1
|
Li Y, Xiang S, Hu L, Qian J, Liu S, Jia J, Cui J. In vitro metabolism of triclosan and chemoprevention against its cytotoxicity. CHEMOSPHERE 2023; 339:139708. [PMID: 37536533 DOI: 10.1016/j.chemosphere.2023.139708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Triclosan (TCS), a broad-spectrum antibacterial chemical, has been extensively used in personal daily care items, household commodities, and clinical medications; therefore, humans are at risk of being exposed to TCS in their daily lives. This chemical also accumulated in food chains, and potential risks were associated with its metabolism in vivo. The aim of this study was to investigate the difference in metabolic profile of TCS by hepatic P450 enzymes and extrahepatic P450s, and also identify chemical structures of its metabolites. The results showed that RLM mediated the hydroxylation and cleavage of the ether moiety of TCS, resulting in phenolic metabolites that are more polar than the parent compound, including 4-chlorocatechol, 2,4-dichlorophenol and monohydroxylated triclosan. The major metabolite of CYP1A1 and CYP1B1 mediated TCS metabolism is 4-chlorochol. We also performed molecular docking experiments to investigate possible binding modes of TCS in the active sites of human CYP1B1, CYP1A1, and CYP3A4. In addition to in vitro experiments, we further examined the cytotoxic effects of TCS on HepG2 cells expressing hepatic P450 and MCF-7/1B1 cells expressing CYP1B1. It exhibited significant cytotoxicity on HepG2, MCF-10A and MCF-7/1B1 cells, with IC50 values of 70 ± 10 μM, 20 ± 10 μM and 60 ± 20 μM, respectively. The co-incubation of TCS with glutathione (GSH) as a chemopreventive agent could reduce the cytotoxicity of TCS in vitro. The chemopreventive effects of GSH might be ascribed to the promotion of TCS efflux mediated by membrane transporter MRP1 and also its antioxidant property, which partially neutralized the oxidative stress of TCS on mammalian cells. This study contributed to our understanding of the relationship between the P450 metabolism and the toxicity of TCS. It also had implications for the use of specific chemopreventive agents against the toxicity of TCS.
Collapse
Affiliation(s)
- Yubei Li
- School of China-UK Low Carbon College, Shanghai Jiaotong University, Shanghai, China
| | - Shouyan Xiang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Liuyin Hu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jiajun Qian
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Shuoguo Liu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China; School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
2
|
Valdiviezo A, Kato Y, Baker ES, Chiu WA, Rusyn I. Evaluation of Metabolism of a Defined Pesticide Mixture through Multiple In Vitro Liver Models. TOXICS 2022; 10:566. [PMID: 36287846 PMCID: PMC9609317 DOI: 10.3390/toxics10100566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The evaluation of exposure to multiple contaminants in a mixture presents a number of challenges. For example, the characterization of chemical metabolism in a mixture setting remains a research area with critical knowledge gaps. Studies of chemical metabolism typically utilize suspension cultures of primary human hepatocytes; however, this model is not suitable for studies of more extended exposures and donor-to-donor variability in a metabolic capacity is unavoidable. To address this issue, we utilized several in vitro models based on human-induced pluripotent stem cell (iPSC)-derived hepatocytes (iHep) to characterize the metabolism of an equimolar (1 or 5 µM) mixture of 20 pesticides. We used iHep suspensions and 2D sandwich cultures, and a microphysiological system OrganoPlate® 2-lane 96 (MimetasTM) that also included endothelial cells and THP-1 cell-derived macrophages. When cell culture media were evaluated using gas and liquid chromatography coupled to tandem mass spectrometry methods, we found that the parent molecule concentrations diminished, consistent with metabolic activity. This effect was most pronounced in iHep suspensions with a 1 µM mixture, and was lowest in OrganoPlate® 2-lane 96 for both mixtures. Additionally, we used ion mobility spectrometry-mass spectrometry (IMS-MS) to screen for metabolite formation in these cultures. These analyses revealed the presence of five primary metabolites that allowed for a more comprehensive evaluation of chemical metabolism in vitro. These findings suggest that iHep-based suspension assays maintain higher metabolic activity compared to 2D sandwich and OrganoPlate® 2-lane 96 model. Moreover, this study illustrates that IMS-MS can characterize in vitro metabolite formation following exposure to mixtures of environmental contaminants.
Collapse
Affiliation(s)
- Alan Valdiviezo
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yuki Kato
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Laboratory for Drug Discovery and Development, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Erin S. Baker
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Takemura A, Gong S, Sato T, Kawaguchi M, Sekine S, Kazuki Y, Horie T, Ito K. Evaluation of Parent- and Metabolite-Induced Mitochondrial Toxicities Using CYP-Introduced HepG2 cells. J Pharm Sci 2021; 110:3306-3312. [PMID: 34097978 DOI: 10.1016/j.xphs.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022]
Abstract
Mitochondrial toxicity is an important factor to predict drug-induced liver injury (DILI). Previous studies have focused predominantly on mitochondrial toxicities due to parent forms, and no study has adequately evaluated metabolite-induced mitochondrial toxicity. Moreover, previous studies have used HepG2 cells, which lack many cytochrome P450 (CYP) genes. To overcome this problem, CYP-introduced HepG2 cells were constructed using several gene transfer technologies, including adenoviruses and plasmids. However, these methods only led to a transient expression of CYP genes. In the present study, usefulness of four CYPs introduced-HepG2 (TC-Hep) cells previously constructed through mammalian artificial chromosome technology were examined, especially from the perspective of mitochondrial toxicity. First, we evaluated the effects of known compounds, such as rotenone and flutamide, on mitochondrial toxicity and cell death in TC-Hep cells cultured in galactose conditions. Expectedly, rotenone-induced cell death ameliorated because rotenone was metabolized by CYPs into inactive form(s) and flutamide-induced cell death increased in TC-Hep cells. Second, we evaluated five compounds that caused liver injury in clinical phase and were discontinued during pharmaceutical development. The present in vitro tool suggested that three of the five compounds caused metabolite-induced mitochondrial toxicities. In conclusion, the present in vitro tool could easily and inexpensively detect metabolite-induced mitochondrial toxicity; hence, it can be useful for predicting DILI in preclinical phase.
Collapse
Affiliation(s)
- Akinori Takemura
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Simin Gong
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomoyuki Sato
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Moemi Kawaguchi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Shuichi Sekine
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan; Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Japan
| | - Toru Horie
- DeThree Research Laboratories, Ibaraki, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| |
Collapse
|
4
|
Abstract
Drug-induced liver injury (DILI) is a leading cause of attrition during the early and late stages of drug development and after a drug is marketed. DILI is generally classified as either intrinsic or idiosyncratic. Intrinsic DILI is dose dependent and predictable (e.g., acetaminophen toxicity). However, predicting the occurrence of idiosyncratic DILI, which has a very low incidence and is associated with severe liver damage, is difficult because of its complex nature and the poor understanding of its mechanism. Considering drug metabolism and pharmacokinetics, we established experimental animal models of DILI for 14 clinical drugs that cause idiosyncratic DILI in humans, which is characterized by the formation of reactive metabolites and the involvement of both innate and adaptive immunity. On the basis of the biomarker data obtained from the animal models, we developed a cell-based assay system that predicts the potential risks of drugs for inducing DILI. These findings increase our understanding of the mechanisms of DILI and may help predict and prevent idiosyncratic DILI due to certain drugs.
Collapse
Affiliation(s)
- Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| |
Collapse
|
5
|
García-Medina S, Galar-Martínez M, Gómez-Oliván LM, Torres-Bezaury RMDC, Islas-Flores H, Gasca-Pérez E. The relationship between cyto-genotoxic damage and oxidative stress produced by emerging pollutants on a bioindicator organism (Allium cepa): The carbamazepine case. CHEMOSPHERE 2020; 253:126675. [PMID: 32278918 DOI: 10.1016/j.chemosphere.2020.126675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The carbamazepine (CBZ) is one of the most frequently detected anticonvulsant drugs in water bodies. Although there are reports of its ecotoxicological effects in the scientific literature, toxicity studies have not focused on establishing the mechanism by which CBZ produces its effect at environmentally relevant concentrations. The objective of this work was to evaluate cyto-genotoxicity and its relationship with oxidative stress produced by carbamazepine in the Allium cepa model. The cytotoxicity and genotoxicity, as well as the biomarkers of oxidative stress were analyzed in the roots of A. cepa, exposed to 1 and 31.36 μg L-1 after 2, 6, 12, 24, 48 and 72 h. The results show that genotoxic capacity of this drug in the roots of A. cepa is related to the generation of oxidative stress, in particular with production of hydroperoxides and oxidized proteins. Also, the cytotoxic effect has a high correlation with DNA damage. The results of the present study clearly indicate that bioassays with sensitive plants such as A. cepa are useful and complementary tools to evaluate the environmental impact of emerging contaminants.
