1
|
Zhang Y, Ru Y, Shi Z, Wang H, Zhang J, Wu J, Pang H, Feng H. Effects of different light conditions on transient expression and biomass in Nicotiana benthamiana leaves. Open Life Sci 2023; 18:20220732. [PMID: 37854318 PMCID: PMC10579877 DOI: 10.1515/biol-2022-0732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/02/2023] [Accepted: 08/27/2023] [Indexed: 10/20/2023] Open
Abstract
In the process of the production of recombinant proteins by using an Agrobacterium-mediated transient gene expression system, the effectiveness of the control of light conditions pre- and post-agroinfiltration on efficiency of transient expression is worth being evaluated. In this study, Nicotiana benthamiana plants were used as a bioreactor to investigate the effects of different light conditions pre- and post-agroinfiltration on the transient expression of green fluorescent protein (GFP). The results showed that the plants grown under light condition for 5 weeks had the highest level of transient expression among those grown for 4-8 weeks. In the pre-agroinfiltration, the level of transient expression of GFP was obviously decreased by the increase in light intensity or by the shortening of the photoperiod. Although the shortening of the photoperiod post-agroinfiltration also decreased the level of transient expression, moderate light intensity post-agroinfiltration was needed for higher level of transient expression efficiency. However, there was no strong correlation between the transient expression efficiency and plant growth. The results suggested that light condition was an important factor affecting the level of transient expression in plants. Hence, light conditions should be optimized to obtain higher productivity of recombinant protein from transient expression systems.
Collapse
Affiliation(s)
- Yuejing Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Yi Ru
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou730046, Gansu, China
| | - Zhenzhen Shi
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Hanqi Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Jianping Wu
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Hailong Pang
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Hanqing Feng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, China
- New Rural Development Research Institute, Northwest Normal University, Lanzhou, 730070, Gansu, China
| |
Collapse
|
2
|
Subramanian S, Mitkus E, Souleimanov A, Smith DL. Lipo-chitooligosaccharide and thuricin 17 act as plant growth promoters and alleviate drought stress in Arabidopsis thaliana. Front Microbiol 2023; 14:1184158. [PMID: 37601342 PMCID: PMC10436337 DOI: 10.3389/fmicb.2023.1184158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Lipo-chito-oligosaccharide (LCO-from Bradyrhizobium japonicum) and thuricin 17 (Th17-from Bacillus thuringiensis) are bacterial signal compounds from the rhizosphere of soybean that have been shown to enhance plant growth in a range of legumes and non-legumes. In this study, an attempt to quantify phytohormones involved in the initial hours after exposure of Arabidopsis thaliana to these compounds was conducted using UPLC-ESI-MS/MS. A petri-plate assay was conducted to screen for drought stress tolerance to PEG 8000 infusion and plant growth was studied 21-days post-stress. Arabidopsis thaliana plants grown in trays with drought stress imposed by water withhold were used for free proline determination, elemental analysis, and untargeted proteomics using LC-MS/MS studies. At 24 h post-exposure to the signal compounds under optimal growth conditions, Arabidopsis thaliana rosettes varied in their responses to the two signals. While LCO-treated rosettes showed a decrease in total IAA, cytokinins, gibberellins, and jasmonic acid, increases in ABA and SA was very clear. Th17-treated rosettes, on the other hand, showed an increase in IAA and SA. Both treatments resulted in decreased JA levels. Under severe drought stress imposed by PEG 8000 infusion, LCO and Th17 treatments were found to significantly increase fresh and dry weight over drought-stressed control plates, indicating that the presence of the signaling compounds decreased the negative effects experienced by the plants. Free proline content increased in LCO- and Th17-treated plants after water-withhold drought stress. Elemental analysis showed a significant increase in carbon percentage at the lower concentration of Th17. Untargeted proteomics revealed changes in the levels of drought-specific ribosomal proteins, glutathione S-transferase, late embryogenesis proteins, vegetative storage proteins 1 and 2, thaumatin-like proteins, and those related to chloroplast and carbon metabolism. The roles of some of these significantly affected proteins detected under drought stress are discussed.
Collapse
Affiliation(s)
| | - Erika Mitkus
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Alfred Souleimanov
- Department of Plant Sciences, MacDonald Campus, McGill University, Montreal, QC, Canada
| | - Donald L. Smith
- Department of Plant Sciences, MacDonald Campus, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Wu Y, Wang X, Zhang L, Zheng Y, Liu X, Zhang Y. The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1163451. [PMID: 37223815 PMCID: PMC10200947 DOI: 10.3389/fpls.2023.1163451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 05/25/2023]
Abstract
Drought stress (DS) is a potential abiotic stress that is substantially reducing crop productivity across the globe. Likewise, salinity stress (SS) is another serious abiotic stress that is also a major threat to global crop productivity. The rapid climate change increased the intensity of both stresses which pose a serious threat to global food security; therefore, it is urgently needed to tackle both stresses to ensure better crop production. Globally, different measures are being used to improve crop productivity under stress conditions. Among these measures, biochar (BC) has been widely used to improve soil health and promote crop yield under stress conditions. The application of BC improves soil organic matter, soil structure, soil aggregate stability, water and nutrient holding capacity, and the activity of both beneficial microbes and fungi, which leads to an appreciable increase in tolerance to both damaging and abiotic stresses. BC biochar protects membrane stability, improves water uptake, maintains nutrient homeostasis, and reduces reactive oxygen species production (ROS) through enhanced antioxidant activities, thereby substantially improving tolerance to both stresses. Moreover, BC-mediated improvements in soil properties also substantially improve photosynthetic activity, chlorophyll synthesis, gene expression, the activity of stress-responsive proteins, and maintain the osmolytes and hormonal balance, which in turn improve tolerance against osmotic and ionic stresses. In conclusion, BC could be a promising amendment to bring tolerance against both drought and salinity stresses. Therefore, in the present review, we have discussed various mechanisms through which BC improves drought and salt tolerance. This review will help readers to learn more about the role of biochar in causing drought and salinity stress in plants, and it will also provide new suggestions on how this current knowledge about biochar can be used to develop drought and salinity tolerance.
Collapse
Affiliation(s)
- Yanfang Wu
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Xiaodong Wang
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Long Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Zheng
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Xinliang Liu
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| | - Yueting Zhang
- Camphor Engineering Technology Research Center for National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, China
| |
Collapse
|
4
|
Li K, Ji L, Xing Y, Zuo Z, Zhang L. Data-Independent Acquisition Proteomics Reveals the Effects of Red and Blue Light on the Growth and Development of Moso Bamboo ( Phyllostachys edulis) Seedlings. Int J Mol Sci 2023; 24:ijms24065103. [PMID: 36982175 PMCID: PMC10049362 DOI: 10.3390/ijms24065103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Moso bamboo is a rapidly growing species with significant economic, social, and cultural value. Transplanting moso bamboo container seedlings for afforestation has become a cost-effective method. The growth and development of the seedlings is greatly affected by the quality of light, including light morphogenesis, photosynthesis, and secondary metabolite production. Therefore, studies on the effects of specific light wavelengths on the physiology and proteome of moso bamboo seedlings are crucial. In this study, moso bamboo seedlings were germinated in darkness and then exposed to blue and red light conditions for 14 days. The effects of these light treatments on seedling growth and development were observed and compared through proteomics analysis. Results showed that moso bamboo has higher chlorophyll content and photosynthetic efficiency under blue light, while it displays longer internode and root length, more dry weight, and higher cellulose content under red light. Proteomics analysis reveals that these changes under red light are likely caused by the increased content of cellulase CSEA, specifically expressed cell wall synthetic proteins, and up-regulated auxin transporter ABCB19 in red light. Additionally, blue light is found to promote the expression of proteins constituting photosystem II, such as PsbP and PsbQ, more than red light. These findings provide new insights into the growth and development of moso bamboo seedlings regulated by different light qualities.
