1
|
DeVuono MV, Nashed MG, Sarikahya MH, Kocsis A, Lee K, Vanin SR, Hudson R, Lonnee EP, Rushlow WJ, Hardy DB, Laviolette SR. Prenatal tetrahydrocannabinol and cannabidiol exposure produce sex-specific pathophysiological phenotypes in the adolescent prefrontal cortex and hippocampus. Neurobiol Dis 2024; 199:106588. [PMID: 38960101 DOI: 10.1016/j.nbd.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024] Open
Abstract
Clinical and preclinical evidence has demonstrated an increased risk for neuropsychiatric disorders following prenatal cannabinoid exposure. However, given the phytochemical complexity of cannabis, there is a need to understand how specific components of cannabis may contribute to these neurodevelopmental risks later in life. To investigate this, a rat model of prenatal cannabinoid exposure was utilized to examine the impacts of specific cannabis constituents (Δ9-tetrahydrocannabinol [THC]; cannabidiol [CBD]) alone and in combination on future neuropsychiatric liability in male and female offspring. Prenatal THC and CBD exposure were associated with low birth weight. At adolescence, offspring displayed sex-specific behavioural changes in anxiety, temporal order and social cognition, and sensorimotor gating. These phenotypes were associated with sex and treatment-specific neuronal and gene transcriptional alterations in the prefrontal cortex, and ventral hippocampus, regions where the endocannabinoid system is implicated in affective and cognitive development. Electrophysiology and RT-qPCR analysis in these regions implicated dysregulation of the endocannabinoid system and balance of excitatory and inhibitory signalling in the developmental consequences of prenatal cannabinoids. These findings reveal critical insights into how specific cannabinoids can differentially impact the developing fetal brains of males and females to enhance subsequent neuropsychiatric risk.
Collapse
Affiliation(s)
- Marieka V DeVuono
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Mina G Nashed
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Mohammed H Sarikahya
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Andrea Kocsis
- Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Kendrick Lee
- Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Sebastian R Vanin
- Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Roger Hudson
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Eryn P Lonnee
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Walter J Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Psychiatry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Daniel B Hardy
- Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada; Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute (CHRI), Lawson Health Research Institute, St. Joseph's Health Care, London, ON N6C 2R5, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Psychiatry, University of Western Ontario, London, ON N6A 3K7, Canada; Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute (CHRI), Lawson Health Research Institute, St. Joseph's Health Care, London, ON N6C 2R5, Canada
| |
Collapse
|
2
|
Dinur E, Goldenberg H, Robinson E, Naggan L, Kozela E, Yirmiya R. A Novel Anti-Inflammatory Formulation Comprising Celecoxib and Cannabidiol Exerts Antidepressant and Anxiolytic Effects. Cannabis Cannabinoid Res 2024; 9:561-580. [PMID: 36520610 DOI: 10.1089/can.2022.0225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Ample research shows that anti-inflammatory drugs, particularly celecoxib, exert antidepressant effects, especially in patients with microglia activation. However, substantial cardiovascular adverse effects limit celecoxib's usefulness. Given that cannabidiol (CBD) exerts anti-inflammatory, microglia-suppressive, and antidepressant effects, we hypothesized that it may potentiate the therapeutic effects of celecoxib. Methods: The effects of celecoxib, CBD, and their combination were examined in murine models of antidepressant- and anxiolytic-like behavioral responsiveness, including the forced swim test (FST), elevated plus maze (EPM), lipopolysaccharide (LPS)-induced neuroinflammation, and chronic social defeat stress (CSDS), as well as in microglia cell cultures. Results: Acute administration of a combination of celecoxib plus CBD, at doses that had no effects by themselves (10 and 5 mg/kg, respectively), produced significant antidepressant- and anxiolytic-like effects in the FST and EPM, in male and female mice. In the LPS model, combinations of celecoxib (10 or 20 mg/kg) plus CBD (30 mg/kg) reversed the anxiety-like behavior in the open-field test (OFT) and anhedonia in the sucrose preference test (SPT), with minimal effects of celecoxib or CBD by themselves. In the CSDS paradigm, a combination of celecoxib plus CBD (each at 30 mg/kg) reversed the deficits in the OFT, EPM, social exploration, and SPT, whereas celecoxib or CBD by themselves had partial effects. In BV2 microglia cultures stimulated with LPS or α-synuclein, CBD markedly potentiated the suppressive effects of celecoxib over TNFα (tumor necrosis factor-α) and IL (interleukin)-1β secretion. Conclusions: Combinations of celecoxib plus CBD produce efficacious antidepressant- and anxiolytic-like effects, which may depend on their synergistic microglia-suppressive effects.
Collapse
Affiliation(s)
- Eyal Dinur
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagar Goldenberg
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Robinson
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Naggan
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ewa Kozela
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Revankar AG, Bagewadi ZK, Shaikh IA, Mannasaheb BA, Ghoneim MM, Khan AA, Asdaq SMB. In-vitro and computational analysis of Urolithin-A for anti-inflammatory activity on Cyclooxygenase 2 (COX-2). Saudi J Biol Sci 2023; 30:103804. [PMID: 37727526 PMCID: PMC10505678 DOI: 10.1016/j.sjbs.2023.103804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Cyclooxygenase 2 (COX-2) participates in the inflammation process by converting arachidonic acid into prostaglandin G2 which increases inflammation, pain and fever. COX-2 has an active site and a heme pocket and blocking these sites stops the inflammation. Urolithin A is metabolite of ellagitannin produced from humans and animals gut microbes. In the current study, Urolithin A showed good pharmacokinetic properties. Molecular docking of the complex of Urolithin A and COX-2 revealed the ligand affinity of -7.97 kcal/mol with the ligand binding sites at TYR355, PHE518, ILE517 and GLN192 with the 4-H bonds at a distance of 2.8 Å, 2.3 Å, 2.5 Å and 1.9 Å. The RMSD plot for Urolithin A and COX-2 complex was observed to be constant throughout the duration of dynamics. A total of 3 pair of hydrogen bonds was largely observed on average of 3 simulation positions for dynamics duration of 500 ns. The MMPBSA analysis showed that active site amino acids had a binding energy of -22.0368 kJ/mol indicating that throughout the simulation the protein of target was bounded by Urolithin A. In-silico results were validated by biological assays. Urolithin A strongly revealed to exhibit anti-inflammatory effect on COX-2 with an IC50 value of 44.04 µg/mL. The anti-inflammatory capability was also depicted through reduction of protein denaturation that showed 37.6 ± 0.1 % and 43.2 ± 0.07 % reduction of protein denaturation for BSA and egg albumin respectively at 500 µg/mL. The present study, suggests Urolithin A to be an effective anti-inflammatory compound for therapeutic use.
Collapse
Affiliation(s)
- Archana G. Revankar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
| | | | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Aejaz Abdullatif Khan
- Department of General Science, Ibn Sina National College for Medical Studies, Jeddah 21418, Saudi Arabia
| | | |
Collapse
|
4
|
Wittig F, Pannenberg L, Schwarz R, Bekeschus S, Ramer R, Hinz B. Antiangiogenic Action of JZL184 on Endothelial Cells via Inhibition of VEGF Expression in Hypoxic Lung Cancer Cells. Cells 2023; 12:2332. [PMID: 37830546 PMCID: PMC10572003 DOI: 10.3390/cells12192332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 10/14/2023] Open
Abstract
JZL184, an inhibitor of monoacylglycerol lipase (MAGL) and thus of the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG), mediates various anticancer effects in preclinical studies. However, studies on the effect of this or other MAGL inhibitors under hypoxia, an important factor in tumor biology and response to cancer therapy, have not yet been performed in cancer cells. In the present study, the impact of the conditioned media (CM) of A549 and H358 lung cancer cells incubated with JZL184 under hypoxic conditions on the angiogenic properties of human umbilical vein endothelial cells (HUVECs) was investigated. Treatment of HUVECs with CM derived from cancer cells cultured for 48 h under hypoxic conditions was associated with a substantial increase in migration and tube formation compared with unconditioned medium, which was inhibited when cancer cells were incubated with JZL184. In this process, JZL184 led to a significant increase in 2-AG levels in both cell lines. Analysis of a panel of proangiogenic factors revealed inhibition of hypoxia-induced vascular endothelial growth factor (VEGF) expression by JZL184. Antiangiogenic and VEGF-lowering effects were also demonstrated for the MAGL inhibitor MJN110. Receptor antagonist experiments suggest partial involvement of the cannabinoid receptors CB1 and CB2 in the antiangiogenic and VEGF-lowering effects induced by JZL184. The functional importance of VEGF for angiogenesis in the selected system is supported by observations showing inhibition of VEGF receptor 2 (VEGFR2) phosphorylation in HUVECs by CM from hypoxic cancer cells treated with JZL184 or when hypoxic cancer cell-derived CM was spiked with a neutralizing VEGF antibody. On the other hand, JZL184 did not exert a direct effect on VEGFR2 activation induced by recombinant VEGF, so there seems to be no downstream effect on already released VEGF. In conclusion, these results reveal a novel mechanism of antiangiogenic action of JZL184 under conditions of hypoxic tumor-endothelial communication.
Collapse
Affiliation(s)
- Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| | - Liza Pannenberg
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| | - Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany;
| | - Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (F.W.); (L.P.); (R.S.); (R.R.)
| |
Collapse
|
5
|
Low ZXB, Lee XR, Soga T, Goh BH, Alex D, Kumari Y. Cannabinoids: Emerging sleep modulator. Biomed Pharmacother 2023; 165:115102. [PMID: 37406510 DOI: 10.1016/j.biopha.2023.115102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
Sleep is an essential biological phase of our daily life cycle and is necessary for maintaining homeostasis, alertness, metabolism, cognition, and other key functions across the animal kingdom. Dysfunctional sleep leads to deleterious effects on health, mood, and cognition, including memory deficits and an increased risk of diabetes, stroke, and neurological disorders. Sleep is regulated by several brain neuronal circuits, neuromodulators, and neurotransmitters, where cannabinoids have been increasingly found to play a part in its modulation. Cannabinoids, a group of lipid metabolites, are regulatory molecules that bind mainly to cannabinoid receptors (CB1 and CB2). Much evidence supports the role of cannabinoid receptors in the modulation of sleep, where their alteration exhibits sleep-promoting effects, including an increase in non-rapid-eye movement sleep and a reduction in sleep latency. However, the pharmacological alteration of CB1 receptors is associated with adverse psychotropic effects, which are not exhibited in CB2 receptor alteration. Hence, selective alteration of CB2 receptors is also of clinical importance, where it could potentially be used in treating sleep disorders. Thus, it is crucial to understand the neurobiological basis of cannabinoids in sleep physiology. In this review article, the alteration of the endocannabinoid system by various cannabinoids and their respective effects on the sleep-wake cycle are discussed based on recent findings. The mechanisms of the cannabinoid receptors on sleep and wakefulness are also explored for their clinical implications and potential therapeutic use on sleep disorders.
