1
|
Martin TG, Leinwand LA. Molecular regulation of reversible cardiac remodeling: lessons from species with extreme physiological adaptations. J Exp Biol 2024; 227:jeb247445. [PMID: 39344503 PMCID: PMC11463965 DOI: 10.1242/jeb.247445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Some vertebrates evolved to have a remarkable capacity for anatomical and physiological plasticity in response to environmental challenges. One example of such plasticity can be found in the ambush-hunting snakes of the genus Python, which exhibit reversible cardiac growth with feeding. The predation strategy employed by pythons is associated with months-long fasts that are arrested by ingestion of large prey. Consequently, digestion compels a dramatic increase in metabolic rate and hypertrophy of multiple organs, including the heart. In this Review, we summarize the post-prandial cardiac adaptations in pythons at the whole-heart, cellular and molecular scales. We highlight circulating factors and cellular signaling pathways that are altered during digestion to affect cardiac form and function and propose possible mechanisms that may drive the post-digestion regression of cardiac mass. Adaptive physiological cardiac hypertrophy has also been observed in other vertebrates, including in fish acclimated to cold water, birds flying at high altitudes and exercising mammals. To reveal potential evolutionarily conserved features, we summarize the molecular signatures of reversible cardiac remodeling identified in these species and compare them with those of pythons. Finally, we offer a perspective on the potential of biomimetics targeting the natural biology of pythons as therapeutics for human heart disease.
Collapse
Affiliation(s)
- Thomas G. Martin
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Leslie A. Leinwand
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
2
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
3
|
Krämer J, Hölker P, Predel R. How to Overcome a Snail? Identification of Putative Neurotoxins of Snail-Feeding Firefly Larvae (Coleoptera: Lampyridae, Lampyris noctiluca). Toxins (Basel) 2024; 16:272. [PMID: 38922166 PMCID: PMC11209139 DOI: 10.3390/toxins16060272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
The larvae of some lampyrid beetles are highly specialized predators of snails. They have been observed to climb on the shells of their prey and use this exposed position to bite and inject secretions potentially originating from the midgut. Besides serving the purpose of extra-oral digestion (EOD), injected compounds also seem to have a paralyzing effect. Up to now, the toxins causing this paralyzing activity have not been identified. In the current study, we provide a first compositional analysis of the midgut secretion from lampyrid larvae, with a focus on identifying putative neurotoxins causing the observed paralyzing effect. For this purpose, we utilized a combined proteo-transcriptomic approach to characterize the compounds present in the midgut secretion of larval stages of Lampyris noctiluca. In terms of the absolute numbers of identified compounds, the midgut secretion is dominated by hydrolyzing enzymes comprising peptidases, carboxylesterases, and glycosidases. However, when considering expression levels, a few rather short cysteine-rich peptides exceed all other compounds. Some of these compounds show moderate similarity to putative neurotoxins identified in the venom of other arthropods and could be responsible for paralyzing effects. In addition to these potential toxins, we provide a list of peptides typical of the midgut secretion of L. noctiluca, supplemented by the corresponding precursor sequences.
Collapse
Affiliation(s)
- Jonas Krämer
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Patrick Hölker
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| | - Reinhard Predel
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
4
|
Zomer HD, Cooke PS. Advances in Drug Treatments for Companion Animal Obesity. BIOLOGY 2024; 13:335. [PMID: 38785817 PMCID: PMC11117622 DOI: 10.3390/biology13050335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Companion animal obesity has emerged as a significant veterinary health concern globally, with escalating rates posing challenges for preventive and therapeutic interventions. Obesity not only leads to immediate health problems but also contributes to various comorbidities affecting animal well-being and longevity, with consequent emotional and financial burdens on owners. While past treatment strategies have shown limited success, recent breakthroughs in human medicine present new opportunities for addressing this complex issue in companion animals. Here, we discuss the potential of GLP-1 receptor agonists, specifically semaglutide and tirzepatide, already approved for human use, for addressing companion animal obesity. These drugs, originally developed to treat type 2 diabetes in humans and subsequently repurposed to treat obesity, have demonstrated remarkable weight loss effects in rodents, non-human primates and people. Additionally, newer drug combinations have shown even more promising results in clinical trials. Despite current cost and supply challenges, advancements in oral and/or extended-release formulations and increased production may make these drugs more accessible for veterinary use. Thus, these drugs may have utility in companion animal weight management, and future feasibility studies exploring their efficacy and safety in treating companion animal obesity are warranted.
Collapse
Affiliation(s)
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
5
|
Xia X, Lin Q, Zhou Z, Chen Y. An imbalanced GLP-1R/GIPR co-agonist peptide with a site-specific N-terminal PEGylation to maximize metabolic benefits. iScience 2024; 27:109377. [PMID: 38510128 PMCID: PMC10951637 DOI: 10.1016/j.isci.2024.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Glycemic and body weight control gained from GLP-1R agonists remains an unmet need for diabetes and obesity treatment, leading to the development of GLP-1R/GIPR co-agonists. An imbalance in GLP-1R/GIPR agonism may extensively maximize the glucose- and weight-lowering effects. Hence, we prepared a potent and imbalanced GLP-1R/GIPR co-agonist, and refined its action time through a site-specific N-terminal PEGylation strategy. The pharmacological efficacy of these resulting long-acting co-agonists was interrogated both in vitro and in vivo. The results showed that peptide 1 possessed potent and imbalanced receptor-stimulating potency favoring GIP activity, but its hypoglycemic action was disrupted probably resulting from its short half-life. After PEGylation to improve the pharmacokinetics, the pharmacological effects were amplified compared to native peptide 1. Among the resulting derivatives, D-5K exhibited significant glycemic, HbA1c, body-weight, and food-intake control, outperforming GLP-1R mono-agonists. Based on its excellent pharmacological profiles, D-5K may hold the great therapeutic potential for diabetes and obesity treatment.
Collapse
Affiliation(s)
- Xuan Xia
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qianmeng Lin
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhan Zhou
- Research Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
6
|
Jafari Z, Sadeghi S, Dehaghi MM, Bigham A, Honarmand S, Tavasoli A, Hoseini MHM, Varma RS. Immunomodulatory activities and biomedical applications of melittin and its recent advances. Arch Pharm (Weinheim) 2024; 357:e2300569. [PMID: 38251938 DOI: 10.1002/ardp.202300569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Melittin (MLT), a peptide containing 26 amino acids, is a key constituent of bee venom. It comprises ∼40%-60% of the venom's dry weight and is the main pricing index for bee venom, being the causative factor of pain. The unique properties of MLT extracted from bee venom have made it a very valuable active ingredient in the pharmaceutical industry as this cationic and amphipathic peptide has propitious effects on human health in diverse biological processes. It has the ability to strongly impact the membranes of cells and display hemolytic activity with anticancer characteristics. However, the clinical application of MLT has been limited by its severe hemolytic activity, which poses a challenge for therapeutic use. By employing more efficient mechanisms, such as modifying the MLT sequence, genetic engineering, and nano-delivery systems, it is anticipated that the limitations posed by MLT can be overcome, thereby enabling its wider application in therapeutic contexts. This review has outlined recent advancements in MLT's nano-delivery systems and genetically engineered cells expressing MLT and provided an overview of where the MLTMLT's platforms are and where they will go in the future with the challenges ahead. The focus is on exploring how these approaches can overcome the limitations associated with MLT's hemolytic activity and improve its selectivity and efficacy in targeting cancer cells. These advancements hold promise for the creation of innovative and enhanced therapeutic approaches based on MLT for the treatment of cancer.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Mirzarazi Dehaghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Shokouh Honarmand
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afsaneh Tavasoli
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Haji Molla Hoseini
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajender S Varma
- Department of Chemistry, Centre of Excellence for Research in Sustainable Chemistry, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
7
|
Allard C, Cota D, Quarta C. Poly-Agonist Pharmacotherapies for Metabolic Diseases: Hopes and New Challenges. Drugs 2024; 84:127-148. [PMID: 38127286 DOI: 10.1007/s40265-023-01982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
The use of glucagon-like peptide-1 (GLP-1) receptor-based multi-agonists in the treatment of type 2 diabetes and obesity holds great promise for improving glycaemic control and weight management. Unimolecular dual and triple agonists targeting multiple gut hormone-related pathways are currently in clinical trials, with recent evidence supporting their efficacy. However, significant knowledge gaps remain regarding the biological mechanisms and potential adverse effects associated with these multi-target agents. The mechanisms underlying the therapeutic efficacy of GLP-1 receptor-based multi-agonists remain somewhat mysterious, and hidden threats may be associated with the use of gut hormone-based polyagonists. In this review, we provide a critical analysis of the benefits and risks associated with the use of these new drugs in the management of obesity and diabetes, while also exploring new potential applications of GLP-1-based pharmacology beyond the field of metabolic disease.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
8
|
Jakubowska A, le Roux CW, Viljoen A. The Road towards Triple Agonists: Glucagon-Like Peptide 1, Glucose-Dependent Insulinotropic Polypeptide and Glucagon Receptor - An Update. Endocrinol Metab (Seoul) 2024; 39:12-22. [PMID: 38356208 PMCID: PMC10901658 DOI: 10.3803/enm.2024.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Obesity is the fifth leading risk factor for global deaths with numbers continuing to increase worldwide. In the last 20 years, the emergence of pharmacological treatments for obesity based on gastrointestinal hormones has transformed the therapeutic landscape. The successful development of glucagon-like peptide-1 (GLP-1) receptor agonists, followed by the synergistic combined effect of glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptor agonists achieved remarkable weight loss and glycemic control in those with the diseases of obesity and type 2 diabetes. The multiple cardiometabolic benefits include improving glycemic control, lipid profiles, blood pressure, inflammation, and hepatic steatosis. The 2023 phase 2 double-blind, randomized controlled trial evaluating a GLP-1/GIP/glucagon receptor triagonist (retatrutide) in patients with the disease of obesity reported 24.2% weight loss at 48 weeks with 12 mg retatrutide. This review evaluates the current available evidence for GLP-1 receptor agonists, dual GLP-1/GIP receptor co-agonists with a focus on GLP-1/GIP/glucagon receptor triagonists and discusses the potential future benefits and research directions.