Collapse
Affiliation(s)
- Ke Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Luyao Ji
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaoyun Xing
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Li Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Wang C, Chen Y, Cui C, Shan F, Zhang R, Lyu X, Lyu L, Chang H, Yan C, Ma C. Blue Light Regulates Cell Wall Structure and Carbohydrate Metabolism of Soybean Hypocotyl. Int J Mol Sci 2023; 24:1017. [PMID: 36674538 PMCID: PMC9864885 DOI: 10.3390/ijms24021017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Soybean stem elongation and thickening are related to cell wall composition. Plant morphogenesis can be influenced by blue light, which can regulate cell wall structure and composition, and affect stem growth and development. Here, using proteomics and metabolomics, differentially expressed proteins and metabolites of hypocotyls grown in the dark and under blue light were studied to clarify the effects of blue light on the cell wall structure and carbohydrate metabolism pathway of soybean hypocotyls. Results showed that 1120 differential proteins were upregulated and 797 differential proteins were downregulated under blue light treatment, while 63 differential metabolites were upregulated and 36 differential metabolites were downregulated. Blue light promoted the establishment of cell wall structure and composition by regulating the expression of both the enzymes and metabolites related to cell wall structural composition and nonstructural carbohydrates. Thus, under blue light, the cross-sectional area of the hypocotyl and xylem were larger, the longitudinal length of pith cells was smaller, elongation of the soybean hypocotyl was inhibited, and diameter was increased.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chao Yan
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Zhao D, Jiao J, Du B, Liu K, Wang C, Ding Y. Volatile organic compounds from Lysinibacillus macroides regulating the seedling growth of Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1997-2009. [PMID: 36573143 PMCID: PMC9789275 DOI: 10.1007/s12298-022-01268-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) have the characteristics of long distance propagation, low concentration, perception, and indirect contact between organisms. In this experiment, Lysinibacillus macroides Xi9 was isolated from cassava residue, and the VOCs produced by this strain were analyzed by the SPME-GC-MS method, mainly including alcohols, esters, and alkanes. By inoculation of L. macroides Xi9, VOCs can promote the growth and change the root-system architecture of Arabidopsis seedlings. The results showed that the number of lateral roots, root density, and fresh weight of Arabidopsis seedlings were significantly higher (p ≤ 0.01), and the number of roots hair was also increased after exposure to strain Xi9. Compared with the control group, the transcriptome analysis of Arabidopsis seedlings treated with strain Xi9 for 5 days revealed a total of 508 genes differentially expressed (p < 0.05). After Gene Ontology enrichment analysis, it was found that genes encoding nitrate transport and assimilation, and the lateral root-related gene ANR1 were up-regulated. The content of NO3 - and amino acid in Arabidopsis seedlings were significantly higher from control group (p ≤ 0.01). Plant cell wall-related EXPA family genes and pectin lyase gene were up-regulated, resulting cell elongation of leaf. SAUR41 and up-regulation of its subfamily members, as well as the down-regulation of auxin efflux carrier protein PILS5 and auxin response factor 20 (ARF20) led to the accumulation of auxin. These results indicated that VOCs of strain Xi9 promote Arabidopsis seedlings growth and development by promoting nitrogen uptake, regulating auxin synthesis, and improving cell wall modification. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01268-3.
Collapse
Affiliation(s)
- Dongying Zhao
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Junhui Jiao
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Binghai Du
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- Shandong Key Laboratory of Agricultural Microbiology, Tai’an, 271018 China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Tai’an, 271018 China
| | - Kai Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- Shandong Key Laboratory of Agricultural Microbiology, Tai’an, 271018 China
| | - Chengqiang Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- Shandong Key Laboratory of Agricultural Microbiology, Tai’an, 271018 China
| | - Yanqin Ding
- College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- Shandong Key Laboratory of Agricultural Microbiology, Tai’an, 271018 China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Tai’an, 271018 China
| |
Collapse
|
7
|
Jin MK, Yang YT, Zhao CX, Huang XR, Chen HM, Zhao WL, Yang XR, Zhu YG, Liu HJ. ROS as a key player in quinolone antibiotic stress on Arabidopsis thaliana: From the perspective of photosystem function, oxidative stress and phyllosphere microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157821. [PMID: 35931174 DOI: 10.1016/j.scitotenv.2022.157821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
With the increasing use of antibiotics, their ecological impacts have received widespread attention. However, research on the toxicity of quinolone antibiotics is still limited, especially regarding the oxidative stress and phyllosphere of plants. In this study, the toxic effects of enrofloxacin, norfloxacin, and levofloxacin on Arabidopsis thaliana and their underlying mechanisms were investigated. The toxicity of the three quinolone antibiotics decreased in the following order: enrofloxacin > norfloxacin > levofloxacin. Physiological cellular changes, such as plasmolysis and chloroplast swelling, were observed using electron microscopy. Photosynthetic efficiency was inhibited with a decline in the effective photochemical quantum yield of photosystem II (Y(II)) and non-photochemical quenching (NPQ), indicating that quinolone antibiotics might reduce light energy conversion efficiency and excess light energy dissipation. Oxidative stress occurred in A. thaliana after quinolone antibiotic treatment, with an increase in reactive oxygen species (ROS) levels and malondialdehyde (MDA) content. High ROS levels stimulated the over-expression of superoxide-responsive genes for self-protection. Structural equation modeling (SEM) analysis showed that photosynthesis inhibition and cellular damage caused by oxidative stress were critical factors for growth inhibition, suggesting that the antioxidant response activated by ROS might be a potential mechanism. Furthermore, the diversity of the phyllospheric microbial communities decreased after enrofloxacin exposure. Additionally, specific microbes were preferentially recruited to the phyllosphere because of the higher ROS levels.
Collapse
Affiliation(s)
- Ming-Kang Jin
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yu-Tian Yang
- Centre for Environmental Policy, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Cai-Xia Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xin-Rong Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Han-Mei Chen
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Wen-Lu Zhao
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Hui-Jun Liu
- School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, PR China.
| |
Collapse
|
8
|
Shah N, Qadir M, Irshad M, Hussain A, Hamayun M, Murad W, Khan A, Al-Harrasi A. Enhancement of Cadmium Phytoremediation Potential of Helainthus annus L. with Application of EDTA and IAA. Metabolites 2022; 12:1049. [PMID: 36355131 PMCID: PMC9692325 DOI: 10.3390/metabo12111049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/07/2024] Open
Abstract
The aim of the current study was to assess the cadmium (Cd) phytoremediation potential of Halianthus annus L. that was exposed to 50, 100, and 150 mg/kg of cadmium for 15, 30, and 60 days with application of EDTA (Ethylenediaminetetraacetic acid) in the soil and IAA (indole acetic acid) as a foliar spray. The results indicated that the concentration, duration of exposure, and amount of Cd affect the phytoremediation potential. The maximum Cd was observed at 60 days (32.05, 16.86, and 10.63%) of Cd application, compared to 15 (2.04, 0.60, and 1.17%) or 30 days (8.41, 3.93, and 4.20%, respectively), in a dose-dependent manner. The application of EDTA in the soil and foliar IAA enhanced the Cd accumulation in the plants at 15, 30, and 60 days of exposure, with maximum accumulation at 60 days. Exposed plants with foliar IAA application showed 64.82%, 33.77%, and 25.84% absorption at 50, 100, and 150 mg/kg, respectively. Apart from higher absorption, the cadmium translocation to the edible part of the plants ceased, i.e., the seeds had 0% accumulation. The interesting fact was recorded that efficient phytoremediation was recorded at 15 days of exposure, whereas maximum phytoremediation was recorded at 60 days of exposure. To minimize the stress, the host also produced stress-related metabolites (i.e., flavonoids, phenolics, proline, and sugar) and antioxidants (i.e., catalases and ascorbate peroxidases). From the current evidence, it could be assumed that the use of EDTA and IAA, along with hyperaccumulating plants, could be a possible green method to remediate Cd-contaminated soil efficiently in a short period of time.
