1
|
Yang Y, Shi X, Zhang J, Xiao H, Li C. Molecular mechanisms underlying the beneficial effects of fermented yoghurt prepared by nano-exopolysaccharide-producing Lactiplantibacillus plantarum LCC-605 based on untargeted metabolomic analysis. Food Chem 2025; 465:142068. [PMID: 39577262 DOI: 10.1016/j.foodchem.2024.142068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Following our previous discovery that Lactiplantibacillus plantarum LCC-605 secreted spherical exopolysaccharide nanoparticles (EPS-605 NPs), which may contribute to the quality, function, and stability of the fermented yoghurt. We thus prepared the fermented skim milk with strain LCC-605 (Y-605) and investigated the functions and metabolic changes of Y-605. Y-605 showed excellent antioxidant activities with DPPH, ABTS+, and hydroxyl scavenging ability of 90.6 ± 0.1 %, 96.1 ± 0.2 %, and 99.3 ± 0.4 %, respectively, and cholesterol-lowering ability up to 39.9 %. After storage for 7 days, the bacterial count reached 10.9 log CFU/mL. EPS production significantly improved the water holding capacity (71.7 ± 0.5 %), and the texture of the yoghurt. Untargeted metabolomic analysis further revealed significant metabolomic differences between skim milk and Y-605, validating the beneficial mechanism of Y-605. This study develops a novel probiotic for producing functional yoghurts and provides the basis for understanding the beneficial mechanism of Y-605.
Collapse
Affiliation(s)
- Ying Yang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Junze Zhang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Yunnan Yunke Characteristic Plant Extraction Laboratory Co. Ltd., Kunming 650106, China.
| |
Collapse
|
2
|
Chen A, Gong Y, Wu S, Du Y, Liu Z, Jiang Y, Li J, Miao YB. Navigating a challenging path: precision disease treatment with tailored oral nano-armor-probiotics. J Nanobiotechnology 2025; 23:72. [PMID: 39893419 PMCID: PMC11786591 DOI: 10.1186/s12951-025-03141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/19/2025] [Indexed: 02/04/2025] Open
Abstract
Oral probiotics have significant potential for preventing and treating many diseases. Yet, their efficacy is often hindered by challenges related to survival and colonization within the gastrointestinal tract. Nanoparticles emerge as a transformative solution, offering robust protection and enhancing the stability and bioavailability of these probiotics. This review explores the innovative application of nanoparticle-armored engineered probiotics for precise disease treatment, specifically addressing the physiological barriers associated with oral administration. A comprehensive evaluation of various nano-armor probiotics and encapsulation methods is provided, carefully analyzing their respective merits and limitations, alongside strategies to enhance probiotic survival and achieve targeted delivery and colonization within the gastrointestinal tract. Furthermore, the review explores the potential clinical applications of nano-armored probiotics in precision therapeutics, critically addressing safety and regulatory considerations, and proposing the innovative concept of 'probiotic intestinal colonization with nano armor' for brain-targeted therapies. Ultimately, this review aspires to guide the advancement of nano-armored probiotic therapies, driving progress in precision medicine and paving the way for groundbreaking treatment modalities.
Collapse
Affiliation(s)
- Anmei Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ying Gong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Shaoquan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ye Du
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
| |
Collapse
|
3
|
Di Mattia M, Sallese M, Lopetuso LR. Unfolded protein response: An essential element of intestinal homeostasis and a potential therapeutic target for inflammatory bowel disease. Acta Physiol (Oxf) 2025; 241:e14284. [PMID: 39822064 DOI: 10.1111/apha.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Different physiological and pathological situations can produce alterations in the cell's endoplasmic reticulum (ER), leading to a condition known as ER stress, which can trigger an intricate intracellular signal transduction system known as the unfolded protein response (UPR). UPR is primarily tailored to restore proteostasis and ER equilibrium; otherwise, if ER stress persists, it can cause programmed cell death as a cytoprotective mechanism and drive inflammatory processes. Therefore, since intestinal cells strongly rely on UPR for their biological functions and unbalanced UPR has been linked to inflammatory, metabolic, and immune disorders, here we discussed the role of the UPR within the intestinal tract, focusing on the UPR contribution to inflammatory bowel disease development. Importantly, we also highlighted the promising potential of UPR components as therapeutic targets for intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
4
|
Rezaei S, Ghorbani E, Al-Asady AM, Avan A, Soleimanpour S, Khazaei M, Hassanian SM. Evaluating the Therapeutic Efficacy of Lactobacillus Strains in the Management of Ulcerative Colitis: An Overview of Recent Advances. Curr Pharm Des 2025; 31:413-421. [PMID: 39385420 DOI: 10.2174/0113816128322653240925115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Ulcerative Colitis (UC) known as a sub-category of Inflammatory Bowel Diseases (IBD) is a longterm condition that causes inflammation, irritation, and ulcers in the colon and rectum. Though the precise pathogenesis of UC is not fully understood yet, impaired immune responses and imbalanced intestinal microbiome composition have been regarded as two main key players in colitis pathobiology. As conventional treatments are challenged with limitations and side effects, finding a new therapeutic approach has gained increasing attention. Probiotic bacteria with multifunctional health-promoting properties have been considered novel therapeutic options. There is strong evidence indicating that probiotics exert their therapeutic effects mostly by regulating immune system responses and restoring gut microbiome homeostasis. These results validate the rationale behind the clinical application of probiotics in UC management whether prescribed alone or in combination with conventional therapy. This article explores the pathogenesis of UC, concentrating on the influence of immune dysregulation and intestinal microbiome imbalances. Also, it reviews recent in vitro, in vivo, and clinical studies that have demonstrated the efficacy of Lactobacillus species in decreasing UC symptoms by modifying immune responses, restoring gut microbiota balance, and promoting intestinal barrier function.
Collapse
Affiliation(s)
- Shaghayegh Rezaei
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Medical Sciences, Faculty of Nursing, Warith Al-Anbiyaa University, Karbala, Iraq
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Karbala, Iraq
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Kang JH, Kang MS, Kim SD, Lee HK, Song SW, Nam CJ, Park KI. Single and repeated-dose toxicity studies by intravaginal administration of Lactobacillus plantarum ATG-K2 powder in female rats. Toxicol Res 2025; 41:27-37. [PMID: 39802119 PMCID: PMC11718014 DOI: 10.1007/s43188-024-00262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 01/16/2025] Open
Abstract
Bacterial vaginosis (BV) is a microbial dysbiosis that shifts the paradigms of vaginal flora from lactobacilli to opportunistic pathogens. Globally, BV is treated with antibiotic therapy and recurrence rates are > 70% occurring within 6 months due to antibiotic resistance against pathogenic bacteria. An incorporation of lactobacilli orally or intravaginally for the recolonization of healthy microbes in vagina is the suggested course of treatment. Although Lactobacilli are suggested as a novel therapeutic for women's BV, evaluation of safety and toxicity have not been well understood previously. Therefore, in this study, we aimed to evaluate the safety profile of Lactobacillus plantarum ATG-K2 in subacute intravaginal animal toxicity in Sprague-Dawley rats under OECD guidelines and GLP regulations. Toxicological assessments were performed in a single-dose toxicity study by intravaginal administration with local tolerance study, 1-week repeated-dose intravaginal toxicity dose range finding (DRF) study, and a 2-week repeated-dose intravaginal toxicity study with a 2-week recovery period. Studies were performed at dose 3-18 × 109 CFU/head/day. No toxicological changes in clinical signs, body weight, water and food consumption, urinalysis, hematology, clinical biochemistry, gross findings, or histopathological examination were observed in intravaginal repeated-dose toxicity. And Lactobacillus plantarum ATG-K2 did not show any local tolerance at the same doses as the intravaginal repeated-dose toxicity study. In conclusion, the no-observed-adverse-effect level (NOAEL) of Lactobacillus plantarum ATG-K2 was 12 × 109 CFU/head/day and no target organ was identified in female rats. Our findings are the first to suggest that Lactobacillus plantarum is safe for use as an intravaginal treatment with no adverse effects observed in toxicological testing and has potential for application as a therapeutic agent or for other biological uses.
Collapse
Affiliation(s)
- Jae-Hyun Kang
- Nonclinical Research Institute, CORESTEMCHEMON Inc., 240, Nampyeong-Ro, Yangji-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 17162 Republic of Korea
- Gyeongsang National University, 501 Jinju-Daero, Jinju-Si, Gyeongnam-Do 52828 Republic of Korea
| | - Min-Soo Kang
- Nonclinical Research Institute, CORESTEMCHEMON Inc., 240, Nampyeong-Ro, Yangji-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 17162 Republic of Korea
| | - Sun-Don Kim
- Nonclinical Research Institute, CORESTEMCHEMON Inc., 240, Nampyeong-Ro, Yangji-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 17162 Republic of Korea
| | - Hyun-Kul Lee
- Nonclinical Research Institute, CORESTEMCHEMON Inc., 240, Nampyeong-Ro, Yangji-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 17162 Republic of Korea
| | - Si-Whan Song
- Nonclinical Research Institute, CORESTEMCHEMON Inc., 240, Nampyeong-Ro, Yangji-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 17162 Republic of Korea
| | - Chun-Ja Nam
- Nonclinical Research Institute, CORESTEMCHEMON Inc., 240, Nampyeong-Ro, Yangji-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 17162 Republic of Korea
| | - Kwang-Il Park
- Gyeongsang National University, 501 Jinju-Daero, Jinju-Si, Gyeongnam-Do 52828 Republic of Korea
| |
Collapse
|
6
|
Varada VV, Kumar S, Balaga S, Thanippilly AJ, Pushpadass HA, M RH, Jangir BL, Tyagi N, Samanta AK. Oral delivery of electrohydrodynamically encapsulated Lactiplantibacillus plantarum CRD7 modulates gut health, antioxidant activity, and cytokines-related inflammation and immunity in mice. Food Funct 2024; 15:10761-10781. [PMID: 39390885 DOI: 10.1039/d4fo02732a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The current study aimed to evaluate the effects of L. plantarum CRD7 on performance and gut health biomarkers in a Swiss albino mouse model. The results showed that supplementation with non-encapsulated (NLP) and electrohydrodyanamically encapsulated L. plantarum CRD7 (ELP) for four weeks significantly increased (P < 0.05) body weight and weekly feed intake of mice. Specifically, these interventions strengthened the gut barrier functions, as evidenced by the increased expression of tight junction proteins (claudin-1, ZO-1, and occludin), inhibiting pro-inflammatory factors (TNF-α, MCP-1, and IL-6), and promoting short-chain fatty acid production. Histopathological examination revealed no probiotic-related adverse effects in liver and intestinal tissues. Furthermore, ELP and NLP possess the ability to regulate immunity and antioxidant capacity in mice. Notably, the supplementation of ELP modified the gut microbiota by promoting beneficial bacteria (Lactobacillus and Bifibacterium) and suppressing pathogenic bacteria (E. coli and C. perfringens), thereby restoring a balanced gut microbiota. Taken together, oral delivery of encapsulated L. plantarum CRD7 can modify the composition of the gut microbiota, fortify the intestinal barrier functions, maintain the gastrointestinal equilibrium, and augment the immune and antioxidant capacity. This comprehensive study provides valuable insights for the potential application of encapsulated probiotic products in food and feed formulations aimed at alleviating gut diseases.