Collapse
Affiliation(s)
| | - Carel W. le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Adie Viljoen
- Borthwick Diabetes Research Centre, Lister Hospital, Stevenage, UK
| |
Collapse
|
9
|
Feijoo-Coronel ML, Mendes B, Ramírez D, Peña-Varas C, de los Monteros-Silva NQE, Proaño-Bolaños C, de Oliveira LC, Lívio DF, da Silva JA, da Silva JMSF, Pereira MGAG, Rodrigues MQRB, Teixeira MM, Granjeiro PA, Patel K, Vaiyapuri S, Almeida JR. Antibacterial and Antiviral Properties of Chenopodin-Derived Synthetic Peptides. Antibiotics (Basel) 2024; 13:78. [PMID: 38247637 PMCID: PMC10812719 DOI: 10.3390/antibiotics13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Antimicrobial peptides have been developed based on plant-derived molecular scaffolds for the treatment of infectious diseases. Chenopodin is an abundant seed storage protein in quinoa, an Andean plant with high nutritional and therapeutic properties. Here, we used computer- and physicochemical-based strategies and designed four peptides derived from the primary structure of Chenopodin. Two peptides reproduce natural fragments of 14 amino acids from Chenopodin, named Chen1 and Chen2, and two engineered peptides of the same length were designed based on the Chen1 sequence. The two amino acids of Chen1 containing amide side chains were replaced by arginine (ChenR) or tryptophan (ChenW) to generate engineered cationic and hydrophobic peptides. The evaluation of these 14-mer peptides on Staphylococcus aureus and Escherichia coli showed that Chen1 does not have antibacterial activity up to 512 µM against these strains, while other peptides exhibited antibacterial effects at lower concentrations. The chemical substitutions of glutamine and asparagine by amino acids with cationic or aromatic side chains significantly favoured their antibacterial effects. These peptides did not show significant hemolytic activity. The fluorescence microscopy analysis highlighted the membranolytic nature of Chenopodin-derived peptides. Using molecular dynamic simulations, we found that a pore is formed when multiple peptides are assembled in the membrane. Whereas, some of them form secondary structures when interacting with the membrane, allowing water translocations during the simulations. Finally, Chen2 and ChenR significantly reduced SARS-CoV-2 infection. These findings demonstrate that Chenopodin is a highly useful template for the design, engineering, and manufacturing of non-toxic, antibacterial, and antiviral peptides.
Collapse
Affiliation(s)
- Marcia L. Feijoo-Coronel
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | | | - Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
| | - Leonardo Camilo de Oliveira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Diego Fernandes Lívio
- Campus Centro Oeste, Federal University of São João Del-Rei, Rua Sebastião Gonçalves Filho, n 400, Chanadour, Divinópolis 35501-296, Brazil
| | - José Antônio da Silva
- Campus Centro Oeste, Federal University of São João Del-Rei, Rua Sebastião Gonçalves Filho, n 400, Chanadour, Divinópolis 35501-296, Brazil
| | - José Maurício S. F. da Silva
- Departamento de Bioquímica, Centro de Ciências Biomédicas, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Sala E209, Alfenas 37130-001, Brazil
| | - Marília Gabriella A. G. Pereira
- Departamento de Bioquímica, Centro de Ciências Biomédicas, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Sala E209, Alfenas 37130-001, Brazil
| | - Marina Q. R. B. Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biomédicas, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Sala E209, Alfenas 37130-001, Brazil
- Departamento de Engenharia de Biossistemas, Campus Dom Bosco, Federal University of São João Del-Rei, Praça Dom Helvécio, 74, Fábricas, São João del-Rei 36301-160, Brazil
| | - Mauro M. Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Paulo Afonso Granjeiro
- Campus Centro Oeste, Federal University of São João Del-Rei, Rua Sebastião Gonçalves Filho, n 400, Chanadour, Divinópolis 35501-296, Brazil
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK
| | | | - José R. Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| |
Collapse
|
10
|
Díaz-Gómez JL, Martín-Estal I, Rivera-Aboytes E, Gaxiola-Muñíz RA, Puente-Garza CA, García-Lara S, Castorena-Torres F. Biomedical applications of synthetic peptides derived from venom of animal origin: A systematic review. Biomed Pharmacother 2024; 170:116015. [PMID: 38113629 DOI: 10.1016/j.biopha.2023.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Development of therapeutic agents that have fewer adverse effects and have higher efficacy for diseases, such as cancer, metabolic disorders, neurological diseases, infections, cardiovascular diseases, and respiratory diseases, are required. Recent studies have focused on identifying novel sources for pharmaceutical molecules to develop therapies against these diseases. Among the sources for potentially new therapies, animal venom-derived molecules have generated much interest. Various animal venom-derived proteins and peptides have been isolated, identified, synthesized, and tested to develop drugs. Venom-derived peptides have several biomedical properties, such as proapoptotic, cell migration, and autophagy regulation activities in cancer cell models; induction of vasodilation by nitric oxide and regulation of angiotensin II; modification of insulin response by controlling calcium and potassium channels; regulation of pain receptor activity; modulation of immune cell activity; alteration of motor neuron activity; degradation or inhibition of β-amyloid plaque formation; antibacterial, antifungal, antiviral, and antiprotozoal activities; increase in sperm motility and potentiation of erectile function; reduction of intraocular pressure; anticoagulation, fibrinolytic, and antithrombotic activities; etc. This systematic review compiles these biomedical properties and potential biomedical applications of synthesized animal venom-derived peptides reported in the latest research. In addition, the limitations and areas of opportunity in this research field are discussed so that new studies can be developed based on the data presented.
Collapse
Affiliation(s)
- Jorge L Díaz-Gómez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - Elizabeth Rivera-Aboytes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Ramón Alonso Gaxiola-Muñíz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - César A Puente-Garza
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Silverio García-Lara
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Fabiola Castorena-Torres
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico.
| |
Collapse
|
11
|
Gao Z, Wei Y, Ma G. A review of recent research and development on GLP-1 receptor agonists-sustained-release microspheres. J Mater Chem B 2023; 11:11184-11197. [PMID: 37975420 DOI: 10.1039/d3tb02207b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used in treating type 2 diabetes (T2D). However, owing to their limited oral bioavailability, most commercially available GLP-1 RAs are administered through frequent subcutaneous injections, which may result in poor patient compliance during clinical treatment. To improve patients' compliance, sustained-release GLP-1 RA-loaded microspheres have been explored. This review is an overview of recent progress and research in GLP-1 RA-loaded microspheres. First, the fabrication methods of GLP-1 RA-loaded microspheres including the coacervation method, emulsion-solvent evaporation method based on agitation, premix membrane emulsification technology, spray drying, microfluidic droplet technology, and supercritical fluid technology are summarized. Next, the strategies for maintaining GLP-1 RAs' stability and activity in microspheres by adding additives and PEGylation are reviewed. Finally, the effect of particle size, drug distribution, the internal structure of microspheres, and the hydrogel/microsphere composite strategy on improved release behavior is summarized.
Collapse
Affiliation(s)
- Zejing Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Ansari MA, Chauhan W, Shoaib S, Alyahya SA, Ali M, Ashraf H, Alomary MN, Al-Suhaimi EA. Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions. Int J Obes (Lond) 2023; 47:1179-1199. [PMID: 37696926 DOI: 10.1038/s41366-023-01369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/13/2023]
Abstract
Diabetes is a serious health issue that causes a progressive dysregulation of carbohydrate metabolism due to insufficient insulin hormone, leading to consistently high blood glucose levels. According to the epidemiological data, the prevalence of diabetes has been increasing globally, affecting millions of individuals. It is a long-term condition that increases the risk of various diseases caused by damage to small and large blood vessels. There are two main subtypes of diabetes: type 1 and type 2, with type 2 being the most prevalent. Genetic and molecular studies have identified several genetic variants and metabolic pathways that contribute to the development and progression of diabetes. Current treatments include gene therapy, stem cell therapy, statin therapy, and other drugs. Moreover, recent advancements in therapeutics have also focused on developing novel drugs targeting these pathways, including incretin mimetics, SGLT2 inhibitors, and GLP-1 receptor agonists, which have shown promising results in improving glycemic control and reducing the risk of complications. However, these treatments are often expensive, inaccessible to patients in underdeveloped countries, and can have severe side effects. Peptides, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are being explored as a potential therapy for diabetes. These peptides are postprandial glucose-dependent pancreatic beta-cell insulin secretagogues and have received much attention as a possible treatment option. Despite these advances, diabetes remains a major health challenge, and further research is needed to develop effective treatments and prevent its complications. This review covers various aspects of diabetes, including epidemiology, genetic and molecular basis, and recent advancements in therapeutics including herbal and synthetic peptides.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Waseem Chauhan
- Department of Hematology, Duke University, Durham, NC, 27710, USA
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Mubashshir Ali
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Department of Molecular Medicine, Tampa, FL, USA
| | - Hamid Ashraf
- Rajiv Gandhi Center for Diabetes and Endocrinology, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia.
