBD) on cognition has been investigated in recent years to determine the therapeutic potential of this cannabinoid for a broad gamut of medical conditions, including neuropsychiatric disorders. The aim of the present study was to perform a systematic review of studies that analyzed the effects of the acute and chronic administration of CBD on cognition in humans and animals both to assess the cognitive safety of CBD and to determine a beneficial potential of CBD on cognition. Methods: The PubMed, Web of Science, PsycINFO, and Scopus databases were searched in December of 2022 for relevant articles using the following combinations of keywords: ("cannabidiol" OR "CBD") AND ("cognition" OR "processing cognitive" OR "memory" OR "language" OR "attention" OR "executive function" OR "social cognition" OR "perceptual motor ability" OR "processing speed"). Results: Fifty-nine articles were included in the present review (36 preclinical and 23 clinical trials). CBD seems not to have any negative effect on cognitive processing in rats. The clinical trials confirmed these findings in humans. One study found that repeated dosing with CBD may improve cognitive in people who use cannabis heavily but not individuals with neuropsychiatric disorders. Considering the context of neuropsychiatric disorders in animal models, CBD seems to reverse the harm caused by the experimental paradigms, such that the performance of these animals becomes similar to that of control animals. Conclusions: The results demonstrate that the chronic and acute administration of CBD seems not to impair cognition in humans without neuropsychiatric disorders. In addition, preclinical studies report promising results regarding the effects of CBD on the cognitive processing of animals. Future double-blind, placebo-controlled, randomized clinical trials with larger, less selective samples, with standardized tests, and using different doses of CBD in outpatients are of particular interest to elucidate the cognitive effects of CBD.
Collapse
Affiliation(s)
- Ana Julia de Lima Bomfim
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Stefany Mirrelle Fávero Zuze
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Daiene de Morais Fabrício
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Rebeca Mendes de Paula Pessoa
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - José Alexandre S Crippa
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcos Hortes N Chagas
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
35
|
Ibork H, Idrissi SE, Zulu SS, Miller R, Hajji L, Morgan AM, Taghzouti K, Abboussi O. Effect of Cannabidiol in LPS-Induced Toxicity in Astrocytes: Possible Role for Cannabinoid Type-1 Receptors. Neurotox Res 2023; 41:615-626. [PMID: 37782433 DOI: 10.1007/s12640-023-00671-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Cerebral metabolic abnormalities are common in neurodegenerative diseases. Previous studies have shown that mitochondrial damage alters ATP production and increases reactive oxygen species (ROS) release which may contribute to neurodegeneration. In the present study, we investigated the neuroprotective effects of cannabidiol (CBD), a non-psychoactive component derived from marijuana (Cannabis sativa L.), on astrocytic bioenergetic balance in a primary cell culture model of lipopolysaccharide (LPS)-induced neurotoxicity. Astrocytic metabolic profiling using an extracellular flux analyzer demonstrated that CBD decreases mitochondrial proton leak, increased spare respiratory capacity and coupling efficiency in LPS-stimulated astrocytes. Simultaneously, CBD increased astrocytic glycolytic capacity and glycolysis reserve in a cannabinoid receptor type 1 (CB1)-dependent manner. CBD-restored metabolic changes were correlated with a significant decrease in the pro-inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) concentration and reduction of ROS production in LPS-stimulated astrocytes. These results suggest that CBD may inhibit LPS-induced metabolic impairments and inflammation by enhancing astrocytic metabolic glycolysis versus oxidative phosphorylation through its action on CB1 receptors. The present findings suggest CBD as a potential anti-inflammatory treatment in metabolic pathologies and highlight a possible role for the cannabinoidergic system in the modulation of mitochondrial oxidative stress. CBD enhances mitochondrial bioenergetic profile, attenuates proinflammatory cytokines release, and ROS overproduction of astrocytes stimulated by LPS. These effects are not mediated directly by CB1 receptors, while these receptors seem to have a key role in the anti-inflammatory response of the endocannabinoid system on astrocytes, as their specific inhibition by SR141716A led to increased pro-inflammatory cytokines release and ROS production. The graphical abstract is created with BioRender.com.