Collapse
Affiliation(s)
- Sandra García-Medina
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu S/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico.
| | - Marcela Galar-Martínez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu S/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico.
| | - Leobardo Manuel Gómez-Oliván
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan S/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Rosalía María Del Consuelo Torres-Bezaury
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu S/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| | - Hariz Islas-Flores
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan S/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Eloy Gasca-Pérez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu S/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico; Cátedra CONACYT, Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu S/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico
| |
Collapse
|
6
|
Shin HS, Lee HJ, Pyo MC, Ryu D, Lee KW. Ochratoxin A-Induced Hepatotoxicity through Phase I and Phase II Reactions Regulated by AhR in Liver Cells. Toxins (Basel) 2019; 11:E377. [PMID: 31261931 PMCID: PMC6669489 DOI: 10.3390/toxins11070377] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Ochratoxin A (OTA) is a widespread mycotoxin produced by several species of the genera Aspergillus and Penicillium. OTA exists in a variety of foods, including rice, oats, and coffee and is hepatotoxic, with a similar mode of action as aflatoxin B1. The precise mechanism of cytotoxicity is not yet known, but oxidative damage is suspected to contribute to its cytotoxic effects. In this study, human hepatocyte HepG2 cells were treated with various concentrations of OTA (5-500 nM) for 48 h. OTA triggered oxidative stress as demonstrated by glutathione depletion and increased reactive oxygen species, malondialdehyde level, and nitric oxide production. Apoptosis was observed with 500 nM OTA treatment. OTA increased both the mRNA and protein expression of phase I and II enzymes. The same results were observed in an in vivo study using ICR mice. Furthermore, the relationship between phase I and II enzymes was demonstrated by the knockdown of the aryl hydrocarbon receptor (AhR) and NF-E2-related factor 2 (Nrf2) with siRNA. Taken together, our results show that OTA induces oxidative stress through the phase I reaction regulated by AhR and induces apoptosis, and that the phase II reaction is activated by Nrf2 in the presence of oxidative stress.
Collapse
Affiliation(s)
- Hye Soo Shin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Hyun Jung Lee
- School of Food Science, University of Idaho, 875 Perimeter Drive, Moscow, MS 2312, USA
| | - Min Cheol Pyo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Dojin Ryu
- School of Food Science, University of Idaho, 875 Perimeter Drive, Moscow, MS 2312, USA
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
7
|
Zhang Y, den Braver-Sewradj SP, den Braver MW, Hiemstra S, Vermeulen NPE, van de Water B, Commandeur JNM, Vos JC. Glutathione S-Transferase P1 Protects Against Amodiaquine Quinoneimines-Induced Cytotoxicity but Does Not Prevent Activation of Endoplasmic Reticulum Stress in HepG2 Cells. Front Pharmacol 2018; 9:388. [PMID: 29720942 PMCID: PMC5915463 DOI: 10.3389/fphar.2018.00388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Formation of the reactive amodiaquine quinoneimine (AQ-QI) and N-desethylamodiaquine quinoneimine (DEAQ-QI) plays an important role in the toxicity of the anti-malaria drug amodiaquine (AQ). Glutathione conjugation protects against AQ-induced toxicity and GSTP1 is able to conjugate its quinoneimine metabolites AQ-QI and DEA-QI with glutathione. In this study, HepG2 cells transiently transfected with the human GSTP1 construct were utilized to investigate the protective effect of GSTP1 in a cellular context. HepG2 cells were exposed to synthesized QIs, which bypasses the need for intracellular bioactivation of AQ or DEAQ. Exposure was accompanied by decreased cell viability, increased caspase 3 activity, and decreased intracellular GSH levels. Using high-content imaging-based BAC-GFP reporters, it was shown that AQ-QI and DEAQ-QI specifically activated the endoplasmic reticulum (ER) stress response. In contrast, oxidative stress, DNA damage, or inflammatory stress responses were not activated. Overexpression of GSTP1 resulted in a two-fold increase in GSH-conjugation of the QIs, attenuated QI-induced cytotoxicity especially under GSH-depletion condition, abolished QIs-induced apoptosis but did not significantly inhibit the activation of the ER stress response. In conclusion, these results indicate a protective role of GSTP1 by increasing enzymatic detoxification of AQ-QI and DEAQ-QI and suggest a second protective mechanism by interfering with ER stress induced apoptosis.
Collapse
Affiliation(s)
- Yongjie Zhang
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Clinical Pharmacokinetics Research Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shalenie P den Braver-Sewradj
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michiel W den Braver
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Steven Hiemstra
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J C Vos
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
DeGroot DE, Swank A, Thomas RS, Strynar M, Lee MY, Carmichael PL, Simmons SO. mRNA transfection retrofits cell-based assays with xenobiotic metabolism. J Pharmacol Toxicol Methods 2018; 92:77-94. [PMID: 29555536 DOI: 10.1016/j.vascn.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 01/21/2023]
Abstract
The US EPA's ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to false positive (chemical is detoxified in vivo) as well as false negative results (chemical is bioactivated in vivo) and thus potential mischaracterization of chemical hazard. To address this challenge, the ten most prevalent human liver cytochrome P450 (CYP) enzymes were introduced into a human cell line (HEK293T) with low endogenous metabolic capacity. The CYP enzymes were introduced via transfection of modified mRNAs as either singlets or as a mixture in relative proportions as expressed in human liver. Initial experiments using luminogenic substrates demonstrate that CYP enzyme activities are significantly increased when co-transfected with an mRNA encoding a CYP accessory protein, P450 oxidoreductase (POR). Transfected HEK293T cells demonstrate the ability to produce predicted metabolites following treatment with well-studied CYP substrates for at least 18 h post-treatment. As a demonstration of how this method can be used to retrofit existing HTS assays, a proof-of-concept screen for cytotoxicity in HEK293T cells was conducted using 56 test compounds. The results demonstrate that the xenobiotic metabolism conferred by transfection of CYP-encoding mRNAs shifts the dose-response relationship for some of the tested chemicals such as aflatoxin B1 (bioactivation) and fenazaquin (detoxification). Overall, transfection of CYP-encoding mRNAs is an effective and portable solution for retrofitting existing cell-based HTS assays with metabolic competence.
Collapse
Affiliation(s)
| | - Adam Swank
- Research Cores Unit, National Health and Environmental Effects Research Laboratory, USA
| | | | - Mark Strynar
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, USA
| | - Mi-Young Lee
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | | |
Collapse
|
9
|
Tao Y, Xie S, Xu F, Liu A, Wang Y, Chen D, Pan Y, Huang L, Peng D, Wang X, Yuan Z. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food Chem Toxicol 2018; 112:320-331. [DOI: 10.1016/j.fct.2018.01.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
|
10
|
Xu J, Oda S, Yokoi T. Cell-based assay using glutathione-depleted HepaRG and HepG2 human liver cells for predicting drug-induced liver injury. Toxicol In Vitro 2018; 48:286-301. [PMID: 29407385 DOI: 10.1016/j.tiv.2018.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 12/14/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Immortalized liver cells have been used for evaluating the toxicity of compounds; however, excessive glutathione is considered to lessen cytotoxicity. In this study, we compared the effects of glutathione depletion on cytotoxicities of drugs using HepaRG and HepG2 cells, which express and lack drug-metabolizing enzymes, respectively, for predicting drug-induced liver injury (DILI) risks. These cells were pre-incubated with L-buthionine-S,R-sulfoximine (BSO) and then exposed to 34 test compounds with various DILI risks for 24 h. ATP level exhibited the highest predictability of DILI among tested parameters. BSO treatment rendered cells susceptible to drug-induced cytotoxicity when evaluated by cell viability and caspase 3/7 activity with the sensitivity of cell viability from 50% in non-treated HepaRG cells to 71% in BSO-treated HepaRG cells. These results indicate that cytotoxicity assays using GSH-depleted HepaRG cells improve the predictability of DILI risks. However, HepaRG cells were not always superior to HepG2 cells when assessed by ATP level. The combination of HepG2 and HepaRG cells index produced the best prediction in the cases of caspase 3/7 acitivity and ATP level. In conclusions, the developed highly sensitive cell-based assay using GSH-reduced cells would be useful for predicting potential DILI risks at an early stage of drug development.