Collapse
Affiliation(s)
- Vinay Venkatesh Varada
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
| | - Sachin Kumar
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
| | - Sravani Balaga
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
| | - Antony Johnson Thanippilly
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
| | - Heartwin A Pushpadass
- Dairy Engineering Section, ICAR-National Dairy Research Institute, Southern Regional Station, Bengaluru, India.
| | - Rashmi H M
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
| | - Babu Lal Jangir
- Department of Veterinary Pathology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125004, India.
| | - Nitin Tyagi
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
| | - Ashish Kumar Samanta
- Rumen Biotechnology Lab., Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal-132001, Haryana, India.
| |
Collapse
|
7
|
Hsu CY, Mustafa MA, Moath Omar T, Taher SG, Ubaid M, Gilmanova NS, Nasrat Abdulraheem M, Saadh MJ, Athab AH, Mirzaei R, Karampoor S. Gut instinct: harnessing the power of probiotics to tame pathogenic signaling pathways in ulcerative colitis. Front Med (Lausanne) 2024; 11:1396789. [PMID: 39323474 PMCID: PMC11422783 DOI: 10.3389/fmed.2024.1396789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) marked by persistent inflammation of the mucosal lining of the large intestine, leading to debilitating symptoms and reduced quality of life. Emerging evidence suggests that an imbalance of the gut microbiota plays a crucial role in UC pathogenesis, and various signaling pathways are implicated in the dysregulated immune response. Probiotics are live microorganisms that confer health benefits to the host, have attracted significant attention for their potential to restore gut microbial balance and ameliorate inflammation in UC. Recent studies have elucidated the mechanisms by which probiotics modulate these signaling pathways, often by producing anti-inflammatory molecules and promoting regulatory immune cell function. For example, probiotics can inhibit the nuclear factor-κB (NF-κB) pathway by stabilizing Inhibitor of kappa B alpha (IκBα), dampening the production of proinflammatory cytokines. Similarly, probiotics can modulate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, suppressing the activation of STAT1 and STAT3 and thus reducing the inflammatory response. A better understanding of the underlying mechanisms of probiotics in modulating pathogenic signaling pathways in UC will pave the way for developing more effective probiotic-based therapies. In this review, we explore the mechanistic role of probiotics in the attenuation of pathogenic signaling pathways, including NF-κB, JAK/STAT, mitogen-activated protein kinases (MAPKs), Wnt/β-catenin, the nucleotide-binding domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome, Toll-like receptors (TLRs), interleukin-23 (IL-23)/IL-17 signaling pathway in UC.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | - Sada Gh Taher
- Department of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Department of MTL, Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Nataliya S Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Aya H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Kingkaew E, Tanaka N, Shiwa Y, Sitdhipol J, Nuhwa R, Tanasupawat S. Genomic Assessment of Potential Probiotic Lactiplantibacillus plantarum CRM56-2 Isolated from Fermented Tea Leaves. Trop Life Sci Res 2024; 35:249-269. [PMID: 39234476 PMCID: PMC11371405 DOI: 10.21315/tlsr2024.35.2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 02/19/2024] [Indexed: 09/06/2024] Open
Abstract
Lactiplantibacillus plantarum is a widely studied species known for its probiotic properties that can help alleviate serum cholesterol levels. Whole-genome sequencing provides genetic information on probiotic attributes, metabolic activities and safety assessment. This study investigates the probiotic properties of strain CRM56-2, isolated from Thai fermented tea leaves, using Whole-Genome Sequencing (WGS) to evaluate the safety, health-promoting genes and functional analysis. Strain CRM56-2 showed bile salt hydrolase (BSH) activity, assimilated cholesterol at a rate of 75.94%, tolerated acidic and bile environments and attached to Caco-2 cells. Based on ANIb (98.9%), ANIm (99.2%), and digital DNA-DNA hybridisation (98.3%), strain CRM56-2 was identified as L. plantarum. In silico analysis revealed that it was not pathogenic and contained no antibiotic-resistance genes or plasmids. L. plantarum CRM56-2 possessed genes linked to several probiotic properties and beneficial impacts. The genome of strain CRM56-2 suggested that L. plantarum CRM56-2 is non-hazardous, with potential probiotic characteristics and beneficial impacts, which could enhance its probiotic application. Consequently, L. plantarum CRM56-2 demonstrated excellent cholesterol-lowering activity and probiotic properties.
Collapse
Affiliation(s)
- Engkarat Kingkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Naoto Tanaka
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuh Shiwa
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Jaruwan Sitdhipol
- Biodiversity Research Centre, Research and Development Group for Bio-Industries, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120, Thailand
| | - Rattanatda Nuhwa
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Hwang CH, Kim SH, Lee CH. Bacterial Growth Modulatory Effects of Two Branched-Chain Hydroxy Acids and Their Production Level by Gut Microbiota. J Microbiol Biotechnol 2024; 34:1314-1321. [PMID: 38938006 PMCID: PMC11239411 DOI: 10.4014/jmb.2404.04009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024]
Abstract
Branched-chain hydroxy acids (BCHAs), produced by lactic acid bacteria, have recently been suggested as bioactive compounds contributing to the systemic metabolism and modulation of the gut microbiome. However, the relationship between BCHAs and gut microbiome remains unclear. In this study, we investigated the effects of BCHAs on the growth of seven different families in the gut microbiota. Based on in vitro screening, both 2-hydroxyisovaleric acid (HIVA) and 2-hydroxyisocaproic acid (HICA) stimulated the growth of Lactobacillaceae and Bifidobacteriaceae, with HIVA showing a significant growth promotion. Additionally, we observed not only the growth promotion of probiotic Lactobacillaceae strains but also growth inhibition of pathogenic B. fragilis in a dosedependent manner. The production of HIVA and HICA varied depending on the family of the gut microbiota and was relatively high in case of Lactobacillaceae and Lachnosporaceae. Furthermore, HIVA and HICA production by each strain positively correlated with their growth variation. These results demonstrated gut microbiota-derived BCHAs as active metabolites that have bacterial growth modulatory effects. We suggest that BCHAs can be utilized as active metabolites, potentially contributing to the treatment of diseases associated with gut dysbiosis.
Collapse
Affiliation(s)
- Chan Hyuk Hwang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- MetaMass Corp., Seoul 05029, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- MetaMass Corp., Seoul 05029, Republic of Korea
| |
Collapse
|
10
|
Sun C, Wang S, Wang S, Wang P, Zhang G, Liu H, Zhu D. Characterization of high-internal-phase emulsions based on soy protein isolate with varying concentrations of soy hull polysaccharide and their capabilities for probiotic delivery: In vivo and in vitro release and thermal stability. Food Res Int 2024; 186:114371. [PMID: 38729729 DOI: 10.1016/j.foodres.2024.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
In this study, the impact of soy hull polysaccharide (SHP) concentration on high-internal-phase emulsions (HIPEs) formation and the gastrointestinal viability of Lactobacillus plantarum within HIPEs were demonstrated. Following the addition of SHP, competitive adsorption with soy protein isolate (SPI) occurred, leading to increased protein adhesion to the oil-water interface and subsequent coating of oil droplets. This process augmented viscosity and enhanced HIPEs stability. Specifically, 1.8 % SHP had the best encapsulation efficiency and delivery efficiency, reaching 99.3 % and 71.1 %, respectively. After 14 d of continuous zebrafishs feeding, viable counts of Lactobacillus plantarum and complex probiotics in the intestinal tract was 1.1 × 107, 1.3 × 107, respectively. In vitro experiments further proved that HIPEs' ability to significantly enhance probiotics' intestinal colonization and provided targeted release for colon-specific delivery. These results provided a promising strategy for HIPEs-encapsulated probiotic delivery systems in oral food applications.
Collapse
Affiliation(s)
- Chenyuan Sun
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Shumin Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Guangchen Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| |
Collapse
|
11
|
Aljohani A, Rashwan N, Vasani S, Alkhawashki A, Wu TT, Lu X, Castillo DA, Xiao J. The Health Benefits of Probiotic Lactiplantibacillus plantarum: A Systematic Review and Meta-Analysis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10287-3. [PMID: 38816672 DOI: 10.1007/s12602-024-10287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
To ensure effective administration of probiotics in clinical practice, it is crucial to comprehend the specific strains and their association with human health. Therefore, we conducted a systematic review and meta-analysis to evaluate the scientific evidence on the impact of Lactiplantibacillus plantarum probiotic consumption on human health. Out of 11,831 records, 135 studies were assessed qualitatively, and 18 studies were included in the meta-analysis. This systematic review demonstrated that probiotic supplementation with L. plantarum, either alone or in combination, can significantly improve outcomes for patients with specific medical conditions. Meta-analysis revealed notable benefits in periodontal health, evidenced by reduced pocket depth and bleeding on probing (p < 0.001); in gastroenterological health, marked by significant reductions in abdominal pain (p < 0.001); and in infectious disease, through a reduction in C-reactive protein levels (p < 0.001). Cardiovascular benefits included lowered total cholesterol and low-density lipoprotein cholesterol in the L. plantarum intervention group (p < 0.05). Our study's clinical significance highlights the importance of considering probiotic strain and their application to specific diseases when planning future studies and clinical interventions, emphasizing the need for further research in this area.
Collapse
Affiliation(s)
- Amal Aljohani
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Noha Rashwan
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Shruti Vasani
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Ahmed Alkhawashki
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
- Pediatrics, King Fahd Medical City, Riyadh, Saudi Arabia
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, USA
| | - Xingyi Lu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, USA
| | - Daniel A Castillo
- Miner Library, University of Rochester Medical Center, Rochester, NY, USA
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
12
|
Gaifem J, Mendes-Frias A, Wolter M, Steimle A, Garzón MJ, Ubeda C, Nobre C, González A, Pinho SS, Cunha C, Carvalho A, Castro AG, Desai MS, Rodrigues F, Silvestre R. Akkermansia muciniphila and Parabacteroides distasonis synergistically protect from colitis by promoting ILC3 in the gut. mBio 2024; 15:e0007824. [PMID: 38470269 PMCID: PMC11210198 DOI: 10.1128/mbio.00078-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the gastrointestinal tract. The etiology of IBD remains elusive, but the disease is suggested to arise from the interaction of environmental and genetic factors that trigger inadequate immune responses and inflammation in the intestine. The gut microbiome majorly contributes to disease as an environmental variable, and although some causative bacteria are identified, little is known about which specific members of the microbiome aid in the intestinal epithelial barrier function to protect from disease. While chemically inducing colitis in mice from two distinct animal facilities, we serendipitously found that mice in one facility showed remarkable resistance to disease development, which was associated with increased markers of epithelial barrier integrity. Importantly, we show that Akkermansia muciniphila and Parabacteroides distasonis were significantly increased in the microbiota of resistant mice. To causally connect these microbes to protection against disease, we colonized susceptible mice with the two bacterial species. Our results demonstrate that A. muciniphila and P. distasonis synergistically drive a protective effect in both acute and chronic models of colitis by boosting the frequency of type 3 innate lymphoid cells in the colon and by improving gut epithelial integrity. Altogether, our work reveals a combined effort of commensal microbes in offering protection against severe intestinal inflammation by shaping gut immunity and by enhancing intestinal epithelial barrier stability. Our study highlights the beneficial role of gut bacteria in dictating intestinal homeostasis, which is an important step toward employing microbiome-driven therapeutic approaches for IBD clinical management. IMPORTANCE The contribution of the gut microbiome to the balance between homeostasis and inflammation is widely known. Nevertheless, the etiology of inflammatory bowel disease, which is known to be influenced by genetics, immune response, and environmental cues, remains unclear. Unlocking novel players involved in the dictation of a protective gut, namely, in the microbiota component, is therefore crucial to develop novel strategies to tackle IBD. Herein, we revealed a synergistic interaction between two commensal bacterial strains, Akkermansia muciniphila and Parabacteroides distasonis, which induce protection against both acute and chronic models of colitis induction, by enhancing epithelial barrier integrity and promoting group 3 innate lymphoid cells in the colonic mucosa. This study provides a novel insight on how commensal bacteria can beneficially act to promote intestinal homeostasis, which may open new avenues toward the use of microbiome-derived strategies to tackle IBD.