| | - Ebtesam A Al-Suhaimi
- King Abdulaziz & his Companions Foundation for Giftedness & Creativity, Riyadh, Saudi Arabia.
| |
Collapse
|
13
|
Sintsova O, Popkova D, Kalinovskii A, Rasin A, Borozdina N, Shaykhutdinova E, Klimovich A, Menshov A, Kim N, Anastyuk S, Kusaykin M, Dyachenko I, Gladkikh I, Leychenko E. Control of postprandial hyperglycemia by oral administration of the sea anemone mucus-derived α-amylase inhibitor (magnificamide). Biomed Pharmacother 2023; 168:115743. [PMID: 37862974 DOI: 10.1016/j.biopha.2023.115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Diabetes mellitus is a serious threat to human health in both developed and developing countries. Optimal disease control requires the use of a diet and a combination of several medications, including oral hypoglycemic agents such as α-glucosidase inhibitors. Currently, the arsenal of available drugs is insufficient, which determines the relevance of studying new potent α-amylase inhibitors. We implemented the recombinant production of sea anemone derived α-amylase inhibitor magnificamide in Escherichia coli. Peptide was isolated by a combination of liquid chromatography techniques. Its folding and molecular weight was proved by 1H NMR and mass spectrometry. The Ki value of magnificamide against human pancreatic α-amylase is 3.1 nM according to Morrison equation for tight binding inhibitors. Our study of the thermodynamic characteristics of binding of magnificamide to human salivary and pancreatic α-amylases by isothermal titration calorimetry showed the presence of different binding mechanisms with Kd equal to 0.11 µM and 0.1 nM, respectively. Experiments in mice with streptozotocin-induced diabetes mimicking diabetes mellitus type 1 were used to study the efficiency of magnificamide against postprandial hyperglycemia. It was found that at a dose of 0.005 mg kg-1, magnificamide effectively blocks starch breakdown and prevents the development of postprandial hyperglycemia in T1D mice. Our results demonstrated the therapeutic potential of magnificamide for the control of postprandial hyperglycemia.
Collapse
Affiliation(s)
- Oksana Sintsova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Darya Popkova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Aleksandr Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anton Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Natalya Borozdina
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia
| | - Elvira Shaykhutdinova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia
| | - Anna Klimovich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Alexander Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Natalia Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Stanislav Anastyuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Mikhail Kusaykin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Igor Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia
| | - Irina Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| |
Collapse
|
14
|
Yau K, Odutayo A, Dash S, Cherney DZI. Biology and Clinical Use of Glucagon-Like Peptide-1 Receptor Agonists in Vascular Protection. Can J Cardiol 2023; 39:1816-1838. [PMID: 37429523 DOI: 10.1016/j.cjca.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP1RA) are incretin agents initially designed for the treatment of type 2 diabetes mellitus but because of pleiotropic actions are now used to reduce cardiovascular disease in people with type 2 diabetes mellitus and in some instances as approved treatments for obesity. In this review we highlight the biology and pharmacology of GLP1RA. We review the evidence for clinical benefit on major adverse cardiovascular outcomes in addition to modulation of cardiometabolic risk factors including reductions in weight, blood pressure, improvement in lipid profiles, and effects on kidney function. Guidance is provided on indications and potential adverse effects to consider. Finally, we describe the evolving landscape of GLP1RA and including novel glucagon-like peptide-1-based dual/polyagonist therapies that are being evaluated for weight loss, type 2 diabetes mellitus, and cardiorenal benefit.
Collapse
Affiliation(s)
- Kevin Yau
- Department of Medicine, Division of Nephrology, University Health Network, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ayodele Odutayo
- Department of Medicine, Division of Nephrology, University Health Network, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Satya Dash
- Department of Medicine, Division of Nephrology, University Health Network, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, University Health Network, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Tschöp M, Nogueiras R, Ahrén B. Gut hormone-based pharmacology: novel formulations and future possibilities for metabolic disease therapy. Diabetologia 2023; 66:1796-1808. [PMID: 37209227 PMCID: PMC10474213 DOI: 10.1007/s00125-023-05929-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/22/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are established pharmaceutical therapies for the treatment of type 2 diabetes and obesity. They mimic the action of GLP-1 to reduce glucose levels through stimulation of insulin secretion and inhibition of glucagon secretion. They also reduce body weight by inducing satiety through central actions. The GLP-1 receptor agonists used clinically are based on exendin-4 and native GLP-1 and are available as formulations for daily or weekly s.c. or oral administration. GLP-1 receptor agonism is also achieved by inhibitors of dipeptidyl peptidase-4 (DPP-4), which prevent the inactivation of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), thereby prolonging their raised levels after meal ingestion. Other developments in GLP-1 receptor agonism include the formation of small orally available agonists and compounds with the potential to pharmaceutically stimulate GLP-1 secretion from the gut. In addition, GLP-1/glucagon and GLP-1/GIP dual receptor agonists and GLP-1/GIP/glucagon triple receptor agonists have shown the potential to reduce blood glucose levels and body weight through their effects on islets and peripheral tissues, improving beta cell function and stimulating energy expenditure. This review summarises developments in gut hormone-based therapies and presents the future outlook for their use in type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum, München, Germany
| | - Ruben Nogueiras
- Department of Physiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Bo Ahrén
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
16
|
Haddad F, Dokmak G, Bader M, Karaman R. A Comprehensive Review on Weight Loss Associated with Anti-Diabetic Medications. Life (Basel) 2023; 13:1012. [PMID: 37109541 PMCID: PMC10144237 DOI: 10.3390/life13041012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Obesity is a complex metabolic condition that can have a negative impact on one's health and even result in mortality. The management of obesity has been addressed in a number of ways, including lifestyle changes, medication using appetite suppressants and thermogenics, and bariatric surgery for individuals who are severely obese. Liraglutide and semaglutide are two of the five Food and Drug Administration (FDA)-approved anti-obesity drugs that are FDA-approved agents for the treatment of type 2 diabetes mellitus (T2DM) patients. In order to highlight the positive effects of these drugs as anti-obesity treatments, we analyzed the weight loss effects of T2DM agents that have demonstrated weight loss effects in this study by evaluating clinical studies that were published for each agent. Many clinical studies have revealed that some antihyperglycemic medications can help people lose weight, while others either cause weight gain or neutral results. Acarbose has mild weight loss effects and metformin and sodium-dependent glucose cotransporter proteins-2 (SGLT-2) inhibitors have modest weight loss effects; however, some glucagon-like peptide-1 (GLP-1) receptor agonists had the greatest impact on weight loss. Dipeptidyl peptidase 4 (DPP-4) inhibitors showed a neutral or mild weight loss effect. To sum up, some of the GLP-1 agonist drugs show promise as weight-loss treatments.
Collapse
Affiliation(s)
- Fatma Haddad
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine; (F.H.); (G.D.); (M.B.)
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Ghadeer Dokmak
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine; (F.H.); (G.D.); (M.B.)
| | - Maryam Bader
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine; (F.H.); (G.D.); (M.B.)
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine; (F.H.); (G.D.); (M.B.)
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
17
|
Gilles N. Natural Peptide Toxins as an Option for Renewed Treatment of Type 2 Vasopressin Receptor-Related Diseases. BIOLOGY 2023; 12:544. [PMID: 37106745 PMCID: PMC10136000 DOI: 10.3390/biology12040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
The type 2 vasopressin receptor (V2R) is expressed in the kidneys, and it is the keystone of water homeostasis. Under the control of the antidiuretic hormone vasopressin, the V2R ensures vital functions, and any disturbance has dramatic consequences. Despite decades of research to develop drugs capable of activating or blocking V2R function to meet real medical needs, only one agonist and one antagonist are virtually used today. These two drugs cover only a small portion of patients' needs, leaving millions of patients without treatment. Natural peptide toxins known to act selectively and at low doses on their receptor target could offer new therapeutic options.