Collapse
Affiliation(s)
- Naila Shah
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Department of Botany, Government Girls College, Mardan 23200, Pakistan
| | - Muhammad Qadir
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Irshad
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Anwar Hussain
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Waheed Murad
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al-Mauz, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al-Mauz, Nizwa 616, Oman
| |
Collapse
|
9
|
Afifa, Hussain N, Baqar Z, Mumtaz M, El-Sappah AH, Show PL, Iqbal HM, Varjani S, Bilal M. Bioprospecting fungal-derived value-added bioproducts for sustainable pharmaceutical applications. SUSTAINABLE CHEMISTRY AND PHARMACY 2022; 29:100755. [DOI: 10.1016/j.scp.2022.100755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
10
|
Nie WF, Chen Y, Tao J, Li Y, Liu J, Zhou Y, Yang Y. Identification of the 12-oxo-phytoeienoic acid reductase (OPR) gene family in pepper (Capsicum annuum L.) and functional characterization of CaOPR6 in pepper fruit development and stress response. Genome 2022; 65:537-545. [PMID: 35944282 DOI: 10.1139/gen-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 12-oxo-phytoeienoic acid reductase (OPR) is a kind of enzyme in octadecanoid biosynthesis pathway, which determines the biosynthesis of jasmonic acid. Although the roles of OPRs have been extensively studied in several crop plants, little is known about the biological functions of OPR encoding genes in Capsicum annuum plants. In this study, seven OPR family genes (CaOPR1-7) were identified from the C. annuum genome. The physical and chemical properties of CaOPR1-7 were further analyzed, including gene expression patterns, promoter elements and chromosomal locations. The results showed that the seven CaOPR homologous could be divided into two subgroups, and CaOPR6 was highly similar to AtOPR3 in Arabidopsis. The expression of CaOPR6 was significantly induced by various stresses such as cold, salt and pathogen infection, indicating that CaOPR6 plays important roles in response to abiotic and biotic stresses. Overall, these findings improve the understanding of the biological functions of CaOPR6 in the development of pepper fruit and stress response of pepper plants, and facilitate further studies on the molecular biology of OPR proteins in Solanaceae vegetables.
Collapse
Affiliation(s)
| | - Yue Chen
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Junjie Tao
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Yu Li
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Jianping Liu
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Yong Zhou
- Jiangxi Agricultural University, Nanchang, China;
| | - Youxin Yang
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| |
Collapse
|
11
|
Huang D, Mao Y, Guo G, Ni D, Chen L. Genome-wide identification of PME gene family and expression of candidate genes associated with aluminum tolerance in tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2022; 22:306. [PMID: 35751024 PMCID: PMC9229754 DOI: 10.1186/s12870-022-03686-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND The major aluminum (Al) detoxication mechanism of tea plant (Camellia sinensis), as an Al hyperaccumulator plant, is the fixation of almost 70% of Al in the cell walls. Pectin is the primary constituent of cell walls, a degree of methylation of pectin polysaccharides regulated by the pectin methylesterase (PME) genes can greatly affect the Al binding capacity. The knowledge on PME gene family in tea plant is still poor. RESULTS We identified 66 (CsPME1-CsPME66) PME genes from C. sinensis genome. We studied their protein characterization, conserved motifs, gene structure, systematic evolution and gene expression under Al treatments, to establish a basis for in-depth research on the function of PMEs in tea plant. Gene structures analysis revealed that the majority of PME genes had 2-4 exons. Phylogenetic results pointed out that the PME genes from the same species displayed comparatively high sequence consistency and genetic similarity. Selective pressure investigation suggested that the Ka/Ks value for homologous genes of PME family was less than one. The expression of CsPMEs under three Al concentration treatments was tissue specific, eight PME genes in leaves and 15 in roots displayed a trend similar to of the Al contents and PME activities under Al concentration treatments, indicating that the degree of pectin de-esterification regulated by PME was crucial for Al tolerance of tea plant. CONCLUSIONS Sixty-six CsPME genes were identified for the first time in tea plant. The genome-wide identification, classification, evolutionary and transcription analyses of the PME gene family provided a new direction for further research on the function of PME gene in Al tolerance of tea plant.
Collapse
Affiliation(s)
- Danjuan Huang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingxin Mao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Guiyi Guo
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Dejiang Ni
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Liang Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
12
|
Yang Z. Plant growth: A matter of WAK seeing the wall and talking to BRI1. Curr Biol 2022; 32:R564-R566. [PMID: 35728526 DOI: 10.1016/j.cub.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell wall signaling impacts plant growth and development, but how wall signals are perceived and transduced remains enigmatic. A new study shows that a rice wall-associated kinase, OsWAK11, senses pectin and alters growth by binding the OsBRI1 receptor. OsWAK11 inhibits OsBRI1 to slow growth and is degraded to speed up growth upon sensing pectin.
Collapse
Affiliation(s)
- Zhenbiao Yang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
13
|
Salix myrtillacea Female Cuttings Performed Better Than Males under Nitrogen Deposition on Leaves and Drought Conditions. FORESTS 2022. [DOI: 10.3390/f13060821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Drought and nitrogen (N) deposition are major threats to global forests under climate change. However, investigation into how dioecious woody species acclimate to drought and N deposition and how this is influenced by gender has, so far, been unexplored. We examined the phenotypic and physiological changes in Salix myrtillacea females and males under 60 d drought, and wet N deposition on leaves’ treatments. Drought inhibited their growth by limiting water acquisition, photosynthesis, and increasing oxidative stress, especially in males. However, females exhibited greater drought resistance than males due to their better water acquisition ability and instantaneous water use efficiency (WUEleaf), higher foliar abscisic acid (ABA) and auxin (IAA) levels and greater antioxidase activities. N deposition increased foliar ABA, H2O2 accumulation, and reduced N distribution to the leaves, causing restricted photosynthesis and aerial growth in males. Interestingly, N deposition improved biomass accumulation in both the genders under drought, with greater positive effects on drought-stressed males by increasing their radial growth and causing greater N distribution to the leaves, increased foliar IAA and reduced oxidative stress. Regardless, S. myrtillacea females still showed better growth and drought resistance than males under both drought and N deposition. The females’ superior performance indicated that they are more appropriate for forestation, thus supporting the dominant gender’s selection in the afforestation of unisexual S. myrtillacea in drought and severe N deposition regions.
Collapse
|
14
|
Yue ZL, Liu N, Deng ZP, Zhang Y, Wu ZM, Zhao JL, Sun Y, Wang ZY, Zhang SW. The receptor kinase OsWAK11 monitors cell wall pectin changes to fine-tune brassinosteroid signaling and regulate cell elongation in rice. Curr Biol 2022; 32:2454-2466.e7. [PMID: 35512695 DOI: 10.1016/j.cub.2022.04.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023]
Abstract
Rates of plant cell elongation change with day-night alternation, reflecting differences in metabolism related to cell wall remodeling. Information from cell wall surveillance pathways must be integrated with growth regulation pathways to provide feedback regulation of cell wall modification; such feedback regulation is important to ensure sufficient strength and prevent rupture of the cell wall during growth. Several lines of evidence suggest that cell wall perturbations often influence phytohormone signaling, but the identity of the nexus between these two processes remained elusive. Here, we show that wall-associated kinase11 (OsWAK11) acts as a linker connecting cell wall pectin methyl-esterification changes and brassinosteroid (BR) signaling in rice. Our data show that OsWAK11 controls several important agronomical traits by regulating cell elongation in rice. OsWAK11 directly binds and phosphorylates the BR receptor OsBRI1 at residue Thr752, within a motif conserved across most monocot graminaceous crops, thus hindering OsBRI1 interaction with its co-receptor OsSERK1/OsBAK1 and inhibiting BR signaling. The extracellular domain of OsWAK11 shows a much stronger interaction toward methyl-esterified pectin as compared with de-methyl-esterified pectin. OsWAK11 is stabilized in light but is degraded in darkness, in a process triggered by changes in the ratio of methyl-esterified to de-methyl-esterified pectin, creating fluctuations in plant BR signaling in response to day and night alternation. We conclude that OsWAK11 is a cell wall monitor that regulates cell elongation rates to adapt to the environment from the outside in, which complements the well-established inside-out signaling pathway affecting cell elongation in plants.