Collapse
Affiliation(s)
- Jieyu Xu
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
11
|
Ren Z, Chen S, Ning B, Guo L. Use of Liver-Derived Cell Lines for the Study of Drug-Induced Liver Injury. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Satoh D, Iwado S, Abe S, Kazuki K, Wakuri S, Oshimura M, Kazuki Y. Establishment of a novel hepatocyte model that expresses four cytochrome P450 genes stably via mammalian-derived artificial chromosome for pharmacokinetics and toxicity studies. PLoS One 2017; 12:e0187072. [PMID: 29065189 PMCID: PMC5655360 DOI: 10.1371/journal.pone.0187072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/12/2017] [Indexed: 01/29/2023] Open
Abstract
The utility of HepG2 cells to assess drug metabolism and toxicity induced by chemical compounds is hampered by their low cytochrome P450 (CYP) activities. To overcome this limitation, we established HepG2 cell lines expressing major CYP enzymes involved in drug metabolism (CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and CYP oxidoreductase (POR) using the mammalian-derived artificial chromosome vector. Transchromosomic HepG2 (TC-HepG2) cells expressing four CYPs and POR were used to determine time- and concentration-dependent inhibition and toxicity of several compounds by luminescence detection of CYP-specific substrates and cell viability assays. Gene expression levels of all four CYPs and POR, as well as the CYP activities, were higher in TC-HepG2 clones than in parental HepG2 cells. Additionally, the activity levels of all CYPs were reduced in a concentration-dependent manner by specific CYP inhibitors. Furthermore, preincubation of TC-HepG2 cells with CYP inhibitors known as time-dependent inhibitors (TDI) prior to the addition of CYP-specific substrates determined that CYP inhibition was enhanced in the TDI group than in the non-TDI group. Finally, the IC50 of bioactivable compound aflatoxin B1 was lower in TC-HepG2 cells than in HepG2 cells. In conclusion, the TC-HepG2 cells characterized in the current study are a highly versatile model to evaluate drug-drug interactions and hepatotoxicity in initial screening of candidate drug compounds, which require a high degree of processing capacity and reliability.
Collapse
Affiliation(s)
- Daisuke Satoh
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Satoru Iwado
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | | | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
- * E-mail:
| |
Collapse
|
13
|
Induction of CYP1A1 increases gefitinib-induced oxidative stress and apoptosis in A549 cells. Toxicol In Vitro 2017; 44:36-43. [DOI: 10.1016/j.tiv.2017.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 12/14/2022]
|
14
|
Transcriptomic characterization of bovine primary cultured hepatocytes; a cross-comparison with a bovine liver and the Madin-Darby bovine kidney cells. Res Vet Sci 2017; 113:40-49. [PMID: 28863307 DOI: 10.1016/j.rvsc.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/07/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
Bovine primary cultured hepatocytes (CHs) are widely used in vitro models for liver toxicity testing. However, little is known about their whole-transcriptome profile and its resemblance to the normal liver tissue. In the present study, we profiled - by microarray - the whole-transcriptome of bovine CHs (n=4) and compared it with the transcriptomic landscape of control liver samples (n=8), as well the Madin-Darby bovine kidney (MDBK) cells (n=4). Compared with liver tissue, the bovine CHs relatively expressed (fold change >2, P<0.05) about 2155 and 2073 transcripts at a lower and higher abundance, respectively. Of those expressed at a lower abundance, many were drug biotransformation enzyme-coding genes, such as the cytochrome P450 family (CYPs), sulfotransferases, methyltransferases, and glutathione S-transferases. Also, several drug transporters and solute carriers were expressed at a lower abundance in bovine CHs. 'Drug metabolism', 'PPAR signaling', and 'metabolism of xenobiotics by CYPs' were among the most negatively-enriched pathways in bovine CHs compared with liver. A qPCR cross-validation using 8 selected genes evidenced a high correlation (r=0.95, P=0.001) with the corresponding microarray results. Although from a kidney origin, and albeit to a lower extent compared to bovine CHs, the MDBK cells showed a basal expression of many CYP-coding genes. Our study provides a whole-transcriptome-based evidence for the bovine CHs and hepatic tissue resemblance. Overall, the bovine CHs' transcriptomic profile might render it unreliable as an in vitro model to study drug metabolism.
Collapse
|
15
|
Tolosa L, Jiménez N, Pérez G, Castell JV, Gómez-Lechón MJ, Donato MT. Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury. Arch Toxicol 2017; 92:383-399. [PMID: 28762043 PMCID: PMC5773651 DOI: 10.1007/s00204-017-2036-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
Drug-induced liver injury (DILI) has a considerable impact on human health and is a major challenge in drug safety assessments. DILI is a frequent cause of liver injury and a leading reason for post-approval drug regulatory actions. Considerable variations in the expression levels of both cytochrome P450 (CYP) and conjugating enzymes have been described in humans, which could be responsible for increased susceptibility to DILI in some individuals. We herein explored the feasibility of the combined use of HepG2 cells co-transduced with multiple adenoviruses that encode drug-metabolising enzymes, and a high-content screening assay to evaluate metabolism-dependent drug toxicity and to identify metabolic phenotypes with increased susceptibility to DILI. To this end, HepG2 cells with different expression levels of specific drug-metabolism enzymes (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, GSTM1 and UGT2B7) were exposed to nine drugs with reported hepatotoxicity. A panel of pre-lethal mechanistic parameters (mitochondrial superoxide production, mitochondrial membrane potential, ROS production, intracellular calcium concentration, apoptotic nuclei) was used. Significant differences were observed according to the level of expression and/or the combination of several drug-metabolism enzymes in the cells created ad hoc according to the enzymes implicated in drug toxicity. Additionally, the main mechanisms implicated in the toxicity of the compounds were also determined showing also differences between the different types of cells employed. This screening tool allowed to mimic the variability in drug metabolism in the population and showed a highly efficient system for predicting human DILI, identifying the metabolic phenotypes associated with increased DILI risk, and indicating the mechanisms implicated in their toxicity.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Nuria Jiménez
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Gabriela Pérez
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - José V Castell
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain
| | - M José Gómez-Lechón
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - M Teresa Donato
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain. .,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain.
| |
Collapse
|
16
|
Oda S, Kato Y, Hatakeyama M, Iwamura A, Fukami T, Kume T, Yokoi T, Nakajima M. Evaluation of Expression and Glycosylation Status of UGT1A10 in Supersomes and Intestinal Epithelial Cells with a Novel Specific UGT1A10 Monoclonal Antibody. Drug Metab Dispos 2017; 45:1027-1034. [DOI: 10.1124/dmd.117.075291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
|
17
|
CRISPR knockout rat cytochrome P450 3A1/2 model for advancing drug metabolism and pharmacokinetics research. Sci Rep 2017; 7:42922. [PMID: 28218310 PMCID: PMC5317174 DOI: 10.1038/srep42922] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Cytochrome P450 (CYP) 3A accounts for nearly 30% of the total CYP enzymes in the human liver and participates in the metabolism of over 50% of clinical drugs. Moreover, CYP3A plays an important role in chemical metabolism, toxicity, and carcinogenicity. New animal models are needed to investigate CYP3A functions, especially for drug metabolism. In this report, Cyp3a1/2 double knockout (KO) rats were generated by CRISPR-Cas9 technology, and then were characterized for viability and physiological status. The Cyp3a1/2 double KO rats were viable and fertile, and had no obvious physiological abnormities. Compared with the wild-type (WT) rat, Cyp3a1/2 expression was completely absent in the liver of the KO rat. In vitro and in vivo metabolic studies of the CYP3A1/2 substrates indicated that CYP3A1/2 was functionally inactive in double KO rats. The Cyp3a1/2 double KO rat model was successfully generated and characterized. The Cyp3a1/2 KO rats are a novel rodent animal model that will be a powerful tool for the study of the physiological and pharmacological roles of CYP3A, especially in drug and chemical metabolism in vivo.