Collapse
Affiliation(s)
- Nicolas Gilles
- CEA, SIMoS, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
18
|
Hellinger R, Sigurdsson A, Wu W, Romanova EV, Li L, Sweedler JV, Süssmuth RD, Gruber CW. Peptidomics. NATURE REVIEWS. METHODS PRIMERS 2023; 3:25. [PMID: 37250919 PMCID: PMC7614574 DOI: 10.1038/s43586-023-00205-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 05/31/2023]
Abstract
Peptides are biopolymers, typically consisting of 2-50 amino acids. They are biologically produced by the cellular ribosomal machinery or by non-ribosomal enzymes and, sometimes, other dedicated ligases. Peptides are arranged as linear chains or cycles, and include post-translational modifications, unusual amino acids and stabilizing motifs. Their structure and molecular size render them a unique chemical space, between small molecules and larger proteins. Peptides have important physiological functions as intrinsic signalling molecules, such as neuropeptides and peptide hormones, for cellular or interspecies communication, as toxins to catch prey or as defence molecules to fend off enemies and microorganisms. Clinically, they are gaining popularity as biomarkers or innovative therapeutics; to date there are more than 60 peptide drugs approved and more than 150 in clinical development. The emerging field of peptidomics comprises the comprehensive qualitative and quantitative analysis of the suite of peptides in a biological sample (endogenously produced, or exogenously administered as drugs). Peptidomics employs techniques of genomics, modern proteomics, state-of-the-art analytical chemistry and innovative computational biology, with a specialized set of tools. The complex biological matrices and often low abundance of analytes typically examined in peptidomics experiments require optimized sample preparation and isolation, including in silico analysis. This Primer covers the combination of techniques and workflows needed for peptide discovery and characterization and provides an overview of various biological and clinical applications of peptidomics.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arnar Sigurdsson
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Wenxin Wu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Lodato M, Plaisance V, Pawlowski V, Kwapich M, Barras A, Buissart E, Dalle S, Szunerits S, Vicogne J, Boukherroub R, Abderrahmani A. Venom Peptides, Polyphenols and Alkaloids: Are They the Next Antidiabetics That Will Preserve β-Cell Mass and Function in Type 2 Diabetes? Cells 2023; 12:cells12060940. [PMID: 36980281 PMCID: PMC10047094 DOI: 10.3390/cells12060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Improvement of insulin secretion by pancreatic β-cells and preservation of their mass are the current challenges that future antidiabetic drugs should meet for achieving efficient and long-term glycemic control in patients with type 2 diabetes (T2D). The successful development of glucagon-like peptide 1 (GLP-1) analogues, derived from the saliva of a lizard from the Helodermatidae family, has provided the proof of concept that antidiabetic drugs directly targeting pancreatic β-cells can emerge from venomous animals. The literature reporting on the antidiabetic effects of medicinal plants suggests that they contain some promising active substances such as polyphenols and alkaloids, which could be active as insulin secretagogues and β-cell protectors. In this review, we discuss the potential of several polyphenols, alkaloids and venom peptides from snake, frogs, scorpions and cone snails. These molecules could contribute to the development of new efficient antidiabetic medicines targeting β-cells, which would tackle the progression of the disease.
Collapse
Affiliation(s)
- Michele Lodato
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Maxime Kwapich
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Service de Diabétologie et d’Endocrinologie, CH Dunkerque, 59385 Dunkirk, France
| | - Alexandre Barras
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Emeline Buissart
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Sabine Szunerits
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Jérôme Vicogne
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rabah Boukherroub
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Correspondence: ; Tel.: +33-362531704
| |
Collapse
|
20
|
Hu K, Huang H, Li H, Wei Y, Yao C. Legume-Derived Bioactive Peptides in Type 2 Diabetes: Opportunities and Challenges. Nutrients 2023; 15:nu15051096. [PMID: 36904097 PMCID: PMC10005352 DOI: 10.3390/nu15051096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is a complex disorder characterized by insufficient insulin production or insulin resistance, which results in a lifelong dependence on glucose-lowering drugs for almost all patients. During the fight with diabetes, researchers are always thinking about what characteristics the ideal hypoglycemic drugs should have. From the point of view of the drugs, they should maintain effective control of blood sugar, have a very low risk of hypoglycemia, not increase or decrease body weight, improve β-cell function, and delay disease progression. Recently, the advent of oral peptide drugs, such as semaglutide, brings exciting hope to patients with chronic diabetes. Legumes, as an excellent source of protein, peptides, and phytochemicals, have played significant roles in human health throughout human history. Some legume-derived peptides with encouraging anti-diabetic potential have been gradually reported over the last two decades. Their hypoglycemic mechanisms have also been clarified at some classic diabetes treatment targets, such as the insulin receptor signaling pathway or other related pathways involved in the progress of diabetes, and key enzymes including α-amylase, α-glucosidase, and dipeptidyl peptidase-IV (DPP-4). This review summarizes the anti-diabetic activities and mechanisms of peptides from legumes and discusses the prospects of these peptide-based drugs in type 2 diabetes (T2D) management.
Collapse
|
21
|
González García MC, Radix C, Villard C, Breuzard G, Mansuelle P, Barbier P, Tsvetkov PO, De Pomyers H, Gigmes D, Devred F, Kovacic H, Mabrouk K, Luis J. Myotoxin-3 from the Pacific Rattlesnake Crotalus oreganus oreganus Venom Is a New Microtubule-Targeting Agent. Molecules 2022; 27:molecules27238241. [PMID: 36500334 PMCID: PMC9739105 DOI: 10.3390/molecules27238241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Microtubule targeting agents (MTA) are anti-cancer molecules that bind tubulin and interfere with the microtubule functions, eventually leading to cell death. In the present study, we used an in vitro microtubule polymerization assay to screen several venom families for the presence of anti-microtubule activity. We isolated myotoxin-3, a peptide of the crotamine family, and three isoforms from the venom of the Northern Pacific rattlesnake Crotalus oreganus oreganus, which was able to increase tubulin polymerization. Myotoxin-3 turned out to be a cell-penetrating peptide that slightly diminished the viability of U87 glioblastoma and MCF7 breast carcinoma cells. Myotoxin 3 also induced remodeling of the U87 microtubule network and decreased MCF-7 microtubule dynamic instability. These effects are likely due to direct interaction with tubulin. Indeed, we showed that myotoxin-3 binds to tubulin heterodimer with a Kd of 5.3 µM and stoichiometry of two molecules of peptide per tubulin dimer. Our results demonstrate that exogenous peptides are good candidates for developing new MTA and highlight the richness of venoms as a source of pharmacologically active molecules.
Collapse
Affiliation(s)
- María Cecilia González García
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Caroline Radix
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Claude Villard
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Pascal Mansuelle
- Institut de Microbiologie de la Méditerranée (Marseille Protéomique), IMM (MaP), CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Pascale Barbier
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Philipp O. Tsvetkov
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Harold De Pomyers
- Laboratoire LATOXAN SAS, 845 Avenue Pierre Brossolette, 26800 Portes-lès-Valence, France
| | - Didier Gigmes
- Institut de Chimie Radicalaire, ICR, Faculté des Sciences de Saint Jérôme, CNRS, Aix-Marseille Université, 13397 Marseille, France
| | - François Devred
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Kamel Mabrouk
- Institut de Chimie Radicalaire, ICR, Faculté des Sciences de Saint Jérôme, CNRS, Aix-Marseille Université, 13397 Marseille, France
| | - José Luis
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, CNRS, Aix-Marseille Université, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-91-32-47-34
| |
Collapse
|
22
|
Lin Q, Xia X, Li J, Zhou Z, Chen Y. Site-specific N-terminal PEGylation-based controlled release of biotherapeutics: An application for GLP-1 delivery to improve pharmacokinetics and prolong hypoglycemic effects. Eur J Med Chem 2022; 242:114672. [PMID: 35973313 DOI: 10.1016/j.ejmech.2022.114672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
PEGylation is a well-established technology for half-life extension in drug delivery. In this study, we aimed to develop a site-specific N-terminal PEGylation for biotherapeutics to achieve controlled release, using GLP-1 as a model. An additional threonine was introduced at N-terminal GLP-1. Followed by periodate oxidation, hydrazide-based PEGylation was achieved in a site-selective manner under reductive condition. Two homogenous monovalent mPEG5k-GLP-1 (peptide 4) and mPEG20k-GLP-1 (peptide 5) were successfully constructed. After PEGylation, the degradation by DPP-IV and rat plasma was obviously reduced. Their pharmacokinetic performances were enhanced at the expense of impaired GLP-1R stimulating potency, and their hypoglycemic effects were improved in different degrees. Compared with conventional strategies, this approach is devoid of the restriction and alteration of native peptide sequences, and can produce utterly homogenous conjugates with excellent selectivity and efficiency. It provides a practical controlled release approach for peptides by site-specific modification to achieve better pharmacological and therapeutic properties.
Collapse
Affiliation(s)
- Qianmeng Lin
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xuan Xia
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jun Li
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhan Zhou
- Research Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
23
|
Sirisereephap K, Maekawa T, Tamura H, Hiyoshi T, Domon H, Isono T, Terao Y, Maeda T, Tabeta K. Osteoimmunology in Periodontitis: Local Proteins and Compounds to Alleviate Periodontitis. Int J Mol Sci 2022; 23:5540. [PMID: 35628348 PMCID: PMC9146968 DOI: 10.3390/ijms23105540] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/25/2023] Open
Abstract
Periodontitis is one of the most common oral diseases resulting in gingival inflammation and tooth loss. Growing evidence indicates that it results from dysbiosis of the oral microbiome, which interferes with the host immune system, leading to bone destruction. Immune cells activate periodontal ligament cells to express the receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL) and promote osteoclast activity. Osteocytes have active roles in periodontitis progression in the bone matrix. Local proteins are involved in bone regeneration through functional immunological plasticity. Here, we discuss the current knowledge of cellular and molecular mechanisms in periodontitis, the roles of local proteins, and promising synthetic compounds generating a periodontal regeneration effect. It is anticipated that this may lead to a better perception of periodontitis pathophysiology.