Collapse
Affiliation(s)
- Zhi-Liang Yue
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China; Institute of Cash Crops, Hebei Academy of Agriculture & Forestry Sciences, Shijiazhuang 050051, China
| | - Ning Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Zhi-Ping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Zhi-Ming Wu
- Institute of Cash Crops, Hebei Academy of Agriculture & Forestry Sciences, Shijiazhuang 050051, China
| | - Ji-Long Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Sheng-Wei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.
| |
Collapse
|
15
|
Ali M, Ahmad H, Amin B, Atif MJ, Cheng Z. Induce defense response of DADS in eggplants during the biotrophic phase of Verticillium dahliae. BMC PLANT BIOLOGY 2022; 22:172. [PMID: 35379184 PMCID: PMC8981950 DOI: 10.1186/s12870-022-03527-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE Verticillium wilt is a destructive vascular disease in eggplants. The complex defensive mechanisms of eggplant against this disease are very limited. METHODS Our work examined the bioactive properties of garlic allelochemical diallyl disulfide (DADS) as potential biostimulants for defense against V. dahliae in eggplant seedlings. We, therefore, foliar sprayed DADS on eggplants to study the defense response during the early biotrophic phase of V. dahliae (a hemibiotroph). RESULTS DADS application significantly increased root peroxidase (POD), phenylalanine-ammonia lyase (PAL) enzyme activity, and reduced H2O2 levels after 24 h of fungal inoculation. Salicylic acid (SA) in leaves and roots was significantly increased while, the jasmonic acid (JA), indole acetic acid (IAA), and abscisic acid (ABA) levels were decreased. The microscopic examinations of V. dahliae infection in roots displayed that the progression of infection was restricted in DADS-treated plants. Depositions of lignin and phenolic compounds such as ferulic acid, p-coumaric acid, and caffeic acid content were significantly higher in DADS-treated plants at 48 h post-inoculation. Similarly, the DADS application up-regulated pathogenesis-related (PR1, PR2, and PR5), mitogen-activated protein kinase (MPK1), and lipoxygenase (LOX) genes. Furthermore, DADS-treated plants exhibited a lower disease severity index (23.3% vs. 57.0% in controls), indicating successful defense against V. dahliae. CONCLUSIONS Our findings concluded that the biological function of garlic allelochemical DADS has a prominent role in the higher defense resistance of eggplants during the early infection of V. dahliae.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Husain Ahmad
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bakht Amin
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Muhammad Jawaad Atif
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhihui Cheng
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Li Y, Sun M, Wang X, Zhang YJ, Da XW, Jia LY, Pang HL, Feng HQ. Effects of plant growth regulators on transient expression of foreign gene in Nicotiana benthamiana L. leaves. BIORESOUR BIOPROCESS 2021; 8:124. [PMID: 38650281 PMCID: PMC10992099 DOI: 10.1186/s40643-021-00480-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the last decades, replicating expression vectors based on plant geminivirus have been widely used for enhancing the efficiency of plant transient expression. By using the replicating expression vector derived from bean yellow dwarf virus and green fluorescent protein as a reporter, we investigated the effects of α-naphthalene acetic acid, gibberellins3, and 6-benzyladenine, as three common plant growth regulators, on the plant biomass and efficiency of transient expression during the process of transient expression in Nicotiana benthamiana L. leaves. RESULTS With the increase of the concentration of α-naphthalene acetic acid, gibberellins3, and 6-benzyladenine (from 0.1 to 1.6 mg/L), the fresh weight, dry weight, and leaf area of the seedlings increased first and then returned to the levels similar to the controls (without chemical treatment). The treatment with α-naphthalene acetic acid at 0.2 and 0.4 mg/L can enhance the level of transient expression of green fluorescent protein, which peaked at 0.4 mg/L α-naphthalene acetic acid and was increased about by 19%, compared to the controls. Gibberellins3 at 0.1-0.4 mg/L can enhance the level of transient expression of green fluorescent protein, which peaked at 0.2 mg/L gibberellins3 and was increased by 25%. However, the application of 6-benzyladenine led to decrease in the level of transient expression of green fluorescent protein. CONCLUSIONS The appropriate plant growth regulators at moderate concentration could be beneficial to the expression of foreign genes from the Agrobacterium-mediated transient expression system in plants. Thus, appropriate plant growth regulators could be considered as exogenous components that are applied for the production of recombinant protein by plant-based transient expression systems.
Collapse
Affiliation(s)
- Ying Li
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Min Sun
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xin Wang
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Yue-Jing Zhang
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xiao-Wei Da
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Ling-Yun Jia
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Hai-Long Pang
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Han-Qing Feng
- School of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
17
|
Rojas B, Suárez-Vega F, Saez-Aguayo S, Olmedo P, Zepeda B, Delgado-Rioseco J, Defilippi BG, Pedreschi R, Meneses C, Pérez-Donoso AG, Campos-Vargas R. Pre-Anthesis Cytokinin Applications Increase Table Grape Berry Firmness by Modulating Cell Wall Polysaccharides. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122642. [PMID: 34961114 PMCID: PMC8708260 DOI: 10.3390/plants10122642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The use of plant growth regulators (PGRs) is widespread in commercial table grape vineyards. The synthetic cytokinin CPPU is a PGR that is extensively used to obtain higher quality grapes. However, the effect of CPPU on berry firmness is not clear. The current study investigated the effects of pre-anthesis applications (BBCH15 and BBCH55 stages) of CPPU on 'Thompson Seedless' berry firmness at harvest through a combination of cytological, morphological, and biochemical analyses. Ovaries in CPPU-treated plants presented morphological changes related to cell division and cell wall modification at the anthesis stage (BBCH65). Moreover, immunofluorescence analysis with monoclonal antibodies 2F4 and LM15 against pectin and xyloglucan demonstrated that CPPU treatment resulted in cell wall modifications at anthesis. These early changes have major repercussions regarding the hemicellulose and pectin cell wall composition of mature fruits, and are associated with increased calcium content and a higher berry firmness at harvest.
Collapse
Affiliation(s)
- Bárbara Rojas
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile; (B.R.); (P.O.)
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile; (S.S.-A.); (J.D.-R.); (C.M.)
| | - Felipe Suárez-Vega
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile; (S.S.-A.); (J.D.-R.); (C.M.)
| | - Patricio Olmedo
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile; (B.R.); (P.O.)
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile; (S.S.-A.); (J.D.-R.); (C.M.)
| | - Baltasar Zepeda
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands;
| | - Joaquín Delgado-Rioseco
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile; (S.S.-A.); (J.D.-R.); (C.M.)
| | - Bruno G. Defilippi
- INIA La Platina, Instituto de Investigaciones Agropecuarias, Santiago 8831314, Chile;
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile;
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile; (S.S.-A.); (J.D.-R.); (C.M.)
| | - Alonso G. Pérez-Donoso
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Reinaldo Campos-Vargas
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile; (B.R.); (P.O.)
| |
Collapse
|
18
|
Ma X, Li C, Yuan Y, Zhao M, Li J. Xyloglucan endotransglucosylase/hydrolase genes LcXTH4/7/19 are involved in fruitlet abscission and are activated by LcEIL2/3 in litchi. PHYSIOLOGIA PLANTARUM 2021; 173:1136-1146. [PMID: 34302699 DOI: 10.1111/ppl.13509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Organ abscission in plants requires the hydrolysis of cell wall components, mainly including celluloses, pectins, and xyloglucans. However, how the genes that encode those hydrolytic enzymes are regulated and their function in abscission remains unclear. Previously we revealed that two cellulase genes LcCEL2/8 and two polygalacturonase genes LcPG1/2 were responsible for the degradation of celluloses and pectins, respectively, during fruitlet abscission in litchi. Here, we further identified three xyloglucan endotransglucosylase/hydrolase genes (LcXTH4, LcXTH7, LcXTH19) that are also involved in this process. Nineteen LcXTHs, named LcXTH1-19, were identified in the litchi genome. Transcriptome data and qRT-PCR confirmed that LcXTH4/7/19 were significantly induced at the abscission zone (AZ) during fruitlet abscission in litchi. The GUS reporter driven by each promoter of LcXTH4/7/19 was specifically expressed at the floral abscission zone of Arabidopsis, and importantly ectopic expression of LcXTH19 in Arabidopsis resulted in precocious floral organ abscission. Moreover, electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter analysis showed that the expression of LcXTH4/7/19 could be directly activated by two ETHYLENE INSENSITIVE 3-like (EIL) transcription factors LcEIL2/3. Collectively, we propose that LcXTH4/7/19 are involved in fruitlet abscission, and LcEIL2/3-mediated transcriptional regulation of diverse cell wall hydrolytic genes is responsible for this process in litchi.