Collapse
|
18
|
Gómez-Lechón MJ, Tolosa L, Donato MT. Upgrading HepG2 cells with adenoviral vectors that encode drug-metabolizing enzymes: application for drug hepatotoxicity testing. Expert Opin Drug Metab Toxicol 2016; 13:137-148. [PMID: 27671376 DOI: 10.1080/17425255.2017.1238459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Drug attrition rates due to hepatotoxicity are an important safety issue considered in drug development. The HepG2 hepatoma cell line is currently being used for drug-induced hepatotoxicity evaluations, but its expression of drug-metabolizing enzymes is poor compared with hepatocytes. Different approaches have been proposed to upgrade HepG2 cells for more reliable drug-induced liver injury predictions. Areas covered: We describe the advantages and limitations of HepG2 cells transduced with adenoviral vectors that encode drug-metabolizing enzymes for safety risk assessments of bioactivable compounds. Adenoviral transduction facilitates efficient and controlled delivery of multiple drug-metabolizing activities to HepG2 cells at comparable levels to primary human hepatocytes by generating an 'artificial hepatocyte'. Furthermore, adenoviral transduction enables the design of tailored cells expressing particular metabolic capacities. Expert opinion: Upgraded HepG2 cells that recreate known inter-individual variations in hepatic CYP and conjugating activities due to both genetic (e.g., polymorphisms) or environmental (e.g., induction, inhibition) factors seems a suitable model to identify bioactivable drug and conduct hepatotoxicity risk assessments. This strategy should enable the generation of customized cells by reproducing human pheno- and genotypic CYP variability to represent a valuable human hepatic cell model to develop new safer drugs and to improve existing predictive toxicity assays.
Collapse
Affiliation(s)
- M José Gómez-Lechón
- a Unidad de Hepatología Experimental , Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Valencia , Spain.,b CIBEREHD, FIS , Spain
| | - Laia Tolosa
- a Unidad de Hepatología Experimental , Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Valencia , Spain
| | - M Teresa Donato
- a Unidad de Hepatología Experimental , Instituto de Investigación Sanitaria La Fe (IIS La Fe) , Valencia , Spain.,b CIBEREHD, FIS , Spain.,c Departamento de Bioquímica y Biología Molecular, Facultad de Medicina , Universidad de Valencia , Valencia , Spain
| |
Collapse
|
19
|
Rana P, Will Y, Nadanaciva S, Jones LH. Development of a cell viability assay to assess drug metabolite structure-toxicity relationships. Bioorg Med Chem Lett 2016; 26:4003-6. [PMID: 27397500 DOI: 10.1016/j.bmcl.2016.06.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 01/24/2023]
Abstract
Many adverse drug reactions are caused by the cytochrome P450 (CYP)-dependent activation of drugs into reactive metabolites. In order to reduce attrition due to metabolism-induced toxicity and to improve the safety of drug candidates, we developed a simple cell viability assay by combining a bioactivation system (human CYP3A4, CYP2D6 and CYP2C9) with Hep3B cells. We screened a series of drugs to explore structural motifs that may be responsible for CYP450-dependent activation caused by reactive metabolite formation, which highlighted specific liabilities regarding certain phenols and anilines.
Collapse
Affiliation(s)
- Payal Rana
- Drug Safety Research & Development, Pfizer, Eastern Point Road, Groton, CT 06340, USA
| | - Yvonne Will
- Drug Safety Research & Development, Pfizer, Eastern Point Road, Groton, CT 06340, USA
| | - Sashi Nadanaciva
- Compound Safety Prediction, Pfizer, Eastern Point Road, Groton, CT 06340, USA
| | - Lyn H Jones
- Medicine Design, Pfizer, 610 Main St., Cambridge, MA 02139, USA.
| |
Collapse
|
20
|
Gómez-Lechón MJ, Tolosa L, Donato MT. Metabolic activation and drug-induced liver injury: in vitro approaches for the safety risk assessment of new drugs. J Appl Toxicol 2015; 36:752-68. [PMID: 26691983 DOI: 10.1002/jat.3277] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/21/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) is a significant leading cause of hepatic dysfunction, drug failure during clinical trials and post-market withdrawal of approved drugs. Many cases of DILI are unexpected reactions of an idiosyncratic nature that occur in a small group of susceptible individuals. Intensive research efforts have been made to understand better the idiosyncratic DILI and to identify potential risk factors. Metabolic bioactivation of drugs to form reactive metabolites is considered an initiation mechanism for idiosyncratic DILI. Reactive species may interact irreversibly with cell macromolecules (covalent binding, oxidative damage), and alter their structure and activity. This review focuses on proposed in vitro screening strategies to predict and reduce idiosyncratic hepatotoxicity associated with drug bioactivation. Compound incubation with metabolically competent biological systems (liver-derived cells, subcellular fractions), in combination with methods to reveal the formation of reactive intermediates (e.g., formation of adducts with liver proteins, metabolite trapping or enzyme inhibition assays), are approaches commonly used to screen the reactivity of new molecules in early drug development. Several cell-based assays have also been proposed for the safety risk assessment of bioactivable compounds. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
MESH Headings
- Activation, Metabolic
- Animals
- Cell Culture Techniques/trends
- Cell Line
- Cells, Cultured
- Chemical and Drug Induced Liver Injury/epidemiology
- Chemical and Drug Induced Liver Injury/metabolism
- Chemical and Drug Induced Liver Injury/pathology
- Coculture Techniques/trends
- Drug Evaluation, Preclinical/trends
- Drugs, Investigational/adverse effects
- Drugs, Investigational/chemistry
- Drugs, Investigational/pharmacokinetics
- Humans
- In Vitro Techniques/trends
- Liver/cytology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Microfluidics/methods
- Microfluidics/trends
- Microsomes, Liver/drug effects
- Microsomes, Liver/enzymology
- Microsomes, Liver/metabolism
- Models, Biological
- Pluripotent Stem Cells/cytology
- Pluripotent Stem Cells/drug effects
- Pluripotent Stem Cells/metabolism
- Pluripotent Stem Cells/pathology
- Recombinant Proteins/metabolism
- Risk Assessment
- Risk Factors
- Tissue Scaffolds/trends
Collapse
Affiliation(s)
- M José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- CIBEREHD, FIS, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - M Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- CIBEREHD, FIS, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain
| |
Collapse
|
21
|
Xuan J, Chen S, Ning B, Tolleson WH, Guo L. Development of HepG2-derived cells expressing cytochrome P450s for assessing metabolism-associated drug-induced liver toxicity. Chem Biol Interact 2015; 255:63-73. [PMID: 26477383 DOI: 10.1016/j.cbi.2015.10.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 01/08/2023]
Abstract
The generation of reactive metabolites from therapeutic agents is one of the major mechanisms of drug-induced liver injury (DILI). In order to evaluate metabolism-related toxicity and improve drug efficacy and safety, we generated a battery of HepG2-derived cell lines that express 14 cytochrome P450s (CYPs) (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5 and 3A7) individually using a lentiviral expression system. The expression/production of a specific CYP in each cell line was confirmed by an increased abundance of the CYP at both mRNA and protein levels. Moreover, the enzymatic activities of representative CYPs in the corresponding cell lines were also measured. Using our CYP-expressed HepG2 cells, the toxicity of three drugs that could induce DILI (amiodarone, chlorpromazine and primaquine) was assessed, and all of them showed altered (increased or decreased) toxicity compared to the toxicity in drug-treated wild-type HepG2 cells. CYP-mediated drug toxicity examined in our cell system is consistent with previous reports, demonstrating the potential of these cells for assessing metabolism-related drug toxicity. This cell system provides a practical in vitro approach for drug metabolism screening and for early detection of drug toxicity. It is also a surrogate enzyme source for the enzymatic characterization of a particular CYP that contributes to drug-induced liver toxicity.