Collapse
Affiliation(s)
- Kridtapat Sirisereephap
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
- Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tomoki Maekawa
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Hikaru Tamura
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
| | - Takumi Hiyoshi
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Hisanori Domon
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Toshihito Isono
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Yutaka Terao
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
| |
Collapse
|
24
|
Cardoso FC, Servent D, de Lima ME. Editorial: Venom Peptides: A Rich Combinatorial Library for Drug Development. Front Mol Biosci 2022; 9:924023. [PMID: 35647027 PMCID: PMC9136682 DOI: 10.3389/fmolb.2022.924023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Fernanda C. Cardoso
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Fernanda C. Cardoso,
| | - Denis Servent
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maria Elena de Lima
- Programa de Pós Graduação em Medicina e Biomedicina, Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Magida JA, Tan Y, Wall CE, Harrison BC, Marr TG, Peter AK, Riquelme CA, Leinwand LA. Burmese pythons exhibit a transient adaptation to nutrient overload that prevents liver damage. J Gen Physiol 2022; 154:213093. [PMID: 35323838 PMCID: PMC8958269 DOI: 10.1085/jgp.202113008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 01/02/2023] Open
Abstract
As an opportunistic predator, the Burmese python (Python molurus bivittatus) consumes large and infrequent meals, fasting for up to a year. Upon consuming a large meal, the Burmese python exhibits extreme metabolic responses. To define the pathways that regulate these postprandial metabolic responses, we performed a comprehensive profile of plasma metabolites throughout the digestive process. Following ingestion of a meal equivalent to 25% of its body mass, plasma lipoproteins and metabolites, such as chylomicra and bile acids, reach levels observed only in mammalian models of extreme dyslipidemia. Here, we provide evidence for an adaptive response to postprandial nutrient overload by the python liver, a critical site of metabolic homeostasis. The python liver undergoes a substantial increase in mass through proliferative processes, exhibits hepatic steatosis, hyperlipidemia-induced insulin resistance indicated by PEPCK activation and pAKT deactivation, and de novo fatty acid synthesis via FASN activation. This postprandial state is completely reversible. We posit that Burmese pythons evade the permanent hepatic damage associated with these metabolic states in mammals using evolved protective measures to inactivate these pathways. These include a transient activation of hepatic nuclear receptors induced by fatty acids and bile acids, including PPAR and FXR, respectively. The stress-induced p38 MAPK pathway is also transiently activated during the early stages of digestion. Taken together, these data identify a reversible metabolic response to hyperlipidemia by the python liver, only achieved in mammals by pharmacologic intervention. The factors involved in these processes may be relevant to or leveraged for remediating human hepatic pathology.
Collapse
Affiliation(s)
- Jason A Magida
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO.,Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Yuxiao Tan
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO
| | - Christopher E Wall
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO.,Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Brooke C Harrison
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO
| | | | - Angela K Peter
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO
| | - Cecilia A Riquelme
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO.,Department of Cell and Molecular Biology, Catholic University of Chile, Santiago, Chile
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO
| |
Collapse
|
26
|
|
27
|
Van Baelen AC, Robin P, Kessler P, Maïga A, Gilles N, Servent D. Structural and Functional Diversity of Animal Toxins Interacting With GPCRs. Front Mol Biosci 2022; 9:811365. [PMID: 35198603 PMCID: PMC8859281 DOI: 10.3389/fmolb.2022.811365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide toxins from venoms have undergone a long evolutionary process allowing host defense or prey capture and making them highly selective and potent for their target. This has resulted in the emergence of a large panel of toxins from a wide diversity of species, with varied structures and multiple associated biological functions. In this way, animal toxins constitute an inexhaustible reservoir of druggable molecules due to their interesting pharmacological properties. One of the most interesting classes of therapeutic targets is the G-protein coupled receptors (GPCRs). GPCRs represent the largest family of membrane receptors in mammals with approximately 800 different members. They are involved in almost all biological functions and are the target of almost 30% of drugs currently on the market. Given the interest of GPCRs in the therapeutic field, the study of toxins that can interact with and modulate their activity with the purpose of drug development is of particular importance. The present review focuses on toxins targeting GPCRs, including peptide-interacting receptors or aminergic receptors, with a particular focus on structural aspects and, when relevant, on potential medical applications. The toxins described here exhibit a great diversity in size, from 10 to 80 amino acids long, in disulfide bridges, from none to five, and belong to a large panel of structural scaffolds. Particular toxin structures developed here include inhibitory cystine knot (ICK), three-finger fold, and Kunitz-type toxins. We summarize current knowledge on the structural and functional diversity of toxins interacting with GPCRs, concerning first the agonist-mimicking toxins that act as endogenous agonists targeting the corresponding receptor, and second the toxins that differ structurally from natural agonists and which display agonist, antagonist, or allosteric properties.
Collapse
Affiliation(s)
- Anne-Cécile Van Baelen
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Robin
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascal Kessler
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Arhamatoulaye Maïga
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
- CHU Sainte Justine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Gilles
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Denis Servent
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
- *Correspondence: Denis Servent,
| |
Collapse
|
28
|
Wang Q, Wang J, Li N, Liu J, Zhou J, Zhuang P, Chen H. A Systematic Review of Orthosiphon stamineus Benth. in the Treatment of Diabetes and Its Complications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020444. [PMID: 35056765 PMCID: PMC8781015 DOI: 10.3390/molecules27020444] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
(1) Background: Orthosiphon stamineus Benth. is a traditional medicine used in the treatment of diabetes and chronic renal failure in southern China, Malaysia, and Thailand. Diabetes is a chronic metabolic disease and the number of diabetic patients in the world is increasing. This review aimed to systematically review the effects of O. stamineus in the treatment of diabetes and its complications and the pharmacodynamic material basis. (2) Methods: This systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), using the databases ScienceDirect, PubMed, and Web of Science. (3) Results: Thirty-one articles related to O. stamineus and diabetes were included. The mechanisms of O. stamineus in the treatment of diabetes and its complications mainly included inhibiting α-amylase and α-glucosidase activities, antioxidant and anti-inflammatory activities, regulating lipid metabolism, promoting insulin secretion, ameliorating insulin resistance, increasing glucose uptake, promoting glycolysis, inhibiting gluconeogenesis, promoting glucagon-likepeptide-1 (GLP-1) secretion and antiglycation activity. Phenolic acids, flavonoids and triterpenoids might be the main components for hypoglycemia effects in O. stamineus. (4) Conclusion: O. stamineus could be an antidiabetic agent to treat diabetes and its complications. However, it needs further study on a pharmacodynamic substance basis and the mechanisms of effective constituents.
Collapse
Affiliation(s)
- Qirou Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Q.W.); (J.W.); (N.L.); (J.L.); (J.Z.)
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Q.W.); (J.W.); (N.L.); (J.L.); (J.Z.)
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Q.W.); (J.W.); (N.L.); (J.L.); (J.Z.)
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Q.W.); (J.W.); (N.L.); (J.L.); (J.Z.)
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Q.W.); (J.W.); (N.L.); (J.L.); (J.Z.)
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Q.W.); (J.W.); (N.L.); (J.L.); (J.Z.)
- Correspondence: ; Tel.: +86-22-2740-1483
| |
Collapse
|
29
|
Setayesh-Mehr Z, Poorsargol M. HL-7 and HL-10 Peptides Stimulate Insulin Secretion in the INS-1 Insulinoma Cell Line through Incretin-Dependent Pathway and Increasing the Glucose Uptake in L6 Myoblast. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Dashevsky D, Rodriguez J. A Short Review of the Venoms and Toxins of Spider Wasps (Hymenoptera: Pompilidae). Toxins (Basel) 2021; 13:toxins13110744. [PMID: 34822528 PMCID: PMC8622703 DOI: 10.3390/toxins13110744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Parasitoid wasps represent the plurality of venomous animals, but have received extremely little research in proportion to this taxonomic diversity. The lion’s share of investigation into insect venoms has focused on eusocial hymenopterans, but even this small sampling shows great promise for the development of new active substances. The family Pompilidae is known as the spider wasps because of their reproductive habits which include hunting for spiders, delivering a paralyzing sting, and entombing them in burrows with one of the wasp’s eggs to serve as food for the developing larva. The largest members of this family, especially the tarantula hawks of the genus Pepsis, have attained notoriety for their large size, dramatic coloration, long-term paralysis of their prey, and incredibly painful defensive stings. In this paper we review the existing research regarding the composition and function of pompilid venoms, discuss parallels from other venom literatures, identify possible avenues for the adaptation of pompilid toxins towards human purposes, and future directions of inquiry for the field.
Collapse
|
31
|
Chakkarapani AA, Aly H, Benders M, Cotten CM, El-Dib M, Gressens P, Hagberg H, Sabir H, Wintermark P, Robertson NJ. Therapies for neonatal encephalopathy: Targeting the latent, secondary and tertiary phases of evolving brain injury. Semin Fetal Neonatal Med 2021; 26:101256. [PMID: 34154945 DOI: 10.1016/j.siny.2021.101256] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In term and near-term neonates with neonatal encephalopathy, therapeutic hypothermia protocols are well established. The current focus is on how to improve outcomes further and the challenge is to find safe and complementary therapies that confer additional protection, regeneration or repair in addition to cooling. Following hypoxia-ischemia, brain injury evolves over three main phases (latent, secondary and tertiary), each with a different brain energy, perfusion, neurochemical and inflammatory milieu. While therapeutic hypothermia has targeted the latent and secondary phase, we now need therapies that cover the continuum of brain injury that spans hours, days, weeks and months after the initial event. Most agents have several therapeutic actions but can be broadly classified under a predominant action (e.g., free radical scavenging, anti-apoptotic, anti-inflammatory, neuroregeneration, and vascular effects). Promising early/secondary phase therapies include Allopurinol, Azithromycin, Exendin-4, Magnesium, Melatonin, Noble gases and Sildenafil. Tertiary phase agents include Erythropoietin, Stem cells and others. We review a selection of promising therapeutic agents on the translational pipeline and suggest a framework for neuroprotection and neurorestoration that targets the evolving injury.