Collapse
Affiliation(s)
- Hind Ibork
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Sara El Idrissi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Simo Siyanda Zulu
- Department of Human Biology, Faculty of Health Sciences, Nelson Mandela University, Gqeberha, South Africa
| | - Robert Miller
- Division of Neuroscience, School of Medicine, University of Dundee, Dundee, UK
| | - Lhoussain Hajji
- Bioactives, Health and Environmental Laboratory, Epigenetics Research Team, Moulay Ismail University, Meknes, Morocco
| | | | - Khalid Taghzouti
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Oualid Abboussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
36
|
Dixon T, Cadenhead KS. Cannabidiol versus placebo as adjunctive treatment in early psychosis: study protocol for randomized controlled trial. Trials 2023; 24:775. [PMID: 38037108 PMCID: PMC10691114 DOI: 10.1186/s13063-023-07789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Psychotic disorders are a leading cause of disability in young adults. Antipsychotics have been the primary intervention for psychosis for over 60 years, and yet, we have made little progress in treating negative symptoms, neurocognition, and functional disability. There is growing evidence that cannabidiol (CBD) is effective in treating positive psychotic symptoms, possibly also negative and neurocognitive symptoms, and moreover is well tolerated compared to other psychotropic medications. Anecdotally, patients participating in the Cognitive Assessment and Risk Evaluation (CARE) Early Psychosis Treatment Program at the University of California, San Diego, are self-administering CBD and report subjective improvement in stress, anxiety, and ability to cope with symptoms. The overarching aim of the trial is to explore the effectiveness of CBD augmentation on symptoms and neurocognition in early psychosis while also exploring the mechanism of action of CBD and predictors of response to treatment. The mechanism by which cannabidiol has a therapeutic effect on psychosis is poorly understood. Recent evidence has suggested that CBD may reduce stress and pro-inflammatory biomarker levels. Endocannabinoids also have powerful roles in eating behavior, reward, and mood, indicating these neurotransmitters may play a role in reducing hyperphagia and metabolic abnormalities that are present early in the course of psychotic illness and exacerbated by antipsychotic medication. The neurophysiological effects of CBD have been studied in animal models of psychosis that show improvements in information processing in response to CBD, but there are no studies in individuals with early psychosis. METHOD A total of 120 individuals in the early stages of psychosis will be randomized to 1000 mg of CBD versus placebo as an adjunct to existing treatment in a 8-week, double-blind superiority randomized control trial. The primary outcome measures are symptoms and neurocognition. DISCUSSION We hypothesized that CBD will improve symptoms and neurocognition as well as secondary outcome measures of neurohormones, inflammation, eating behaviors, and information processing. Importantly, predictors, moderators, and mediators of the CBD effects will be examined. A better understanding of which individuals are likely to respond to CBD can inform treatment planning and personalize treatment. TRIAL REGISTRATION ClinicalTrials.gov NCT04411225. Registered on June 2, 2020.
Collapse
Affiliation(s)
- T Dixon
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive 0810, La Jolla, CA, 92093-0810, USA
| | - K S Cadenhead
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive 0810, La Jolla, CA, 92093-0810, USA.
| |
Collapse
|
37
|
Hunziker S, Morosoli F, Zuercher K, Tscherter A, Grunt S. Prescription Practices of Cannabinoids in Children with Cerebral Palsy Worldwide-A Survey of the Swiss Cerebral Palsy Registry. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1838. [PMID: 38136040 PMCID: PMC10742030 DOI: 10.3390/children10121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Cannabinoids are prescribed to children with cerebral palsy despite limited evidence. We aimed to assess cannabinoid prescribing practices in children with cerebral palsy, focusing on indications, types of preparations used, and tolerability. Furthermore, we investigated how physicians acquire knowledge about cannabinoid medication. We asked physicians with expertise in the care of children with cerebral palsy about their prescribing practices for cannabinoids. Data were collected through an online survey, which was distributed by email. In addition to the demographic information of participants, we also inquired about the indications for the prescription of cannabinoids, experiences regarding efficacy, and observed side effects of the therapy. Seventy physicians from Europe, North America, and Australia completed the survey. Forty-seven participants were experienced in treating of children with cerebral palsy with cannabinoids. The most common indication was epilepsy (69%), followed by spasticity (64%) and pain (63%). The preparations and doses prescribed varied considerably. Half of the participants evaluated the effect of the cannabinoids as moderate. Twenty-nine physicians reported side effects, most frequently, drowsiness (26%), somnolence (19%), fatigue (13%), and diarrhea (13%). Despite the lack of evidence to date, cannabinoids are used to treat children with cerebral palsy in a wide variety of indications. Randomized controlled trials in this vulnerable patient group are therefore of utmost importance.