Collapse
Affiliation(s)
- Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ye Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Gorshkov V, Tsers I. Plant susceptible responses: the underestimated side of plant-pathogen interactions. Biol Rev Camb Philos Soc 2021; 97:45-66. [PMID: 34435443 PMCID: PMC9291929 DOI: 10.1111/brv.12789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Plant susceptibility to pathogens is usually considered from the perspective of the loss of resistance. However, susceptibility cannot be equated with plant passivity since active host cooperation may be required for the pathogen to propagate and cause disease. This cooperation consists of the induction of reactions called susceptible responses that transform a plant from an autonomous biological unit into a component of a pathosystem. Induced susceptibility is scarcely discussed in the literature (at least compared to induced resistance) although this phenomenon has a fundamental impact on plant-pathogen interactions and disease progression. This review aims to summarize current knowledge on plant susceptible responses and their regulation. We highlight two main categories of susceptible responses according to their consequences and indicate the relevance of susceptible response-related studies to agricultural practice. We hope that this review will generate interest in this underestimated aspect of plant-pathogen interactions.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia.,Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| | - Ivan Tsers
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, 420111, Russia
| |
Collapse
|
20
|
Menna A, Dora S, Sancho-Andrés G, Kashyap A, Meena MK, Sklodowski K, Gasperini D, Coll NS, Sánchez-Rodríguez C. A primary cell wall cellulose-dependent defense mechanism against vascular pathogens revealed by time-resolved dual transcriptomics. BMC Biol 2021; 19:161. [PMID: 34404410 PMCID: PMC8371875 DOI: 10.1186/s12915-021-01100-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cell walls (CWs) are protein-rich polysaccharide matrices essential for plant growth and environmental acclimation. The CW constitutes the first physical barrier as well as a primary source of nutrients for microbes interacting with plants, such as the vascular pathogen Fusarium oxysporum (Fo). Fo colonizes roots, advancing through the plant primary CWs towards the vasculature, where it grows causing devastation in many crops. The pathogenicity of Fo and other vascular microbes relies on their capacity to reach and colonize the xylem. However, little is known about the root-microbe interaction before the pathogen reaches the vasculature and the role of the plant CW during this process. RESULTS Using the pathosystem Arabidopsis-Fo5176, we show dynamic transcriptional changes in both fungus and root during their interaction. One of the earliest plant responses to Fo5176 was the downregulation of primary CW synthesis genes. We observed enhanced resistance to Fo5176 in Arabidopsis mutants impaired in primary CW cellulose synthesis. We confirmed that Arabidopsis roots deposit lignin in response to Fo5176 infection, but we show that lignin-deficient mutants were as susceptible as wildtype plants to Fo5176. Genetic impairment of jasmonic acid biosynthesis and signaling did not alter Arabidopsis response to Fo5176, whereas impairment of ethylene signaling did increase vasculature colonization by Fo5176. Abolishing ethylene signaling attenuated the observed resistance while maintaining the dwarfism observed in primary CW cellulose-deficient mutants. CONCLUSIONS Our study provides significant insights on the dynamic root-vascular pathogen interaction at the transcriptome level and the vital role of primary CW cellulose during defense response to these pathogens. These findings represent an essential resource for the generation of plant resistance to Fo that can be transferred to other vascular pathosystems.
Collapse
Affiliation(s)
- Alexandra Menna
- Department of Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Susanne Dora
- Department of Biology, ETH Zürich, 8092, Zürich, Switzerland
| | | | - Anurag Kashyap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | - Mukesh Kumar Meena
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | | | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | | |
Collapse
|
21
|
Bai Y, Shen Y, Zhang Z, Jia Q, Xu M, Zhang T, Fang H, Yu X, Li L, Liu D, Qi X, Chen Z, Wu S, Zhang Q, Liang C. A GPAT1 Mutation in Arabidopsis Enhances Plant Height but Impairs Seed Oil Biosynthesis. Int J Mol Sci 2021; 22:ijms22020785. [PMID: 33466786 PMCID: PMC7829857 DOI: 10.3390/ijms22020785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Glycerol-3-phosphate acyltransferases (GPATs) play an important role in glycerolipid biosynthesis, and are mainly involved in oil production, flower development, and stress response. However, their roles in regulating plant height remain unreported. Here, we report that Arabidopsis GPAT1 is involved in the regulation of plant height. GUS assay and qRT-PCR analysis in Arabidopsis showed that GPAT1 is highly expressed in flowers, siliques, and seeds. A loss of function mutation in GPAT1 was shown to decrease seed yield but increase plant height through enhanced cell length. Transcriptomic and qRT-PCR data revealed that the expression levels of genes related to gibberellin (GA) biosynthesis and signaling, as well as those of cell wall organization and biogenesis, were significantly upregulated. These led to cell length elongation, and thus, an increase in plant height. Together, our data suggest that knockout of GPAT1 impairs glycerolipid metabolism in Arabidopsis, leading to reduced seed yield, but promotes the biosynthesis of GA, which ultimately enhances plant height. This study provides new evidence on the interplay between lipid and hormone metabolism in the regulation of plant height.
Collapse
Affiliation(s)
- Yang Bai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yue Shen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.S.); (Z.C.)
| | - Zhiqiang Zhang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Qianru Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Q.J.); (Q.Z.)
| | - Mengyuan Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.X.); (S.W.)
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ting Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xu Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Li Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Zhide Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.S.); (Z.C.)
| | - Shuang Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.X.); (S.W.)
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Q.J.); (Q.Z.)
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.B.); (T.Z.); (H.F.); (X.Y.); (L.L.); (D.L.); (X.Q.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
22
|
Nguyen TQ, Sesin V, Kisiala A, Emery RJN. Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:7-22. [PMID: 33074580 DOI: 10.1002/etc.4909] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 05/20/2023]
Abstract
Heavy metals can represent a threat to the health of aquatic ecosystems. Unlike organic chemicals, heavy metals cannot be eliminated by natural processes such as their degradation into less toxic compounds, and this creates unique challenges for their remediation from soil, water, and air. Phytoremediation, defined as the use of plants for the removal of environmental contaminants, has many benefits compared to other pollution-reducing methods. Phytoremediation is simple, efficient, cost-effective, and environmentally friendly because it can be carried out at the polluted site, which simplifies logistics and minimizes exposure to humans and wildlife. Macrophytes represent a unique tool to remediate diverse environmental media because they can accumulate heavy metals from contaminated sediment via roots, from water via submerged leaves, and from air via emergent shoots. In this review, a synopsis is presented about how plants, especially macrophytes, respond to heavy metal stress; and we propose potential roles that phytohormones can play in the alleviation of metal toxicity in the aquatic environment. We focus on the uptake, translocation, and accumulation mechanisms of heavy metals in organs of macrophytes and give examples of how phytohormones interact with plant defense systems under heavy metal exposure. We advocate for a more in-depth understanding of these processes to inform more effective metal remediation techniques from metal-polluted water bodies. Environ Toxicol Chem 2021;40:7-22. © 2020 SETAC.