Collapse
Affiliation(s)
| | - Hany Aly
- Cleveland Clinic Children's Hospital, Cleveland, OH, USA.
| | - Manon Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - C Michael Cotten
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom.
| | - Henrik Hagberg
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom; Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital University of Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Pia Wintermark
- Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Nicola J Robertson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh BioQuarter, Edinburgh, United Kingdom; Institute for Women's Health, University College London, London, United Kingdom.
| | | |
Collapse
|
32
|
V V, Achar RR, M.U H, N A, T YS, Kameshwar VH, Byrappa K, Ramadas D. Venom peptides - A comprehensive translational perspective in pain management. Curr Res Toxicol 2021; 2:329-340. [PMID: 34604795 PMCID: PMC8473576 DOI: 10.1016/j.crtox.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
Venom peptides have been evolving complex therapeutic interventions that potently and selectively modulate a range of targets such as ion channels, receptors, and signaling pathways of physiological processes making it potential therapeutic. Several venom peptides were deduced in vivo for clinical development targeting pain management, diabetes, cardiovascular diseases, antimicrobial activity. Several contributions have been detailed for a clear perspective for a better understanding of venomous animals, their venom, and their pharmacological effects. Here we unravel and summarize the recent advances in wide venom peptides across varieties of species for their therapeutics prospects.
Collapse
Affiliation(s)
- Vidya V
- K. S Hegde Medical Academy, NITTE (Deemed to be) University, Mangalore 575015, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Himathi M.U
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Akshita N
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Yogish Somayaji T
- Department of Post Graduate Studies and Research in Biochemistry, St. Aloysius College (Autonomous), Mangalore 575003, Karnataka, India
| | - Vivek Hamse Kameshwar
- School of Natural Science, Adichunchanagiri University, B.G. Nagara-571448, Nangamangala, Mandya, India
- School of Natural Sciences, ACU-CRI, Adichunchanagiri University, BGSIT Campus, B.G. Nagara-571448, Nagamangala, Mandya, India
| | - K. Byrappa
- School of Natural Sciences, ACU-CRI, Adichunchanagiri University, BGSIT Campus, B.G. Nagara-571448, Nagamangala, Mandya, India
- Center for Material Science and Technology, Vijnana Bhavan, University of Mysore, Mysuru, Karnataka, India
| | - Dinesha Ramadas
- Adichunchanagiri Institute for Molecular Medicine, AIMS, Adichunchanagiri University, B.G. Nagara-571448, Nagamangala, Mandya, India
| |
Collapse
|
33
|
Antony P, Vijayan R. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. Int J Mol Sci 2021; 22:9059. [PMID: 34445765 PMCID: PMC8396489 DOI: 10.3390/ijms22169059] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus is a major public health concern associated with high mortality and reduced life expectancy. The alarming rise in the prevalence of diabetes is linked to several factors including sedentary lifestyle and unhealthy diet. Nutritional intervention and increased physical activity could significantly contribute to bringing this under control. Food-derived bioactive peptides and protein hydrolysates have been associated with a number health benefits. Several peptides with antidiabetic potential have been identified that could decrease blood glucose level, improve insulin uptake and inhibit key enzymes involved in the development and progression of diabetes. Dietary proteins, from a wide range of food, are rich sources of antidiabetic peptides. Thus, there are a number of benefits in studying peptides obtained from food sources to develop nutraceuticals. A deeper understanding of the underlying molecular mechanisms of these peptides will assist in the development of new peptide-based therapeutics. Despite this, a comprehensive analysis of the antidiabetic properties of bioactive peptides derived from various food sources is still lacking. Here, we review the recent literature on food-derived bioactive peptides possessing antidiabetic activity. The focus is on the effectiveness of these peptides as evidenced by in vitro and in vivo studies. Finally, we discuss future prospects of peptide-based drugs for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
34
|
Disner GR, Falcão MAP, Lima C, Lopes-Ferreira M. In Silico Target Prediction of Overexpressed microRNAs from LPS-Challenged Zebrafish ( Danio rerio) Treated with the Novel Anti-Inflammatory Peptide TnP. Int J Mol Sci 2021; 22:7117. [PMID: 34281170 PMCID: PMC8268205 DOI: 10.3390/ijms22137117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
miRNAs regulate gene expression post-transcriptionally in various processes, e.g., immunity, development, and diseases. Since their experimental analysis is complex, in silico target prediction is important for directing investigations. TnP is a candidate peptide for anti-inflammatory therapy, first discovered in the venom of Thalassophryne nattereri, which led to miRNAs overexpression in LPS-inflamed zebrafish post-treatment. This work aimed to predict miR-21, miR-122, miR-731, and miR-26 targets using overlapped results of DIANA microT-CDS and TargetScanFish software. This study described 513 miRNAs targets using highly specific thresholds. Using Gene Ontology over-representation analysis, we identified their main roles in regulating gene expression, neurogenesis, DNA-binding, transcription regulation, immune system process, and inflammatory response. miRNAs act in post-transcriptional regulation, but we revealed that their targets are strongly related to expression regulation at the transcriptional level, e.g., transcription factors proteins. A few predicted genes participated concomitantly in many biological processes and molecular functions, such as foxo3a, rbpjb, rxrbb, tyrobp, hes6, zic5, smad1, e2f7, and npas4a. Others were particularly involved in innate immunity regulation: il17a/f2, pik3r3b, and nlrc6. Together, these findings not only provide new insights into the miRNAs mode of action but also raise hope for TnP therapy and may direct future experimental investigations.
Collapse
Affiliation(s)
| | | | | | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil; (G.R.D.); (M.A.P.F.); (C.L.)
| |
Collapse
|
35
|
Trim CM, Byrne LJ, Trim SA. Utilisation of compounds from venoms in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:1-66. [PMID: 34147202 DOI: 10.1016/bs.pmch.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
Collapse
Affiliation(s)
- Carol M Trim
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | - Lee J Byrne
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
36
|
Biotechnological Application of Animal Toxins as Potential Treatments for Diabetes and Obesity. CURRENT TROPICAL MEDICINE REPORTS 2021. [DOI: 10.1007/s40475-021-00244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Smallwood TB, Clark RJ. Advances in venom peptide drug discovery: where are we at and where are we heading? Expert Opin Drug Discov 2021; 16:1163-1173. [PMID: 33914674 DOI: 10.1080/17460441.2021.1922386] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Animal venoms are a complex mixture of bioactive molecules that have evolved over millions of years for prey capture and defense from predators. Venom consists of many different types of molecules, with disulfide-rich peptides being a major component in most venoms. The study of these potent and highly selective molecules has led to the development of venom-derived drugs for diseases such as type 2 diabetes mellitus and chronic pain. As technologies have improved, more bioactive peptides have been discovered from venomous animals. Many of these molecules may have applications as tools for understanding normal and disease physiology, therapeutics, cosmetics or in agriculture.Areas covered: This article reviews venom-derived drugs approved by the FDA and venom-derived peptides currently in development. It discusses the challenges faced by venom-derived peptide drugs during drug development and the future for venom-derived peptides.Expert opinion: New techniques such as toxin driven discovery are expanding the pipeline of venom-derived peptides. There are many venom-derived peptides currently in preclinical and clinical trials that would have remained undiscovered using traditional approaches. A renewed focus on venoms, with advances in technology, will broaden the diversity of venom-derived peptide therapeutics and expand our knowledge of their molecular targets.
Collapse
Affiliation(s)
- Taylor B Smallwood
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Richard J Clark
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
38
|
Mishra SH, Bhavaraju S, Schmidt DR, Carrick KL. Facilitated structure verification of the biopharmaceutical peptide exenatide by 2D heteronuclear NMR maps. J Pharm Biomed Anal 2021; 203:114136. [PMID: 34087552 DOI: 10.1016/j.jpba.2021.114136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 11/25/2022]
Abstract
Exenatide is a peptide based anti-diabetic prescription medication. Until now, the literature has lacked a comprehensive atom-specific molecular characterization for this complex large peptide by NMR spectroscopy that can be effortlessly and rapidly utilized for biopharmaceutical structural veracity. Peptide structure verification by NMR is challenging and cumbersome when reliant on traditional proton-based methodology (through-bond and through-space proton connectivity) alone due to increasing complexity, low signal dispersion, and overlap. These challenges are overcome by using 2D heteronuclear (1H-13C and 1H-15N) maps that not only allow unambiguous signal assignment, but also condense the structural verification information within simplified peptide amide and carbon fingerprint maps. Here we report such simplified amide and carbon fingerprint maps for exenatide; made possible by the first ever comprehensive heteronuclear (1H,13C, and 15N) atom specific assignment of exenatide. These heteronuclear assignments were obtained without any isotopic enrichments i.e. at natural abundance, and hence are easily deployable as routine procedures. Furthermore, we compare the 2D heteronuclear maps of exenatide to a chemically identical peptide differing only in the isomerism of the Cα position of the first amino acid, [dHis1]-exenatide, to demonstrate the uniqueness of these maps. We show that despite deliberate changes in pH, temperature, and concentrations, the differences between the amide maps of exenatide and [dHis1]-exenatide are retained. The work presented here not only provides a facilitated structure verification of exenatide but also a framework for heteronuclear NMR data acquisition and signal assignment of large peptides, at natural abundance, in creating their respective unique 2D fingerprint maps.