Collapse
Affiliation(s)
- Sandra Hunziker
- Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, CH-3012 Bern, Switzerland
| | - Federico Morosoli
- Division of Neuropediatrics, Development and Rehabilitation, Children’s University Hospital, Inselspital, University of Bern, Freiburgstr. 15, CH-3010 Bern, Switzerland
| | - Kathrin Zuercher
- Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, CH-3012 Bern, Switzerland
| | - Anne Tscherter
- Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, CH-3012 Bern, Switzerland
| | - Sebastian Grunt
- Division of Neuropediatrics, Development and Rehabilitation, Children’s University Hospital, Inselspital, University of Bern, Freiburgstr. 15, CH-3010 Bern, Switzerland
| |
Collapse
|
38
|
Wang X, Zhang H, Liu Y, Xu Y, Yang B, Li H, Chen L. An overview on synthetic and biological activities of cannabidiol (CBD) and its derivatives. Bioorg Chem 2023; 140:106810. [PMID: 37659147 DOI: 10.1016/j.bioorg.2023.106810] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
(-)-Cannabidiol is a class of non-psychoactive plant cannabinoids derived from cannabis plants. Currently, Epidiolex (Cannabidiol) has been approved by the FDA for the treatment of two rare and severe forms of epilepsy related diseases, namely Lennox-Gastaut syndrome (LGS) and Dravet (DS). In addition, Cannabidiol and its structural analogues have received increasing attention due to their potential therapeutic effects such as neuroprotection, anti-epilepsy, anti-inflammation, anti-anxiety, and anti-cancer. Based on literature review, no comprehensive reviews on the synthesis of Cannabidiol and its derivatives have been found in recent years. Therefore, this article summarizes the published synthesis methods of Cannabidiol and the synthesis routes of Cannabidiol derivatives, and introduces the biological activities of some Cannabidiol analogues that have been studied extensively and have significant activities.
Collapse
Affiliation(s)
- Xiuli Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huanbang Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
39
|
Talebi M, Sadoughi MM, Ayatollahi SA, Ainy E, Kiani R, Zali A, Miri M. Therapeutic potentials of cannabidiol: Focus on the Nrf2 signaling pathway. Biomed Pharmacother 2023; 168:115805. [PMID: 39491419 DOI: 10.1016/j.biopha.2023.115805] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024] Open
Abstract
Cannabidiol (CBD), a cannabinoid that does not create psychoactive activities, has been identified as having a multitude of therapeutic benefits. This study delves into the chemical properties, pharmacokinetics, safety and toxicity, pharmacological effects, and most importantly, the association between the therapeutic potential of CBD and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The relationship between Nrf2 and CBD is closely linked to certain proteins that are associated with cardiovascular dysfunctions, cancers, and neurodegenerative conditions. Specifically, Nrf2 is connected to the initiation and progression of diverse health issues, including nephrotoxicity, bladder-related diseases, oral mucositis, cancers, obesity, myocardial injury and angiogenesis, skin-related inflammations, psychotic disorders, neuropathic pain, Huntington's disease, Alzheimer's disease, Parkinson's disease, neuroinflammation, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. The association between CBD and Nrf2 is a zone of great interest in the medical field, as it has the potential to significantly impact the treatment and prevention of wide-ranging health conditions. Additional investigation is necessary to entirely apprehend the mechanisms underlying this crucial interplay and to develop effective therapeutic interventions.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Sadoughi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elaheh Ainy
- Safety Promotion and Injury Prevention Research Center, Department of Vice Chancellor Research Affairs, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Kiani
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Zali
- Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - MirMohammad Miri
- Department of Anesthesiology and Critical Care, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Story G, Briere CE, McClements DJ, Sela DA. Cannabidiol and Intestinal Motility: a Systematic Review. Curr Dev Nutr 2023; 7:101972. [PMID: 37786751 PMCID: PMC10541995 DOI: 10.1016/j.cdnut.2023.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 10/04/2023] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating cannabinoid extracted from the cannabis plant that is used for medicinal purposes. Ingestion of CBD is claimed to address several pathologies, including gastrointestinal disorders, although limited evidence has been generated thus far to substantiate many of its health claims. Nevertheless, CBD usage as an over-the-counter treatment for gastrointestinal disorders is likely to expand in response to increasing commercial availability, permissive legal status, and acceptance by consumers. This systematic review critically evaluates the knowledge boundaries of the published research on CBD, intestinal motility, and intestinal motility disorders. Research on CBD and intestinal motility is currently limited but does support the safety and efficacy of CBD for several therapeutic applications, including seizure disorders, inflammatory responses, and upper gastrointestinal dysfunction (i.e., nausea and vomiting). CBD, therefore, may have therapeutic potential for addressing functional gastrointestinal disorders. The results of this review show promising in vitro and preclinical data supporting a role of CBD in intestinal motility. This includes improved gastrointestinal-related outcomes in murine models of colitis. These studies, however, vary by dose, delivery method, and CBD-extract composition. Clinical trials have yet to find a conclusive benefit of CBD on intestinal motility disorders, but these trials have been limited in scope. In addition, critical factors such as CBD dosing parameters have not yet been established. Further research will establish the efficacy of CBD in applications to address intestinal motility.