Collapse
Affiliation(s)
- Zhen Xuen Brandon Low
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Xin Ru Lee
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Deepa Alex
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Yatinesh Kumari
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia.
| |
Collapse
|
6
|
Wen J, Sackett S, Tanaka M, Zhang Y. Therapeutic Effects of Combined Treatment with the AEA Hydrolysis Inhibitor PF04457845 and the Substrate Selective COX-2 Inhibitor LM4131 in the Mouse Model of Neuropathic Pain. Cells 2023; 12:cells12091275. [PMID: 37174675 PMCID: PMC10177584 DOI: 10.3390/cells12091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic neuropathic pain resulting from peripheral nerve damage is a significant clinical problem, which makes it imperative to develop the mechanism-based therapeutic approaches. Enhancement of endogenous cannabinoids by blocking their hydrolysis has been shown to reduce inflammation and neuronal damage in a number of neurological disorders and neurodegenerative diseases. However, recent studies suggest that inhibition of their hydrolysis can shift endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide (AEA) toward the oxygenation pathway mediated by cyclooxygenase-2 (COX-2) to produce proinflammatory prostaglandin glycerol esters (PG-Gs) and prostaglandin ethanolamides (PG-EAs). Thus, blocking both endocannabinoid hydrolysis and oxygenation is likely to be more clinically beneficial. In this study, we used the chronic constriction injury (CCI) mouse model to explore the therapeutic effects of simultaneous inhibition of AEA hydrolysis and oxygenation in the treatment of neuropathic pain. We found that the fatty acid amide hydrolase (FAAH) inhibitor PF04457845 and the substrate-selective COX-2 inhibitor LM4131 dose-dependently reduced thermal hyperalgesia and mechanical allodynia in the CCI mice. In addition to ameliorating the pain behaviors, combined treatment with subeffective doses of these inhibitors greatly attenuated the accumulation of inflammatory cells in both sciatic nerve and spinal cord. Consistently, the increased proinflammatory cytokines IL-1β, IL-6, and chemokine MCP-1 in the CCI mouse spinal cord and sciatic nerve were also significantly reduced by combination of low doses of PF04457845 and LM4131 treatment. Therefore, our study suggests that simultaneous blockage of endocannabinoid hydrolysis and oxygenation by using the substrate-selective COX-2 inhibitor, which avoids the cardiovascular and gastrointestinal side effects associated with the use of general COX-2 inhibitors, might be a suitable strategy for the treatment of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Scott Sackett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Mikiei Tanaka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
Chen C. Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. Pharmacol Ther 2023; 244:108394. [PMID: 36966972 PMCID: PMC10123871 DOI: 10.1016/j.pharmthera.2023.108394] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Endocannabinoids are endogenous lipid signaling mediators that participate in a variety of physiological and pathological processes. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid and is a full agonist of G-protein-coupled cannabinoid receptors (CB1R and CB2R), which are targets of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient in cannabis. While 2-AG has been well recognized as a retrograde messenger modulating synaptic transmission and plasticity at both inhibitory GABAergic and excitatory glutamatergic synapses in the brain, growing evidence suggests that 2-AG also functions as an endogenous terminator of neuroinflammation in response to harmful insults, thus maintaining brain homeostasis. Monoacylglycerol lipase (MAGL) is the key enzyme that degrades 2-AG in the brain. The immediate metabolite of 2-AG is arachidonic acid (AA), a precursor of prostaglandins (PGs) and leukotrienes. Several lines of evidence indicate that pharmacological or genetic inactivation of MAGL, which boosts 2-AG levels and reduces its hydrolytic metabolites, resolves neuroinflammation, mitigates neuropathology, and improves synaptic and cognitive functions in animal models of neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and traumatic brain injury (TBI)-induced neurodegenerative disease. Thus, it has been proposed that MAGL is a potential therapeutic target for treatment of neurodegenerative diseases. As the main enzyme hydrolyzing 2-AG, several MAGL inhibitors have been identified and developed. However, our understanding of the mechanisms by which inactivation of MAGL produces neuroprotective effects in neurodegenerative diseases remains limited. A recent finding that inhibition of 2-AG metabolism in astrocytes, but not in neurons, protects the brain from TBI-induced neuropathology might shed some light on this unsolved issue. This review provides an overview of MAGL as a potential therapeutic target for neurodegenerative diseases and discusses possible mechanisms underlying the neuroprotective effects of restraining degradation of 2-AG in the brain.
Collapse
|
8
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson's disease: beneficial or detrimental effects. Inflammopharmacology 2023; 31:673-688. [PMID: 36961665 DOI: 10.1007/s10787-023-01192-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Parkinson's disease (PD) is an advanced neurodegenerative disease (NDD) caused by the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). As PD is an age-related disorder, the majority of PD patients are associated with musculoskeletal disorders with prolonged use of analgesic and anti-inflammatory agents, such as non-steroidal anti-inflammatory drugs (NSAIDs). Therefore, NSAIDs can affect PD neuropathology in different ways. Thus, the objective of the present narrative review was to clarify the potential role of NSAIDs in PD according to the assorted view of preponderance. Inhibition of neuroinflammation and modulation of immune response by NSAIDs could be an effective way in preventing the development of NDD. NSAIDs affect PD neuropathology in different manners could be beneficial or detrimental effects. Inhibition of cyclooxygenase 2 (COX2) by NSAIDs may prevent the development of PD. NSAIDs afforded a neuroprotective role against the development and progression of PD neuropathology through the modulation of neuroinflammation. Though, NSAIDs may lead to neutral or harmful effects by inhibiting neuroprotective prostacyclin (PGI2) and accentuation of pro-inflammatory leukotrienes (LTs). In conclusion, there is still a potential conflict regarding the effect of NSAIDs on PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt.
| |
Collapse
|
9
|
Lin H. Substrate-selective small-molecule modulators of enzymes: Mechanisms and opportunities. Curr Opin Chem Biol 2023; 72:102231. [PMID: 36455490 PMCID: PMC9870951 DOI: 10.1016/j.cbpa.2022.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/29/2022]
Abstract
Small-molecule inhibitors of enzymes are widely used tools in reverse chemical genetics to probe biology and explore therapeutic opportunities. They are often compared with genetic knockdown or knockout and are expected to produce phenotypes similar to the genetic perturbations. This review aims to highlight that small molecule inhibitors of enzymes and genetic perturbations may not necessarily produce the same phenotype due to the possibility of substrate-selective or substrate-dependent effects of the inhibitors. Examples of substrate-selective inhibitors and the mechanisms for the substrate-selective effects are discussed. Substrate-selective modulators of enzymes have distinct advantages and cannot be easily replaced with biologics. Thus, they present an exciting opportunity for chemical biologists and medicinal chemists.
Collapse
Affiliation(s)
- Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Zhu D, Zhang J, Hashem J, Gao F, Chen C. Inhibition of 2-arachidonoylglycerol degradation enhances glial immunity by single-cell transcriptomic analysis. J Neuroinflammation 2023; 20:17. [PMID: 36717883 PMCID: PMC9885699 DOI: 10.1186/s12974-023-02701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND 2-Arachidonoylglycerol (2-AG) is the most abundant endogenous cannabinoid. Inhibition of 2-AG metabolism by inactivation of monoacylglycerol lipase (MAGL), the primary enzyme that degrades 2-AG in the brain, produces anti-inflammatory and neuroprotective effects in neurodegenerative diseases. However, the molecular mechanisms underlying these beneficial effects are largely unclear. METHODS Hippocampal and cortical cells were isolated from cell type-specific MAGL knockout (KO) mice. Single-cell RNA sequencing was performed by 10 × Genomics platform. Cell Ranger, Seurat (v3.2) and CellChat (1.1.3) packages were used to carry out data analysis. RESULTS Using single-cell RNA sequencing analysis, we show here that cell type-specific MAGL KO mice display distinct gene expression profiles in the brain. Inactivation of MAGL results in robust changes in expression of immune- and inflammation-related genes in microglia and astrocytes. Remarkably, upregulated expression of chemokines in microglia is more pronounced in mice lacking MAGL in astrocytes. In addition, expression of genes that regulate other cellular functions and Wnt signaling in astrocytes is altered in MAGL KO mice. CONCLUSIONS Our results provide transcriptomic evidence that cell type-specific inactivation of MAGL induces differential expression of immune-related genes and other fundamental cellular pathways in microglia and astrocytes. Upregulation of the immune/inflammatory genes suggests that tonic levels of immune/inflammatory vigilance are enhanced in microglia and astrocytes, particularly in microglia, by inhibition of 2-AG metabolism, which likely contribute to anti-inflammatory and neuroprotective effects produced by inactivation of MAGL in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dexiao Zhu
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Jian Zhang
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Jack Hashem
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Fei Gao
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Chu Chen
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA ,grid.267309.90000 0001 0629 5880Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
11
|
Microglial Cannabinoid CB 2 Receptors in Pain Modulation. Int J Mol Sci 2023; 24:ijms24032348. [PMID: 36768668 PMCID: PMC9917135 DOI: 10.3390/ijms24032348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Pain, especially chronic pain, can strongly affect patients' quality of life. Cannabinoids ponhave been reported to produce potent analgesic effects in different preclinical pain models, where they primarily function as agonists of Gi/o protein-coupled cannabinoid CB1 and CB2 receptors. The CB1 receptors are abundantly expressed in both the peripheral and central nervous systems. The central activation of CB1 receptors is strongly associated with psychotropic adverse effects, thus largely limiting its therapeutic potential. However, the CB2 receptors are promising targets for pain treatment without psychotropic adverse effects, as they are primarily expressed in immune cells. Additionally, as the resident immune cells in the central nervous system, microglia are increasingly recognized as critical players in chronic pain. Accumulating evidence has demonstrated that the expression of CB2 receptors is significantly increased in activated microglia in the spinal cord, which exerts protective consequences within the surrounding neural circuitry by regulating the activity and function of microglia. In this review, we focused on recent advances in understanding the role of microglial CB2 receptors in spinal nociceptive circuitry, highlighting the mechanism of CB2 receptors in modulating microglia function and its implications for CB2 receptor- selective agonist-mediated analgesia.
Collapse
|
12
|
Ballaz S, Bourin M. Anti-Inflammatory Therapy as a Promising Target in Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:459-486. [PMID: 36949322 DOI: 10.1007/978-981-19-7376-5_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
This chapter analyzes the therapeutic potential of current anti-inflammatory drugs in treating psychiatric diseases from a neuro-immunological perspective. Based on the bidirectional brain-immune system relationship, the rationale is that a dysregulated inflammation contributes to the pathogenesis of psychiatric and neurological disorders, while the immunology function is associated with psychological variables like stress, affective disorders, and psychosis. Under certain social, psychological, and environmental conditions and biological factors, a healthy inflammatory response and the associated "sickness behavior," which are aimed to resolve a physical injury and microbial threat, become harmful to the central nervous system. The features and mechanisms of the inflammatory response are described across the main mental illnesses with a special emphasis on the profile of cytokines and the function of the HPA axis. Next, it is reviewed the potential clinical utility of immunotherapy (cytokine agonists and antagonists), glucocorticoids, unconventional anti-inflammatory agents (statins, minocycline, statins, and polyunsaturated fatty acids (PUFAs)), the nonsteroidal anti-inflammatory drugs (NSAIDs), and particularly celecoxib, a selective cyclooxygenase-2 (Cox-2) inhibitor, as adjuvants of conventional psychiatric medications. The implementation of anti-inflammatory therapies holds great promise in psychiatry. Because the inflammatory background may account for the etiology and/or progression of psychiatric disorders only in a subset of patients, there is a need to elucidate the immune underpinnings of the mental illness progression, relapse, and remission. The identification of immune-related bio-signatures will ideally assist in the stratification of the psychiatric patient to predict the risk of mental disease, the prognosis, and the response to anti-inflammatory therapy.