Collapse
Affiliation(s)
- Subrata H Mishra
- Reference Standards Laboratory, United States Pharmacopeial Convention, 12601 Twinbrook Parkway, Rockville, MD, 20852, United States.
| | - Sitaram Bhavaraju
- Reference Standards Laboratory, United States Pharmacopeial Convention, 12601 Twinbrook Parkway, Rockville, MD, 20852, United States
| | - Dale R Schmidt
- Global Biologics, United States Pharmacopeial Convention, 12601 Twinbrook Parkway, Rockville, MD, 20852, United States
| | - Kevin L Carrick
- Global Biologics, United States Pharmacopeial Convention, 12601 Twinbrook Parkway, Rockville, MD, 20852, United States
| |
Collapse
|
39
|
Dai S, Hong H, Zhou K, Zhao K, Xie Y, Li C, Shi J, Zhou Z, Nie L, Wu Z. Exendin 4-Hapten Conjugate Capable of Binding with Endogenous Antibodies for Peptide Half-life Extension and Exerting Long-Acting Hypoglycemic Activity. J Med Chem 2021; 64:4947-4959. [PMID: 33825469 DOI: 10.1021/acs.jmedchem.1c00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hapten-specific endogenous antibodies are naturally occurring antibodies present in human blood. Herein, we investigated a new strategy in which small-molecule haptens were utilized as naturally occurring antibody binders for peptide half-life extension. The glucagon-like peptide 1 receptor agonist exendin 4 was site-specifically functionalized with the dinitrophenyl (DNP) hapten at the C-terminus via sortase A-mediated ligation. The resulting Ex4-DNP conjugates retained GLP-1 receptor activation potency in vitro and had a similar in vivo acute glucose-lowering effect comparable to that of native Ex4. Pharmacokinetic studies and hypoglycemic duration tests demonstrated that the Ex4-DNP conjugates displayed significantly elongated half-lives and improved long-acting antidiabetic activity in the presence of endogenous anti-DNP antibodies. In chronic treatment studies, once-daily administration of optimal conjugate 7 demonstrated more beneficial effects without prominent toxicity compared with Ex4. This strategy provides a new approach and represents an alternative to the well-established peptide-Fc fusion strategy to improve the peptide half-life and the therapeutic efficacy.
Collapse
Affiliation(s)
- Shijie Dai
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Kun Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Kai Zhao
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Yuntian Xie
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Chen Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Lei Nie
- Hisun Biopharmaceutical Co., Limited, 8 Hisun Road, Xialian Village, Xukou Town, Fuyang District, 311404 Hangzhou, Zhejiang, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
40
|
Abstract
Over recent decades, an improved understanding of the pathophysiology of type 2 diabetes mellitus (T2DM) and glucose regulation has led to innovative research and new treatment paradigms. The discovery of the gut peptide glucagon-like peptide-1 (GLP-1) and its role in glucose regulation paved the way for the class of GLP-1 receptor agonist compounds, or GLP-1RAs. The long-acting GLP-1RAs (dulaglutide, exenatide extended-release, liraglutide, semaglutide [injectable and oral]) are classified as such based on a minimum 24-hour duration of clinically relevant effects after administration. In phase 3 clinical trial programs of long-acting GLP-1RAs, A1C typically was reduced in the range of 1% to 1.5%, with reductions close to 2% in some studies. GLP-1RAs when used alone (without sulfonylureas or insulin) have a low risk of hypoglycemia because, like endogenous GLP-1, their insulinotropic effects are glucose-dependent. In addition to local actions in the gastrointestinal (GI) tract, GLP-1RAs stimulate receptors in the central nervous system to increase satiety, resulting in weight loss. All long-acting GLP-1RAs have, at minimum, been shown to be safe and not increase cardiovascular (CV) risk and most (liraglutide, semaglutide injectable, dulaglutide, albiglutide) have been shown in CV outcomes trials (CVOTs) to significantly reduce the risk of major cardiac adverse events. The class has good tolerability overall, with generally transient GI adverse events being most common. The weekly injectable agents offer scheduling convenience and may promote treatment adherence. One long-acting GLP-1RA is available as an oral daily tablet, which may be preferable for some patients and providers.
Collapse
|
41
|
Oral self-nanoemulsifying formulation of GLP-1 agonist peptide exendin-4: development, characterization and permeability assesment on Caco-2 cell monolayer. Amino Acids 2021; 53:73-88. [PMID: 33398527 DOI: 10.1007/s00726-020-02926-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
The objective of this study was to prepare a stable self-nanoemulsifying formulation of exendin-4, which is an antidiabetic peptide. As exendin-4 is commercially available only in subcutaneous form, several attempts have been made to discover an effective oral formulation. Self-nanoemulsifying drug delivery systems are known to be suitable carriers for the oral administration of peptide drugs. Various ratios of oil, surfactant, and co-surfactant mixtures were used to determine the area in the pseudoternary phase diagram for clear nanoemulsion. The Design of Experiment approach was used for the optimization of the formulation. Blank self-nanoemulsifying formulations containing ethyl oleate as oil phase, Cremophor EL®, and Labrasol® as surfactant, absolute ethanol, and propylene glycol as co-solvent in various proportions were approximately 18-50 nm, 0.08-0.204 and - 3 to - 23 mV in droplet size, polydispersity index, and zeta potential, respectively. When all formulations were compared by statistical analysis, five of them with smaller droplet sizes were selected for further studies. The physical stability test was performed for 1 month at 5 °C ± 3 °C and 25 °C ± 2 °C/60% RH ± 5% RH storage conditions. As a result of the characterization and physical stability test results, ethyl oleate: Cremophor EL®:absolute ethanol (30:52.5:17.5) formulation and four formulations containing ethyl oleate: Cremophor EL®:Labrasol®:propylene glycol:absolute ethanol at varying concentrations were considered for peptide encapsulation efficiency. Formulation having the highest encapsulation efficiency of exendin-4 containing ethyl oleate: Cremophor EL®:Labrasol®:propylene glycole:absolute ethanol (15:42.5:21.25:15.94:5.31) was selected for in vitro Caco-2 intestinal permeability study. The permeabiliy coefficient was increased by 1.5-folds by exendin-4-loaded self-nanoemulsifying formulation as compared to the exendin-4 solution. It can be concluded that intestinal permeability has been improved by self-nanoemulsifying formulation.
Collapse
|
42
|
Abstract
Context: Heloderma bites are rare and generally mild, but a few cases can be life threatening. Methods: Description of Heloderma bite was searched in medical literature. Discussion: We present a synthesis of clinical and biomedical effects of envenomation by Heloderma sp. based on 22 well identified cases described in medical literature. Three life-threatening syndromes, concomitant or not, may be involved: (a) angioedema which can lead to respiratory tract obstruction, (b) significant fluid losses due to diarrhea, vomiting and sweating, associated with hypokalemia and sometimes metabolic acidosis, and (c) atrioventricular conduction disorders simulating cardiac ischemia. Conclusion: Heloderma bite are quite rare and generally mild. However, few severe cases may require emergency resuscitation. There is no antivenom, and the treatment is only symptomatic and supportive.
Collapse
Affiliation(s)
- Jean-Philippe Chippaux
- CRT, Institut Pasteur, Paris, France.,MERIT, IRD, Université Paris 5, Sorbonne Paris Cité, Paris, France
| | - Karim Amri
- Snakebite institute of Latin America, Belize, USA
| |
Collapse
|
43
|
Site-selective modification of exendin 4 with variable molecular weight dextrans by oxime-ligation chemistry for improving type 2 diabetic treatment. Carbohydr Polym 2020; 249:116864. [DOI: 10.1016/j.carbpol.2020.116864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
|
44
|
Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol Res 2020; 164:105327. [PMID: 33276098 DOI: 10.1016/j.phrs.2020.105327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Based on the high incidence and mortality rates of cancer, its therapy remains one of the most vital challenges in the field of medicine. Consequently, enhancing the efficacy of currently applied treatments and finding novel strategies are of great importance for cancer treatment. Venoms are important sources of a variety of bioactive compounds including salts, small molecules, macromolecules, proteins, and peptides that are defined as toxins. They can exhibit different pharmacological effects, and in recent years, their anti-tumor activities have gained significant attention. Several different compounds are responsible for the anti-tumor activity of venoms, and peptides are one of them. In the present review, we discuss the possible anti-tumor activities of venom peptides by highlighting molecular pathways and mechanisms through which these molecules can act effectively. Venom peptides can induce cell death in cancer cells and can substantially enhance the efficacy of chemotherapy and radiotherapy. Also, the venom peptides can mitigate the migration of cancer cells via suppression of angiogenesis and epithelial-to-mesenchymal transition. Notably, nanoparticles have been applied in enhancing the bioavailability of venom peptides and providing targeted delivery, thereby leading to their elevated anti-tumor activity and potential application for cancer therapy.
Collapse
|
45
|
Turner A, Kaas Q, Craik DJ. Hormone-like conopeptides - new tools for pharmaceutical design. RSC Med Chem 2020; 11:1235-1251. [PMID: 34095838 PMCID: PMC8126879 DOI: 10.1039/d0md00173b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
Conopeptides are a diverse family of peptides found in the venoms of marine cone snails and are used in prey capture and host defence. Because of their potent activity on a range of mammalian targets they have attracted interest as leads in drug design. Until recently most focus had been on studying conopeptides having activity at ion channels and related neurological targets but, with recent discoveries that some conopeptides might play hormonal roles, a new area of conopeptide research has opened. In this article we first summarize the canonical pharmaceutical families of Conus venom peptides and then focus on new research relating to hormone-like conopeptides and their potential applications. Finally, we briefly examine methods of chemically stabilizing conopeptides to improve their pharmacological properties. A summary is presented of conopeptides in clinical trials and a call for future work on hormone-like conopeptides.