Collapse
Affiliation(s)
- Galaxie Story
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Carrie-Ellen Briere
- Elaine Marieb College of Nursing, University of Massachusetts, Amherst, MA, United States
| | - D. Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - David A. Sela
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
- Department of Nutrition, University of Massachusetts, Amherst, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
41
|
Trojan V, Landa L, Šulcová A, Slíva J, Hřib R. The Main Therapeutic Applications of Cannabidiol (CBD) and Its Potential Effects on Aging with Respect to Alzheimer's Disease. Biomolecules 2023; 13:1446. [PMID: 37892128 PMCID: PMC10604144 DOI: 10.3390/biom13101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/29/2023] Open
Abstract
The use of cannabinoids (substances contained specifically in hemp plants) for therapeutic purposes has received increased attention in recent years. Presently, attention is paid to two main cannabinoids: delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). With respect to the psychotropic effects and dependence potential of THC (though it is very mild), its use is associated with certain restrictions, and thus the therapeutic properties of CBD are frequently emphasized because there are no limitations associated with the risk of dependence. Therefore, this review covers the main pharmacodynamic and pharmacokinetic features of CBD (including characteristics of endocannabinoidome) with respect to its possible beneficial effects on selected diseases in clinical practice. A substantial part of the text deals with the main effects of CBD on aging, including Alzheimer's disease and related underlying mechanisms.
Collapse
Affiliation(s)
- Václav Trojan
- International Clinical Research Centre, Cannabis Facility, St. Anne’s University Hospital, Pekařská 53, 602 00 Brno, Czech Republic
| | - Leoš Landa
- International Clinical Research Centre, Cannabis Facility, St. Anne’s University Hospital, Pekařská 53, 602 00 Brno, Czech Republic
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Alexandra Šulcová
- International Clinical Research Centre, Cannabis Facility, St. Anne’s University Hospital, Pekařská 53, 602 00 Brno, Czech Republic
| | - Jiří Slíva
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic
| | - Radovan Hřib
- International Clinical Research Centre, Cannabis Facility, St. Anne’s University Hospital, Pekařská 53, 602 00 Brno, Czech Republic
- Centre for Pain Management, Department of Anesthesiology and Intensive Care, St. Anne’s University Hospital, Pekařská 53, 602 00 Brno, Czech Republic
| |
Collapse
|
42
|
Coelho MP, Duarte P, Calado M, Almeida AJ, Reis CP, Gaspar MM. The current role of cannabis and cannabinoids in health: A comprehensive review of their therapeutic potential. Life Sci 2023; 329:121838. [PMID: 37290668 DOI: 10.1016/j.lfs.2023.121838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
There has been an increased interest of the scientific community in cannabis and its constituents for therapeutic purposes. Although it is believed that cannabinoids can be effective for a few different conditions and syndromes, there are little objective data that clearly support the use of cannabis, cannabis extracts or even cannabidiol (CBD) oil. This review aims to explore the therapeutic potential of phytocannabinoids and synthetic cannabinoids for the treatment of several diseases. A broad search covering the past five years, was performed in PubMed and ClinicalTrial.gov databases, to identify papers focusing on the use of medical phytocannabinoids in terms of tolerability, efficacy and safety. Accordingly, there are preclinical data supporting the use of phytocannabinoids and synthetic cannabinoids for the management of neurological pathologies, acute and chronical pain, cancer, psychiatric disorders and chemotherapy-induced emetic symptoms. However, regarding the clinical trials, most of the collected data do not fully support the use of cannabinoids in the treatment of such conditions. Consequently, more studies are still needed to clarify ascertain if the use of these compounds is useful in the management of different pathologies.
Collapse
Affiliation(s)
- Mariana Pinto Coelho
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Patrícia Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Calado
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - António J Almeida
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Pinto Reis
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; IBEB, Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1649-016 Lisboa, Portugal.