Collapse
Affiliation(s)
- Joana Gaifem
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mathis Wolter
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Maria Jose Garzón
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
- Centers of Biomedical Research Network (CIBER) in Epidemiology and Public Health, Madrid, Spain
| | - Carles Ubeda
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
- Centers of Biomedical Research Network (CIBER) in Epidemiology and Public Health, Madrid, Spain
| | - Clarisse Nobre
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Abigail González
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Salomé S. Pinho
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mahesh S. Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
13
|
Jeong J, Kang BH, Ju S, Park NY, Kim D, Dinh NTB, Lee J, Rhee CY, Cho DH, Kim H, Chung DK, Bunch H. Lactiplantibacillus plantarum K8 lysates regulate hypoxia-induced gene expression. Sci Rep 2024; 14:6275. [PMID: 38491188 PMCID: PMC10943017 DOI: 10.1038/s41598-024-56958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Hypoxic responses have been implicated in critical pathologies, including inflammation, immunity, and tumorigenesis. Recently, efforts to identify effective natural remedies and health supplements are increasing. Previous studies have reported that the cell lysates and the cell wall-bound lipoteichoic acids of Lactiplantibacillus plantarum K8 (K8) exert anti-inflammatory and immunomodulative effects. However, the effect of K8 on cellular hypoxic responses remains unknown. In this study, we found that K8 lysates had a potent suppressive effect on gene expression under hypoxia. K8 lysates markedly downregulated hypoxia-induced HIF1α accumulation in the human bone marrow and lung cancer cell lines, SH-SY5Y and H460. Consequently, the transcription of known HIF1α target genes, such as p21, GLUT1, and ALDOC, was notably suppressed in the K8 lysate supplement and purified lipoteichoic acids of K8, upon hypoxic induction. Intriguingly, K8 lysates decreased the expression of PHD2 and VHL proteins, which are responsible for HIF1α destabilization under normoxic conditions, suggesting that K8 may regulate HIF1α stability in a non-canonical pathway. Overall, our results suggest that K8 lysates desensitize the cells to hypoxic stresses and suppress HIF1α-mediated hypoxic gene activation.
Collapse
Affiliation(s)
- Jaehyeon Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Byeong-Hee Kang
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangmin Ju
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ngoc Thi Bao Dinh
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeongho Lee
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chang Yun Rhee
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hangeun Kim
- Research and Development Center, Skin Biotechnology Center Co. Ltd., Yongin, 17104, Republic of Korea
| | - Dae Kyun Chung
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Heeyoun Bunch
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
14
|
Naja K, Anwardeen N, Malki AM, Elrayess MA. Metformin increases 3-hydroxy medium chain fatty acids in patients with type 2 diabetes: a cross-sectional pharmacometabolomic study. Front Endocrinol (Lausanne) 2024; 15:1313597. [PMID: 38370354 PMCID: PMC10869496 DOI: 10.3389/fendo.2024.1313597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Background Metformin is a drug with a long history of providing benefits in diabetes management and beyond. The mechanisms of action of metformin are complex, and continue to be actively debated and investigated. The aim of this study is to identify metabolic signatures associated with metformin treatment, which may explain the pleiotropic mechanisms by which metformin works, and could lead to an improved treatment and expanded use. Methods This is a cross-sectional study, in which clinical and metabolomic data for 146 patients with type 2 diabetes were retrieved from Qatar Biobank. Patients were categorized into: Metformin-treated, treatment naïve, and non-metformin treated. Orthogonal partial least square discriminate analysis and linear models were used to analyze differences in the level of metabolites between the metformin treated group with each of the other two groups. Results Patients on metformin therapy showed, among other metabolites, a significant increase in 3-hydroxyoctanoate and 3-hydroxydecanoate, which may have substantial effects on metabolism. Conclusions This is the first study to report an association between 3-hydroxy medium chain fatty acids with metformin therapy in patients with type 2 diabetes. This opens up new directions towards repurposing metformin by comprehensively understanding the role of these metabolites.
Collapse
Affiliation(s)
- Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Ahmed M. Malki
- Biomedical Science Department, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- Biomedical Science Department, College of Health Sciences, Qatar University (QU) Health, Qatar University, Doha, Qatar
| |
Collapse
|
15
|
Liu Y, Liu G, Fang J. Progress on the mechanisms of Lactobacillus plantarum to improve intestinal barrier function in ulcerative colitis. J Nutr Biochem 2024; 124:109505. [PMID: 37890709 DOI: 10.1016/j.jnutbio.2023.109505] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Ulcerative colitis (UC) is a chronic, non-specific inflammatory sickness of the intestinal tract, chiefly implicating the rectum and colon, which is characterized by chronic or subacute diarrhea, mucopurulent stools, and abdominal pain. The pathogeny of UC is still uncertain, and it is thought that multiple factors interact to cause the disease, such as environment, genetics, gut microbes, and immunity. Injuring the intestinal barrier is one of the most significant features of UC and includes mechanical, chemical, immune, and biological barriers. Plenty of research has shown that probiotics, as profitable bacteria in the gut, can play a prominent role in the treatment of UC by improving gut barrier function and modulating gut immunity. Lactobacillus plantarum (L. plantarum), a common probiotic, has made outstanding contributions to food and medicine, and many studies in recent years have shown that L. plantarum has great preventive and therapeutic effects on ulcerative colitis and restores the intestinal barrier. This paper reviews the mechanisms of L. plantarum for improving the intestinal barrier function of UC organisms, mainly including regulating the immune response, inhibiting oxidative stress, raising the expression of tight junction (TJ) proteins, promoting the formation of mucin, improving the composition of gut flora, and raising the levels of short-chain fatty acids (SCFAs), which offers some help for the clinical therapy of UC.
Collapse
Affiliation(s)
- Yihui Liu
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China.
| |
Collapse
|
16
|
Wen X, Peng H, Zhang H, He Y, Guo F, Bi X, Liu J, Sun Y. Wheat Bran Polyphenols Ameliorate DSS-Induced Ulcerative Colitis in Mice by Suppressing MAPK/NF-κB Inflammasome Pathways and Regulating Intestinal Microbiota. Foods 2024; 13:225. [PMID: 38254526 PMCID: PMC10814686 DOI: 10.3390/foods13020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Wheat bran (WB) is the primary by-product of wheat processing and contains a high concentration of bioactive substances such as polyphenols. This study analyzed the qualitative and quantitative components of polyphenols in wheat bran and their effects on ulcerative colitis (UC) using the dextran sulfate sodium (DSS)-induced colitis model in mice. The potential mechanism of wheat bran polyphenols (WBP) was also examined. Our findings indicate that the main polyphenol constituents of WBP were phenolic acids, including vanillic acid, ferulic acid, caffeic acid, gallic acid, and protocatechuic acid. Furthermore, WBP exerted remarkable protective effects against experimental colitis. This was achieved by reducing the severity of colitis and improving colon morphology. Additionally, WBP suppressed colonic inflammation via upregulation of the anti-inflammatory cytokine IL-10 and downregulation of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in colon tissues. Mechanistically, WBP ameliorated DSS-induced colitis in mice by inhibiting activation of the MAPK/NF-κB pathway. In addition, microbiome analysis results suggested that WBP modulated the alteration of gut microbiota caused by DSS, with an enhancement in the ratio of Firmicutes/Bacteroidetes and adjustments in the number of Helicobacter, Escherichia-Shigella, Akkermansia, Lactobacillus, Lachnospiraceae_NK4A136_group at the genus level. To conclude, the findings showed that WBP has excellent prospects in reducing colonic inflammation in UC mice.
Collapse
Affiliation(s)
- Xusheng Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Han Peng
- Department of Food Science and Technology, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA;
| | - Hua Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China;
| | - Yangzheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Fanghua Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Xin Bi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Jiahua Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| |
Collapse
|
17
|
Cufaro MC, Prete R, Di Marco F, Sabatini G, Corsetti A, Gonzalez NG, Del Boccio P, Battista N. A proteomic insight reveals the role of food-associated Lactiplantibacillus plantarum C9O4 in reverting intestinal inflammation. iScience 2023; 26:108481. [PMID: 38213792 PMCID: PMC10783612 DOI: 10.1016/j.isci.2023.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/06/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
Nowadays, Western diets and lifestyle lead to an increasing occurrence of chronic gut inflammation that represents an emerging health concern with still a lack of successful therapies. Fermented foods, and their associated lactic acid bacteria, have recently regained popularity for their probiotic potential including the maintenance of gut homeostasis by modulating the immune and inflammatory response. Our study aims to investigate the crosstalk between the food-borne strain Lactiplantibacillus plantarum C9O4 and intestinal epithelial cells in an in vitro inflammation model. Cytokines profile shows the ability of C9O4 to significantly reduce levels of IL-2, IL-5, IL-6, and IFN-γ. Proteomic functional analysis reveals an immunoregulatory role of C9O4, able to revert the detrimental effects of IFN-γ through the JAK/STAT pathway in inflamed intestinal cells. These results suggest a promising therapeutic role of fermented food-associated microbes for the management of gastrointestinal inflammatory diseases. Data are available via ProteomeXchange with identifier PXD042175.
Collapse
Affiliation(s)
- Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Roberta Prete
- Department of Bioscience for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Federica Di Marco
- Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giusi Sabatini
- Department of Bioscience for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Aldo Corsetti
- Department of Bioscience for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Natalia Garcia Gonzalez
- Department of Bioscience for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Natalia Battista
- Department of Bioscience for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
18
|
Salimi A, Sepehr A, Hejazifar N, Talebi M, Rohani M, Pourshafie MR. The Anti-Inflammatory Effect of a Probiotic Cocktail in Human Feces Induced-Mouse Model. Inflammation 2023; 46:2178-2192. [PMID: 37599322 DOI: 10.1007/s10753-023-01870-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract due to altered interaction between the immune system and the gut microbiota. The aim of this study was to investigate the role of a probiotic cocktail in modulating immune dysregulation induced in mice. Mice were divided into 5 groups (n = 5/group), and inflammation was induced in two separate groups by fecal microbiota transplantation (FMT) from the stool of human with IBD and dextran sulfate sodium (DSS). In the other two groups, the cocktail of Lactobacillus spp. and Bifidobacterium spp. (108CFU/kg/day) was administered daily for a total of 28days in addition to inducing inflammation. A group as a contcxsrol group received only water and food. The alteration of the selected genera of gut microbiota and the expression of some genes involved in the regulation of the inflammatory response were studied in the probiotic-treated and untreated groups by quantitative real-time PCR. The selected genera of gut microbiota of the FMT and DSS groups showed similar patterns on day 28 after each treatment. In the probiotic-treated groups, the population of the selected genera of gut microbiota normalized and the abundance of Firmicutes and Actinobacteria increased compared to the DSS and FMT groups. The expression of genes related to immune response and tight junctions was positively affected by the probiotic. Changes in the gut microbiota could influence the inflammatory status in the gut, and probiotics as a preventive or complementary treatment could improve the well-being of patients with inflammatory bowel disease symptoms.