Collapse
Affiliation(s)
- Jiekun Xuan
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Baitang Ning
- Division of System Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - William H Tolleson
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
22
|
Doricakova A, Vrzal R. A food contaminant ochratoxin A suppresses pregnane X receptor (PXR)-mediated CYP3A4 induction in primary cultures of human hepatocytes. Toxicology 2015; 337:72-8. [PMID: 26341324 DOI: 10.1016/j.tox.2015.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 01/11/2023]
Abstract
Ochratoxin A (OCHA) is a mycotoxin, which can be found in food such as coffee, wine, cereals, meat, nuts. Since it is absorbed via gastrointestinal tract, it is reasonable to anticipate that the liver will be the first organ to which OCHA comes into the contact before systemic circulation. Many xenobiotics are metabolically modified after the passage of the liver to biologically more active substances, sometimes with more harmful activity. Promoting own metabolism is often achieved via transcriptional regulation of biotransformation enzymes through ligand-activated transcription factors. Pregnane X receptor (PXR) belongs to such a group of regulators and it was demonstrated to be activated by many compounds of synthetic as well as natural origin. Our intention was to investigate if OCHA is capable of activating the PXR with consequent induction of PXR-regulated CYP3A4 gene. We found that OCHA does not activate PXR but displays antagonist-like behavior when combined with rifampicin (RIF) in gene reporter assay in human embryonal kidney cells (Hek293T). It was very weak inducer of CYP3A4 mRNA in primary cultures of human hepatocytes and it antagonized RIF-mediated CYP3A4 induction of mRNA as well as protein. In addition, it caused the decline of PXR protein as well as mRNA which was faster than that with actinomycin D, a transcription inhibitor. Since we found that OCHA induced the expression of miR-148a, which was described to regulate PXR expression, we conclude that antagonist-like behavior of OCHA is not due to the antagonism itself but due to the downregulation of PXR gene expression. Herein we provide important findings which bring a piece of puzzle into the understanding of mechanism of toxic action of ochratoxin A.
Collapse
Affiliation(s)
- Aneta Doricakova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| |
Collapse
|
23
|
Cytotoxicity of thiazolidinedione-, oxazolidinedione- and pyrrolidinedione-ring containing compounds in HepG2 cells. Toxicol In Vitro 2015; 29:1887-96. [PMID: 26193171 DOI: 10.1016/j.tiv.2015.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/24/2015] [Accepted: 07/16/2015] [Indexed: 11/23/2022]
Abstract
Liver damage occurred in some patients who took troglitazone (TGZ) for type II diabetes. The 2,4-thiazolidinedione (TZD) ring in TGZ's structure has been implicated in its hepatotoxicity. To further examine the potential role of a TZD ring in toxicity we used HepG2 cells to evaluate two series of compounds containing different cyclic imides. N-phenyl analogues comprised 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT); 3-(3,5-dichlorophenyl)-2,4-oxazolidinedione (DCPO) and N-(3,5-dichlorophenyl)succinimide (NDPS). Benzylic compounds, which closely resemble TGZ, included 5-(3,5-dichlorophenylmethyl)-2,4-thiazolidinedione (DCPMT); 5-(4-methoxyphenylmethyl)-2,4-thiazolidinedione (MPMT); 5-(4-methoxyphenylmethylene)-2,4-thiazolidinedione (MPMT-I); 5-(4-methoxyphenylmethyl)-2,4-oxazolidinedione (MPMO); 3-(4-methoxyphenylmethyl)succinimide (MPMS) and 3-(4-methoxyphenylmethylene)succinimide (MPMS-I). Cytotoxicity was assessed using the MTS assay after incubating the compounds (0-250μM) with HepG2 cells for 24h. Only certain TZD derivatives (TGZ, DCPT, DCPMT and MPMT-I) markedly decreased cell viability, whereas MPMT had low toxicity. In contrast, analogues without a TZD ring (DCPO, NDPS, MPMO, MPMS and MPMS-I) were not cytotoxic. These findings suggest that a TZD ring may be an important determinant of toxicity, although different structural features, chemical stability, cellular uptake or metabolism, etc., may also be involved. A simple clustering approach, using chemical fingerprints, assigned each compound to one of three classes (each containing one active compound and close homologues), and provided a framework for rationalizing the activity in terms of structure.
Collapse
|
24
|
Hassan HM, Guo HL, Yousef BA, Luyong Z, Zhenzhou J. Hepatotoxicity mechanisms of isoniazid: A mini-review. J Appl Toxicol 2015; 35:1427-32. [DOI: 10.1002/jat.3175] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Hozeifa M. Hassan
- Jiangsu Key Laboratory of Drug Screening; China Pharmaceutical University; Nanjing China
- Department of Pharmacology, Faculty of Pharmacy; University of Gezira; Wad-Medani Sudan
| | - Hong-li Guo
- Jiangsu Key Laboratory of Drug Screening; China Pharmaceutical University; Nanjing China
| | - Bashir A. Yousef
- Jiangsu Key Laboratory of Drug Screening; China Pharmaceutical University; Nanjing China
- Department of Pharmacology, Faculty of Pharmacy; University of Khartoum; Khartoum Sudan
| | - Zhang Luyong
- Jiangsu Key Laboratory of Drug Screening; China Pharmaceutical University; Nanjing China
- Jiangsu Center for Pharmacodynamics Research and Evaluation; China Pharmaceutical University; Nanjing China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research; China Pharmaceutical University; Nanjing China
| | - Jiang Zhenzhou
- Jiangsu Key Laboratory of Drug Screening; China Pharmaceutical University; Nanjing China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University); Ministry of Education; Nanjing China
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| |
Collapse
|
25
|
Wang JY, Tsai CH, Lee YL, Lee LN, Hsu CL, Chang HC, Chen JM, Hsu CA, Yu CJ, Yang PC. Gender-Dimorphic Impact of PXR Genotype and Haplotype on Hepatotoxicity During Antituberculosis Treatment. Medicine (Baltimore) 2015; 94:e982. [PMID: 26091473 PMCID: PMC4616541 DOI: 10.1097/md.0000000000000982] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Women have a higher risk of drug-induced hepatotoxicity during antituberculosis treatment (HATT) than men. We hypothesized that single nucleotide polymorphism (SNP) genotype and derived haplotype of pregnane X receptor (PXR) gene, which could regulate the expression of phase I enzyme cytochrome P450 (CYP) 3A4, had a sex-specific influence on the risk of HATT. Six SNPs of the PXR gene were sequenced. Genotypes and haplotypes of the PXR SNPs, and other potential risk factors for HATT were compared between pulmonary TB patients with and those without HATT. HATT was defined as an increase in serum transaminase level >3 times the upper limit of normal (ULN) with symptoms, or >5 times ULN without symptoms. We performed the study in a derivation and a validation cohort. Among the 355 patients with pulmonary TB in the derivation cohort, 70 (19.7%) developed HATT. Logistic regression analysis revealed the risk of HATT increased in female genotype AA at rs2461823 (OR: 6.87 [2.55-18.52]) and decreased in female genotype AA at rs7643645 (OR: 0.14 [0.02-1.02]) of PXR gene. Haplotype analysis showed that female h001101 (OR: 2.30 [1.22-4.32]) and female h000110 (OR: 2.25 [1.08-4.69]) haplotype were associated with increased HATT risk. The identified predictors were also significantly associated with female HATT risk among the 182 patients in the validation cohort. Two PXR SNP genotypes and 2 haplotypes influenced the risk of HATT only in females. The PXR SNP showed a sex-specific impact that contributed to an increased HATT risk in females.