Collapse
Affiliation(s)
- Thien Q Nguyen
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Verena Sesin
- Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
23
|
Wang L, Hart BE, Khan GA, Cruz ER, Persson S, Wallace IS. Associations between phytohormones and cellulose biosynthesis in land plants. ANNALS OF BOTANY 2020; 126:807-824. [PMID: 32619216 PMCID: PMC7539351 DOI: 10.1093/aob/mcaa121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Phytohormones are small molecules that regulate virtually every aspect of plant growth and development, from basic cellular processes, such as cell expansion and division, to whole plant environmental responses. While the phytohormone levels and distribution thus tell the plant how to adjust itself, the corresponding growth alterations are actuated by cell wall modification/synthesis and internal turgor. Plant cell walls are complex polysaccharide-rich extracellular matrixes that surround all plant cells. Among the cell wall components, cellulose is typically the major polysaccharide, and is the load-bearing structure of the walls. Hence, the cell wall distribution of cellulose, which is synthesized by large Cellulose Synthase protein complexes at the cell surface, directs plant growth. SCOPE Here, we review the relationships between key phytohormone classes and cellulose deposition in plant systems. We present the core signalling pathways associated with each phytohormone and discuss the current understanding of how these signalling pathways impact cellulose biosynthesis with a particular focus on transcriptional and post-translational regulation. Because cortical microtubules underlying the plasma membrane significantly impact the trajectories of Cellulose Synthase Complexes, we also discuss the current understanding of how phytohormone signalling impacts the cortical microtubule array. CONCLUSION Given the importance of cellulose deposition and phytohormone signalling in plant growth and development, one would expect that there is substantial cross-talk between these processes; however, mechanisms for many of these relationships remain unclear and should be considered as the target of future studies.
Collapse
Affiliation(s)
- Liu Wang
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bret E Hart
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | | | - Edward R Cruz
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
- Department of Chemistry, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
24
|
Ye X, Chen XF, Cai LY, Lai NW, Deng CL, Guo JX, Yang LT, Chen LS. Molecular and physiological mechanisms underlying magnesium-deficiency-induced enlargement, cracking and lignification of Citrus sinensis leaf veins. TREE PHYSIOLOGY 2020; 40:1277-1291. [PMID: 32348504 DOI: 10.1093/treephys/tpaa059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Little is known about the physiological and molecular mechanisms underlying magnesium (Mg)-deficiency-induced enlargement, cracking and lignification of midribs and main lateral veins of Citrus leaves. Citrus sinensis (L.) Osbeck seedlings were irrigated with nutrient solution at a concentration of 0 (Mg-deficiency) or 2 (Mg-sufficiency) mM Mg(NO3)2 for 16 weeks. Enlargement, cracking and lignification of veins occurred only in lower leaves, but not in upper leaves. Total soluble sugars (glucose + fructose + sucrose), starch and cellulose concentrations were less in Mg-deficiency veins of lower leaves (MDVLL) than those in Mg-sufficiency veins of lower leaves (MSVLL), but lignin concentration was higher in MDVLL than that in MSVLL. However, all four parameters were similar between Mg-deficiency veins of upper leaves (MDVUL) and Mg-sufficiency veins of upper leaves (MSVUL). Using label-free, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we identified 1229 and 492 differentially abundant proteins (DAPs) in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively. Magnesium-deficiency-induced alterations of Mg, nonstructural carbohydrates, cell wall components, and protein profiles were greater in veins of lower leaves than those in veins of upper leaves. The increased concentration of lignin in MDVLL vs MSVLL might be caused by the following factors: (i) repression of cellulose and starch accumulation promoted lignin biosynthesis; (ii) abundances of proteins involved in phenylpropanoid biosynthesis pathway, hormone biosynthesis and glutathione metabolism were increased; and (iii) the abundances of the other DAPs [viz., copper/zinc-superoxide dismutase, ascorbate oxidase (AO) and ABC transporters] involved in lignin biosynthesis were elevated. Also, the abundances of several proteins involved in cell wall metabolism (viz., expansins, Rho GTPase-activating protein gacA, AO, monocopper oxidase-like protein and xyloglucan endotransglucosylase/hydrolase) were increased in MDVLL vs MSVLL, which might be responsible for the enlargement and cracking of leaf veins.
Collapse
Affiliation(s)
- Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Xu-Feng Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Li-Ya Cai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Ning-Wei Lai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Chong-Ling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, 40 Putuo Road, Qixing District, Guilin 541004, China
| | - Jiu-Xin Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
- The Higher Education Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, FAFU, 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
25
|
Liu W, Lyu T, Xu L, Hu Z, Xiong X, Liu T, Cao J. Complex Molecular Evolution and Expression of Expansin Gene Families in Three Basic Diploid Species of Brassica. Int J Mol Sci 2020; 21:ijms21103424. [PMID: 32408673 PMCID: PMC7279145 DOI: 10.3390/ijms21103424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Expansins are a kind of structural proteins of the plant cell wall, and they enlarge cells by loosening the cell walls. Therefore, expansins are involved in many growth and development processes. The complete genomic sequences of Brassica rapa, Brassica oleracea and Brassica nigra provide effective platforms for researchers to study expansin genes, and can be compared with analogues in Arabidopsis thaliana. This study identified and characterized expansin families in B. rapa, B. oleracea, and B. nigra. Through the comparative analysis of phylogeny, gene structure, and physicochemical properties, the expansin families were divided into four subfamilies, and then their expansion patterns and evolution details were explored accordingly. Results showed that after the three species underwent independent evolution following their separation from A. thaliana, the expansin families in the three species had increased similarities but fewer divergences. By searching divergences of promoters and coding sequences, significant positive correlations were revealed among orthologs in A. thaliana and the three basic species. Subsequently, differential expressions indicated extensive functional divergences in the expansin families of the three species, especially in reproductive development. Hence, these results support the molecular evolution of basic Brassica species, potential functions of these genes, and genetic improvement of related crops.
Collapse
Affiliation(s)
- Weimiao Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Tianqi Lyu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Liai Xu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Xingpeng Xiong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (T.L.); (L.X.); (Z.H.); (X.X.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-8898-2597
| |
Collapse
|
26
|
Hurný A, Cuesta C, Cavallari N, Ötvös K, Duclercq J, Dokládal L, Montesinos JC, Gallemí M, Semerádová H, Rauter T, Stenzel I, Persiau G, Benade F, Bhalearo R, Sýkorová E, Gorzsás A, Sechet J, Mouille G, Heilmann I, De Jaeger G, Ludwig-Müller J, Benková E. SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance. Nat Commun 2020; 11:2170. [PMID: 32358503 PMCID: PMC7195429 DOI: 10.1038/s41467-020-15895-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/27/2020] [Indexed: 01/11/2023] Open
Abstract
Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens.
Collapse
Affiliation(s)
- Andrej Hurný
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Candela Cuesta
- Institute of Science and Technology, Klosterneuburg, Austria
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | | | - Krisztina Ötvös
- Institute of Science and Technology, Klosterneuburg, Austria
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Jerome Duclercq
- Unité 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN UMR CNRS 7058 CNRS), Université du Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Ladislav Dokládal
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
| | | | - Marçal Gallemí
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Hana Semerádová
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Thomas Rauter
- Institute of Science and Technology, Klosterneuburg, Austria
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Freia Benade
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Rishikesh Bhalearo
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83, Umeå, Sweden
| | - Eva Sýkorová
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - András Gorzsás
- Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87, Umeå, Sweden
| | - Julien Sechet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Gregory Mouille
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Eva Benková
- Institute of Science and Technology, Klosterneuburg, Austria.
| |
Collapse
|
27
|
Molecular Changes Concomitant with Vascular System Development in Mature Galls Induced by Root-Knot Nematodes in the Model Tree Host Populus tremula × P. alba. Int J Mol Sci 2020; 21:ijms21020406. [PMID: 31936440 PMCID: PMC7013992 DOI: 10.3390/ijms21020406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
One of the most striking features occurring in the root-knot nematode Meloidogyne incognita induced galls is the reorganization of the vascular tissues. During the interaction of the model tree species Populus and M. incognita, a pronounced xylem proliferation was previously described in mature galls. To better characterise changes in expression of genes possibly involved in the induction and the formation of the de novo developed vascular tissues occurring in poplar galls, a comparative transcript profiling of 21-day-old galls versus uninfected root of poplar was performed. Genes coding for transcription factors associated with procambium maintenance and vascular differentiation were shown to be differentially regulated, together with genes partaking in phytohormones biosynthesis and signalling. Specific signatures of transcripts associated to primary cell wall biosynthesis and remodelling, as well as secondary cell wall formation (cellulose, xylan and lignin) were revealed in the galls. Ultimately, we show that molecules derived from the monolignol and salicylic acid pathways and related to secondary cell wall deposition accumulate in mature galls.