Collapse
Affiliation(s)
- Santiago Ballaz
- School of Biological Science and Engineering, Yachay Tech University, Urcuquí, Ecuador
- Medical School, Universidad Espíritu Santo, Samborondón, Ecuador
| | - Michel Bourin
- Neurobiology of Anxiety and Mood Disorders, University of Nantes, Nantes, France.
| |
Collapse
|
13
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
14
|
Chen C, Wang W, Poklis JL, Lichtman AH, Ritter JK, Hu G, Xie D, Li N. Inactivation of fatty acid amide hydrolase protects against ischemic reperfusion injury-induced renal fibrogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166456. [PMID: 35710061 PMCID: PMC10215004 DOI: 10.1016/j.bbadis.2022.166456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
Although cannabinoid receptors (CB) are recognized as targets for renal fibrosis, the roles of endogenous cannabinoid anandamide (AEA) and its primary hydrolytic enzyme, fatty acid amide hydrolase (FAAH), in renal fibrogenesis remain unclear. The present study used a mouse model of post-ischemia-reperfusion renal injury (PIR) to test the hypothesis that FAAH participates in the renal fibrogenesis. Our results demonstrated that PIR showed upregulated expression of FAAH in renal proximal tubules, accompanied with decreased AEA levels in kidneys. Faah knockout mice recovered the reduced AEA levels and ameliorated PIR-triggered increases in blood urea nitrogen, plasma creatinine as well as renal profibrogenic markers and injuries. Correspondingly, a selective FAAH inhibitor, PF-04457845, inhibited the transforming growth factor-beta 1 (TGF-β1)-induced profibrogenic markers in human proximal tubular cell line (HK-2 cells) and mouse primary cultured tubular cells. Knockdown of FAAH by siRNA in HK-2 cells had similar effects as PF-04457845. Tubular cells isolated from Faah-/- mice further validated the protection against TGF-β1-induced damages. The CB 1 or CB2 receptor antagonist and exogenous FAAH metabolite arachidonic acid failed to reverse the protective effects of FAAH inactivation in HK-2 cells. However, a substrate-selective inhibitor of AEA-cyclooxygenase-2 (COX-2) pathway significantly suppressed the anti-profibrogenic actions of FAAH inhibition. Further, the AEA-COX-2 metabolite, prostamide E2 exerted anti-fibrogenesis effect. These findings suggest that FAAH activation and the consequent reduction of AEA contribute to the renal fibrogenesis, and that FAAH inhibition protects against fibrogenesis in renal cells independently of CB receptors via the AEA-COX-2 pathway by the recovery of reduced AEA.
Collapse
Affiliation(s)
- Chaoling Chen
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Weili Wang
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gaizun Hu
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Dengpiao Xie
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
15
|
Scott C, Neira Agonh D, Lehmann C. Antibacterial Effects of Phytocannabinoids. Life (Basel) 2022; 12:1394. [PMID: 36143430 PMCID: PMC9505641 DOI: 10.3390/life12091394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are used as the first line of treatment for bacterial infections. However, antibiotic resistance poses a significant threat to the future of antibiotics, resulting in increased medical costs, hospital stays, and mortality. New resistance mechanisms are emerging and spreading globally, impeding the success of antibiotics in treating common infectious diseases. Recently, phytocannabinoids have been shown to possess antimicrobial activity on both Gram-negative and Gram-positive bacteria. The therapeutic use of phytocannabinoids presents a unique mechanism of action to overcome existing antibiotic resistance. Future research must be carried out on phytocannabinoids as potential therapeutic agents used as novel treatments against resistant strains of microbes.
Collapse
Affiliation(s)
- Cassidy Scott
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Daniel Neira Agonh
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
16
|
Nakashima F, Suzuki T, Gordon ON, Golding D, Okuno T, Giménez-Bastida JA, Yokomizo T, Schneider C. Biosynthetic Crossover of 5-Lipoxygenase and Cyclooxygenase-2 Yields 5-Hydroxy-PGE 2 and 5-Hydroxy-PGD 2. JACS AU 2021; 1:1380-1388. [PMID: 34604848 PMCID: PMC8479768 DOI: 10.1021/jacsau.1c00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 05/14/2023]
Abstract
The biosynthetic crossover of 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) enzymatic activities is a productive pathway to convert arachidonic acid into unique eicosanoids. Here, we show that COX-2 catalysis with 5-LOX derived 5-hydroxy-eicosatetraenoic acid yields the endoperoxide 5-hydroxy-PGH2 that spontaneously rearranges to 5-OH-PGE2 and 5-OH-PGD2, the 5-hydroxy analogs of arachidonic acid derived PGE2 and PGD2. The endoperoxide was identified via its predicted degradation product, 5,12-dihydroxy-heptadecatri-6E,8E,10E-enoic acid, and by SnCl2-mediated reduction to 5-OH-PGF2α. Both 5-OH-PGE2 and 5-OH-PGD2 were unstable and degraded rapidly upon treatment with weak base. This instability hampered detection in biologic samples which was overcome by in situ reduction using NaBH4 to yield the corresponding stable 5-OH-PGF2 diastereomers and enabled detection of 5-OH-PGF2α in activated primary human leukocytes. 5-OH-PGE2 and 5-OH-PGD2 were unable to activate EP and DP prostanoid receptors, suggesting their bioactivity is distinct from PGE2 and PGD2.
Collapse
Affiliation(s)
- Fumie Nakashima
- Division
of Clinical Pharmacology, Department of Pharmacology, and Vanderbilt
Institute of Chemical Biology, Vanderbilt
University Medical School, Nashville, Tennessee 37232, United States
| | - Takashi Suzuki
- Division
of Clinical Pharmacology, Department of Pharmacology, and Vanderbilt
Institute of Chemical Biology, Vanderbilt
University Medical School, Nashville, Tennessee 37232, United States
| | - Odaine N. Gordon
- Division
of Clinical Pharmacology, Department of Pharmacology, and Vanderbilt
Institute of Chemical Biology, Vanderbilt
University Medical School, Nashville, Tennessee 37232, United States
| | - Dominic Golding
- Division
of Clinical Pharmacology, Department of Pharmacology, and Vanderbilt
Institute of Chemical Biology, Vanderbilt
University Medical School, Nashville, Tennessee 37232, United States
| | - Toshiaki Okuno
- Department
of Biochemistry, Juntendo University Graduate
School of Medicine, Tokyo 113-8421, Japan
| | - Juan A. Giménez-Bastida
- Division
of Clinical Pharmacology, Department of Pharmacology, and Vanderbilt
Institute of Chemical Biology, Vanderbilt
University Medical School, Nashville, Tennessee 37232, United States
| | - Takehiko Yokomizo
- Department
of Biochemistry, Juntendo University Graduate
School of Medicine, Tokyo 113-8421, Japan
| | - Claus Schneider
- Division
of Clinical Pharmacology, Department of Pharmacology, and Vanderbilt
Institute of Chemical Biology, Vanderbilt
University Medical School, Nashville, Tennessee 37232, United States
| |
Collapse
|
17
|
Abstract
The endocannabinoids are lipid-derived messengers that play a diversity of regulatory roles in mammalian physiology. Dysfunctions in their activity have been implicated in various disease conditions, attracting attention to the endocannabinoid system as a possible source of therapeutic drugs. This signaling complex has three components: the endogenous ligands, anandamide and 2-arachidonoyl-sn-glycerol (2-AG); a set of enzymes and transporters that generate, eliminate, or modify such ligands; and selective cell surface receptors that mediate their biological actions. We provide an overview of endocannabinoid formation, deactivation, and biotransformation and outline the properties and therapeutic potential of pharmacological agents that interfere with those processes. We describe small-molecule inhibitors that target endocannabinoid-producing enzymes, carrier proteins that transport the endocannabinoids into cells, and intracellular endocannabinoid-metabolizing enzymes. We briefly discuss selected agents that simultaneously interfere with components of the endocannabinoid system and with other functionally related signaling pathways. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA; .,Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA;
| |
Collapse
|
18
|
Winters ND, Bedse G, Astafyev AA, Patrick TA, Altemus M, Morgan AJ, Mukerjee S, Johnson KD, Mahajan VR, Uddin MJ, Kingsley PJ, Centanni SW, Siciliano CA, Samuels DC, Marnett LJ, Winder DG, Patel S. Targeting diacylglycerol lipase reduces alcohol consumption in preclinical models. J Clin Invest 2021; 131:146861. [PMID: 34292886 PMCID: PMC8409586 DOI: 10.1172/jci146861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Alcohol use disorder (AUD) is associated with substantial morbidity, mortality, and societal cost, and pharmacological treatment options for AUD are limited. The endogenous cannabinoid (eCB) signaling system is critically involved in reward processing and alcohol intake is positively correlated with release of the eCB ligand 2-Arachidonoylglycerol (2-AG) within reward neurocircuitry. Here we show that genetic and pharmacological inhibition of diacylglycerol lipase (DAGL), the rate limiting enzyme in the synthesis of 2-AG, reduces alcohol consumption in a variety of preclinical models ranging from a voluntary free-access model to aversion resistant-drinking and dependence-like drinking induced via chronic intermittent ethanol vapor exposure in mice. DAGL inhibition during either chronic alcohol consumption or protracted withdrawal was devoid of anxiogenic and depressive-like behavioral effects. Lastly, DAGL inhibition also prevented ethanol-induced suppression of GABAergic transmission onto midbrain dopamine neurons, providing mechanistic insight into how DAGL inhibition could affect alcohol reward. These data suggest reducing 2-AG signaling via inhibition of DAGL could represent an effective approach to reduce alcohol consumption across the spectrum of AUD severity.
Collapse
Affiliation(s)
- Nathan D. Winters
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
| | - Gaurav Bedse
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
| | | | | | | | | | - Snigdha Mukerjee
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
| | | | | | - Md Jashim Uddin
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Philip J. Kingsley
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| | - Cody A. Siciliano
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
- Vanderbilt Brain Institute, and
| | - David C. Samuels
- Department of Molecular Physiology and Biophysics
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lawrence J. Marnett
- Department of Pharmacology
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| |
Collapse
|
19
|
Inhibition of 2-Arachidonoylglycerol Metabolism Alleviates Neuropathology and Improves Cognitive Function in a Tau Mouse Model of Alzheimer's Disease. Mol Neurobiol 2021; 58:4122-4133. [PMID: 33939165 DOI: 10.1007/s12035-021-02400-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, which affects more than 5 million individuals in the USA. Unfortunately, no effective therapies are currently available to prevent development of AD or to halt progression of the disease. It has been proposed that monoacylglycerol lipase (MAGL), the key enzyme degrading the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain, is a therapeutic target for AD based on the studies using the APP transgenic models of AD. While inhibition of 2-AG metabolism mitigates β-amyloid (Aβ) neuropathology, it is still not clear whether inactivation of MAGL alleviates tauopathies as accumulation and deposition of intracellular hyperphosphorylated tau protein are the neuropathological hallmark of AD. Here we show that JZL184, a potent MAGL inhibitor, significantly reduced proinflammatory cytokines, astrogliosis, phosphorylated GSK3β and tau, cleaved caspase-3, and phosphorylated NF-kB while it elevated PPARγ in P301S/PS19 mice, a tau mouse model of AD. Importantly, tau transgenic mice treated with JZL184 displayed improvements in spatial learning and memory retention. In addition, inactivation of MAGL ameliorates deteriorations in expression of synaptic proteins in P301S/PS19 mice. Our results provide further evidence that MAGL is a promising therapeutic target for AD.