Collapse
Affiliation(s)
- Afsaneh Salimi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Amin Sepehr
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Niloofar Hejazifar
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maliheh Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
19
|
Naddaf R, Carasso S, Reznick-Levi G, Hasnis E, Qarawani A, Maza I, Gefen T, Half EE, Geva-Zatorsky N. Gut microbial signatures are associated with Lynch syndrome (LS) and cancer history in Druze communities in Israel. Sci Rep 2023; 13:20677. [PMID: 38001152 PMCID: PMC10673896 DOI: 10.1038/s41598-023-47723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Lynch syndrome (LS) is a hereditary cancer syndrome caused by autosomal dominant mutations, with high probability of early onset for several cancers, mainly colorectal cancer (CRC). The gut microbiome was shown to be influenced by host genetics and to be altered during cancer development. Therefore, we aimed to determine alterations in gut microbiome compositions of LS patients with and without cancer. We performed fecal microbiome analyses on samples of LS and non-LS members from the Druze ethnoreligious community in Israel, based on both their LS mutation and their cancer history. Our analysis revealed specific bacterial operational taxonomic units (OTUs) overrepresented in LS individuals as well as bacterial OTUs differentiating between the LS individuals with a history of cancer. The identified OTUs align with previous studies either correlating them to pro-inflammatory functions, which can predispose to cancer, or to the cancer itself, and as such, these bacteria can be considered as future therapeutic targets.
Collapse
Affiliation(s)
- Rawi Naddaf
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Shaqed Carasso
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | | | - Erez Hasnis
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Gastroenterology Institute Rambam Health Care Campus, Haifa, Israel
| | - Amalfi Qarawani
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Itay Maza
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Gastroenterology Institute Rambam Health Care Campus, Haifa, Israel
| | - Tal Gefen
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Elizabeth Emily Half
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel.
- Gastroenterology Institute Rambam Health Care Campus, Haifa, Israel.
| | - Naama Geva-Zatorsky
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel.
- Rappaport Technion Integrated Cancer Center, Haifa, Israel.
- Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
20
|
Ayyat MS, El-Nagar HA, Wafa WM, Abd El-Latif KM, Mahgoub S, Al-Sagheer AA. Comparable Evaluation of Nutritional Benefits of Lactobacillus plantarum and Bacillus toyonensis Probiotic Supplementation on Growth, Feed Utilization, Health, and Fecal Microbiota in Pre-Weaning Male Calves. Animals (Basel) 2023; 13:3422. [PMID: 37958177 PMCID: PMC10649314 DOI: 10.3390/ani13213422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
This study was conducted to investigate the impact of probiotic supplementation using Lactobacillus plantarum DSA 20174 and/or Bacillus toyonensis ATCC 55050 on growth performance, blood parameters, hematological measures, and fecal microbiota in pre-weaning Holstein calves. Thirty-two four-day-old male calves with a similar genetic background, weighing an average of 38.27 ± 0.12 kg, were randomly assigned to four groups. The groups consisted of a control group (CON) without supplementation, a group receiving B. toyonensis (BT) at 3 × 109 cfu/calf/day, a group receiving L. plantarum (LP) at 1 × 1010 cfu/calf/day, and a group receiving a combination of LP and BT (LP + BT) at half the dosage for each. The study found that calves supplemented with LP and LP + BT experienced significant improvements in average daily gain and final body weight compared to the control group. The LP + BT group showed the most positive effects on TDMI, starter intake, and CP intake. RBC counts tended to be higher in the probiotic groups, with the LP + BT group having the highest values. The LP + BT group also had higher total protein, albumin, globulin, and hematocrit concentrations. All probiotic groups showed higher serum IgG concentrations. Probiotic supplementation led to increased total bacterial count and decreased levels of E. coli, salmonella, and clostridium. The LP + BT group had a significant decrease in coliform count, while both LP and LP + BT groups had increased Lactobacillus populations. In conclusion, LP + BT probiotic supplement showed the most beneficial effects on growth, feed efficiency, blood constituents, and modulation of fecal microbiota composition.
Collapse
Affiliation(s)
- Mohamed S. Ayyat
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Hamdy A. El-Nagar
- Animal Production Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Wael M. Wafa
- Animal Production Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | | | - Samir Mahgoub
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Adham A. Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
21
|
de Araújo ÉMR, Meneses GC, Carioca AAF, Martins AMC, Daher EDF, da Silva GB. Use of probiotics in patients with chronic kidney disease on hemodialysis: a randomized clinical trial. J Bras Nefrol 2023; 45:152-161. [PMID: 36112723 PMCID: PMC10627128 DOI: 10.1590/2175-8239-jbn-2022-0021en] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Supplementation with probiotics for patients with chronic kidney disease (CKD) may be associated with decreased systemic inflammation. OBJECTIVE To assess the impact of oral supplementation with probiotics for patients with CKD on hemodialysis. METHOD This double-blind randomized clinical trial included 70 patients on hemodialysis; 32 were given oral supplementation with probiotics and 38 were in the placebo group. Blood samples were collected at the start of the study and patients were given oral supplementation with probiotics or placebo for three months. The probiotic supplement comprised four strains of encapsulated Gram-positive bacteria: Lactobacillus Plantarum A87, Lactobacillus rhamnosus, Bifidobacterium bifidum A218 and Bifidobacterium longum A101. Patients were given one capsule per day for 3 months. Blood samples were taken throughout the study to check for inflammatory biomarkers. Non-traditional biomarkers Syndecan-1, IFN-y, NGAL, and cystatin C were measured using an ELISA kit, along with biochemical parameters CRP, calcium, phosphorus, potassium, PTH, GPT, hematocrit, hemoglobin, glucose, and urea. RESULTS Patients given supplementation with probiotics had significant decreases in serum levels of syndecan-1 (239 ± 113 to 184 ± 106 ng/mL, p = 0.005); blood glucose levels also decreased significantly (162 ± 112 to 146 ± 74 mg/dL, p = 0.02). CONCLUSION Administration of probiotics to patients with advanced CKD was associated with decreases in syndecan-1 and blood glucose levels, indicating potential improvements in metabolism and decreased systemic inflammation.
Collapse
Affiliation(s)
| | | | | | - Alice Maria Costa Martins
- Universidade Federal do Ceará, Programas de Pós-Graduação em
Farmacologia e Ciências Farmacêuticas, Fortaleza, CE, Brazil
| | - Elizabeth De Francesco Daher
- Universidade Federal do Ceará, Faculdade de Medicina, Programa de
Pós-graduação em Ciências Médicas, Departamento de Medicina Clínica, Fortaleza, CE,
Brazil
| | - Geraldo Bezerra da Silva
- Universidade de Fortaleza, Programa de Pós-Graduação em Ciências
Médicas, Fortaleza, CE, Brazil
- Universidade Federal do Ceará, Faculdade de Medicina, Programa de
Pós-graduação em Ciências Médicas, Departamento de Medicina Clínica, Fortaleza, CE,
Brazil
| |
Collapse
|
22
|
Abstract
A large subset of patients with Angelman syndrome (AS) suffer from concurrent gastrointestinal (GI) issues, including constipation, poor feeding, and reflux. AS is caused by the loss of ubiquitin ligase E3A (UBE3A) gene expression in the brain. Clinical features of AS, which include developmental delays, intellectual disability, microcephaly, and seizures, are primarily due to the deficient expression or function of the maternally inherited UBE3A allele. The association between neurodevelopmental delay and GI disorders is part of the increasing evidence suggesting a link between the brain and the gut microbiome via the microbiota-gut-brain axis. To investigate the associations between colonization of the gut microbiota in AS, we characterized the fecal microbiome in three animal models of AS involving maternal deletions of Ube3A, including mouse, rat, and pig, using 16S rRNA amplicon sequencing. Overall, we identified changes in bacterial abundance across all three animal models of AS. Specific bacterial groups were significantly increased across all animal models, including Lachnospiraceae Incertae sedis, Desulfovibrios sp., and Odoribacter, which have been correlated with neuropsychiatric disorders. Taken together, these findings suggest that specific changes to the local environment in the gut are driven by a Ube3a maternal deletion, unaffected by varying housing conditions, and are prominent and detectable across multiple small and large animal model species. These findings begin to uncover the underlying mechanistic causes of GI disorders in AS patients and provide future therapeutic options for AS patients. IMPORTANCE Angelman syndrome (AS)-associated gastrointestinal (GI) symptoms significantly impact quality of life in patients. In AS models in mouse, rat, and pig, AS animals showed impaired colonization of the gut microbiota compared to wild-type (healthy) control animals. Common changes in AS microbiomes across all three animal models may play a causal effect for GI symptoms and may help to identify ways to treat these comorbidities in patients in the future.
Collapse
|
23
|
Protective Effect of Lactiplantibacillus plantarum subsp. plantarum SC-5 on Dextran Sulfate Sodium-Induced Colitis in Mice. Foods 2023; 12:foods12040897. [PMID: 36832972 PMCID: PMC9957050 DOI: 10.3390/foods12040897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a specific immune-associated intestinal disease. At present, the conventional treatment for patients is not ideal. Probiotics are widely used in the treatment of IBD patients due to their ability to restore the function of the intestinal mucosal barrier effectively and safely. Lactiplantibacillus plantarum subsp. plantarum is a kind of probiotic that exists in the intestines of hosts and is considered to have good probiotic properties. In this study, we evaluated the therapeutic effect of Lactiplantibacillus plantarum subsp. plantarum SC-5 (SC-5) on dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice. We estimated the effect of SC-5 on the clinical symptoms of mice through a body weight change, colon length, and DAI score. The inhibitory effects of SC-5 on the levels of cytokine IL-1β, IL-6, and TNF-α were determined by ELISA. The protein expression levels of NF-κB, MAPK signaling pathway, and the tight junction proteins occludin, claudin-3, and ZO-1 were verified using Western Blot and immunofluorescence. 16S rRNA was used to verify the modulatory effect of SC-5 on the structure of intestinal microbiota in DSS-induced colitis mice. The results showed that SC-5 could alleviate the clinical symptoms of DSS-induced colitis mice, and significantly reduce the expression of pro-inflammatory cytokines in the colon tissue. It also attenuated the inflammatory response by inhibiting the protein expression of NF-κB and MAPK signaling pathways. SC-5 improved the integrity of the intestinal mucosal barrier by strengthening tight junction proteins. In addition, 16S rRNA sequencing demonstrated that SC-5 was effective in restoring intestinal flora balance, as well as in increasing the relative abundance and diversity of beneficial microbiota. These results indicated that SC-5 has the potential to be developed as a new probiotic candidate that prevents or alleviates IBD.
Collapse
|
24
|
Jeong S, Kim Y, Park S, Lee D, Lee J, Hlaing SP, Yoo JW, Rhee SH, Im E. Lactobacillus plantarum Metabolites Elicit Anticancer Effects by Inhibiting Autophagy-Related Responses. Molecules 2023; 28:molecules28041890. [PMID: 36838877 PMCID: PMC9966080 DOI: 10.3390/molecules28041890] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Lactobacillus plantarum (L. plantarum) is a probiotic that has emerged as novel therapeutic agents for managing various diseases, such as cancer, atopic dermatitis, inflammatory bowel disease, and infections. In this study, we investigated the potential mechanisms underlying the anticancer effect of the metabolites of L. plantarum. We cultured L. plantarum cells to obtain their metabolites, created several dilutions, and used these solutions to treat human colonic Caco-2 cells. Our results showed a 10% dilution of L. plantarum metabolites decreased cell viability and reduced the expression of autophagy-related proteins. Moreover, we found co-treatment with L. plantarum metabolites and chloroquine, a known autophagy inhibitor, had a synergistic effect on cytotoxicity and downregulation of autophagy-related protein expression. In conclusion, we showed the metabolites from the probiotic, L. plantarum, work synergistically with chloroquine in killing Caco-2 cells and downregulating the expression of autophagy-related proteins, suggesting the involvement of autophagy, rather than apoptosis, in their cytotoxic effect. Hence, this study provides new insights into new therapeutic methods via inhibiting autophagy.