| | - M Manuela Gaspar
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
43
|
Gojani EG, Wang B, Li DP, Kovalchuk O, Kovalchuk I. Anti-Inflammatory Effects of Minor Cannabinoids CBC, THCV, and CBN in Human Macrophages. Molecules 2023; 28:6487. [PMID: 37764262 PMCID: PMC10534668 DOI: 10.3390/molecules28186487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammation is a natural response of the body to signals of tissue damage or infection caused by pathogens. However, when it becomes imbalanced, it can lead to various disorders such as cancer, obesity, cardiovascular problems, neurological conditions, and diabetes. The endocannabinoid system, which is present throughout the body, plays a regulatory role in different organs and influences functions such as food intake, pain perception, stress response, glucose tolerance, inflammation, cell growth and specialization, and metabolism. Phytocannabinoids derived from Cannabis sativa can interact with this system and affect its functioning. In this study, we investigate the mechanisms underlying the anti-inflammatory effects of three minor phytocannabinoids including tetrahydrocannabivarin (THCV), cannabichromene (CBC), and cannabinol (CBN) using an in vitro system. We pre-treated THP-1 macrophages with different doses of phytocannabinoids or vehicle for one hour, followed by treating the cells with 500 ng/mL of LPS or leaving them untreated for three hours. To induce the second phase of NLRP3 inflammasome activation, LPS-treated cells were further treated with 5 mM ATP for 30 min. Our findings suggest that the mitigation of the PANX1/P2X7 axis plays a significant role in the anti-inflammatory effects of THCV and CBC on NLRP3 inflammasome activation. Additionally, we observed that CBC and THCV could also downregulate the IL-6/TYK-2/STAT-3 pathway. Furthermore, we discovered that CBN may exert its inhibitory impact on the assembly of the NLRP3 inflammasome by reducing PANX1 cleavage. Interestingly, we also found that the elevated ADAR1 transcript responded negatively to THCV and CBC in LPS-macrophages, indicating a potential involvement of ADAR1 in the anti-inflammatory effects of these two phytocannabinoids. THCV and CBN inhibit P-NF-κB, downregulating proinflammatory gene transcription. In summary, THCV, CBC, and CBN exert anti-inflammatory effects by influencing different stages of gene expression: transcription, post-transcriptional regulation, translation, and post-translational regulation.
Collapse
Affiliation(s)
| | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.); (B.W.); (D.-P.L.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.); (B.W.); (D.-P.L.)
| |
Collapse
|
44
|
Xie Z, Mi Y, Kong L, Gao M, Chen S, Chen W, Meng X, Sun W, Chen S, Xu Z. Cannabis sativa: origin and history, glandular trichome development, and cannabinoid biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad150. [PMID: 37691962 PMCID: PMC10485653 DOI: 10.1093/hr/uhad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023]
Abstract
Is Cannabis a boon or bane? Cannabis sativa has long been a versatile crop for fiber extraction (industrial hemp), traditional Chinese medicine (hemp seeds), and recreational drugs (marijuana). Cannabis faced global prohibition in the twentieth century because of the psychoactive properties of ∆9-tetrahydrocannabinol; however, recently, the perspective has changed with the recognition of additional therapeutic values, particularly the pharmacological potential of cannabidiol. A comprehensive understanding of the underlying mechanism of cannabinoid biosynthesis is necessary to cultivate and promote globally the medicinal application of Cannabis resources. Here, we comprehensively review the historical usage of Cannabis, biosynthesis of trichome-specific cannabinoids, regulatory network of trichome development, and synthetic biology of cannabinoids. This review provides valuable insights into the efficient biosynthesis and green production of cannabinoids, and the development and utilization of novel Cannabis varieties.
Collapse
Affiliation(s)
- Ziyan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaolei Mi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Maolun Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
45
|
Eichler F, Poźniak B, Machnik M, Schenk I, Wingender A, Baudisch N, Thevis M, Bäumer W, Lischer C, Ehrle A. Pharmacokinetic modelling of orally administered cannabidiol and implications for medication control in horses. Front Vet Sci 2023; 10:1234551. [PMID: 37621871 PMCID: PMC10445762 DOI: 10.3389/fvets.2023.1234551] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Cannabidiol (CBD) products gain increasing popularity amongst animal owners and veterinarians as an alternative remedy for treatment of stress, inflammation or pain in horses. Whilst the use of cannabinoids is banned in equine sports, there is limited information available concerning CBD detection times in blood or urine. The aim of this study was to determine the pharmacokinetic properties of CBD following oral administration in the horse to assist doping control laboratories with interpreting CBD analytical results. Part 1: dose escalation study: Single oral administration of three escalating doses of CBD paste (0.2 mg/kg, n = 3 horses; 1 mg/kg, n = 3; 3 mg/kg, n = 5) with >7 days wash-out periods in between. Part 2: multiple dose study: oral administration of CBD paste (3 mg/kg, n = 6) twice daily for 15 days. Multiple blood and urine samples were collected daily throughout both studies. Following study part 2, blood and urine samples were collected for 2 weeks to observe the elimination phase. Concentrations of CBD, its metabolites and further cannabinoids were evaluated using gas-chromatography/tandem-mass-spectrometry. Pharmacokinetic parameters were assessed via two approaches: population pharmacokinetic analysis using a nonlinear mixed-effects model and non-compartmental analysis. AUC0-12 h and Cmax were tested for dose proportionality. During the elimination phase, the CBD steady-state urine to serum concentration ratio (Rss) was calculated. Oral CBD medication was well-tolerated in horses. Based on population pharmacokinetics, a three-compartment model with zero-order absorption most accurately described the pharmacokinetic properties of CBD. High volumes of distribution into peripheral compartments and high concentrations of 7-carboxy-CBD were observed in serum. Non-compartmental analysis identified a Cmax of 12.17 ± 2.08 ng/mL after single administration of CBD (dose: 3 mg/kg). AUC0-12 h showed dose proportionality, increase for Cmax leveled off at higher doses. Following multiple doses, the CBD terminal half-life was 161.29 ± 43.65 h in serum. Rss was 4.45 ± 1.04. CBD is extensively metabolized and shows high volumes of tissue distribution with a resulting extended elimination phase. Further investigation of the potential calming and anti-inflammatory effects of CBD are required to determine cut-off values for medication control using the calculated Rss.