Collapse
|
20
|
Osafo N, Yeboah OK, Antwi AO. Endocannabinoid system and its modulation of brain, gut, joint and skin inflammation. Mol Biol Rep 2021; 48:3665-3680. [PMID: 33909195 DOI: 10.1007/s11033-021-06366-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
The discovery of endogenous cannabinoid receptors CB1 and CB2 and their endogenous ligands has generated interest in the endocannabinoid system and has contributed to the understanding of the role of the endocannabinoid system. Its role in the normal physiology of the body and its implication in pathological states such as cardiovascular diseases, neoplasm, depression and pain have been subjects of scientific interest. In this review the authors focus on the endogenous cannabinoids, and the critical role of cannabinoid receptor signaling in neurodegeneration and other inflammatory responses such as gut, joint and skin inflammation. This review also discusses the potential of endocannabinoid pathways as drug targets in the amelioration of some inflammatory conditions. Though the exact role of the endocannabinoid system is not fully understood, the evidence found much clearly points to a great potential in exploiting both its central and peripheral pathways in disease management. Cannabinoid therapy has proven promising in several preclinical and clinical trials.
Collapse
Affiliation(s)
- Newman Osafo
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Oduro K Yeboah
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Aaron O Antwi
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
21
|
Buisseret B, Guillemot-Legris O, Ben Kouidar Y, Paquot A, Muccioli GG, Alhouayek M. Effects of R-flurbiprofen and the oxygenated metabolites of endocannabinoids in inflammatory pain mice models. FASEB J 2021; 35:e21411. [PMID: 33749884 DOI: 10.1096/fj.202002468r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
Pain is one of the cardinal signs accompanying inflammation. The prostaglandins (PGs), synthetized from arachidonic acid by cyclooxygenase (COX)-2, are major bioactive lipids implicated in inflammation and pain. However, COX-2 is also able to metabolize other lipids, including the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA), to give glycerol ester (PG-G) and ethanolamide (PG-EA) derivatives of the PGs. Consequently, COX-2 can be considered as a hub not only controlling PG synthesis, but also PG-G and PG-EA synthesis. As they were more recently characterized, these endocannabinoid metabolites are less studied in nociception compared to PGs. Interestingly R-profens, previously considered as inactive enantiomers of nonsteroidal anti-inflammatory drugs (NSAIDs), are substrate-selective COX inhibitors. Indeed, R-flurbiprofen can selectively block PG-G and PG-EA production, without affecting PG synthesis from COX-2. Therefore, we compared the effect of R-flurbiprofen and S-flurbiprofen in models of inflammatory pain triggered by local administration of lipopolysaccharides (LPS) and carrageenan in mice. Remarkably, the effects of flurbiprofen enantiomers on mechanical hyperalgesia seem to depend on (i) the inflammatory stimuli, (ii) the route of administration, and (iii) the timing of administration. We also assessed the effect of administration of the PG-Gs, PG-EAs, and PGs on LPS-induced mechanical hyperalgesia. Our data support the interest of studying the nonhydrolytic endocannabinoid metabolism in the context of inflammatory pain.
Collapse
Affiliation(s)
- Baptiste Buisseret
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Youssef Ben Kouidar
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
22
|
Colangeli R, Teskey GC, Di Giovanni G. Endocannabinoid-serotonin systems interaction in health and disease. PROGRESS IN BRAIN RESEARCH 2021; 259:83-134. [PMID: 33541682 DOI: 10.1016/bs.pbr.2021.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endocannabinoid (eCB) and serotonin (5-HT) neuromodulatory systems work both independently and together to finely orchestrate neuronal activity throughout the brain to strongly sculpt behavioral functions. Surprising parallelism between the behavioral effects of 5-HT and eCB activity has been widely reported, including the regulation of emotional states, stress homeostasis, cognitive functions, food intake and sleep. The distribution pattern of the 5-HT system and the eCB molecular elements in the brain display a strong overlap and several studies report a functional interplay and even a tight interdependence between eCB/5-HT signaling. In this review, we examine the available evidence of the interaction between the eCB and 5-HT systems. We first introduce the eCB system, then we describe the eCB/5-HT crosstalk at the neuronal and synaptic levels. Finally, we explore the potential eCB/5-HT interaction at the behavioral level with the implication for psychiatric and neurological disorders. The precise elucidation of how this neuromodulatory interaction dynamically regulates biological functions may lead to the development of more targeted therapeutic strategies for the treatment of depressive and anxiety disorders, psychosis and epilepsy.
Collapse
Affiliation(s)
- Roberto Colangeli
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - G Campbell Teskey
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
23
|
Ramalingam V, Rajaram R. A paradoxical role of reactive oxygen species in cancer signaling pathway: Physiology and pathology. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Deplano A, Karlsson J, Svensson M, Moraca F, Catalanotti B, Fowler CJ, Onnis V. Exploring the fatty acid amide hydrolase and cyclooxygenase inhibitory properties of novel amide derivatives of ibuprofen. J Enzyme Inhib Med Chem 2020; 35:815-823. [PMID: 32200655 PMCID: PMC7144264 DOI: 10.1080/14756366.2020.1743283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inhibition of fatty acid amide hydrolase (FAAH) reduces the gastrointestinal damage produced by non-steroidal anti-inflammatory agents such as sulindac and indomethacin in experimental animals, suggesting that a dual-action FAAH-cyclooxygenase (COX) inhibitor could have useful therapeutic properties. Here, we have investigated 12 novel amide analogues of ibuprofen as potential dual-action FAAH/COX inhibitors. N-(3-Bromopyridin-2-yl)−2-(4-isobutylphenyl)propanamide (Ibu-AM68) was found to inhibit the hydrolysis of [3H]anandamide by rat brain homogenates by a reversible, mixed-type mechanism of inhibition with a Ki value of 0.26 µM and an α value of 4.9. At a concentration of 10 µM, the compound did not inhibit the cyclooxygenation of arachidonic acid by either ovine COX-1 or human recombinant COX-2. However, this concentration of Ibu-AM68 greatly reduced the ability of the COX-2 to catalyse the cyclooxygenation of the endocannabinoid 2-arachidonoylglycerol. It is concluded that Ibu-AM68 is a dual-acting FAAH/substrate-selective COX inhibitor.
Collapse
Affiliation(s)
- Alessandro Deplano
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jessica Karlsson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Mona Svensson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Federica Moraca
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | | | - Valentina Onnis
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
25
|
Muldoon PP, Akinola LS, Schlosburg JE, Lichtman AH, Sim-Selley LJ, Mahadevan A, Cravatt BF, Damaj MI. Inhibition of monoacylglycerol lipase reduces nicotine reward in the conditioned place preference test in male mice. Neuropharmacology 2020; 176:108170. [PMID: 32479813 PMCID: PMC7529882 DOI: 10.1016/j.neuropharm.2020.108170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
Abstract
Nicotine, the primary psychoactive component in tobacco, plays a major role in the initiation and maintenance of tobacco dependence and addiction, a leading cause of preventable death worldwide. An essential need thus exists for more effective pharmacotherapies for nicotine-use cessation. Previous reports suggest that pharmacological and genetic blockade of CB1 receptors attenuate nicotine reinforcement and reward; while exogenous agonists enhanced these abuse-related behaviors. In this study, we utilized complementary genetic and pharmacologic approaches to test the hypothesis that increasing the levels of the endocannabinoid 2-arachindonoylglycerol (2-AG), will enhance nicotine reward by stimulating neuronal CB1 receptors. Contrary to our hypothesis, we found that inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme of 2-AG, attenuates nicotine conditioned place preference (CPP) in mice, through a non-CB1 receptor-mediated mechanism. MAGL inhibition did not alter palatable food reward or Lithium Chloride (LiCl) aversion. In support of our findings, repeated MAGL inhibition did not induce a reduction in CB1 brain receptor levels or hinder function. To explore the potential mechanism of action, we investigated if MAGL inhibition affected other fatty acid levels in our CPP paradigm. Indeed, MAGL inhibition caused a concomitant decrease in arachidonic acid (AA) levels in various brain regions of interest, suggesting an AA cascade-dependent mechanism. This idea is supported by dose-dependent attenuation of nicotine preference by the selective COX-2 inhibitors valdecoxib and LM-4131. Collectively, these findings, along with our reported studies on nicotine withdrawal, suggest that inhibition of MAGL represents a promising new target for the development of pharmacotherapies to treat nicotine dependence.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/pharmacology
- Arachidonic Acids/pharmacology
- Benzodioxoles/pharmacology
- Cannabinoid Receptor Agonists/pharmacology
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Endocannabinoids/pharmacology
- Enzyme Inhibitors/pharmacology
- Glycerides/pharmacology
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Monoacylglycerol Lipases/antagonists & inhibitors
- Monoacylglycerol Lipases/metabolism
- Nicotine/administration & dosage
- Piperidines/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Reward
- Tobacco Use Disorder/drug therapy
- Tobacco Use Disorder/metabolism
- Tobacco Use Disorder/psychology
Collapse
Affiliation(s)
- Pretal P Muldoon
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA.
| | - Joel E Schlosburg
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Laura J Sim-Selley
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Benjamin F Cravatt
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
26
|
Reddy V, Grogan D, Ahluwalia M, Salles ÉL, Ahluwalia P, Khodadadi H, Alverson K, Nguyen A, Raju SP, Gaur P, Braun M, Vale FL, Costigliola V, Dhandapani K, Baban B, Vaibhav K. Targeting the endocannabinoid system: a predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies. EPMA J 2020; 11:217-250. [PMID: 32549916 PMCID: PMC7272537 DOI: 10.1007/s13167-020-00203-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Cannabis-inspired medical products are garnering increasing attention from the scientific community, general public, and health policy makers. A plethora of scientific literature demonstrates intricate engagement of the endocannabinoid system with human immunology, psychology, developmental processes, neuronal plasticity, signal transduction, and metabolic regulation. Despite the therapeutic potential, the adverse psychoactive effects and historical stigma, cannabinoids have limited widespread clinical application. Therefore, it is plausible to weigh carefully the beneficial effects of cannabinoids against the potential adverse impacts for every individual. This is where the concept of "personalized medicine" as a promising approach for disease prediction and prevention may take into the account. The goal of this review is to provide an outline of the endocannabinoid system, including endocannabinoid metabolizing pathways, and will progress to a more in-depth discussion of the therapeutic interventions by endocannabinoids in various neurological disorders.