Collapse
|
28
|
Wang L, Zou Y, Kaw HY, Wang G, Sun H, Cai L, Li C, Meng LY, Li D. Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: a review. PLANT METHODS 2020; 16:54. [PMID: 32322293 PMCID: PMC7161177 DOI: 10.1186/s13007-020-00595-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/04/2020] [Indexed: 05/18/2023]
Abstract
Plant hormones are naturally occurring small molecule compounds which are present at trace amounts in plant. They play a pivotal role in the regulation of plant growth. The biological activity of plant hormones depends on their concentrations in the plant, thus, accurate determination of plant hormone is paramount. However, the complex plant matrix, wide polarity range and low concentration of plant hormones are the main hindrances to effective analyses of plant hormone even when state-of-the-art analytical techniques are employed. These factors substantially influence the accuracy of analytical results. So far, significant progress has been realized in the analysis of plant hormones, particularly in sample pretreatment techniques and mass spectrometric methods. This review describes the classic extraction and modern microextraction techniques used to analyze plant hormone. Advancements in solid phase microextraction (SPME) methods have been driven by the ever-increasing requirement for dynamic and in vivo identification of the spatial distribution of plant hormones in real-life plant samples, which would contribute greatly to the burgeoning field of plant hormone investigation. In this review, we describe advances in various aspects of mass spectrometry methods. Many fragmentation patterns are analyzed to provide the theoretical basis for the establishment of a mass spectral database for the analysis of plant hormones. We hope to provide a technical guide for further discovery of new plant hormones. More than 140 research studies on plant hormone published in the past decade are reviewed, with a particular emphasis on the recent advances in mass spectrometry and sample pretreatment techniques in the analysis of plant hormone. The potential progress for further research in plant hormones analysis is also highlighted.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Yilin Zou
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Gang Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Huaze Sun
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Long Cai
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Chengyu Li
- State Key Laboratory of Application of Rare Earth Resources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Long-Yue Meng
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
- Department of Environmental Science, Yanbian University, Yanji, 133002 China
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| |
Collapse
|
29
|
Mielke S, Gasperini D. Interplay between Plant Cell Walls and Jasmonate Production. PLANT & CELL PHYSIOLOGY 2019; 60:2629-2637. [PMID: 31241137 DOI: 10.1093/pcp/pcz119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/04/2019] [Indexed: 05/23/2023]
Abstract
Plant cell walls are sophisticated carbohydrate-rich structures representing the immediate contact surface with the extracellular environment, often serving as the first barrier against biotic and abiotic stresses. Notably, a variety of perturbations in plant cell walls result in upregulated jasmonate (JA) production, a phytohormone with essential roles in defense and growth responses. Hence, cell wall-derived signals can initiate intracellular JA-mediated responses and the elucidation of the underlying signaling pathways could provide novel insights into cell wall maintenance and remodeling, as well as advance our understanding on how is JA biosynthesis initiated. This Mini Review will describe current knowledge about cell wall-derived damage signals and their effects on JA biosynthesis, as well as provide future perspectives.
Collapse
Affiliation(s)
- Stefan Mielke
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) 06120, Germany
| | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) 06120, Germany
| |
Collapse
|
30
|
Lehman TA, Sanguinet KA. Auxin and Cell Wall Crosstalk as Revealed by the Arabidopsis thaliana Cellulose Synthase Mutant Radially Swollen 1. PLANT & CELL PHYSIOLOGY 2019; 60:1487-1503. [PMID: 31004494 DOI: 10.1093/pcp/pcz055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Plant cells sheath themselves in a complex lattice of polysaccharides, proteins and enzymes forming an integral matrix known as the cell wall. Cellulose microfibrils, the primary component of cell walls, are synthesized at the plasma membrane by CELLULOSE SYNTHASE A (CESA) proteins throughout cellular growth and are responsible for turgor-driven anisotropic expansion. Associations between hormone signaling and cell wall biosynthesis have long been suggested, but recently direct links have been found revealing hormones play key regulatory roles in cellulose biosynthesis. The radially swollen 1 (rsw1) allele of Arabidopsis thaliana CESA1 harbors a single amino acid change that renders the protein unstable at high temperatures. We used the conditional nature of rsw1 to investigate how auxin contributes to isotropic growth. We found that exogenous auxin treatment reduces isotropic swelling in rsw1 roots at the restrictive temperature of 30�C. We also discovered decreases in auxin influx between rsw1 and wild-type roots via confocal imaging of AUX1-YFP, even at the permissive temperature of 19�C. Moreover, rsw1 displayed mis-expression of auxin-responsive and CESA genes. Additionally, we found altered auxin maxima in rsw1 mutant roots at the onset of swelling using DII-VENUS and DR5:vYFP auxin reporters. Overall, we conclude disrupted cell wall biosynthesis perturbs auxin transport leading to altered auxin homeostasis impacting both anisotropic and isotropic growth that affects overall root morphology.
Collapse
Affiliation(s)
- Thiel A Lehman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, USA
| |
Collapse
|
31
|
Li Y, Jiang H, Sun X, Muhammad AA, Liu J, Liu W, Shu K, Shang J, Yang F, Wu X, Yong T, Wang X, Yu L, Liu C, Yang W, Du J. Quantitative proteomic analyses identified multiple sugar metabolic proteins in soybean under shade stress. J Biochem 2019; 165:277-288. [PMID: 30496541 DOI: 10.1093/jb/mvy103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Soybean-based intercropping is important for sustainable agricultural practice on a regional and global scale. However, most soybean varieties use shade avoidance strategy to acquire more light absorption when suffered in canopy shade in intercropping systems, thus reduced the yield of the whole population on a farmland. The mechanisms underlying early response of soybean in shade avoidance is still largely unknown. Here we report our identification of differentially accumulated proteins in shade-sensitive soybean seedlings by global quantitative proteome analysis under white light (WL) and shade conditions. By using Tandem Mass Tag (TMT) labelling and HPLC fractionation followed by high-resolution LC-MS/MS analysis, 29 proteins were found up-regulated and 412 proteins were found down-regulated in soybean seedlings by 2-h shade stress than that by 2-h WL treatment. Multiple differentially expressed proteins are enriched in carbohydrate metabolic process especially in the biosynthetic pathways of cell wall polysaccharides in soybean seedlings by shade stress comparing to those in WL growth conditions. Physiological assays showed that saccharides were rapidly declined in shoot apex of soybean seedlings under a short-term shading. Our results would provide new insights into the mechanisms of shade avoidance responses in soybean seedlings.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Hengke Jiang
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Xin Sun
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Ahsan Asghar Muhammad
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Jiang Liu
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Weiguo Liu
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Kai Shu
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Jing Shang
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Feng Yang
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Xiaoling Wu
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Taiwen Yong
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Xiaochun Wang
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Liang Yu
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Chunyan Liu
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Wenyu Yang
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| | - Junbo Du
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, 211 Huimin Road, Wenjiang district, Chengdu, China
| |
Collapse
|
32
|
Kumar KRR, Blomberg J, Björklund S. The MED7 subunit paralogs of Mediator function redundantly in development of etiolated seedlings in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:578-594. [PMID: 30058106 DOI: 10.1111/tpj.14052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
MED7 is a subunit of the Mediator middle module and is encoded by two paralogs in Arabidopsis. We generated MED7 silenced lines using RNAi to study its impact on Arabidopsis growth and development. Compared with wild type, etiolated seedlings of the MED7 silenced lines exhibited reduced hypocotyl length caused by reduced cell elongation when grown in the dark. The hypocotyl length phenotype was rescued by exogenously supplied brassinosteroid. In addition, MED7 silenced seedlings exhibited defective hook opening in the dark as well as defective cotyledon expansion in the presence of the brassinosteroid inhibitor brassinazole. Whole transcriptome analysis on etiolated seedlings using RNA sequencing revealed several genes known to be regulated by auxin and brassinosteroids, and a broad range of cell wall-related genes that were differentially expressed in the MED7 silenced lines. This was especially evident for genes involved in cell wall extension and remodeling, such as EXPANSINs and XTHs. Conditional complementation with each MED7 paralog individually restored the hypocotyl phenotype as well as the gene expression defects. Additionally, conditional expression of MED7 had no effects that were independent of the Mediator complex on the observed phenotypes. We concluded that the MED7 paralogs function redundantly in regulating genes required for the normal development of etiolated Arabidopsis seedlings.