Collapse
Affiliation(s)
- Sihyun Jeong
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yuju Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Soyeong Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Doyeon Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: ; Tel.:+82-51-510-2812; Fax:+82-50-513-6754
| |
Collapse
|
25
|
Saravanan P, R P, Balachander N, K KRS, S S, S R. Anti-inflammatory and wound healing properties of lactic acid bacteria and its peptides. Folia Microbiol (Praha) 2023; 68:337-353. [PMID: 36780113 PMCID: PMC9924211 DOI: 10.1007/s12223-022-01030-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/29/2022] [Indexed: 02/14/2023]
Abstract
Recent studies manifest an increase of inflammatory diseases at an alarming rate due to gut microbiota dysbiosis, genetic and other environmental factors. Lactic acid bacteria (LAB) are known for their antimicrobial properties and their extensive applications in food and pharmaceutical industries. Cyclic peptides are receiving increased attention due to their remarkable stability to withstand variations in temperature and pH. LAB produces anti-inflammatory that can inhibit lipopolysaccharide-induced production of proinflammatory cytokines in macrophages. The structural backbones of cyclic peptides offer a promising approach for the treatment of chronic inflammatory conditions. The current review aims to present the overview of anti-inflammatory and wound healing properties of LAB-derived cyclic peptides.
Collapse
Affiliation(s)
- Parikhshith Saravanan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Pooja R
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Nanditaa Balachander
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Kesav Ram Singh K
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Silpa S
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Rupachandra S
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India.
| |
Collapse
|
26
|
Coelho-Rocha ND, de Jesus LCL, Barroso FAL, da Silva TF, Ferreira E, Gonçalves JE, Dos Santos Martins F, de Oliveira Carvalho RD, Barh D, Azevedo VADC. Evaluation of Probiotic Properties of Novel Brazilian Lactiplantibacillus plantarum Strains. Probiotics Antimicrob Proteins 2023; 15:160-174. [PMID: 36028786 DOI: 10.1007/s12602-022-09978-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 01/20/2023]
Abstract
Beneficial effects of Lactiplantibacillus plantarum strains have been widely reported. Knowing that the effects of probiotic bacteria are strain-dependent, this study aimed to characterize the probiotic properties and investigate the gastrointestinal protective effects of nine novel L. plantarum strains isolated from Bahia, Brazil. The probiotic functionality was first evaluated in vitro by characterizing bile salt and acidic tolerance, antibacterial activity, and adhesion to Caco-2 cells. Antibiotic resistance profile, mucin degradation, and hemolytic activity assays were also performed to evaluate safety features. In vivo analyses were conducted to investigate the anti-inflammatory effects of the strains on a mouse model of 5-Fluorouracil-induced mucositis. Our results suggest that the used L. plantarum strains have good tolerance to bile salts and low pH and can inhibit commonly gastrointestinal pathogens. Lp2 and Lpl1 strains also exhibited high adhesion rates to Caco-2 cells (13.64 and 9.05%, respectively). Phenotypical resistance to aminoglycosides, vancomycin, and tetracycline was observed for most strains. No strain showed hemolytic or mucolytic activity. Seven strains had a protective effect against histopathological and inflammatory damage induced by 5-FU. Gene expression analysis of inflammatory markers showed that five strains upregulated interleukin 10 (Il10), while four downregulated both interleukin 6 (Il6) and interleukin 1b (Il1b). Additionally, all strains reduced eosinophilic and neutrophilic infiltration; however, they could not prevent weight loss or reduced liquid/ food intake. Altogether, our study suggests these Brazilian L. plantarum strains present good probiotic characteristics and safety levels for future applications and can be therapeutically adjuvant alternatives to prevent/treat intestinal mucositis.
Collapse
Affiliation(s)
- Nina Dias Coelho-Rocha
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Tales Fernando da Silva
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Enio Ferreira
- Department of General Pathology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - José Eduardo Gonçalves
- Department of Pharmaceutic Products, Pharmacy Faculty, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Flaviano Dos Santos Martins
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Rodrigo Dias de Oliveira Carvalho
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-909, Brazil
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), West Bengal, Nonakuri, Purba Medinipur, 721172, India
| | - Vasco Ariston de Carvalho Azevedo
- Department of Genetics, Ecology, and Evolution, Biological Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
27
|
Casula E, Pisano MB, Serreli G, Zodio S, Melis MP, Corona G, Costabile A, Cosentino S, Deiana M. Probiotic lactobacilli attenuate oxysterols-induced alteration of intestinal epithelial cell monolayer permeability: Focus on tight junction modulation. Food Chem Toxicol 2023; 172:113558. [PMID: 36528245 DOI: 10.1016/j.fct.2022.113558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Oxidative stress and inflammation lead by dietary oxidised lipids, as oxysterols, have been linked to the loss of intestinal barrier integrity, a crucial event in the initiation and progression of intestinal disorders. In the last decade, probiotic lactobacilli have emerged as an interesting tool to improve intestinal health, thanks to their antioxidant and anti-inflammatory properties. The aim of the present study was to evaluate the ability of two commercial probiotic strains of lactobacilli (Lactiplantibacillus plantarum 299v® (DMS 9843) and Lacticaseibacillus casei DG® (CNCMI-1572)), both as live bacteria and intracellular content, to attenuate the oxysterols-induced alteration of intestinal epithelial Caco-2 cell monolayer permeability. Our investigation was focused on the modulation of tight junctions (TJs) proteins, occludin, ZO-1 and JAM-A, in relation to redox-sensitive MAPK p38 activation. Obtained results provided evidence on the ability of the two probiotics to counteract the alteration of monolayer permeability and loss of TJs proteins, at least in part, through the modulation of p38 pathway. The protective action was exerted by live bacteria, whose adhesion to Caco-2 cells was not altered by oxysterols, and bacterial intracellular components equally able to interact with the signaling pathway.
Collapse
Affiliation(s)
- Emanuela Casula
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042, Cagliari, Italy
| | - Maria Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, 09042, Cagliari, Italy
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042, Cagliari, Italy.
| | - Sonia Zodio
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042, Cagliari, Italy
| | - Maria Paola Melis
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042, Cagliari, Italy
| | - Giulia Corona
- School of Life and Health Sciences, University of Roehampton, London, SW15 4JD, UK
| | - Adele Costabile
- School of Life and Health Sciences, University of Roehampton, London, SW15 4JD, UK
| | - Sofia Cosentino
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, 09042, Cagliari, Italy.
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042, Cagliari, Italy
| |
Collapse
|
28
|
Anvar SA, Rahimyan D, Golestan L, Shojaee A, Pourahmad R. Butter fortified with spray‐dried encapsulated
Ferulago angulata
extract nanoemulsion and postbiotic metabolite of
Lactiplantibacillus plantarum
subsp.
plantarum
improves its physicochemical, microbiological and sensory properties. INT J DAIRY TECHNOL 2023. [DOI: 10.1111/1471-0307.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Seyed Amirali Anvar
- Department of Food Hygiene, Science and Research Branch Islamic Azad University Tehran 1477893855 Iran
| | - Dorsa Rahimyan
- Department of Food Hygiene, Science and Research Branch Islamic Azad University Tehran 1477893855 Iran
| | - Leila Golestan
- Department of Food Hygiene, Ayatollah Amoli Branch Islamic Azad University Amol 4615143358 Iran
| | - Asiyeh Shojaee
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine Ferdowsi University of Mashhad Mashhad 9177948974 Iran
| | - Rezvan Pourahmad
- Department of Food Science and Technology, Varamin‐Pishva Branch Islamic Azad University Varamin 3381774895 Iran
| |
Collapse
|
29
|
Qin N, Liu H, Cao Y, Wang Z, Ren X, Xia X. Polysaccharides from the seeds of Gleditsia sinensis Lam. attenuate DSS-induced colitis in mice via improving gut barrier homeostasis and alleviating gut microbiota dybiosis. Food Funct 2023; 14:122-132. [PMID: 36510766 DOI: 10.1039/d2fo02722d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The seeds from Gleditsia sinensis Lam., a common ecologically and economically useful tree, have high economic and nutritional value. The protective effect of polysaccharides from Gleditsia sinensis Lam. seeds (ZJMP) against dextran sulfate sodium-induced colitis in mice was investigated in this study. ZJMP alleviated weight loss, reduced the disease activity index, prevented colon shortening, alleviated colonic tissue damage, and restored goblet cell secretion in colitic mice. Dietary ZJMP reduced proinflammatory cytokine overproduction in the colonic mucosa and serum, which was accompanied by suppression of NO levels and MPO and SOD activities. The addition of ZJMP increased the expression of Muc2 and tight junction proteins. Furthermore, dietary ZJMP partially reversed the alteration of gut microbiota in colitic mice by boosting the abundance of beneficial bacteria like Akkermansia, Lactobacillus, and Christensenella while lowering the abundance of harmful bacteria like Bacteroides, Prevotella, and Mucispirillum. Additionally, the decreased production of short-chain fatty acids in the colitic mice was recovered by ZJMP administration. The findings demonstrated the anti-inflammatory properties and mechanism of dietary ZJMP in the colon, which is essential for the sensible application of ZJMP in the prevention and amelioration of inflammation-related diseases as a nutritional supplement.
Collapse
Affiliation(s)
- Ningbo Qin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Hongxu Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Yu Cao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Zhen Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Xiaomeng Ren
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Xiaodong Xia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
30
|
Caballero V, Estévez M, Tomás-Barberán FA, Morcuende D, Martín I, Delgado J. Biodegradation of Punicalagin into Ellagic Acid by Selected Probiotic Bacteria: A Study of the Underlying Mechanisms by MS-Based Proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16273-16285. [PMID: 36519204 PMCID: PMC9801417 DOI: 10.1021/acs.jafc.2c06585] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 05/31/2023]
Abstract
Pomegranate (Punica granatum L.) is a well-known source of bioactive phenolic compounds such as ellagitannins, anthocyanins, and flavanols. Punicalagin, one of the main constituents of pomegranate, needs to be biodegraded by bacteria to yield metabolites of medicinal interest. In this work, we tested 30 lactic acid bacteria (LAB) and their capacity to transform punicalagin from a punicalagin-rich pomegranate extract into smaller bioactive molecules, namely, ellagic acid and urolithins. These were identified and quantified by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS2). Further, we evaluated the molecular mechanism governing this transformation through label-free comparative MS-based proteomics. All tested LAB strains were capable of transforming punicalagin into ellagic acid, while the biosynthesis of urolithins was not observed. Proteomic analysis revealed an increase of generic transglycosylases that might have a hydrolytic role in the target phenolic molecule, coupled with an increase in the quantity of ATP-binding cassette (ABC) transporters, which might play a relevant role in transporting the resulting byproducts in and out of the cell.