Collapse
Affiliation(s)
- Vamsi Reddy
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Dayton Grogan
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Katelyn Alverson
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Andy Nguyen
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Srikrishnan P. Raju
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Brown University, Providence, RI USA
| | - Pankaj Gaur
- Georgia Cancer Center, Augusta University, Augusta, GA USA
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, USA
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, USA
| | - Fernando L. Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | | | - Krishnan Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| |
Collapse
|
27
|
Yu Y, Li L, Nguyen DT, Mustafa SM, Moore BM, Jiang J. Inverse Agonism of Cannabinoid Receptor Type 2 Confers Anti-inflammatory and Neuroprotective Effects Following Status Epileptics. Mol Neurobiol 2020; 57:2830-2845. [PMID: 32378121 DOI: 10.1007/s12035-020-01923-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Prolonged status epilepticus (SE) in humans causes high mortality and brain inflammation-associated neuronal injury and morbidity in survivors. Currently, the only effective treatment is to terminate the seizures swiftly to prevent brain damage. However, reliance on acute therapies alone would be imprudent due to the required short response time. Follow-on therapies that can be delivered well after the SE onset are in an urgent need. Cannabinoid receptor type 2 (CB2), a G protein-coupled receptor that can be expressed by activated brain microglia, has emerged as an appealing anti-inflammatory target for brain conditions. In the current study, we reported that the CB2 inverse agonism by our current lead compound SMM-189 largely prevented the rat primary microglia-mediated inflammation and showed moderate neuroprotection against N-methyl-D-aspartic acid (NMDA) receptor-mediated excitotoxicity in rat primary hippocampal cultures containing both neurons and glia. Using a classical mouse model of epilepsy, in which SE was induced by systemic administration of kainate (30 mg/kg, i.p.) and proceeded for 1 h, we demonstrated that SE downregulated the CB1 but slightly upregulated CB2 receptor in the hippocampus. Transient treatment with SMM-189 (6 mg/kg, i.p., b.i.d.) after the SE was interrupted by diazepam (10 mg/kg, i.p.) prevented the seizure-induced cytokine surge in the brain, neuronal death, and behavioral impairments 24 h after SE. Our results suggest that CB2 inverse agonism might provide an adjunctive anti-inflammatory therapy that can be delivered hours after SE onset, together with NMDA receptor blockers and first-line anti-convulsants, to reduce brain injury and functional deficits following prolonged seizures.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Davis T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Suni M Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Bob M Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
28
|
Tardelli M, Bruschi FV, Fuchs CD, Claudel T, Auer N, Kunczer V, Baumgartner M, A.H.O. Ronda O, Verkade HJ, Stojakovic T, Scharnagl H, Habib A, Zimmermann R, Lotersztajn S, Trauner M. Monoacylglycerol Lipase Inhibition Protects From Liver Injury in Mouse Models of Sclerosing Cholangitis. Hepatology 2020; 71:1750-1765. [PMID: 31505038 PMCID: PMC7317927 DOI: 10.1002/hep.30929] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Monoacylglycerol lipase (MGL) is the last enzymatic step in triglyceride degradation, hydrolyzing monoglycerides into glycerol and fatty acids (FAs) and converting 2-arachidonoylglycerol into arachidonic acid, thus providing ligands for nuclear receptors as key regulators of hepatic bile acid (BA)/lipid metabolism and inflammation. We aimed to explore the role of MGL in the development of cholestatic liver and bile duct injury in mouse models of sclerosing cholangitis, a disease so far lacking effective pharmacological therapy. APPROACH AND RESULTS To this aim we analyzed the effects of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding to induce sclerosing cholangitis in wild-type (WT) and knockout (MGL-/- ) mice and tested pharmacological inhibition with JZL184 in the multidrug resistance protein 2 knockout (Mdr2-/- ) mouse model of sclerosing cholangitis. Cholestatic liver injury and fibrosis were assessed by serum biochemistry, liver histology, gene expression, and western blot characterization of BA and FA synthesis/transport. Moreover, intestinal FAs and fecal microbiome were analyzed. Transfection and silencing were performed in Caco2 cells. MGL-/- mice were protected from DDC-induced biliary fibrosis and inflammation with reduced serum liver enzymes and increased FA/BA metabolism and β-oxidation. Notably, pharmacological (JZL184) inhibition of MGL ameliorated cholestatic injury in DDC-fed WT mice and protected Mdr2-/- mice from spontaneous liver injury, with improved liver enzymes, inflammation, and biliary fibrosis. In vitro experiments confirmed that silencing of MGL decreases prostaglandin E2 accumulation in the intestine and up-regulates peroxisome proliferator-activated receptors alpha and gamma activity, thus reducing inflammation. CONCLUSIONS Collectively, our study unravels MGL as a metabolic target, demonstrating that MGL inhibition may be considered as potential therapy for sclerosing cholangitis.
Collapse
Affiliation(s)
- Matteo Tardelli
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Francesca V. Bruschi
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Claudia D. Fuchs
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Nicole Auer
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Victoria Kunczer
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Maximilian Baumgartner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Onne A.H.O. Ronda
- Center for Liver, Digestive and Metabolic DiseasesDepartments of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Henk Jan Verkade
- Center for Liver, Digestive and Metabolic DiseasesDepartments of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsUniversity Hospital GrazGrazAustria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
| | - Aida Habib
- Université de ParisCentre de Recherche sur l'InflammationINSERMUMR1149CNRSERL 8252ParisFrance
- Department of Biochemistry and Molecular GeneticsAmerican University of BeirutBeirutLebanon
| | | | - Sophie Lotersztajn
- Université de ParisCentre de Recherche sur l'InflammationINSERMUMR1149CNRSERL 8252ParisFrance
| | - Michael Trauner
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
29
|
Dainese E, Oddi S, Simonetti M, Sabatucci A, Angelucci CB, Ballone A, Dufrusine B, Fezza F, De Fabritiis G, Maccarrone M. The endocannabinoid hydrolase FAAH is an allosteric enzyme. Sci Rep 2020; 10:2292. [PMID: 32041998 PMCID: PMC7010751 DOI: 10.1038/s41598-020-59120-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) is a membrane-bound homodimeric enzyme that in vivo controls content and biological activity of N-arachidonoylethanolamine (AEA) and other relevant bioactive lipids termed endocannabinoids. Parallel orientation of FAAH monomers likely allows both subunits to simultaneously recruit and cleave substrates. Here, we show full inhibition of human and rat FAAH by means of enzyme inhibitors used at a homodimer:inhibitor stoichiometric ratio of 1:1, implying that occupation of only one of the two active sites of FAAH is enough to fully block catalysis. Single W445Y substitution in rat FAAH displayed the same activity as the wild-type, but failed to show full inhibition at the homodimer:inhibitor 1:1 ratio. Instead, F432A mutant exhibited reduced specific activity but was fully inhibited at the homodimer:inhibitor 1:1 ratio. Kinetic analysis of AEA hydrolysis by rat FAAH and its F432A mutant demonstrated a Hill coefficient of ~1.6, that instead was ~1.0 in the W445Y mutant. Of note, also human FAAH catalysed an allosteric hydrolysis of AEA, showing a Hill coefficient of ~1.9. Taken together, this study demonstrates an unprecedented allosterism of FAAH, and represents a case of communication between two enzyme subunits seemingly controlled by a single amino acid (W445) at the dimer interface. In the light of extensive attempts and subsequent failures over the last decade to develop effective drugs for human therapy, these findings pave the way to the rationale design of new molecules that, by acting as positive or negative heterotropic effectors of FAAH, may control more efficiently its activity.
Collapse
Affiliation(s)
- Enrico Dainese
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Sergio Oddi
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Monica Simonetti
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annalaura Sabatucci
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Alice Ballone
- Barcelona Biomedical Research Park (PRBB), University of Pompeu Fabra and Icrea, Barcelona, Spain
| | - Beatrice Dufrusine
- Faculty of Biosciences, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Filomena Fezza
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Gianni De Fabritiis
- Barcelona Biomedical Research Park (PRBB), University of Pompeu Fabra and Icrea, Barcelona, Spain
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy.
- Department of Medicine - Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
30
|
Ellert-Miklaszewska A, Ciechomska IA, Kaminska B. Cannabinoid Signaling in Glioma Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:223-241. [PMID: 32034716 DOI: 10.1007/978-3-030-30651-9_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cannabinoids are a group of structurally heterogeneous but pharmacologically related compounds, including plant-derived cannabinoids, synthetic substances and endogenous cannabinoids, such as anandamide and 2-arachidonoylglycerol. Cannabinoids elicit a wide range of central and peripheral effects mostly mediated through cannabinoid receptors. There are two types of specific Gi/o-protein-coupled receptors cloned so far, called CB1 and CB2, although an existence of additional cannabinoid-binding receptors has been suggested. CB1 and CB2 differ in their predicted amino acid sequence, tissue distribution, physiological role and signaling mechanisms. Significant alterations of a balance in the cannabinoid system between the levels of endogenous ligands and their receptors occur during malignant transformation in various types of cancer, including gliomas. Cannabinoids exert anti-proliferative action in tumor cells. Induction of cell death by cannabinoid treatment relies on the generation of a pro-apoptotic sphingolipid ceramide and disruption of signaling pathways crucial for regulation of cellular proliferation, differentiation or apoptosis. Increased ceramide levels lead also to ER-stress and autophagy in drug-treated glioblastoma cells. Beyond blocking of tumor cells proliferation cannabinoids inhibit invasiveness, angiogenesis and the stem cell-like properties of glioma cells, showing profound activity in the complex tumor microenvironment. Advances in translational research on cannabinoid signaling led to clinical investigations on the use of cannabinoids in treatments of glioblastomas.
Collapse
Affiliation(s)
- Aleksandra Ellert-Miklaszewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Iwona A Ciechomska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
31
|
Ferrer MD, Busquets-Cortés C, Capó X, Tejada S, Tur JA, Pons A, Sureda A. Cyclooxygenase-2 Inhibitors as a Therapeutic Target in Inflammatory Diseases. Curr Med Chem 2019; 26:3225-3241. [PMID: 29756563 DOI: 10.2174/0929867325666180514112124] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/12/2017] [Accepted: 04/22/2017] [Indexed: 02/07/2023]
Abstract
Inflammation plays a crucial role in the development of many complex diseases and disorders including autoimmune diseases, metabolic syndrome, neurodegenerative diseases, and cardiovascular pathologies. Prostaglandins play a regulatory role in inflammation. Cyclooxygenases are the main mediators of inflammation by catalyzing the initial step of arachidonic acid metabolism and prostaglandin synthesis. The differential expression of the constitutive isoform COX-1 and the inducible isoform COX-2, and the finding that COX-1 is the major form expressed in the gastrointestinal tract, lead to the search for COX-2-selective inhibitors as anti-inflammatory agents that might diminish the gastrointestinal side effects of traditional non-steroidal anti-inflammatory drugs (NSAIDs). COX-2 isoform is expressed predominantly in inflammatory cells and decidedly upregulated in chronic and acute inflammations, becoming a critical target for many pharmacological inhibitors. COX-2 selective inhibitors happen to show equivalent efficacy with that of conventional NSAIDs, but they have reduced gastrointestinal side effects. This review would elucidate the most recent findings on selective COX-2 inhibition and their relevance to human pathology, concretely in inflammatory pathologies characterized by a prolonged pro-inflammatory status, including autoimmune diseases, metabolic syndrome, obesity, atherosclerosis, neurodegenerative diseases, chronic obstructive pulmonary disease, arthritis, chronic inflammatory bowel disease and cardiovascular pathologies.