Collapse
Affiliation(s)
- Jann Yuan Wang
- From the Department of Internal Medicine, National Taiwan University Hospital (JYW, CLH, CJY, PCY); Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University (CHT, YLL); and Department of Laboratory Medicine, National Taiwan University Hospital, Zhongzheng District, Taipei, Taiwan (LNL, HCC, JMC, CAH)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ghosh C, Hossain M, Spriggs A, Ghosh A, Grant GA, Marchi N, Perucca E, Janigro D. Sertraline-induced potentiation of the CYP3A4-dependent neurotoxicity of carbamazepine: an in vitro study. Epilepsia 2015; 56:439-49. [PMID: 25656284 PMCID: PMC4413932 DOI: 10.1111/epi.12923] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Drug toxicity is a hurdle to drug development and to clinical translation of basic research. Antiepileptic drugs such as carbamazepine (CBZ) and selective serotonin reuptake inhibitors such as sertraline (SRT) are commonly co-prescribed to patients with epilepsy and comorbid depression. Because SRT may interfere with cytochrome P450 (CYP) enzyme activity and CYPs have been implicated in the conversion of CBZ to reactive cytotoxic metabolites, we investigated in vitro models to determine whether SRT affects the neurotoxic potential of CBZ and the mechanisms involved. METHODS Human fetal brain-derived dopaminergic neurons, human brain microvascular endothelial cells (HBMECs), and embryonic kidney (HEK) cells were used to evaluate cytotoxicity of CBZ and SRT individually and in combination. Nitrite and glutathione (GSH) levels were measured with drug exposure. To validate the role of CYP3A4 in causing neurotoxicity, drug metabolism was compared to cell death in HEK CYP3A4 overexpressed and cells pretreated with the CYP3A4 inhibitor ketoconazole. RESULTS In all cellular systems tested, exposure to CBZ (127 μM) or SRT (5 μM) alone caused negligible cytotoxicity. By contrast CBZ, tested at a much lower concentration (17 μM) in combination with SRT (5 μM), produced prominent cytotoxicity within 15 min exposure. In neurons and HBMECs, cytotoxicity was associated with increased nitrite levels, suggesting involvement of free radicals as a pathogenetic mechanism. Pretreatment of HBMECs with reduced GSH or with the GSH precursor N-acetyl-L-cysteine prevented cytotoxic response. In HEK cells, the cytotoxic response to the CBZ + SRT combination correlated with the rate of CBZ biotransformation and production of 2-hydroxy CBZ, further suggesting a causative role of reactive metabolites. In the same system, cytotoxicity was potentiated by overexpression of CYP3A4, and prevented by CYP3A4 inhibitor. SIGNIFICANCE These results demonstrate an unexpected neurotoxic interaction between CBZ and SRT, apparently related to increased CYP3A4-mediated production of reactive CBZ metabolites. The potential clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Mohammad Hossain
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Addison Spriggs
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Arnab Ghosh
- Department of Pathobiology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| | - Gerald A. Grant
- Department of Neurosurgery and Neurobiology, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Nicola Marchi
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics, CNRS, Montpellier, France
| | - Emilio Perucca
- Department of Internal Medicine and Therapeutics, University of Pavia and C. Mondino National Neurological Institute, Pavia, Italy
| | - Damir Janigro
- Cerebrovascular Research, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Bio-medical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
- Department of Neurosurgery, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, U.S.A
| |
Collapse
|
27
|
Choi JM, Oh SJ, Lee SY, Im JH, Oh JM, Ryu CS, Kwak HC, Lee JY, Kang KW, Kim SK. HepG2 cells as an in vitro model for evaluation of cytochrome P450 induction by xenobiotics. Arch Pharm Res 2014; 38:691-704. [PMID: 25336106 DOI: 10.1007/s12272-014-0502-6] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/15/2014] [Indexed: 01/14/2023]
Abstract
Although various in vitro assays have been developed to evaluate the cytochrome P450 (CYP)-inducing potential of drug candidates, there is a continuing need for the development of a reliable model in drug discovery. The objective of the present study was to compare CYP induction by chemicals in HepG2 cells with Huh7, NKNT-3, and reverted NKNT-3 cells. HepG2 cells showed more similarity to human liver than the other cell lines in comparisons of the expression of cellular proteins. In evaluation of basal CYP activity, Huh7 cells exhibited the highest CYP1A2 and CYP3A4 activity, and HepG2 cells showed the highest CYP2B6 activity. The inducibility of CYP1A2, CYP2B6, and CYP3A4 by prototypical inducers was determined using enzyme assay, immunoblot analysis, and real-time PCR. Among the cells tested, HepG2 cells were highly responsive to CYP inducers, such as 3-methylcholanthrene for CYP1A2 and phenobarbital for CYP2B6 and CYP3A4. Moreover, HepG2 cells were responsive to various CYP1A2, CYP2B6, and CYP3A4 inducers as determined using fluorogenic and LC-MS/MS substrates. Thus, HepG2 cells may be comparable to human hepatocytes for the evaluation of CYP induction or slightly less sensitive. These results suggest HepG2 cells as a cell-based model in screening for CYP inducers in drug discovery.
Collapse
Affiliation(s)
- Jong Min Choi
- College of Pharmacy, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gómez-Lechón MJ, Tolosa L, Conde I, Donato MT. Competency of different cell models to predict human hepatotoxic drugs. Expert Opin Drug Metab Toxicol 2014; 10:1553-68. [PMID: 25297626 DOI: 10.1517/17425255.2014.967680] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The liver is the most important target for drug-induced toxicity. This vulnerability results from functional liver features and its role in the metabolic elimination of most drugs. Drug-induced liver injury is a significant leading cause of acute, chronic liver disease and an important safety issue when developing new drugs. AREAS COVERED This review describes the advantages and limitations of hepatic cell-based models for early safety risk assessment during drug development. These models include hepatocytes cultured as monolayer, collagen-sandwich; emerging complex 3D configuration; liver-derived cell lines; stem cell-derived hepatocytes. EXPERT OPINION In vitro toxicity assays performed in hepatocytes or hepatoma cell lines can potentially provide rapid and cost-effective early feedback to identify toxic candidates for compound prioritization. However, their capacity to predict hepatotoxicity depends critically on cells' functional performance. In an attempt to improve and prolong functional properties of cultured cells, different strategies to recreate the in vivo hepatocyte environment have been explored. 3D cultures, co-cultures of hepatocytes with other cell types and microfluidic devices seem highly promising for toxicological studies. Moreover, hepatocytes derived from human pluripotent stem cells are emerging cell-based systems that may provide a stable source of hepatocytes to reliably screen metabolism and toxicity of candidate compounds.
Collapse
Affiliation(s)
- M José Gómez-Lechón
- Unidad de Hepatología Experimental Instituto de Investigación Sanitaria La Fe (IIS LA Fe) , Torre A Avda. Fernando Abril Martorell 106, 46026 Valencia , Spain +34 961246619 ;
| | | | | | | |
Collapse
|
29
|
Tolosa L, Carmona A, Castell JV, Gómez-Lechón MJ, Donato MT. High-content screening of drug-induced mitochondrial impairment in hepatic cells: effects of statins. Arch Toxicol 2014; 89:1847-60. [DOI: 10.1007/s00204-014-1334-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/12/2014] [Indexed: 02/07/2023]
|
30
|
Van den Hof WFPM, Coonen MLJ, van Herwijnen M, Brauers K, Wodzig WKWH, van Delft JHM, Kleinjans JCS. Classification of Hepatotoxicants Using HepG2 Cells: A Proof of Principle Study. Chem Res Toxicol 2014; 27:433-42. [DOI: 10.1021/tx4004165] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wim F. P. M. Van den Hof
- Department
of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
- Netherlands Toxicogenomics
Centre, Maastricht, The Netherlands
| | - Maarten L. J. Coonen
- Department
of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
- Netherlands Toxicogenomics
Centre, Maastricht, The Netherlands
| | - Marcel van Herwijnen
- Department
of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Karen Brauers
- Department
of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Will K. W. H. Wodzig
- Department
of Clinical Chemistry, Maastricht University Medical Center, Maastricht, The Netherlands
- Netherlands Toxicogenomics
Centre, Maastricht, The Netherlands
| | - Joost H. M. van Delft
- Department
of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
- Netherlands Toxicogenomics
Centre, Maastricht, The Netherlands
| | - Jos C. S. Kleinjans
- Department
of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
- Netherlands Toxicogenomics
Centre, Maastricht, The Netherlands
| |
Collapse
|
31
|
Wu Q, Gao D, Wei J, Jin F, Xie W, Jiang Y, Liu H. Development of a novel multi-layer microfluidic device towards characterization of drug metabolism and cytotoxicity for drug screening. Chem Commun (Camb) 2014; 50:2762-4. [DOI: 10.1039/c3cc49771b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-layer microfluidic device was developed for characterization of drug metabolism and cytotoxicity assays on a single device that overcomes many limitations of existing methods. And it also shows potential for high-throughput drug screening.