Collapse
Affiliation(s)
- Víctor Caballero
- Food
Technology, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
- Food
Hygiene and Safety, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| | - Mario Estévez
- Food
Technology, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| | | | - David Morcuende
- Food
Technology, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| | - Irene Martín
- Food
Hygiene and Safety, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| | - Josué Delgado
- Food
Hygiene and Safety, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| |
Collapse
|
31
|
Hu Y, Chen Z, Xu C, Kan S, Chen D. Disturbances of the Gut Microbiota and Microbiota-Derived Metabolites in Inflammatory Bowel Disease. Nutrients 2022; 14:5140. [PMID: 36501169 PMCID: PMC9735443 DOI: 10.3390/nu14235140] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is characterized as a chronic and recurrent inflammatory disease whose pathogenesis is still elusive. The gut microbiota exerts important and diverse effects on host physiology through maintaining immune balance and generating health-benefiting metabolites. Many studies have demonstrated that IBD is associated with disturbances in the composition and function of the gut microbiota. Both the abundance and diversity of gut microbiota are dramatically decreased in IBD patients. Furthermore, some particular classes of microbiota-derived metabolites, principally short-chain fatty acids, tryptophan, and its metabolites, and bile acids have also been implicated in the pathogenesis of IBD. In this review, we aim to define the disturbance of gut microbiota and the key classes of microbiota-derived metabolites in IBD pathogenesis. In addition, we also focus on scientific evidence on probiotics, not only on the molecular mechanisms underlying the beneficial effects of probiotics on IBD but also the challenges it faces in safe and appropriate application.
Collapse
Affiliation(s)
- Yongjia Hu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Zhouzhou Chen
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Chengchen Xu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Shidong Kan
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
32
|
Shin JH, Bozadjieva-Kramer N, Shao Y, Lyons-Abbott S, Rupp AC, Sandoval DA, Seeley RJ. The gut peptide Reg3g links the small intestine microbiome to the regulation of energy balance, glucose levels, and gut function. Cell Metab 2022; 34:1765-1778.e6. [PMID: 36240758 PMCID: PMC9633559 DOI: 10.1016/j.cmet.2022.09.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 02/08/2023]
Abstract
Changing composition of the gut microbiome is an important component of the gut adaptation to various environments, which have been implicated in various metabolic diseases including obesity and type 2 diabetes, but the mechanisms by which the microbiota influence host physiology remain contentious. Here we find that both diets high in the fermentable fiber inulin and vertical sleeve gastrectomy increase intestinal expression and circulating levels of the anti-microbial peptide Reg3g. Moreover, a number of beneficial effects of these manipulations on gut function, energy balance, and glucose regulation are absent in Reg3g knockout mice. Peripheral administration of various preparations of Reg3g improves glucose tolerance, and this effect is dependent on the putative receptor Extl3 in the pancreas. These data suggest Reg3g acts both within the lumen and as a gut hormone to link the intestinal microbiome to various aspects of host physiology that may be leveraged for novel treatment strategies.
Collapse
Affiliation(s)
- Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, MI, USA
| | - Yikai Shao
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | | | - Alan C Rupp
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Darleen A Sandoval
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Tarapatzi G, Filidou E, Kandilogiannakis L, Spathakis M, Gaitanidou M, Arvanitidis K, Drygiannakis I, Valatas V, Kotzampassi K, Manolopoulos VG, Kolios G, Vradelis S. The Probiotic Strains Bifidοbacterium lactis, Lactobacillus acidophilus, Lactiplantibacillus plantarum and Saccharomyces boulardii Regulate Wound Healing and Chemokine Responses in Human Intestinal Subepithelial Myofibroblasts. Pharmaceuticals (Basel) 2022; 15:1293. [PMID: 36297405 PMCID: PMC9611312 DOI: 10.3390/ph15101293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Bifidobacterium lactis, Lactobacillus acidophilus, Lactiplantibacillus plantarum and Saccharomyces boulardii are common probiotic supplements. Colonic subepithelial myofibroblasts (cSEMFs) are actively involved in mucosal wound healing and inflammation. cSEMFs, isolated from healthy individuals, were stimulated with 102 or 104 cfu/mL of these probiotic strains alone and in combination, and their effect on chemokine and wound healing factor expression was assessed by qRT-PCR, ELISA and Sircol Assay, and on cSEMFs migration, by Wound Healing Assay. These strains remained viable and altered cSEMFs’ inflammatory and wound healing behavior, depending on the strain and concentration. cSEMFs treated with a combination of the four probiotics had a moderate, but statistically significant, increase in the mRNA and/or protein expression of chemokines CXCL1, CXCL2, CXCL4, CXCL8, CXCL10, CCL2 and CCL5, and healing factors, collagen type I and III, fibronectin and tissue factor. In contrast, when each strain was administered alone, different effects were observed, with greater increase or decrease in chemokine and healing factor expression, which was balanced by the mixture. Overall, this study highlights that the use of multiple probiotic strains can potentially alert the gut mucosal immune system and promote wound healing, having a better effect on mucosal immunity than the use of single probiotics.
Collapse
Affiliation(s)
- Gesthimani Tarapatzi
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Michail Spathakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Maria Gaitanidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Ioannis Drygiannakis
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Valatas
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
34
|
Kaliyamoorthy V, Jacop JP, Thirugnanasambantham K, Ibrahim HIM, Kandhasamy S. The synergic impact of lignin and Lactobacillus plantarum on DSS-induced colitis model via regulating CD44 and miR 199a alliance. World J Microbiol Biotechnol 2022; 38:233. [PMID: 36222901 DOI: 10.1007/s11274-022-03424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
Chronic or recurrent immune system activation and inflammation inside the gastrointestinal tract is characterized by inflammatory bowel disease (IBD). Due to the lack of safety and efficacy of traditional medications, the use of food supplements for IBD management is on the rise. Numerous studies reported that, certain food supplements have a variety of therapeutic benefits for IBD. In the present study, a mouse model of IBD was used to the anti-colitis effects of lignin supplementation with Lactobacillus plantarum (L. plantarum) on intestinal inflammation. The animal model was treated with dextran sodium sulphate (DSS), the illness index increased, and colon length and body weight declined, but these effects were reversed when lignin and L. plantarum treated groups. In addition, lignin and L. plantarum supplementation inhibited the DSS induced increase in levels of cytokines TNF-α (250 pg/mL), INF-γ (180 pg/mL), IL-1β (70 pg/mL) and TGF- β (72 pg/mL). Gene and protein expression study revealed that Lignin and L. plantarum supplementation restored the expression of E-cad and suppressed the expression of STAT3 in DSS induced colitis model. Lignin and L. plantarum supplementation also suppressed CD44 expression (1.2 fold) by up regulating the expression of miR199a (1 fold) over DSS induced colitis. Our study suggests that Lactobacillus, lignin, and their synergistic treatments have protective roles against inflammatory bowel disease through changes in inflammatory cytokines, and miR 199a expression in DSS-induced colitis.
Collapse
Affiliation(s)
- Venugopal Kaliyamoorthy
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Padalam, Chengalpattu, Tamilnadu, 603308, India
| | - Justin Packia Jacop
- Department of Biotechnology, St. Josephs' College of Engineering, Sholinganallur, Chennai, Tamilnadu, 600119, India
| | - Krishnaraj Thirugnanasambantham
- Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry, 605004, India.,Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Hairul Islam Mohamed Ibrahim
- Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry, 605004, India.,Biology Department, College of Science, King Faisal University, Hofouf, Al Ahsa, Saudi Arabia
| | - Sivakumar Kandhasamy
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Padalam, Chengalpattu, Tamilnadu, 603308, India.
| |
Collapse
|
35
|
Bucheli JEV, Todorov SD, Holzapfel WH. Role of gastrointestinal microbial populations, a terra incognita of the human body in the management of intestinal bowel disease and metabolic disorders. Benef Microbes 2022; 13:295-318. [PMID: 35866598 DOI: 10.3920/bm2022.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intestinal bowel disease (IBD) is a chronic immune-mediated clinical condition that affects the gastrointestinal tract and is mediated by an inflammatory response. Although it has been extensively studied, the multifactorial aetiology of this disorder makes it difficult to fully understand all the involved mechanisms in its development and therefore its treatment. In recent years, the fundamental role played by the human microbiota in the pathogenesis of IBD has been emphasised. Microbial imbalances in the gut bacterial communities and a lower species diversity in patients suffering from inflammatory gastrointestinal disorders compared to healthy individuals have been reported as principal factors in the development of IBD. These served to support scientific arguments for the use of probiotic microorganisms in alternative approaches for the prevention and treatment of IBD. In a homeostatic environment, the presence of bacteria (including probiotics) on the intestinal epithelial surface activates a cascade of processes by which immune responses inhibited and thereby commensal organisms maintained. At the same time these processes may support activities against specific pathogenic bacteria. In dysbiosis, these underlying mechanisms will serve to provoke a proinflammatory response, that, in combination with the use of antibiotics and the genetic predisposition of the host, will culminate in the development of IBD. In this review, we summarised the main causes of IBD, the physiological mechanisms involved and the related bacterial groups most frequently associated with these processes. The intention was to enable a better understanding of the interaction between the intestinal microbiota and the host, and to suggest possibilities by which this knowledge can be useful for the development of new therapeutic treatments.
Collapse
Affiliation(s)
- J E Vazquez Bucheli
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - S D Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| | - W H Holzapfel
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Gyeongbuk 37554, Republic of Korea
| |
Collapse
|
36
|
The Therapeutic Role of Short-Chain Fatty Acids Mediated Very Low-Calorie Ketogenic Diet-Gut Microbiota Relationships in Paediatric Inflammatory Bowel Diseases. Nutrients 2022; 14:nu14194113. [PMID: 36235765 PMCID: PMC9572225 DOI: 10.3390/nu14194113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
The very low-calorie ketogenic diet (VLCKD) has been recognized as a promising dietary regimen for the treatment of several diseases. Short-chain fatty acids (SCFAs) produced by anaerobic bacterial fermentation of indigestible dietary fibre in the gut have potential value for their underlying epigenetic role in the treatment of obesity and asthma-related inflammation through mediating the relationships between VLCKD and the infant gut microbiota. However, it is still unclear how VLCKD might influence gut microbiota composition in children, and how SCFAs could play a role in the treatment of inflammatory bowel disease (IBD). To overcome this knowledge gap, this review aims to investigate the role of SCFAs as key epigenetic metabolites that mediate VLCKD-gut microbiota relationships in children, and their therapeutic potential in IBD.
Collapse
|
37
|
Luo S, Chen J, Zeng Y, Dai J, Li S, Yan J, Liu Y. Effect of water-in-oil-in-water (W/O/W) double emulsions to encapsulate nisin on the quality and storage stability of fresh noodles. Food Chem X 2022; 15:100378. [PMID: 36211791 PMCID: PMC9532707 DOI: 10.1016/j.fochx.2022.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Ultrasonic and microwave treatment improved the extraction rate of rock bean protein. Rock bean protein has a high content of 7S and 11S globulin components. The prepared W/O/W microcapsules can keep the noodles fresh.
Rock-bean protein (RP) was extracted from wild rock beans by ultrasonic treatment and microwave extraction. The RP has a high content of 7S and 11S globulin components and good heat stability. Subsequently, water-oil-water double emulsions were prepared using a water core containing nisin, momordica charantia extract (MCE), and Lactobacillus plantarum as functional additives, corn oil as the intermediate wall, and RP/gum arabic (GA) as the outer wall material. For a ratio of corn oil to water of 5:1, the maximum encapsulation efficiency was 28.22%, and RP/GA had good dispersion characteristics, where the smallest average particle size was achieved for a 1:1 ratio. Finally, the microcapsules were used to study the effect of its addition to noodles. The addition of 2 wt% of the microcapsules to low-gluten flour resulted in a dough with suitable rheology, and can extend the shelf life of the fresh noodles prepared using this dough.