Collapse
Affiliation(s)
- Miguel D Ferrer
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| | - Carla Busquets-Cortés
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain
| | - Xavier Capó
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Josep A Tur
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Pons
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Sureda
- Laboratory for Physical Activity Sciences and Research Group in Community Nutrition and Oxidative Stress. Department of Basic Biology and Health Sciences, IUNICS, University of Balearic Islands, Palma, Spain.,CIBEROBN (Fisiopatología de la Obesidad y la Nutrición CB12/03/30038) Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Flavanones from Sorghum bicolor selectively inhibit COX-2: in-silico and in-vivo validation. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
COX-2-specific inhibitors offer improved advantages over traditional NSAIDs. Plants are known to play critical roles in the discovery and developments of new pharmaceuticals. To the best of our knowledge, nothing has been reported so far on the selective inhibition of the cyclooxygenase by flavanones. The present study aims at evaluating the selective inhibition of COX-1 and/or COX-2 by flavanones from Sorghum bicolor.
Results
Flavanones demonstrate selective inhibition of COX-2 through the formation of hydrogen bonds. Eriodictyol forms two hydrogen bonds interactions (Tyr-371 and Ser-516) within the active site of COX-2, while it forms only one hydrogen bond (Met-521) with COX-1. Sorghum bicolor flavanone extract (SBFE) demonstrate hepatoprotective potentials by augmenting the antioxidant defense system of the liver and downregulate the expression of COX-2 while ineffective against COX-1. Histopathological analyses show that SBFE is effective in the prevention of HCl/ethanol-induced gastric injury in Wistar rats.
Conclusions
The side effects associated with current NSAIDs are as a result of selective inhibition of COX-1. Flavanones are potential selective inhibitors of COX-2. Sorghum bicolor flavanone extract (SBFE) demonstrates its anti-inflammatory potential through selective inhibition of COX-2. The virtual high throughput screening techniques adopted herein could help eradicate the corresponding rigors of identifying lead bioactive(s) components of plants.
Graphical abstract
Collapse
|
33
|
Yu Y, Nguyen DT, Jiang J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog Neurobiol 2019; 183:101682. [PMID: 31454545 DOI: 10.1016/j.pneurobio.2019.101682] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
As the largest family of membrane proteins in the human genome, G protein-coupled receptors (GPCRs) constitute the targets of more than one-third of all modern medicinal drugs. In the central nervous system (CNS), widely distributed GPCRs in neuronal and nonneuronal cells mediate numerous essential physiological functions via regulating neurotransmission at the synapses. Whereas their abnormalities in expression and activity are involved in various neuropathological processes. CNS conditions thus remain highly represented among the indications of GPCR-targeted agents. Mounting evidence from a large number of animal studies suggests that GPCRs play important roles in the regulation of neuronal excitability associated with epilepsy, a common CNS disease afflicting approximately 1-2% of the population. Surprisingly, none of the US Food and Drug Administration (FDA)-approved (>30) antiepileptic drugs (AEDs) suppresses seizures through acting on GPCRs. This disparity raises concerns about the translatability of these preclinical findings and the druggability of GPCRs for seizure disorders. The currently available AEDs intervene seizures predominantly through targeting ion channels and have considerable limitations, as they often cause unbearable adverse effects, fail to control seizures in over 30% of patients, and merely provide symptomatic relief. Thus, identifying novel molecular targets for epilepsy is highly desired. Herein, we focus on recent progresses in understanding the comprehensive roles of several GPCR families in seizure generation and development of acquired epilepsy. We also dissect current hurdles hindering translational efforts in developing GPCRs as antiepileptic and/or antiepileptogenic targets and discuss the counteracting strategies that might lead to a potential cure for this debilitating CNS condition.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Davis T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
34
|
Lin J, Song Z, Chen X, Zhao R, Chen J, Chen H, Yang X, Wu Z. Trans-cinnamaldehyde shows anti-depression effect in the forced swimming test and possible involvement of the endocannabinoid system. Biochem Biophys Res Commun 2019; 518:351-356. [PMID: 31421826 DOI: 10.1016/j.bbrc.2019.08.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/10/2019] [Indexed: 01/20/2023]
Abstract
Depression is a mental disease that significantly reduces the quality of patients' life. Around 322 million people of all ages carry the heavy burden of depression on a worldwide scale, with a life-time prevalence of 20% according to the WHO. Trans-cinnamaldehyde (TCA) is an excellent COX-2 inhibitor in central nervous system which is a main constituent of GUIZHI as a member of traditional Chinese herb. Furthermore, previous studies demonstrated that TCA suppressed depression-like behavior in chronic unexpected mild stress, plus maze test and open field test. However, the molecular mechanism of TCA anti-depression effect is not clear. We examined the immobility of TCA pretreated male BALB/c mice in the forced swimming test (FST). Results show that TCA (50 mg/kg, po) revealed a significant effect on reduced immobility in the FST, compared with SAL group which indicated that TCA suppressed depression-like behavior. Moreover, TCA elevated the level of 5-HT and decreased the ratio of Glu/GABA in mice hippocampus. Compared with SAL + FST group, TCA + FST group significantly decreased COX-2, TRPV1 and CB1 protein level in mice hippocampus (p < 0.05, p < 0.05, p < 0.01). These findings suggest that TCA treatment exerted anti-depressive effect and was able to regulate neurotransmitters in the FST. This effect may have positive influence on the endocannabinoid (eCB) system.
Collapse
Affiliation(s)
- Jiacheng Lin
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Zejia Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Xiaolei Chen
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Riji Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Jiawen Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Huifeng Chen
- School of Nursing, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Xiaodan Yang
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Zhongping Wu
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China.
| |
Collapse
|
35
|
Girard P, Sourdet S, Cantet C, de Souto Barreto P, Rolland Y. Acetaminophen Safety: Risk of Mortality and Cardiovascular Events in Nursing Home Residents, a Prospective Study. J Am Geriatr Soc 2019; 67:1240-1247. [PMID: 30912588 DOI: 10.1111/jgs.15861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/02/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acetaminophen is the most widely used analgesic today. A recent systematic review found increased adverse events and mortality at therapeutic dosage. Our aim was to challenge these results in a large sample of older adults living in nursing homes (NHs). DESIGN Prospective study using data from the Impact of Educational and Professional Supportive Interventions on Nursing Home Quality Indicators project (IQUARE), a multicenter, individually tailored, nonrandomized controlled trial in NHs across southwestern France. SETTING/PARTICIPANTS We studied data from 5429 participants living in 175 NHs (average age, 86.1 ± 8.1 years; 73.9% women). MEASUREMENTS All prescriptions obtained at baseline were analyzed by a pharmacist for acetaminophen use as stand-alone or associated. Myocardial infarction (MI) and strokes were reported from participants' medical records at 18-month follow-up. Dates of death were obtained. Data collection was done through an online questionnaire at baseline and at 18 months by NH staff. Analyses were realized in our total population and a population matched on propensity score of acetaminophen intake. Six models were run for each outcome. RESULTS A total of 2239 participants were taking, on average, 2352 ± 993 mg of acetaminophen daily. Results for mortality were: hazard ratio (HR) = 0.97 (95% confidence interval [CI] = 0.86-1.10). No associations between acetaminophen intake and the risk of mortality or MI were found. In one of our models, acetaminophen intake was associated with a significant increased risk of stroke in diabetic subjects (OR = 3.19; 95% CI = 1.25-8.18; P = .0157). [Correction added March 16, 2019, after first publication online. In the previous sentence, "HR" was mistakenly used instead of "OR".] CONCLUSION: Despite old age, polypharmacy, and polymorbidity, acetaminophen was found safe for most, but not all, of our NH study population. Pain management in NHs is a health priority, and acetaminophen remains a good therapeutic choice as a first-line analgesic. More studies are needed on older diabetic patients.
Collapse
Affiliation(s)
- Philippe Girard
- Gérontopôle, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France
| | - Sandrine Sourdet
- Gérontopôle, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Inserm unité mixte de recherche 1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Christelle Cantet
- Gérontopôle, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Inserm unité mixte de recherche 1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Philipe de Souto Barreto
- Gérontopôle, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Inserm unité mixte de recherche 1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Yves Rolland
- Gérontopôle, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France.,Inserm unité mixte de recherche 1027, Université de Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
36
|
Qiu J, Lingna W, Jinghong H, Yongqing Z. Oral administration of leeches (Shuizhi): A review of the mechanisms of action on antiplatelet aggregation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:103-109. [PMID: 30543914 DOI: 10.1016/j.jep.2018.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/08/2018] [Accepted: 12/08/2018] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leeches (Shuizhi) comprise approximately 680 species distributed throughout the world. As recorded, they have been used as traditional Chinese medicines since the Eastern Han Dynasty, where they were claimed for promote blood circulation and eliminate blood stasis. And have been used to prevent CVDs by exerting multiple effects when orally administered, one of which is the significant inhibition of platelet aggregation. Its ability to exert this effect has been extensively investigated in vivo and in clinical practice. AIM OF STUDY The aim of this review is to summarize and analyse the antiplatelet aggregation mechanisms of leeches by oral administration, support their therapeutic potential and uncover opportunities for future research. MATERIALS AND METHODS Relevant studies from 1980 to 2018 on leeches and platelet aggregation were collected from ancient books, pharmacopoeia, reports and theses via library and internet databases (PubMed, CNKI, Google Scholar, Web of science, SciFinder, Springer and Elsevier). RESULTS Leeches is a unique animal medicine, they can prevent platelet aggregation by inhibiting ADP-induced platelet aggregation, increasing PGI2, decreasing TXA2 and Ca2+, and possibly recovering endothelial cell dysfunction. Leeches also exhibit a strong ability to activate eNOS, leading to an increase in platelet-derived NO. Additionally, the pteridine compounds obtained and identified from leeches have sulfur structure similar to those of other antiplatelet aggregation agents, such as ticlopidine, clopidogrel and ticagrelor. CONCLUSION The present review has focused on the related antiplatelet aggregation mechanisms, dipyridine compounds and toxicological information of leeches. According to the reported data, leeches have emerged as a good source of natural medicine for the treatment of antiplatelet aggregation agents and also make educated guesses for material basis of effects on antiplatelet aggregation. This review can help provide new insights for further studies in association with the development of effective antiplatelet aggregation drugs from natural medicines, especially leeches.