Collapse
Affiliation(s)
- Qin Wu
- Department of Chemistry
- Tsinghua University
- Beijing, China
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
| | - Dan Gao
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen, China
- Key Laboratory of Metabolomics at Shenzhen
| | - Juntong Wei
- Department of Chemistry
- Tsinghua University
- Beijing, China
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
| | - Feng Jin
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen, China
| | - Weiyi Xie
- Department of Chemistry
- Tsinghua University
- Beijing, China
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
| | - Yuyang Jiang
- Department of Chemistry
- Tsinghua University
- Beijing, China
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
| | - Hongxia Liu
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen, China
- Key Laboratory of Metabolomics at Shenzhen
| |
Collapse
|
32
|
Garside H, Marcoe KF, Chesnut-Speelman J, Foster AJ, Muthas D, Kenna JG, Warrior U, Bowes J, Baumgartner J. Evaluation of the use of imaging parameters for the detection of compound-induced hepatotoxicity in 384-well cultures of HepG2 cells and cryopreserved primary human hepatocytes. Toxicol In Vitro 2013; 28:171-81. [PMID: 24189122 DOI: 10.1016/j.tiv.2013.10.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/11/2013] [Accepted: 10/23/2013] [Indexed: 11/28/2022]
Abstract
Drug-induced liver injury (DILI) is a major cause of failed drug development, withdrawal and restricted usage. Therefore screening assays which aid selection of candidate drugs with reduced propensity to cause DILI are required. We have investigated the toxicity of 144 drugs, 108 of which caused DILI, using assays identified in the literature as having some predictivity for hepatotoxicity. The validated assays utilised either HepG2 cells, HepG2 cells in the presence of rat S9 fraction or isolated human hepatocytes. All parameters were quantified by multiplexed and automated high content fluorescence microscopy, at appropriate time points after compound administration (4, 24 or 48h). The individual endpoint which identified drugs that caused DILI with greatest precision was maximal fold induction in CM-H2DFFDA staining in hepatocytes after 24h (41% sensitivity, 86% specificity). However, hierarchical clustering analysis of all endpoints provided the most sensitive identification of drugs which caused DILI (58% sensitivity, 75% specificity). We conclude that multi-parametric high content cell toxicity assays can enable in vitro detection of drugs that have high propensity to cause DILI in vivo but that many DILI compounds exhibit few in vitro signals when evaluated using these assays.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Muthas
- AstraZeneca, Drug Safety and Metabolism, R&D, SE, Sweden
| | | | | | - Joanne Bowes
- AstraZeneca, Drug Safety and Metabolism, R&D, UK
| | | |
Collapse
|
33
|
Abstract
Isoniazid (INH), a first-line drug for tuberculosis control, frequently causes liver injury. Multiple previous reports suggest that CYP3A is involved in INH metabolism, bioactivation and hepatotoxicity, although direct evidence is unavailable. In the current study, wild-type and Cyp3a-null mice were used to determine the potential role of Cyp3a in INH metabolism in vivo. Compared to wild-type mice, there were no significant differences in the pharmacokinetic profiles of INH or acetyl-isoniazid in Cyp3a-null mice after an oral administration of 50 mg/kg INH. With the same treatment, distribution of INH and its major metabolites was similar in the liver of wild-type and Cyp3a-null mice. A reactive metabolite of INH was trapped by N-α-acetyl-L-lysine in mouse liver microsomes, but Cyp3a does not contribute to this bioactivation pathway. In addition, no liver injury was observed in wild-type or Cyp3a-null mice treated with 60 or 120 mg/kg INH. In summary, Cyp3a has no effect on systemic pharmacokinetics of INH in mice. Further studies are needed to determine whether and how exactly CYP3A is involved in INH bioactivation and hepatotoxicity.
Collapse
Affiliation(s)
- Ke Liu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Feng Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhiwei Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Curtis D. Klaassen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Gustafsson F, Foster AJ, Sarda S, Bridgland-Taylor MH, Kenna JG. A Correlation Between the In Vitro Drug Toxicity of Drugs to Cell Lines That Express Human P450s and Their Propensity to Cause Liver Injury in Humans. Toxicol Sci 2013; 137:189-211. [DOI: 10.1093/toxsci/kft223] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
35
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 1074] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
36
|
Lahoz A, Vilà MR, Fabre M, Miquel JM, Rivas M, Maines J, Castell JV, Gómez-Lechón MJ. An in vitro tool to assess cytochrome P450 drug biotransformation-dependent cytotoxicity in engineered HepG2 cells generated by using adenoviral vectors. Toxicol In Vitro 2013; 27:1410-5. [DOI: 10.1016/j.tiv.2012.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
|
37
|
Tolosa L, Gómez-Lechón MJ, Pérez-Cataldo G, Castell JV, Donato MT. HepG2 cells simultaneously expressing five P450 enzymes for the screening of hepatotoxicity: identification of bioactivable drugs and the potential mechanism of toxicity involved. Arch Toxicol 2013; 87:1115-27. [DOI: 10.1007/s00204-013-1012-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/17/2013] [Indexed: 11/30/2022]
|
38
|
Updates on chemical and biological research on botanical ingredients in dietary supplements. Anal Bioanal Chem 2013; 405:4373-84. [DOI: 10.1007/s00216-012-6691-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 12/15/2022]
|
39
|
Tolosa L, Donato MT, Pérez-Cataldo G, Castell JV, Gómez-Lechón MJ. Upgrading cytochrome P450 activity in HepG2 cells co-transfected with adenoviral vectors for drug hepatotoxicity assessment. Toxicol In Vitro 2012; 26:1272-7. [DOI: 10.1016/j.tiv.2011.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/08/2011] [Accepted: 11/09/2011] [Indexed: 11/25/2022]
|
40
|
Foster JR, Jacobsen M, Kenna G, Schulz-Utermoehl T, Morikawa Y, Salmu J, Wilson ID. Differential Effect of Troglitazone on the Human Bile Acid Transporters, MRP2 and BSEP, in the PXB Hepatic Chimeric Mouse. Toxicol Pathol 2012; 40:1106-16. [DOI: 10.1177/0192623312447542] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aims of this study were to assess the utility of the PXB mouse model of a chimeric human/mouse liver in studying human-specific effects of an important human hepatotoxic drug, the PPARγ agonist, troglitazone. When given orally by gavage for 7 days, at dose levels of 300 and 600 ppm, troglitazone induced specific changes in the human hepatocytes of the chimeric liver without an effect on the murine hepatic portions. The human hepatocytes, in the vehicle-treated PXB mouse, showed an accumulation of electron-dense lipid droplets that appeared as clear vacuoles under the light microscope in H&E-stained sections. Following dosing with troglitazone, there was a loss of the large lipid droplets in the human hepatocytes, a decrease in the amount of lipid as observed in frozen sections of liver stained by Oil-red-O, and a decrease in the expression of two bile acid transporters, BSEP and MRP2. None of these changes were observed in the murine remnants of the chimeric liver. No changes were observed in the expression of three CYPs, CYP 3A2, CYP 1A1, and CYP 2B1, in either the human or murine hepatocytes, even though the baseline expression of the enzymes differed significantly between the two hepatocyte species with the mouse hepatocytes consistently showing increased expression of the protein of all three enzymes. This study has shown that the human hepatocytes, in the PXB chimeric mouse liver, retain an essentially normal phenotype in the mouse liver and, the albeit limited CYP enzymes studied show a more human, rather than a murine, expression pattern. In line with this conclusion, the study has shown a differential response of the human versus the mouse hepatocytes, and the effects observed are highly suggestive of a differential handling of the compound by the two hepatocyte species although the exact reasons are not as yet clear. The PXB chimeric mouse system therefore holds the clear potential to explore human hepatic–specific features, such as metabolism, prior to dosing human subjects, and as such should have considerable utility in drug discovery and development.
Collapse
Affiliation(s)
- John R. Foster
- Safety Assessment, AstraZeneca UK Ltd, Macclesfield, Cheshire, UK
| | - Matt Jacobsen
- Safety Assessment, AstraZeneca UK Ltd, Macclesfield, Cheshire, UK
| | - Gerry Kenna
- Safety Assessment, AstraZeneca UK Ltd, Macclesfield, Cheshire, UK
| | | | | | - Juuso Salmu
- PhoenixBio Co. Ltd, Higashi–Hiroshima, Japan
| | - Ian D. Wilson
- Clinical Pharmacology and DMPK Department, AstraZeneca UK Ltd, Macclesfield, Cheshire, UK
| |
Collapse
|
41
|
Thompson RA, Isin EM, Li Y, Weidolf L, Page K, Wilson I, Swallow S, Middleton B, Stahl S, Foster AJ, Dolgos H, Weaver R, Kenna JG. In Vitro Approach to Assess the Potential for Risk of Idiosyncratic Adverse Reactions Caused by Candidate Drugs. Chem Res Toxicol 2012; 25:1616-32. [DOI: 10.1021/tx300091x] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Emre M. Isin
- DMPK Innovative Medicine, AstraZeneca,
Mölndal, 431 83, Sweden
| | - Yan Li
- Discovery DMPK, AstraZeneca, Wilmington,
Delaware, United States
| | - Lars Weidolf
- DMPK Innovative Medicine, AstraZeneca,
Mölndal, 431 83, Sweden
| | - Ken Page
- DMPK
Innovative Medicine, AstraZeneca, Alderley
Park, Macclesfield, Cheshire
SK10 4TG, United Kingdom
| | - Ian Wilson
- DMPK
Innovative Medicine, AstraZeneca, Alderley
Park, Macclesfield, Cheshire
SK10 4TG, United Kingdom
| | - Steve Swallow
- Global Safety Assessment, AstraZeneca,
Alderley Park, Macclesfield, Cheshire
SK10 4TG, United Kingdom
| | - Brian Middleton
- Discovery Sciences, AstraZeneca, Alderley
Park, Macclesfield, Cheshire
SK10 4TG, United Kingdom
| | - Simone Stahl
- Global Safety Assessment, AstraZeneca,
Alderley Park, Macclesfield, Cheshire
SK10 4TG, United Kingdom
| | - Alison J. Foster
- Global Safety Assessment, AstraZeneca,
Alderley Park, Macclesfield, Cheshire
SK10 4TG, United Kingdom
| | - Hugues Dolgos
- DMPK Innovative Medicine, AstraZeneca,
Mölndal, 431 83, Sweden
| | - Richard Weaver
- Discovery
DMPK, AstraZeneca, Loughborough, Leicestershire
LE11 5RH, United Kingdom
| | - J. Gerry Kenna
- Global Safety Assessment, AstraZeneca,
Alderley Park, Macclesfield, Cheshire
SK10 4TG, United Kingdom
| |
Collapse
|
42
|
Hvastkovs EG, Schenkman JB, Rusling JF. Metabolic toxicity screening using electrochemiluminescence arrays coupled with enzyme-DNA biocolloid reactors and liquid chromatography-mass spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:79-105. [PMID: 22482786 PMCID: PMC3399491 DOI: 10.1146/annurev.anchem.111808.073659] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography-mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates.