Collapse
|
38
|
Bioprospecting for Novel Probiotic Strains from Human Milk and Infants: Molecular, Biochemical, and Ultrastructural Evidence. BIOLOGY 2022; 11:biology11101405. [PMID: 36290309 PMCID: PMC9598434 DOI: 10.3390/biology11101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Demographic, genetic factors, and maternal lifestyle could modify and alter the microbial diversity of human milk and infants’ gut. We screened human breast milk and infant stool samples from Egyptian sources for possible novel probiotic strains. Forty-one isolates were submitted to the gene bank database, classified, and identified through physiological and biochemical tests. All samples revealed antibiotic resistance, antibacterial activity, and high probiotic features. Six of the isolates revealed less than 95% Average Nucleotide Identity with deposited sequences in the database. Isolate Lactobacillus delbrueckii ASO 100 exhibited the lowest identity ratio with promising probiotic and antibacterial features, enlightening the high probability of being a new probiotic species. Abstract Human milk comprises a diverse array of microbial communities with health-promoting effects, including colonization and development of the infant’s gut. In this study, we characterized the bacterial communities in the Egyptian mother–infant pairs during the first year of life under normal breastfeeding conditions. Out of one hundred isolates, forty-one were chosen for their potential probiotic properties. The selected isolates were profiled in terms of morphological and biochemical properties. The taxonomic evidence of these isolates was investigated based on 16S rRNA gene sequence and phylogenetic trees between the isolates’ sequence and the nearest sequences in the database. The taxonomic and biochemical evidence displayed that the isolates were encompassed in three genera: Lactobacillus, Enterococcus, and Lactococcus. The Lactobacillus was the most common genus in human milk and feces samples with a high incidence of its different species (Lacticaseibacillus paracasei, Lactobacillus delbrueckii, Lactiplantibacillus plantarum, Lactobacillus gasseri, and Lacticaseibacillus casei). Interestingly, BlastN and Jalview alignment results evidenced a low identity ratio of six isolates (less than 95%) with database sequences. This divergence was supported by the unique physiological, biochemical, and probiotic features of these isolates. The isolate L. delbrueckii, ASO 100 exhibited the lowest identity ratio with brilliant probiotic and antibacterial features suggesting the high probability of being a new species. Nine isolates were chosen and subjected to probiotic tests and ultrastructural analysis; these isolates exhibited antibiotic resistance and antibacterial activity with high probiotic characteristics, and high potentiality to be used as prophylactic and therapeutic agents in controlling intestinal pathogens.
Collapse
|
39
|
Guo M, Li R, Wang Y, Ma S, Zhang Y, Li S, Zhang H, Liu Z, You C, Zheng H. Lactobacillus plantarum ST-III modulates abnormal behavior and gut microbiota in a mouse model of autism spectrum disorder. Physiol Behav 2022; 257:113965. [PMID: 36126693 DOI: 10.1016/j.physbeh.2022.113965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
Abstract
Probiotic treatment might improve autism spectrum disorder (ASD) behavior. In this study, we investigated the improvement effects of Lactobacillus plantarum ST-III on a mouse model of ASD, which was constructed using triclosan. After two weeks of L. plantarum ST-III oral feeding, autism-like social deficits in male mouse models were ameliorated. L. plantarum ST-III also attenuated the self-grooming and freezing times of female mice. High-throughput sequencing revealed changes in the gut microbiota after L. plantarum ST-III intervention. In the female probiotic group, the abundance of beneficial Lachnospiraceae bacteria increased, whereas that of harmful Alistipes bacteria decreased. Correlation analysis showed that amelioration of abnormal behavior in a mouse model of ASD was related to the involvement of certain metabolic pathways. A reduction in the abundance of Alistipes was involved in stereotyped behavioral improvement. Thus, oral supplementation with L. plantarum ST-III can help improve social behavior in a male mouse model of ASD and contribute to more balanced intestinal homeostasis.
Collapse
Affiliation(s)
- Min Guo
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, 2140 Xietu Road, Shanghai, China
| | - Ruiying Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Institute for Biomedical and Pharmaceutical Technologies, 250 Bibo Road, Shanghai, China
| | - Shiyu Ma
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, 2140 Xietu Road, Shanghai, China
| | - Yilin Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Sheng Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, 2140 Xietu Road, Shanghai, China
| | - Hongfa Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China.
| | - Huajun Zheng
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, 2140 Xietu Road, Shanghai, China.
| |
Collapse
|
40
|
Lukić I, Ivković S, Mitić M, Adžić M. Tryptophan metabolites in depression: Modulation by gut microbiota. Front Behav Neurosci 2022; 16:987697. [PMID: 36172468 PMCID: PMC9510596 DOI: 10.3389/fnbeh.2022.987697] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical depression is a multifactorial disorder and one of the leading causes of disability worldwide. The alterations in tryptophan metabolism such as changes in the levels of serotonin, kynurenine, and kynurenine acid have been implicated in the etiology of depression for more than 50 years. In recent years, accumulated evidence has revealed that gut microbial communities, besides being essential players in various aspects of host physiology and brain functioning are also implicated in the etiology of depression, particularly through modulation of tryptophan metabolism. Therefore, the aim of this review is to summarize the evidence of the role of gut bacteria in disturbed tryptophan metabolism in depression. We summed up the effects of microbiota on serotonin, kynurenine, and indole pathway of tryptophan conversion relevant for understanding the pathogenesis of depressive behavior. Moreover, we reviewed data regarding the therapeutic effects of probiotics, particularly through the regulation of tryptophan metabolites. Taken together, these findings can open new possibilities for further improvement of treatments for depression based on the microbiota-mediated modulation of the tryptophan pathway.
Collapse
|
41
|
de Araújo ÉMR, Meneses GC, Carioca AAF, Martins AMC, Daher EDF, da Silva Junior GB. Uso de probióticos em pacientes com doença renal crônica em hemodiálise: um ensaio clínico randomizado. J Bras Nefrol 2022. [DOI: 10.1590/2175-8239-jbn-2022-0021pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Introdução: A suplementação com probióticos na doença renal crônica (DRC) pode estar associada à redução do processo inflamatório sistêmico. Objetivo: Avaliar a suplementação oral com probióticos em pacientes com DRC em hemodiálise. Método: Ensaio clínico, duplo cego, randomizado com 70 pacientes em hemodiálise, sendo 32 do grupo que recebeu o suplemento de probióticos e 38 do grupo placebo. Inicialmente ocorreu a coleta de sangue e suplementação oral com probióticos ou placebo durante três meses. O suplemento probiótico foi composto pela combinação de 4 cepas de bactérias Gram-positivas encapsuladas: Lactobacillus Plantarum A87, Lactobacillus rhamnosus, Bifidobacterium bifidum A218 e Bifidobacterium longum A101, sendo 1 cápsula do suplemento ao dia, durante 3 meses. Após esse período foram feitas novas coletas de sangue para dosagem dos biomarcadores inflamatórios. Foram analisados os biomarcadores não tradicionais: Syndecan-1, IFN-y, NGAL e cistatina C pelo método ELISA, e os seguintes parâmetros bioquímicos: PCR, cálcio, fósforo, potássio, PTH, TGP, hematócrito, hemoglobina, glicose e ureia. Resultados: Os pacientes que receberam suplemento tiveram diminuição significativa dos níveis séricos de syndecan-1 (de 239 ± 113 para 184 ± 106 ng/mL, p = 0,005). Outro parâmetro que diminuiu significativamente nos pacientes que receberam suplemento foi a glicemia (de 162 ± 112 para 146 ± 74 mg/dL, p = 0,02). Conclusão: O uso de probióticos na DRC avançada esteve associado à redução dos níveis de syndecan-1 e glicemia, sinalizando possível melhora no metabolismo e redução do processo inflamatório sistêmico.
Collapse
|
42
|
Štofilová J, Kvaková M, Kamlárová A, Hijová E, Bertková I, Guľašová Z. Probiotic-Based Intervention in the Treatment of Ulcerative Colitis: Conventional and New Approaches. Biomedicines 2022; 10:2236. [PMID: 36140337 PMCID: PMC9496552 DOI: 10.3390/biomedicines10092236] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Although there are number of available therapies for ulcerative colitis (UC), many patients are unresponsive to these treatments or experience secondary failure during treatment. Thus, the development of new therapies or alternative strategies with minimal side effects is inevitable. Strategies targeting dysbiosis of gut microbiota have been tested in the management of UC due to the unquestionable role of gut microbiota in the etiology of UC. Advanced molecular analyses of gut microbiomes revealed evident dysbiosis in UC patients, characterized by a reduced biodiversity of commensal microbiota. Administration of conventional probiotic strains is a commonly applied approach in the management of the disease to modify the gut microbiome, improve intestinal barrier integrity and function, and maintain a balanced immune response. However, conventional probiotics do not always provide the expected health benefits to a patient. Their benefits vary significantly, depending on the type and stage of the disease and the strain and dose of the probiotics administered. Their mechanism of action is also strain-dependent. Recently, new candidates for potential next-generation probiotics have been discovered. This could bring to light new approaches in the restoration of microbiome homeostasis and in UC treatment in a targeted manner. The aim of this paper is to provide an updated review on the current options of probiotic-based therapies, highlight the effective conventional probiotic strains, and outline the future possibilities of next-generation probiotic and postbiotic supplementation and fecal microbiota transplantation in the management of UC.
Collapse
Affiliation(s)
- Jana Štofilová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Trieda SNP 1, 040 11 Kosice, Slovakia
| | | | | | | | | | | |
Collapse
|
43
|
Jejunum-derived NF-κB reporter organoids as 3D models for the study of TNF-alpha-induced inflammation. Sci Rep 2022; 12:14425. [PMID: 36002565 PMCID: PMC9829906 DOI: 10.1038/s41598-022-18556-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/16/2022] [Indexed: 01/10/2023] Open
Abstract
Inflammation is an important process for epithelial barrier protection but when uncontrolled, it can also lead to tissue damage. The nuclear factor-kappa light chain enhancer of activated B cells (NF-κB) signaling pathway is particularly relevant in the intestine, as it seems to play a dual role. Whereas NF-κB protects intestinal epithelium against various noxious stimuli, the same pathway mediates intestinal inflammatory diseases by inducing pro-inflammatory gene expression. The availability of appropriate in vitro models of the intestinal epithelium is crucial for further understanding the contribution of NF-κB in physiological and pathological processes and advancing in the development of drugs and therapies against gut diseases. Here we established, characterized, and validated three-dimensional cultures of intestinal organoids obtained from biopsies of NF-κB-RE-Luc mice. The NF-κB-RE-Luc intestinal organoids derived from different intestine regions recreated the cellular composition of the tissue and showed a reporter responsiveness similar to the in vivo murine model. When stimulated with TNF-α, jejunum-derived NF-κB-RE-Luc-reporter organoids, provided a useful model to evaluate the anti-inflammatory effects of natural and synthetic compounds. These reporter organoids are valuable tools to explore the epithelial TNF-α-induced NF-κB contribution in the small intestine, being a reliable alternative method while helping to reduce the use of laboratory animals for experimentation.