Collapse
Affiliation(s)
- Jiang Qiu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wang Lingna
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Hu Jinghong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhang Yongqing
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
37
|
Gholizadeh F, Ghahremani MH, Aliebrahimi S, Shadboorestan A, Ostad SN. Assessment of Cannabinoids Agonist and Antagonist in Invasion Potential of K562 Cancer Cells. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 29883990 PMCID: PMC6707105 DOI: 10.29252/.23.2.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The prominent hallmark of malignancies is the metastatic spread of cancer cells. Recent studies have reported that the nature of invasive cells could be changed after this phenomenon, causing chemotherapy resistance. It has been demonstrated that the up-regulated expression of matrix metalloproteinase (MMP) 2/MMP-9, as a metastasis biomarker, can fortify the metastatic potential of leukemia. Furthermore, investigations have confirmed the inhibitory effect of cannabinoid and endocannabinoid on the proliferation of cancer cells in vitro and in vivo. METHODS In the present study, the inhibitory effect of WIN 55212-2 (a CB1/CB2 receptor agonist) and AM251 (a selective CB1 receptor antagonist) on K562 cells, as a chronic myelogenous leukemia (CML) model, was evaluated using MTT and invasion assay. Expressions of MMP-2 and MMP-9 were then assessed by Western blot analysis. RESULTS The data obtained from MTT assay showed that WIN 55212-2 could attenuate cell proliferation; however, AM251 was less effective in this regard. Our results showed that WIN 55212-2 considerably reduced cancer cell invasiveness, while AM251 exhibited a converse effect. Moreover, CB1 activation resulted in decreased expression of MMP-2 and MMP-9. CONCLUSION Our findings clarifies that CB1 receptors are responsible for anti-invasive effects in the K562 cell line.
Collapse
Affiliation(s)
- Fatemeh Gholizadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Aliebrahimi
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran; ,Corresponding Author: Seyed Nasser Ostad , Department of Toxicology and Pharmacology, Faculty of Pharmacy and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran; Tel.: (+98-21) 66959105; E-mail:
| |
Collapse
|
38
|
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2018; 174:53-89. [PMID: 30599179 DOI: 10.1016/j.pneurobio.2018.12.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/04/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
AD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD. The currently understood pathological and biochemical manifestations include cholinergic, Aβ, tau, excitotoxicity, oxidative stress, ApoE, CREB signaling pathways, insulin resistance, etc. However, these hypotheses have been criticized with several conflicting reports for their involvement in the disease progression. Several issues need to be addressed such as benefits to cost ratio with cholinesterase therapy, the dilemma of AChE selectivity over BChE, BBB permeability of peptidic BACE-1 inhibitors, hurdles related to the implementation of vaccination and immunization therapy, and clinical failure of candidates related to newly available targets. The present review provides an insight to the different molecular mechanisms involved in the development and progression of the AD and potential therapeutic strategies, enlightening perceptions into structural information of conventional and novel targets along with the successful applications of computational approaches for the design of target-specific inhibitors.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pavan Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Seth
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Prabhash Nath Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Anupam G Banerjee
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
39
|
Jones M, Wen J, Selvaraj P, Tanaka M, Moran S, Zhang Y. Therapeutic Effect of the Substrate-Selective COX-2 Inhibitor IMMA in the Animal Model of Chronic Constriction Injury. Front Pharmacol 2018; 9:1481. [PMID: 30618769 PMCID: PMC6305478 DOI: 10.3389/fphar.2018.01481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/03/2018] [Indexed: 01/09/2023] Open
Abstract
Enhancement of endocannabinoid signaling has emerged as an attractive strategy for the treatment of pain. In addition to the well-characterized hydrolytic pathways, cyclooxygenase-2 (COX-2) mediated oxygenation is thought to be an alternative route for endocannabinoid metabolism and therefore provides a new avenue for drug intervention. In this study, we examined the therapeutic effect of indomethacin morpholinamide (IMMA), a novel substrate-selective COX-2 inhibitor, in the chronic constriction injury (CCI) mouse model. Treatment with IMMA significantly alleviated hyperalgesia and mechanical allodynia demonstrated by increased thermal withdrawal latency in Hargreaves test and tactile thresholds in Von Frey test. Accumulation of astrocytes and microglia in spinal cord dorsal horn and infiltration of macrophages into the dorsal root ganglion and sciatic nerve were reduced by drug treatment. Co-administration of the CB2 receptor antagonist, but not the CB1 receptor antagonist partially reversed the inhibitory effect of IMMA on pain sensitivity and inflammatory infiltrates. IMMA downregulated the mRNA expression of TNF-α and IL-1β and the production of IL-6 and MCP-1 proteins in the ipsilateral sciatic nerve. The enhanced NF-κB DNA binding activity in the CCI mouse dorsal spinal cord was also significantly reduced, suggesting that inactivation of NF-κB contributes to the anti-inflammatory property of IMMA. However, different from the previous reports showing that IMMA can increase endocannabinoids without interfering with arachidonic acid metabolism, treatment with IMMA failed to elevate the endogenous levels of AEA and 2-AG, but significantly reduced the production of prostaglandin E2 (PGE2). Furthermore, the mRNA expression of enzymes involved in PGE2 production, COX-2 and prostaglandin E synthase 2 in the ipsilateral sciatic nerve was also suppressed by IMMA treatment. Taken together, these results suggested that IMMA might exert anti-nociceptive effects through multiple mechanisms which include, but are not limited to, CB2 receptor activation and reduced PGE2 production.
Collapse
Affiliation(s)
- Melissa Jones
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Prabhuanand Selvaraj
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mikiei Tanaka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sean Moran
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
40
|
Zhang J, Chen C. Alleviation of Neuropathology by Inhibition of Monoacylglycerol Lipase in APP Transgenic Mice Lacking CB2 Receptors. Mol Neurobiol 2018; 55:4802-4810. [PMID: 28733897 PMCID: PMC5776068 DOI: 10.1007/s12035-017-0689-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/12/2017] [Indexed: 01/25/2023]
Abstract
Inhibition of monoacylglycerol lipase (MAGL), the primary enzyme that hydrolyzes the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain, produces profound anti-inflammatory and neuroprotective effects and improves synaptic and cognitive functions in animal models of Alzheimer's disease (AD). However, the molecular mechanisms underlying the beneficial effects produced by inhibition of 2-AG metabolism are still not clear. The cannabinoid receptor type 2 (CB2R) has been thought to be a therapeutic target for AD. Here, we provide evidence, however, that CB2R does not play a role in ameliorating AD neuropathology produced by inactivation of MAGL in 5XFAD APP transgenic mice, an animal model of AD. We observed that expression of APP and β-secretase as well as production of total Aβ and Aβ42 were significantly reduced in APP transgenic mice lacking CB2R (TG-CB2-KO) treated with JZL184, a selective and potent inhibitor for MAGL. Inactivation of MAGL also alleviated neuroinflammation and neurodegeneration in TG-CB2-KO mice. Importantly, TG-CB2-KO mice treated with JZL184 still exhibited improvements in spatial learning and memory. In addition, MAGL inhibition prevented deterioration in expression of important synaptic proteins in TG-CB2-KO mice. Our results suggest that CB2R is not required in ameliorating neuropathology and preventing cognitive decline by inhibition of 2-AG metabolism in AD model animals.
Collapse
Affiliation(s)
- Jian Zhang
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Chu Chen
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA.
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
41
|
Bedse G, Bluett RJ, Patrick TA, Romness NK, Gaulden AD, Kingsley PJ, Plath N, Marnett LJ, Patel S. Therapeutic endocannabinoid augmentation for mood and anxiety disorders: comparative profiling of FAAH, MAGL and dual inhibitors. Transl Psychiatry 2018; 8:92. [PMID: 29695817 PMCID: PMC5917016 DOI: 10.1038/s41398-018-0141-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/28/2017] [Accepted: 02/22/2018] [Indexed: 12/23/2022] Open
Abstract
Recent studies have demonstrated anxiolytic potential of pharmacological endocannabinoid (eCB) augmentation approaches in a variety of preclinical models. Pharmacological inhibition of endocannabinoid-degrading enzymes, such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), elicit promising anxiolytic effects in rodent models with limited adverse behavioral effects, however, the efficacy of dual FAAH/MAGL inhibition has not been investigated. In the present study, we compared the effects of FAAH (PF-3845), MAGL (JZL184) and dual FAAH/MAGL (JZL195) inhibitors on (1) anxiety-like behaviors under non-stressed and stressed conditions, (2) locomotor activity and body temperature, (3) lipid levels in the brain and (4) cognitive functions. Behavioral analysis showed that PF-3845 or JZL184, but not JZL195, was able to prevent restraint stress-induced anxiety in the light-dark box assay when administered before stress exposure. Moreover, JZL195 treatment was not able to reverse foot shock-induced anxiety-like behavior in the elevated zero maze or light-dark box. JZL195, but not PF-3845 or JZL184, decreased body temperature and increased anxiety-like behavior in the open-field test. Overall, JZL195 did not show anxiolytic efficacy and the effects of JZL184 were more robust than that of PF-3845 in the models examined. These results showed that increasing either endogenous AEA or 2-AG separately produces anti-anxiety effects under stressful conditions but the same effects are not obtained from simultaneously increasing both AEA and 2-AG.
Collapse
Affiliation(s)
- Gaurav Bedse
- 0000 0004 1936 9916grid.412807.8Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA
| | - Rebecca J. Bluett
- 0000 0004 1936 9916grid.412807.8Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA ,0000 0001 2264 7217grid.152326.1Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN USA
| | - Toni A. Patrick
- 0000 0004 1936 9916grid.412807.8Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA
| | - Nicole K. Romness
- 0000 0004 1936 9916grid.412807.8Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA
| | - Andrew D. Gaulden
- 0000 0004 1936 9916grid.412807.8Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA
| | - Philip J. Kingsley
- 0000 0001 2264 7217grid.152326.1Departments of Biochemistry, Chemistry, and Pharmacology, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Niels Plath
- 0000 0004 0476 7612grid.424580.fH. Lundbeck A/S, Copenhagen, Denmark
| | - Lawrence J. Marnett
- 0000 0001 2264 7217grid.152326.1Departments of Biochemistry, Chemistry, and Pharmacology, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Sachin Patel
- 0000 0004 1936 9916grid.412807.8Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN USA ,0000 0001 2264 7217grid.152326.1Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN USA ,0000 0001 2264 7217grid.152326.1Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN USA
| |
Collapse
|
42
|
Chen HJC, Spiers JG, Sernia C, Lavidis NA. Inhibition of Fatty Acid Amide Hydrolase by PF-3845 Alleviates the Nitrergic and Proinflammatory Response in Rat Hippocampus Following Acute Stress. Int J Neuropsychopharmacol 2018; 21:786-795. [PMID: 29579222 PMCID: PMC6070085 DOI: 10.1093/ijnp/pyy033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Long-term exposure to stress has been demonstrated to cause neuroinflammation through a sustained overproduction of free radicals, including nitric oxide, via an increased inducible nitric oxide synthase activity. We previously demonstrated that inducible nitric oxide synthase activity and mRNA are significantly upregulated in the rat hippocampus following just 4 hours of restraint stress. Similar to nitric oxide, endocannabinoids are synthesized on demand, with preclinical observations suggesting that cannabinoid receptor agonists and endocannabinoid enhancers inhibit nitrergic activity. Specifically, previous work has shown that enhancement of endocannabinoids via inhibition of fatty acid amide hydrolase with PF-3845 reduced inducible nitric oxide synthase-expressing microglia following traumatic brain injury. However, this describes cannabinoid modulation following physical injury, and therefore the present study aimed to examine the effects of PF-3845 in the modulation of nitrergic and inflammatory-related genes within the hippocampus after acute stress exposure. METHODS Following vehicle or PF-3845 injections (5 mg/kg; i.p.), male Wistar rats were exposed to 0 (control), 60, 240, or 360 minutes of restraint stress after which plasma and dorsal hippocampus were isolated for further biochemical and gene expression analysis. RESULTS The results demonstrate that pretreatment with PF-3845 rapidly ameliorates plasma corticosterone release at 60 minutes of stress. An increase in endocannabinoid signalling also induces an overall attenuation in inducible nitric oxide synthase, tumor necrosis factor-alpha convertase, interleukin-6, cyclooxygenase-2, peroxisome proliferator-activated receptor gamma mRNA, and the transactivation potential of nuclear factor kappa-light-chain-enhancer of activated B cells in the hippocampus. CONCLUSIONS These results suggest that enhanced endocannabinoid levels in the dorsal hippocampus have an overall antinitrosative and antiinflammatory effect following acute stress exposure.