Collapse
Affiliation(s)
- Fabienne Eichler
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Błażej Poźniak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marc Machnik
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Ina Schenk
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Anke Wingender
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Natalie Baudisch
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Wolfgang Bäumer
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Christoph Lischer
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anna Ehrle
- Equine Clinic, Veterinary Hospital Freie Universität Berlin, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
46
|
Martinez Naya N, Kelly J, Corna G, Golino M, Abbate A, Toldo S. Molecular and Cellular Mechanisms of Action of Cannabidiol. Molecules 2023; 28:5980. [PMID: 37630232 PMCID: PMC10458707 DOI: 10.3390/molecules28165980] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cannabidiol (CBD) is the primary non-psychoactive chemical from Cannabis Sativa, a plant used for centuries for both recreational and medicinal purposes. CBD lacks the psychotropic effects of Δ9-tetrahydrocannabinol (Δ9-THC) and has shown great therapeutic potential. CBD exerts a wide spectrum of effects at a molecular, cellular, and organ level, affecting inflammation, oxidative damage, cell survival, pain, vasodilation, and excitability, among others, modifying many physiological and pathophysiological processes. There is evidence that CBD may be effective in treating several human disorders, like anxiety, chronic pain, psychiatric pathologies, cardiovascular diseases, and even cancer. Multiple cellular and pre-clinical studies using animal models of disease and several human trials have shown that CBD has an overall safe profile. In this review article, we summarize the pharmacokinetics data, the putative mechanisms of action of CBD, and the physiological effects reported in pre-clinical studies to give a comprehensive list of the findings and major effects attributed to this compound.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| | - Giuliana Corna
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires 1199, Argentina
| | - Michele Golino
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
- Department of Medicine and Surgery, University of Insubria, 2110 Varese, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| |
Collapse
|
47
|
Esmonde-White C, McLachlan RS, Burneo J, Arts J, Redhead C, Suller Marti A. Nationwide Study of Postlegalization Marijuana Use Among Patients With Epilepsy in Canada. Neurol Clin Pract 2023; 13:e200174. [PMID: 37251367 PMCID: PMC10219131 DOI: 10.1212/cpj.0000000000200174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/03/2023] [Indexed: 05/31/2023]
Abstract
Background and Objectives Patients with epilepsy have long sought alternatives to conventional antiseizure medications (ASMs) for the treatment of their epilepsy and to improve the significant side effect burden of ASMs and comorbidities. It was established before the legalization of marijuana in Canada in 2018 that many patients with epilepsy use marijuana to treat their seizures or for recreational purposes. However, there exists no current data on the prevalence and habits of marijuana use in the Canadian epilepsy population since legalization. Methods We conducted a nationwide cross-sectional survey of patients recruited through health care providers or epilepsy organizations to investigate marijuana usage habits and perceptions. Results From 395 responses obtained through the survey, 221 responses stated that they used marijuana within the past year. A history of seizures for more than 10 years was noted in 50.7% (n = 148) patients with generalized seizures being the most common type (n = 169; 57.1%). Most of them (n = 154; 52.0%) had tried 3 or more ASMs, and 37.2% (n = 110) used various other treatments (ketogenic diet, vagus nerve stimulation, or resective surgery) indicating a proportion with drug-resistant epilepsy. This subgroup was more likely to have started using marijuana for drug-resistant epilepsy (p < 0.001). Current marijuana use for epilepsy management was endorsed by 47.5% (n = 116). Marijuana was "somewhat" to "very" effective at reducing seizure frequency for 60.1% (n = 123). The main side effects of marijuana were impaired thinking (n = 40; 17.17%), anxiety (n = 37; 15.74%), and altered hunger (n = 36; 15.32%). Marijuana was used at least once daily by 70.3% (n = 168) with the median amount per week being 5.0 g (IQR = 1-10), and the preferred method of consumption was smoking (n = 83; 34.7%). The participants expressed concerns regarding financial strain (n = 108; 36.5%), lack of recommendation from a doctor (n = 89; 30.1%), and lack of information (n = 56; 18.9%) surrounding marijuana use. Discussion This study reveals a high prevalence of marijuana use among patients with epilepsy living in Canada particularly when seizures are drug resistant. A significant proportion of patients reported improvement of seizures with marijuana use, consistent with previous studies. With the increased accessibility of marijuana, it is imperative that physicians are aware of marijuana usage habits among patients with epilepsy.