Collapse
Affiliation(s)
- Eli G. Hvastkovs
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858;
| | - John B. Schenkman
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06269;
| | - James F. Rusling
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06269;
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269;
| |
Collapse
|
43
|
Tolosa L, Pinto S, Donato MT, Lahoz A, Castell JV, O’Connor JE, Gómez-Lechón MJ. Development of a Multiparametric Cell-based Protocol to Screen and Classify the Hepatotoxicity Potential of Drugs. Toxicol Sci 2012; 127:187-98. [DOI: 10.1093/toxsci/kfs083] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Mao S, Gao D, Liu W, Wei H, Lin JM. Imitation of drug metabolism in human liver and cytotoxicity assay using a microfluidic device coupled to mass spectrometric detection. LAB ON A CHIP 2012; 12:219-26. [PMID: 22094544 DOI: 10.1039/c1lc20678h] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this work, we developed a microfluidic device for the imitation of drug metabolism in human liver and its cytotoxicity on cells. The integrated microfluidic device consists of three sections: (1) bioreactors containing poly(ethylene) glycol (PEG) hydrogel encapsulated human liver microsomes (HLMs); (2) cell culture chambers for cytotoxicity assay; and (3) integrated micro solid-phase extraction (SPE) columns to desalt and concentrate the products of enzymatic reaction. To verify the feasibility of the integrated microchip, we studied uridine 5'-diphosphate-glucuronosyltransferase (UGT) metabolism of acetaminophen (AP) and the cytotoxicity of products on HepG2 cells. The products of the reaction in one region of the device were injected into the cell culture chamber for cytotoxicity assay, while those in another region were directly detected online with an electrospray ionization quadrupole time-of-flight mass spectrometer (ESI-Q-TOF MS) after micro-SPE pre-treatment. Semiquantitative analysis achieved in the experiments could be related to the drug-induced HepG2 cell cytotoxicity. Total analysis time for one product was about 30 min and only less than 4 μg HLM protein was required for one reaction region. The results demonstrated that the established platform could be used to imitate drug metabolism occurring in the human liver, thereby replacing animal experiments in the near future. In addition, the integrated microchip will be a useful tool for drug metabolism studies and cytotoxicity assays, which are pivotal in drug development.
Collapse
Affiliation(s)
- Sifeng Mao
- Beijing Key Laboratory of Microanalytical Method and Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | | | | | | | | |
Collapse
|
45
|
Frederick DM, Jacinto EY, Patel NN, Rushmore TH, Tchao R, Harvison PJ. Cytotoxicity of 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT) and analogues in wild type and CYP3A4 stably transfected HepG2 cells. Toxicol In Vitro 2011; 25:2113-9. [PMID: 21964476 DOI: 10.1016/j.tiv.2011.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 10/17/2022]
Abstract
The thiazolidinedione (TZD) ring is a constituent of the glitazones that are used to treat type II diabetes. Liver injury has been reported following chronic glitazone use; however, they do not produce hepatic damage in common laboratory animal species. In contrast, 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT) causes hepatotoxicity in rats. DCPT toxicity is dependent upon the presence of an intact TZD ring and cytochrome P450 (CYP)-mediated biotransformation. To further investigate TZD ring-induced toxicity, DCPT and several structural analogues or potential metabolites were tested in vitro using wild type human hepatoma HepG2 and HepG2 cells stably transfected with the CYP3A4 isozyme. CYP3A4 activity was confirmed by measuring testosterone 6β-hydroxylation. Both cell lines were treated with 0-250 μM of the compounds in Hanks' balanced salt solution. Cell viability was measured after 24 h. DCPT and S-(3,5-dichlorophenyl)aminocarbonyl thioglycolic acid (DCTA) were the most toxic compounds of the series. Furthermore, DCPT was significantly more toxic in transfected cells (LC50=160.2±5.9 μM) than in wild type cells (LC50=233.0±19.7 μM). Treatment with a CYP3A4 inhibitor or inducer attenuated or potentiated DCPT cytotoxicity, respectively. These results suggest that DCPT-induced cytotoxicity in the transfected HepG2 cells is partially dependent on CYP3A4.
Collapse
Affiliation(s)
- Douglas M Frederick
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
46
|
Li F, Miao Y, Zhang L, Neuenswander SA, Douglas JT, Ma X. Metabolomic analysis reveals novel isoniazid metabolites and hydrazones in human urine. Drug Metab Pharmacokinet 2011; 26:569-76. [PMID: 21844656 DOI: 10.2133/dmpk.dmpk-11-rg-055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isoniazid (INH) is a first-line drug for tuberculosis control; the side effects of INH are thought to be associated with its metabolism, and this study was designed to globally characterize isoniazid metabolism. Metabolomic strategies were used to profile isoniazid metabolism in humans. Eight known and seven novel INH metabolites and hydrazones were identified in human urine. The novel products included two hydroxylated INH metabolites and five hydrazones. The two novel metabolites were determined as 2-oxo-1,2-dihydro-pyridine-4-carbohydrazide and isoniazid N-oxide. Five novel hydrazones were produced by condensation of isoniazid with keto acids that are intermediates in the metabolism of essential amino acids, namely, leucine and/or isoleucine, lysine, tyrosine, tryptophan, and phenylalanine. This study enhances our knowledge of isoniazid metabolism and disposition and may offer new avenues for investigating INH-induced toxicity.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hosomi H, Fukami T, Iwamura A, Nakajima M, Yokoi T. Development of a Highly Sensitive Cytotoxicity Assay System for CYP3A4-Mediated Metabolic Activation. Drug Metab Dispos 2011; 39:1388-95. [DOI: 10.1124/dmd.110.037077] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
Schroeder K, Bremm K, Alépée N, Bessems J, Blaauboer B, Boehn S, Burek C, Coecke S, Gombau L, Hewitt N, Heylings J, Huwyler J, Jaeger M, Jagelavicius M, Jarrett N, Ketelslegers H, Kocina I, Koester J, Kreysa J, Note R, Poth A, Radtke M, Rogiers V, Scheel J, Schulz T, Steinkellner H, Toeroek M, Whelan M, Winkler P, Diembeck W. Report from the EPAA workshop: In vitro ADME in safety testing used by EPAA industry sectors. Toxicol In Vitro 2011; 25:589-604. [DOI: 10.1016/j.tiv.2010.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 11/05/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
|
49
|
Iwamura A, Fukami T, Hosomi H, Nakajima M, Yokoi T. CYP2C9-Mediated Metabolic Activation of Losartan Detected by a Highly Sensitive Cell-Based Screening Assay. Drug Metab Dispos 2011; 39:838-46. [DOI: 10.1124/dmd.110.037259] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
50
|
The role of CYP3A4 in amiodarone-associated toxicity on HepG2 cells. Biochem Pharmacol 2011; 81:432-41. [DOI: 10.1016/j.bcp.2010.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 11/23/2022]
|