Collapse
|
44
|
库尔班乃木·卡合曼, 赵 健, 穆凯代斯·艾合买提, 王 汉, 朱 稷, 潘 文, 卡思木江·阿西木江. [E.faecium QH06 alleviates TNBS-induced colonic mucosal injury in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:976-987. [PMID: 35869759 PMCID: PMC9308865 DOI: 10.12122/j.issn.1673-4254.2022.07.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of Enterococcus faecium QH06 on TNBS-induced ulcerative colitis (UC) in rats and explore the mechanisms in light of intestinal flora and intestinal immunity. METHODS Thirty-six male Wistar rats were randomized equally into control group, UC model group, and E.faecium QH06 intervention group. The rats in the latter two groups were subjected to colonic enema with 5% TNBS/ethanol to induce UC, followed by treatment with intragastric administration of distilled water or E.faecium QH06 at the dose of 0.21 g/kg. After 14 days of treatment, the rats were examined for colon pathologies with HE staining. The mRNA and protein expression levels of IL-4, IL-10, IL-12, and IFN-γ in the colon tissues were detected using RT-qPCR and ELISA, and the expression of TLR2 protein was detected with immunohistochemistry and ELISA. Illumina Miseq platform was used for sequencing analysis of the intestinal flora of the rats with bioinformatics analysis. The correlations of the parameters of the intestinal flora with the expression levels of TLR2 and cytokines were analyzed. RESULTS The rats with TNBS- induced UC showed obvious weight loss (P < 0.01) and severe colon tissue injury with high pathological scores (P < 0.01). The protein expression levels of IFN-γ, IL-12, and TLR2 (P < 0.01) and the mRNA expression levels of IFN-γ, IL-12 and IL-10 (P < 0.05) were significantly increased in the colon tissues of the rats with UC. Illumina Miseq sequence analysis showed that in UC rats, the Shannon index (P < 0.05) ACE (P < 0.01)and Chao (P < 0.05) index for the diversity of intestinal flora both decreased with a significantly increased abundance of Enterobacteriaceae (P < 0.01) and a lowered abundance of Burkholderiaceae (P < 0.05). Compared with the UC rats, the rats treated with E. faecium QH06 showed obvious body weight gain (P < 0.05), lessened colon injuries, lowered pathological score of the colon tissue (P < 0.05), decreased protein expressions of IFN- γ, IL- 12, and TLR2 and mRNA expressions of IFN- γ and IL-12 (P < 0.01 or 0.05), and increased protein expressions of IL- 4 (P < 0.05). The Shannon index ACE (P < 0.05) and Chao (P < 0.05) index of intestinal microflora were significantly increased, the abundance of Enterobacteriaceae was lowered and that of Burkholderiaceae and Rikenellaceae was increased in E.faecium QH06- treated rats (P < 0.01 or 0.05). Correlation analysis showed that IFN-γ was positively correlated with the abundance of Enterobacteriaceae, and IFN-γ was negatively correlated with the abundance of Prevotellaceae, Desulfovibrionaceae, norank_o_Mollicutes_RF39 and Clostridiales_vadinBB60_group; TLR2 was negatively correlated with Clostridiales_vadinBB60_group, norank_o_Mollicutes_RF39 and Prevotellaceae. CONCLUSION E.faecium QH06 can alleviate TNBS-induced colonic mucosal injury in rats, and its effect is mediated possibly by increasing the abundance of SCFA-producing bacteria such as Prevotellaceae and inhibiting abnormal immune responses mediated by TLR2.
Collapse
Affiliation(s)
- 库尔班乃木·卡合曼
- 新疆医科大学第一附属医院康复医学科,新疆 乌鲁木齐 830011Department of Rehabilitation Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - 健锋 赵
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 穆凯代斯·艾合买提
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 汉铭 王
- 新疆医科大学第二临床医学院,新疆 乌鲁木齐 830011Second Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 稷蔚 朱
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 文涛 潘
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 卡思木江·阿西木江
- 新疆医科大学基础医学院物生化学与分子生物学教研室,新疆 乌鲁木齐 830017Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
45
|
Miri ST, Sotoodehnejadnematalahi F, Amiri MM, Pourshafie MR, Rohani M. The impact of Lactobacillus and Bifidobacterium probiotic cocktail on modulation of gene expression of gap junctions dysregulated by intestinal pathogens. Arch Microbiol 2022; 204:417. [PMID: 35737111 DOI: 10.1007/s00203-022-03026-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
Probiotics are special bacterial strains with strain specific impacts. They can affect health condition in intestine by producing organic acid, competing with pathogens and maintaining cells homeostasis. Regarding to importance of cell junctions in cells transportation and the influence of pathogens in their functions which lead to inflammation, the impact of probiotic strains comprised of Lactobacillus and Bifidobacterium strains on two important members of gap junctions (Cx26 and Cx43) were assayed. The expressions of cell junction genes in contact with probiotic cocktail along with pathogenic components of enterotoxigenic Escherichia coli and Salmonella typhimurium on HT-29 cell line in different treatment orders were evaluated. Results analysis demonstrated downregulation of cx26 and cx43 along with pathogenic components while, probiotic cocktail could modulate their expression by upregulation. We concluded that Lactobacillus and Bifidobacterium strains were efficient probiotics, when they were used as one cocktail, impacted grater amount on the expression of cell junctions and this might lead to modulate homeostasis and reveal inflammation symptoms in intestine.
Collapse
Affiliation(s)
- Seyedeh Tina Miri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Reza Pourshafie
- Department of Bacteriology, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhhoori St, Tehran, Iran.
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhhoori St, Tehran, Iran.
| |
Collapse
|
46
|
Fobofou SA, Savidge T. Microbial metabolites: cause or consequence in gastrointestinal disease? Am J Physiol Gastrointest Liver Physiol 2022; 322:G535-G552. [PMID: 35271353 PMCID: PMC9054261 DOI: 10.1152/ajpgi.00008.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/31/2023]
Abstract
Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research.
Collapse
Affiliation(s)
- Serge Alain Fobofou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
47
|
Tapioca starch and skim milk support probiotic efficacy of Lactiplantibacillus plantarum post-fermentation medium against pathogens and cancer cells. Arch Microbiol 2022; 204:331. [PMID: 35579801 DOI: 10.1007/s00203-022-02943-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
The production of functional foods containing prebiotic ingredients is an area of particular interest and a very promising market with the potential to dominate the food industry. This study aims to explore the potential of starch-based prebiotic tapioca and skim milk, as low-cost and easily accessible food sources and as natural and "clean label" food ingredients on the probiotic activities of Lactiplantibacillus plantarum (formerly Lactobacillus plantarum). The results show that concomitant use of the modified tapioca starch and skim milk promotes the antibacterial and anti-cancer properties of L. plantarum post-fermentation media pointing out how the functionality of probiotic products can be regulated by growth supplements.
Collapse
|
48
|
Dempsey E, Corr SC. Lactobacillus spp. for Gastrointestinal Health: Current and Future Perspectives. Front Immunol 2022; 13:840245. [PMID: 35464397 PMCID: PMC9019120 DOI: 10.3389/fimmu.2022.840245] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
In recent decades, probiotic bacteria have become increasingly popular as a result of mounting scientific evidence to indicate their beneficial role in modulating human health. Although there is strong evidence associating various Lactobacillus probiotics to various health benefits, further research is needed, in particular to determine the various mechanisms by which probiotics may exert these effects and indeed to gauge inter-individual value one can expect from consuming these products. One must take into consideration the differences in individual and combination strains, and conditions which create difficulty in making direct comparisons. The aim of this paper is to review the current understanding of the means by which Lactobacillus species stand to benefit our gastrointestinal health.
Collapse
Affiliation(s)
- Elaine Dempsey
- Trinity Biomedical Science Institute, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland.,Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Sinéad C Corr
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
49
|
Wei C, Luo K, Wang M, Li Y, Pan M, Xie Y, Qin G, Liu Y, Li L, Liu Q, Tian X. Evaluation of Potential Probiotic Properties of a Strain of Lactobacillus plantarum for Shrimp Farming: From Beneficial Functions to Safety Assessment. Front Microbiol 2022; 13:854131. [PMID: 35401447 PMCID: PMC8989281 DOI: 10.3389/fmicb.2022.854131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years the safety of probiotics has received increasing attention due to the possible transfer and spread of virulence factors (VFs) and antibiotic resistance genes (ARGs) among microorganisms. The safety of a strain of Lactobacillus plantarum named W2 was evaluated in phenotype and genotype in the present study. Its probiotic properties were also evaluated both in vivo and in vitro, including adherence properties, antibacterial properties and beneficial effects on the growth and immunity of Pacific white shrimp, Penaeus vannamei. Hemolysis tests, antibiotic resistance tests and whole genome sequence analysis showed that W2 had no significant virulence effects and did not carry high virulence factors. W2 was found to be sensitive to chloramphenicol, clindamycin, gentamicin, kanamycin and tetracycline, and to be resistant to ampicillin and erythromycin. Most ARGs have no transfer risk and a few have transfer risk but no significant enrichment in human-associated environments. The autoaggregation of W2 was 82.6% and the hydrophobicity was 81.0%. Coaggregation rate with Vibrio parahaemolyticus (24.9%) was significantly higher than Vibrio's autoaggregation rate (17.8%). This suggested that W2 had adhesion potential to mucosal/intestinal surfaces and was able to attenuate the adherence of V. parahaemolyticus. In addition, several adhesion-related protein genes, including 1 S-layer protein, 1 collagen-binding protein and 9 mucus-binding proteins were identified in the W2 genome. W2 had efficiently antagonistic activity against 7 aquatic pathogenic strains. Antagonistic components analysis indicated that active antibacterial substances might be organic acids. W2 can significantly promote the growth of shrimp when supplemented with 1 × 1010 cfu/kg live cells. Levels of 7 serological immune indicators and expression levels of 12 hepatopancreatic immune-related genes were up-regulated, and the mortality of shrimp exposed to V. parahaemolyticus was significantly reduced. Based on the above, L. plantarum W2 can be applied safely as a potential probiotic to enhance the growth performance, immunity capacity and disease resistance of P. vannamei.
Collapse
Affiliation(s)
- Cong Wei
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kai Luo
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mingyang Wang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yongmei Li
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Miaojun Pan
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yumeng Xie
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guangcai Qin
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yijun Liu
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Li
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Xiangli Tian
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
50
|
Khan I, Wei J, Li A, Liu Z, Yang P, Jing Y, Chen X, Zhao T, Bai Y, Zha L, Li C, Ullah N, Che T, Zhang C. Lactobacillus plantarum strains attenuated DSS-induced colitis in mice by modulating the gut microbiota and immune response. Int Microbiol 2022; 25:587-603. [PMID: 35414032 DOI: 10.1007/s10123-022-00243-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Gut microbiota has become a new therapeutic target in the treatment of inflammatory Bowel Disease (IBD). Probiotics are known for their beneficial effects and have shown good efficacy in the clinical treatment of IBD and animal models of colitis. However, how these probiotics contribute to the amelioration of IBD is largely unknown. In the current study, the DSS-induced mouse colitis model was treated with oral administration of Lactobacillus plantarum strains to investigate their effects on colitis. The results indicated that the L. plantarum strains improved dysbiosis and enhanced the abundance of beneficial bacteria related to short-chain fatty acids (SCFAs) production. Moreover, L. plantarum strains decreased the level of pro-inflammatory cytokines, i.e., IL-17A, IL-17F, IL-6, IL-22, and TNF-α and increased the level of anti-inflammatory cytokines, i.e., TGF-β, IL-10. Our result suggests that L. plantarum strains possess probiotic effects and can ameliorate DSS colitis in mice by modulating the resident gut microbiota and immune response.
Collapse
Affiliation(s)
- Israr Khan
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Junshu Wei
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Anping Li
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Zhirong Liu
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Pingrong Yang
- Gansu Institute of Drug Control, Lanzhou, 730030, China
| | - Yaping Jing
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Xinjun Chen
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Tang Zhao
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Chenhui Li
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Naeem Ullah
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Tuanjie Che
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China. .,Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, 730000, China. .,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China. .,Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou, 730000, China.
| |
Collapse
|