Collapse
Affiliation(s)
- Caroline Esmonde-White
- Schulich School of Medicine and Dentistry (CE-W, RSM); Clinical Neurological Sciences Department (JB, ASM); Neuroepidemiology Unit (JB), Schulich School of Medicine and Dentistry, Western University; London Health Sciences Centre (JA, CR); and Paediatrics Department (ASM), Western University, London, Ontario, Canada
| | - Richard S McLachlan
- Schulich School of Medicine and Dentistry (CE-W, RSM); Clinical Neurological Sciences Department (JB, ASM); Neuroepidemiology Unit (JB), Schulich School of Medicine and Dentistry, Western University; London Health Sciences Centre (JA, CR); and Paediatrics Department (ASM), Western University, London, Ontario, Canada
| | - Jorge Burneo
- Schulich School of Medicine and Dentistry (CE-W, RSM); Clinical Neurological Sciences Department (JB, ASM); Neuroepidemiology Unit (JB), Schulich School of Medicine and Dentistry, Western University; London Health Sciences Centre (JA, CR); and Paediatrics Department (ASM), Western University, London, Ontario, Canada
| | - Jayme Arts
- Schulich School of Medicine and Dentistry (CE-W, RSM); Clinical Neurological Sciences Department (JB, ASM); Neuroepidemiology Unit (JB), Schulich School of Medicine and Dentistry, Western University; London Health Sciences Centre (JA, CR); and Paediatrics Department (ASM), Western University, London, Ontario, Canada
| | - Carmela Redhead
- Schulich School of Medicine and Dentistry (CE-W, RSM); Clinical Neurological Sciences Department (JB, ASM); Neuroepidemiology Unit (JB), Schulich School of Medicine and Dentistry, Western University; London Health Sciences Centre (JA, CR); and Paediatrics Department (ASM), Western University, London, Ontario, Canada
| | - Ana Suller Marti
- Schulich School of Medicine and Dentistry (CE-W, RSM); Clinical Neurological Sciences Department (JB, ASM); Neuroepidemiology Unit (JB), Schulich School of Medicine and Dentistry, Western University; London Health Sciences Centre (JA, CR); and Paediatrics Department (ASM), Western University, London, Ontario, Canada
| |
Collapse
|
48
|
Shanmugasundaram D, Roza JM. Effect of Broad-Spectrum Hemp Extract on Neurobehavioral Activity on the Immobilization Stress-Induced Model in Sprague Dawley Rats. ScientificWorldJournal 2023; 2023:3425576. [PMID: 37332853 PMCID: PMC10276760 DOI: 10.1155/2023/3425576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023] Open
Abstract
Background Broad-spectrum hemp extract is expected to be a promising new intervention for managing stress and anxiety. Research has shown that the cannabinoids found in Cannabis sativa, such as cannabidiol (CBD), tetrahydrocannabinol (THC), and cannabigerol (CBG), possess anxiolytic properties that can positively impact mood and stress. Methods In the current study, a broad-spectrum, nondetectable THC hemp extract with other minor cannabinoids (broad-spectrum hemp extract) was administered at 28 mg/kg·bw to evaluate its anxiolytic properties. This was performed using various behavioural models and biomarkers for oxidative stress. In addition, a 300 mg/kg·bw of Ashwagandha root extract was also incorporated to compare its effects on relieving stress and anxiety. Results The decreased levels of lipid peroxidation were measured in broad-spectrum hemp extract (36 nmol/ml), Ashwagandha (37 nmol/ml), and induction control (49 nmol/ml) treated groups of animals. The levels of 2-AG decreased in the broad-spectrum hemp extract (1.5 ng/ml), Ashwagandha (1.2 ng/ml), and induction control (2.3 ng/ml) treated groups of animals. The levels of FAAH decreased in broad-spectrum hemp extract (1.6 ng/ml), Ashwagandha (1.7 ng/ml), and induction control (1.9 ng/ml) treated groups of animals. The levels of catalase increased in broad-spectrum hemp extract (35 ng/ml), Ashwagandha (37 ng/ml), and induction control (17 ng/ml) treated groups of animals. Similarly, increased levels of glutathione were found in broad-spectrum hemp extract (30 ng/ml), Ashwagandha (27 ng/ml), and induction control (16 ng/ml) treated groups of animals. Conclusion Based on the results of this study, it can be concluded that broad-spectrum hemp extract inhibited the biomarkers for oxidative stress. Also, certain behavioural parameters showed improvements with respect to both the ingredient administered groups.