Collapse
Affiliation(s)
- Ashlin Turner
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
46
|
Mendel HC, Kaas Q, Muttenthaler M. Neuropeptide signalling systems - An underexplored target for venom drug discovery. Biochem Pharmacol 2020; 181:114129. [PMID: 32619425 PMCID: PMC7116218 DOI: 10.1016/j.bcp.2020.114129] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
Neuropeptides are signalling molecules mainly secreted from neurons that act as neurotransmitters or peptide hormones to affect physiological processes and modulate behaviours. In humans, neuropeptides are implicated in numerous diseases and understanding their role in physiological processes and pathologies is important for therapeutic development. Teasing apart the (patho)physiology of neuropeptides remains difficult due to ligand and receptor promiscuity and the complexity of the signalling pathways. The current approach relies on a pharmacological toolbox of agonists and antagonists displaying high selectivity for independent receptor subtypes, with the caveat that only few selective ligands have been discovered or developed. Animal venoms represent an underexplored source for novel receptor subtype-selective ligands that could aid in dissecting human neuropeptide signalling systems. Multiple endogenous-like neuropeptides as well as peptides acting on neuropeptide receptors are present in venoms. In this review, we summarise current knowledge on neuropeptides and discuss venoms as a source for ligands targeting neuropeptide signalling systems.
Collapse
Affiliation(s)
- Helen C Mendel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria.
| |
Collapse
|
47
|
Affiliation(s)
- Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia; School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
48
|
Lee JY, Park T, Hong E, Amatya R, Park KA, Park YH, Min KA, Jin M, Lee S, Hwang S, Roh GS, Shin MC. Genetic engineering of novel super long-acting Exendin-4 chimeric protein for effective treatment of metabolic and cognitive complications of obesity. Biomaterials 2020; 257:120250. [PMID: 32736262 DOI: 10.1016/j.biomaterials.2020.120250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/21/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023]
Abstract
A common bottleneck challenge for many therapeutic proteins lies in their short plasma half-lives, which often makes the treatment far less compliant or even disables achieving sufficient therapeutic efficacy. To address this problem, we introduce a novel drug delivery strategy based on the genetic fusion of an albumin binding domain (ABD) and an anti-neonatal Fc receptor (FcRn) affibody (AFF) to therapeutic proteins. This ABD-AFF fusion strategy can provide a synergistic effect on extending the plasma residence time by, on one hand, preventing the rapid glomerular filtration via ABD-mediated albumin binding and, on the other hand, increasing the efficiency of FcRn-mediated recycling by AFF-mediated high-affinity binding to the FcRn. In this research, we explored the feasibility of applying the ABD-AFF fusion strategy to exendin-4 (EX), a clinically available anti-diabetic peptide possessing a short plasma half-life. The EX-ABD-AFF produced from the E. coli displayed a remarkably (241-fold) longer plasma half-life than the SUMO tagged-EX (SUMO-EX) (0.7 h) in mice. Furthermore, in high-fat diet (HFD)-fed obese mice model, the EX-ABD-AFF could provide significant hypoglycemic effects for over 12 days, accompanied by a reduction of body weight. In the long-term study, the EX-ABD-AFF could significantly reverse the obesity-related metabolic complications (hyperglycemia, hyperlipidemia, and hepatic steatosis) and, moreover, improve cognitive deficits. Overall, this study demonstrated that the ABD-AFF fusion could be an effective strategy to greatly increase the plasma half-lives of therapeutic proteins and thus markedly improve their druggability.
Collapse
Affiliation(s)
- Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Taehoon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Eunmi Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea
| | - Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Kyung-Ah Park
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Young-Hoon Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Minki Jin
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Sumi Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Seungmi Hwang
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52727, Republic of Korea.
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
49
|
Bordon KDCF, Cologna CT, Fornari-Baldo EC, Pinheiro-Júnior EL, Cerni FA, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cardoso IA, Ferreira IG, de Oliveira IS, Boldrini-França J, Pucca MB, Baldo MA, Arantes EC. From Animal Poisons and Venoms to Medicines: Achievements, Challenges and Perspectives in Drug Discovery. Front Pharmacol 2020; 11:1132. [PMID: 32848750 PMCID: PMC7396678 DOI: 10.3389/fphar.2020.01132] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Animal poisons and venoms are comprised of different classes of molecules displaying wide-ranging pharmacological activities. This review aims to provide an in-depth view of toxin-based compounds from terrestrial and marine organisms used as diagnostic tools, experimental molecules to validate postulated therapeutic targets, drug libraries, prototypes for the design of drugs, cosmeceuticals, and therapeutic agents. However, making these molecules applicable requires extensive preclinical trials, with some applications also demanding clinical trials, in order to validate their molecular target, mechanism of action, effective dose, potential adverse effects, as well as other fundamental parameters. Here we go through the pitfalls for a toxin-based potential therapeutic drug to become eligible for clinical trials and marketing. The manuscript also presents an overview of the current picture for several molecules from different animal venoms and poisons (such as those from amphibians, cone snails, hymenopterans, scorpions, sea anemones, snakes, spiders, tetraodontiformes, bats, and shrews) that have been used in clinical trials. Advances and perspectives on the therapeutic potential of molecules from other underexploited animals, such as caterpillars and ticks, are also reported. The challenges faced during the lengthy and costly preclinical and clinical studies and how to overcome these hindrances are also discussed for that drug candidates going to the bedside. It covers most of the drugs developed using toxins, the molecules that have failed and those that are currently in clinical trials. The article presents a detailed overview of toxins that have been used as therapeutic agents, including their discovery, formulation, dosage, indications, main adverse effects, and pregnancy and breastfeeding prescription warnings. Toxins in diagnosis, as well as cosmeceuticals and atypical therapies (bee venom and leech therapies) are also reported. The level of cumulative and detailed information provided in this review may help pharmacists, physicians, biotechnologists, pharmacologists, and scientists interested in toxinology, drug discovery, and development of toxin-based products.
Collapse
Affiliation(s)
- Karla de Castro Figueiredo Bordon
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Takeno Cologna
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ernesto Lopes Pinheiro-Júnior
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe Augusto Cerni
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Gobbi Amorim
- Postgraduate Program in Pharmaceutical Sciences, Vila Velha University, Vila Velha, Brazil
| | | | - Francielle Almeida Cordeiro
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gisele Adriano Wiezel
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Iara Aimê Cardoso
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabela Gobbo Ferreira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora Sousa de Oliveira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - Mateus Amaral Baldo
- Health and Science Institute, Paulista University, São José do Rio Pardo, Brazil
| | - Eliane Candiani Arantes
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
50
|
Berra C, Manfrini R, Regazzoli D, Radaelli MG, Disoteo O, Sommese C, Fiorina P, Ambrosio G, Folli F. Blood pressure control in type 2 diabetes mellitus with arterial hypertension. The important ancillary role of SGLT2-inhibitors and GLP1-receptor agonists. Pharmacol Res 2020; 160:105052. [PMID: 32650058 DOI: 10.1016/j.phrs.2020.105052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus and arterial hypertension are major cardiovascular risks factors which shares metabolic and haemodynamic abnormalities as well as pathophysiological mechanisms. The simultaneous presence of diabetes and arterial hypertension increases the risk of left ventricular hypertrophy, congestive heart failure, and stroke, as compared to either condition alone. A number of guidelines recommend lifestyle measures such as salt restriction, weight reduction and ideal body weight mainteinance, regular physical activity and smoking cessation, together with moderation of alcohol consumption and high intake of vegetables and fruits, as the basis for reduction of blood pressure and prevention of CV diseases. Despite the availability of multiple drugs effective for hypertension, BP targets are reached in only 50 % of patients, with even fewer individuals with T2DM-achieving goals. It is established that new emerging classes of type 2 diabetes mellitus treatment, SGLT2 inhibitors and GLP1-receptor agonists, are efficacious on glucose control, and safe in reducing HbA1c significantly, without increasing hypoglycemic episodes. Furthermore, in recent years, many CVOT trials have demonstrated, using GLP1-RA or SGLT2-inihibitors compared to placebo (in combination with the usual diabetes medications) important benefits on reducing MACE (cardio-cerebral vascular events) in the diabetic population. In this hypothesis-driven review, we have examined the anti-hypertensive effects of these novel molecules of the two different classes, in the diabetic population, and suggest that they could have an interesting ancillary role in controlling blood pressure in type 2 diabetic patients.
Collapse
Affiliation(s)
- C Berra
- Department of Endocrine and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy.
| | - R Manfrini
- Departmental Unit of Diabetes and Metabolic Disease, ASST Santi Paolo e Carlo, Milan, Italy
| | - D Regazzoli
- Department of Cardiovascular Disease, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - M G Radaelli
- Department of Endocrine and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - O Disoteo
- Endocrinology and Diabetology Service, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - C Sommese
- IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - P Fiorina
- University of Milano, Milan, Italy; TID International Center, Invernizzi Research Center, Milan, Italy; Endocrinology and Diabetology Unit, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, Milan, Italy
| | - G Ambrosio
- University of Perugia School of Medicine, Perugia, Italy
| | - F Folli
- Departmental Unit of Diabetes and Metabolic Disease, ASST Santi Paolo e Carlo, Milan, Italy; University of Milano, Milan, Italy; Endocrinology and Metabolism, Department of Health Science University of Milano, Italy
| |
Collapse
|