Collapse
Affiliation(s)
- Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia,Correspondence: Hsiao-Jou Cortina Chen, PhD, School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, Australia ()
| | - Jereme G Spiers
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
43
|
ANDERSON RYANL, MERKLER DAVIDJ. N-FATTY ACYLGLYCINES: UNDERAPPRECIATED ENDOCANNABINOID-LIKE FATTY ACID AMIDES? JOURNAL OF BIOLOGY AND NATURE 2018; 8:156-165. [PMID: 29607420 PMCID: PMC5878051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Long-chain N-fatty acylglycines, R-CO-NH-CH2-COOH (where "R" refers to an unsaturated or saturated alkyl chain of at least 14 carbons) are found in mammals and insects and are structurally related to the cell-signaling, lipid-like, N-fatty acylethanolamines, R-CO-NH-CH2-CH2-OH (where "R" refers to an alkyl chain of at least 14 carbons). Accumulating evidence demonstrates that the N-fatty acylglycines have important cellular functions, but much work remains in order to fully appreciate and understand these biomolecules including: (a) more work on their functions in vivo, (b) measuring their concentrations in the cell, (c) defining the pathways for the biosynthesis and degradation, and (d) understanding the metabolic interconversion(s) between the N-fatty acylglycines and other fatty acid amides. The purpose of reviewing the current state-of-knowledge about the N-fatty acylglycines is to stimulate future research about this intriguing family of biomolecules.
Collapse
Affiliation(s)
- RYAN L. ANDERSON
- Department of Chemistry, University of South Florida, Tampa FL33620, USA
| | - DAVID J. MERKLER
- Department of Chemistry, University of South Florida, Tampa FL33620, USA
| |
Collapse
|
44
|
Poddighe L, Carta G, Serra MP, Melis T, Boi M, Lisai S, Murru E, Muredda L, Collu M, Banni S, Quartu M. Acute administration of beta-caryophyllene prevents endocannabinoid system activation during transient common carotid artery occlusion and reperfusion. Lipids Health Dis 2018; 17:23. [PMID: 29402275 PMCID: PMC5799897 DOI: 10.1186/s12944-018-0661-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) has been shown to stimulate early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The aim of the present study is to probe the possibility to prevent the molecular changes induced by the BCCAO/R with dietary natural compounds known to possess anti-inflammatory activity, such as the phytocannabinoid beta-caryophyllene (BCP). METHODS Two groups of adult Wistar rats were used, sham-operated and submitted to BCCAO/R. In both groups, 6 h before surgery, half of the rats were gavage-fed with a single dose of BCP (40 mg/per rat in 300 μl of sunflower oil as vehicle), while the second half were pre-treated with the vehicle alone. HPLC, Western Blot and immunohistochemistry were used to analyze cerebral cortex and plasma. RESULTS After BCCAO/R, BCP prevented the increase of lipoperoxides occurring in the vehicle-treated rats in both cerebral cortex and plasma. In the frontal cortex, BCP further prevented activation of the endocannabinoid system (ECS), spared the docosahexaenoic acid (DHA), appeared to prevent the increase of cyclooxygenase-2 and increased the peroxisome-proliferator activated receptor-alpha (PPAR-alpha) protein levels, while, in plasma, BCP induced the reduction of arachidonoylethanolamide (AEA) levels as compared to vehicle-treated rats. CONCLUSIONS Collectively, the pre-treatment with BCP, likely acting as agonist for CB2 and PPAR-alpha receptors, modulates in a beneficial way the ECS activation and the lipoperoxidation, taken as indicative of oxidative stress. Furthermore, our results support the evidence that BCP may be used as a dietary supplement to control the physiological response to the hypoperfusion/reperfusion-induced oxidative stress.
Collapse
Affiliation(s)
- Laura Poddighe
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Gianfranca Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Tiziana Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Marianna Boi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Sara Lisai
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Elisabetta Murru
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Laura Muredda
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Maria Collu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, (CA) 09042 Italy
| |
Collapse
|
45
|
Schwarz R, Ramer R, Hinz B. Targeting the endocannabinoid system as a potential anticancer approach. Drug Metab Rev 2018; 50:26-53. [PMID: 29390896 DOI: 10.1080/03602532.2018.1428344] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is currently under intense investigation due to the therapeutic potential of cannabinoid-based drugs as treatment options for a broad variety of diseases including cancer. Besides the canonical endocannabinoid system that includes the cannabinoid receptors CB1 and CB2 and the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, recent investigations suggest that other fatty acid derivatives, receptors, enzymes, and lipid transporters likewise orchestrate this system as components of the endocannabinoid system when defined as an extended signaling network. As such, fatty acids acting at cannabinoid receptors (e.g. 2-arachidonoyl glyceryl ether [noladin ether], N-arachidonoyldopamine) as well as endocannabinoid-like substances that do not elicit cannabinoid receptor activation (e.g. N-palmitoylethanolamine, N-oleoylethanolamine) have raised interest as anticancerogenic substances. Furthermore, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid binding protein family, additional cannabinoid-activated G protein-coupled receptors, members of the transient receptor potential family as well as peroxisome proliferator-activated receptors have been considered as targets of antitumoral cannabinoid activity. Therefore, this review focused on the antitumorigenic effects induced upon modulation of this extended endocannabinoid network.
Collapse
Affiliation(s)
- Rico Schwarz
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| | - Robert Ramer
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| | - Burkhard Hinz
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
46
|
Cilia R. Molecular Imaging of the Cannabinoid System in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:305-345. [DOI: 10.1016/bs.irn.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
47
|
Woodhams SG, Chapman V, Finn DP, Hohmann AG, Neugebauer V. The cannabinoid system and pain. Neuropharmacology 2017; 124:105-120. [PMID: 28625720 PMCID: PMC5785108 DOI: 10.1016/j.neuropharm.2017.06.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/31/2017] [Accepted: 06/14/2017] [Indexed: 01/20/2023]
Abstract
Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics, representing an enormous clinical, societal, and economic burden. Existing pain medications have significant limitations and adverse effects including tolerance, dependence, gastrointestinal dysfunction, cognitive impairment, and a narrow therapeutic window, making the search for novel analgesics ever more important. In this article, we review the role of an important endogenous pain control system, the endocannabinoid (EC) system, in the sensory, emotional, and cognitive aspects of pain. Herein, we briefly cover the discovery of the EC system and its role in pain processing pathways, before concentrating on three areas of current major interest in EC pain research; 1. Pharmacological enhancement of endocannabinoid activity (via blockade of EC metabolism or allosteric modulation of CB1receptors); 2. The EC System and stress-induced modulation of pain; and 3. The EC system & medial prefrontal cortex (mPFC) dysfunction in pain states. Whilst we focus predominantly on the preclinical data, we also include extensive discussion of recent clinical failures of endocannabinoid-related therapies, the future potential of these approaches, and important directions for future research on the EC system and pain. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Stephen G Woodhams
- Arthritis UK Pain Centre, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| | - Victoria Chapman
- Arthritis UK Pain Centre, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - David P Finn
- Pharmacology & Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Interdisciplinary Biochemistry Graduate Program, Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
48
|
Thomas BF. Interactions of Cannabinoids With Biochemical Substrates. SUBSTANCE ABUSE-RESEARCH AND TREATMENT 2017; 11:1178221817711418. [PMID: 28607542 PMCID: PMC5457144 DOI: 10.1177/1178221817711418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/13/2017] [Indexed: 01/02/2023]
Abstract
Recent decades have seen much progress in the identification and characterization of cannabinoid receptors and the elucidation of the mechanisms by which derivatives of the Cannabis sativa plant bind to receptors and produce their physiological and psychological effects. The information generated in this process has enabled better understanding of the fundamental physiological and psychological processes controlled by the central and peripheral nervous systems and has fostered the development of natural and synthetic cannabinoids as therapeutic agents. A negative aspect of this decades-long effort is the proliferation of clandestinely synthesized analogs as recreational street drugs with dangerous effects. Currently, the interactions of cannabinoids with their biochemical substrates are extensively but inadequately understood, and the clinical application of derived and synthetic receptor ligands remains quite limited. The wide anatomical distribution and functional complexity of the cannabinoid system continue to indicate potential for both therapeutic and side effects, which offers challenges and opportunities for medicinal chemists involved in drug discovery and development.
Collapse
Affiliation(s)
- Brian F Thomas
- Analytical Chemistry and Pharmaceutics, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
49
|
Maccarrone M. Metabolism of the Endocannabinoid Anandamide: Open Questions after 25 Years. Front Mol Neurosci 2017; 10:166. [PMID: 28611591 PMCID: PMC5447297 DOI: 10.3389/fnmol.2017.00166] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
Abstract
Cannabis extracts have been used for centuries, but its main active principle ∆9-tetrahydrocannabinol (THC) was identified about 50 years ago. Yet, it is only 25 years ago that the first endogenous ligand of the same receptors engaged by the cannabis agents was discovered. This “endocannabinoid (eCB)” was identified as N-arachidonoylethanolamine (or anandamide (AEA)), and was shown to have several receptors, metabolic enzymes and transporters that altogether drive its biological activity. Here I report on the latest advances about AEA metabolism, with the aim of focusing open questions still awaiting an answer for a deeper understanding of AEA activity, and for translating AEA-based drugs into novel therapeutics for human diseases.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of RomeRome, Italy.,European Center for Brain Research, IRCCS Santa Lucia FoundationRome, Italy
| |
Collapse
|
50
|
Patel S, Hill MN, Cheer JF, Wotjak CT, Holmes A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev 2017; 76:56-66. [PMID: 28434588 PMCID: PMC5407316 DOI: 10.1016/j.neubiorev.2016.12.033] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 12/01/2022]
Abstract
The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety disorders and other conditions resulting from dysfunctional responses to stress. In this mini-review, we highlight components of the eCB system that offer potential 'druggable' targets for new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in anxiety-like behaviors in rodents and variation in human anxiety symptoms. We also discuss a non-canonical route to regulate eCB degradation that involves interfering with cyclooxygenase-2 (COX-2). Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol (CBD), while representing a less specific pharmacological approach, may be another way to modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these various approaches provide a range of plausible paths to developing novel compounds that could prove useful for treating trauma-related and anxiety disorders.
Collapse
Affiliation(s)
- Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, USA; Vanderbilt Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, USA
| | - Mathew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology & Neurogenetics, Munich, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|