Collapse
|
49
|
Dziwenka M, Coppock R, Davidson MH, Weder MA. Toxicological safety assessment of HempChoice® hemp oil extract; a proprietary extract consisting of a high concentration of cannabidiol (CBD) in addition to other phytocannabinoids and terpenes derived from CannabissativaL. Heliyon 2023; 9:e16913. [PMID: 37313165 PMCID: PMC10258502 DOI: 10.1016/j.heliyon.2023.e16913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
HempChoice® Hemp Oil Extract (Geocann, LLC) is an extract of the aerial parts of hemp (Cannabis sativa L.) primarily comprised of 55-75% cannabidiol (CBD), 1-15% other phytocannabinoids and 1-15% terpenes. The results of multiple safety studies demonstrated that it was non-mutagenic in an Ames and mammalian cell micronucleus. test and was well tolerated in a 14-day range-finding study at dose levels up to 96.03. mg/kg BW/day. In the 90-day study, no HempChoice® Hemp Oil Extract-related significant changes were noted in weekly BW, daily BW gain, food consumption, functional observational battery or motor activity assessment. In addition, no HempChoice® Hemp Oil Extract related mortalities, abnormal clinical observations and ophthalmological changes were reported. Some HempChoice® Hemp Oil Extract-related changes were reported in the hematology and clinical chemistry parameters evaluated. These changes were not outside the normal range and were considered reversible during the 28-day recovery period. No macroscopic findings were reported, and histopathological changes related to HempChoice® Hemp Oil Extract exposure were limited to adaptive changes in the liver which were not observed in the recovery group animals. The no observed adverse effect level (NOAEL) for HempChoice® Hemp Oil Extract was determined to be 185.90 mg/kg BW/day in male and female Sprague-Dawley rats.
Collapse
Affiliation(s)
- Margitta Dziwenka
- GRAS Associates Nutrasource Pharmaceutical and Nutraceutical Services, 120 Research Lane, Suite 101, Guelph, Ontario, Canada, N1G 0B4
| | - Robert Coppock
- Toxicologist and Associates Ltd., PO Box 2031, Vegreville, AB T9C 1T2, Canada
| | - Michael H. Davidson
- Geocann, Innovation, Technology, & Clinical Research Dept., 320 E Vine Drive, Suite 207, Fort Collins, CO, 80524, USA
| | | |
Collapse
|
50
|
Fagan HA, Baldwin DS. Pharmacological Treatment of Generalised Anxiety Disorder: Current Practice and Future Directions. Expert Rev Neurother 2023:1-14. [PMID: 37183813 DOI: 10.1080/14737175.2023.2211767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Generalized Anxiety Disorder (GAD) is a common psychiatric condition, characterized by the presence of general apprehensiveness and excessive worry. Current management consists of a range of pharmacological and psychological treatments. However, many patients do not respond to first-line pharmacological treatments and novel anxiolytic drugs are being developed. AREAS COVERED In this review, the authors first discuss the diagnostic criteria and epidemiology of GAD. The effective pharmacological treatments for GAD and their tolerability are addressed. Current consensus guidelines for treatment of GAD are discussed, and maintenance treatment, the management of treatment resistance, and specific management of older adults and children/adolescents are considered. Finally, novel anxiolytics under development are discussed, with a focus on those which have entered clinical trials. EXPERT OPINION A range of effective treatments for GAD are available, particularly duloxetine, escitalopram, pregabalin, quetiapine, and venlafaxine. There is a limited evidence base to support the further pharmacological management of patients with GAD who have not responded to initial treatment. Although many novel anxiolytics have progressed to clinical trials, translation from animal models has been mostly unsuccessful. However, the potential of several compounds including certain psychedelics, ketamine, oxytocin, and agents modulating the orexin, endocannabinoid, and immune systems merits further study.
Collapse
Affiliation(s)
- Harry A Fagan
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- College Keep, Southern Health NHS Foundation Trust, Southampton, UK
| | - David S Baldwin
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- College Keep, Southern Health NHS Foundation Trust, Southampton, UK
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|