Collapse
Affiliation(s)
- Koppolu Raja Rajesh Kumar
- Department of Medical Biochemistry and Biophysics, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak-484887, Madhya Pradesh, India
| | - Jeanette Blomberg
- Department of Medical Biochemistry and Biophysics, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| |
Collapse
|
33
|
Behr M, Lutts S, Hausman JF, Guerriero G. Jasmonic acid to boost secondary growth in hemp hypocotyl. PLANTA 2018; 248:1029-1036. [PMID: 29968063 DOI: 10.1007/s00425-018-2951-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/27/2018] [Indexed: 05/21/2023]
Abstract
The application of jasmonic acid results in an increased secondary growth, as well as additional secondary phloem fibres and higher lignin content in the hypocotyl of textile hemp (Cannabis sativa L.). Secondary growth provides most of the wood in lignocellulosic biomass. Textile hemp (Cannabis sativa L.) is cultivated for its phloem fibres, whose secondary cell wall is rich in crystalline cellulose with a limited amount of lignin. Mature hemp stems and older hypocotyls are characterised by large blocks of secondary phloem fibres which originate from the cambium. This study aims at investigating the role of exogenously applied jasmonic acid on the differentiation of secondary phloem fibres. We show indeed that the exogenous application of this plant growth regulator on young hemp plantlets promotes secondary growth, differentiation of secondary phloem fibres, expression of lignin-related genes, and lignification of the hypocotyl. This work paves the way to future investigations focusing on the molecular network underlying phloem fibre development.
Collapse
Affiliation(s)
- Marc Behr
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
- Groupe de Recherche en Physiologie Végétale, Université catholique de Louvain, 5, Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Université catholique de Louvain, 5, Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg.
| |
Collapse
|
34
|
Ke M, Gao Z, Chen J, Qiu Y, Zhang L, Chen X. Auxin controls circadian flower opening and closure in the waterlily. BMC PLANT BIOLOGY 2018; 18:143. [PMID: 29996787 PMCID: PMC6042438 DOI: 10.1186/s12870-018-1357-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/28/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Flowers open at sunrise and close at sunset, establishing a circadian floral movement rhythm to facilitate pollination as part of reproduction. By the coordination of endogenous factors and environmental stimuli, such as circadian clock, photoperiod, light and temperature, an appropriate floral movement rhythm has been established; however, the underlying mechanisms remain unclear. RESULTS In our study, we use waterlily as a model which represents an early-diverging grade of flowering plants, and we aim to reveal the general mechanism of flower actions. We found that the intermediate segment of petal cells of waterlily are highly flexible, followed by a circadian cell expansion upon photoperiod stimuli. Auxin causes constitutively flower opening while auxin inhibitor suppresses opening event. Subsequent transcriptome profiles generated from waterlily's intermediate segment of petals at different day-time points showed that auxin is a crucial phytohormone required for floral movement rhythm via the coordination of YUCCA-controlled auxin synthesis, GH3-mediated auxin homeostasis, PIN and ABCB-dependent auxin efflux as well as TIR/AFB-AUX/IAA- and SAUR-triggered auxin signaling. Genes involved in cell wall organization were downstream of auxin events, resulting in the output phenotypes of rapid cell expansion during flower opening and cell shrinkage at flower closure stage. CONCLUSIONS Collectively, our data demonstrate a central regulatory role of auxin in floral movement rhythm and provide a global understanding of flower action in waterlily, which could be a conserved feature of angiosperms.
Collapse
Affiliation(s)
- Meiyu Ke
- College of Horticulture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhen Gao
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianqing Chen
- College of Horticulture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Yuting Qiu
- College of Horticulture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liangsheng Zhang
- College of Horticulture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Xu Chen
- College of Horticulture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
35
|
Speicher TL, Li PZ, Wallace IS. Phosphoregulation of the Plant Cellulose Synthase Complex and Cellulose Synthase-Like Proteins. PLANTS (BASEL, SWITZERLAND) 2018; 7:E52. [PMID: 29966291 PMCID: PMC6161211 DOI: 10.3390/plants7030052] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 02/04/2023]
Abstract
Cellulose, the most abundant biopolymer on the planet, is synthesized at the plasma membrane of plant cells by the cellulose synthase complex (CSC). Cellulose is the primary load-bearing polysaccharide of plant cell walls and enables cell walls to maintain cellular shape and rigidity. The CSC is comprised of functionally distinct cellulose synthase A (CESA) proteins, which are responsible for synthesizing cellulose, and additional accessory proteins. Moreover, CESA-like (CSL) proteins are proposed to synthesize other essential non-cellulosic polysaccharides that comprise plant cell walls. The deposition of cell-wall polysaccharides is dynamically regulated in response to a variety of developmental and environmental stimuli, and post-translational phosphorylation has been proposed as one mechanism to mediate this dynamic regulation. In this review, we discuss CSC composition, the dynamics of CSCs in vivo, critical studies that highlight the post-translational control of CESAs and CSLs, and the receptor kinases implicated in plant cell-wall biosynthesis. Furthermore, we highlight the emerging importance of post-translational phosphorylation-based regulation of CSCs on the basis of current knowledge in the field.
Collapse
Affiliation(s)
- Tori L Speicher
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Patrick Ziqiang Li
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
36
|
Seo JK, Kim MK, Kwak HR, Choi HS, Nam M, Choe J, Choi B, Han SJ, Kang JH, Jung C. Molecular dissection of distinct symptoms induced by tomato chlorosis virus and tomato yellow leaf curl virus based on comparative transcriptome analysis. Virology 2018; 516:1-20. [PMID: 29316505 DOI: 10.1016/j.virol.2018.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/06/2017] [Accepted: 01/02/2018] [Indexed: 01/26/2023]
Abstract
The viral infection of plants may cause various physiological symptoms associated with the reprogramming of plant gene expression. However, the molecular mechanisms and associated genes underlying disease symptom development in plants infected with viruses are largely unknown. In this study, we employed RNA sequencing for in-depth molecular characterization of the transcriptional changes associated with the development of distinct symptoms induced by tomato chlorosis virus (ToCV) and tomato yellow leaf curl virus (TYLCV) in tomato. Comparative analysis of differentially expressed genes revealed that ToCV and TYLCV induced distinct transcriptional changes in tomato and resulted in the identification of important genes responsible for the development of symptoms of ToCV (i.e., chlorosis and anthocyanin accumulation) and TYLCV (i.e., yellowing, stunted growth, and leaf curl). Our comprehensive transcriptome analysis can provide molecular strategies to reduce the severity of disease symptoms as well as new insights for the development of virus-resistant crops.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| | - Mi-Kyeong Kim
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Moon Nam
- SEEDERS Inc., Daejeon 34015, Republic of Korea
| | | | - Boram Choi
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Soo-Jung Han
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Jin-Ho Kang
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
37
|
Behr M, Legay S, Hausman JF, Lutts S, Guerriero G. Molecular Investigation of the Stem Snap Point in Textile Hemp. Genes (Basel) 2017; 8:E363. [PMID: 29207512 PMCID: PMC5748681 DOI: 10.3390/genes8120363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 01/21/2023] Open
Abstract
Fibre crops are important natural resources, as they sustainably provide bast fibres, an economically-valuable raw material used in the textile and biocomposite sectors. Among fibre crops, textile hemp (Cannabis sativa L.) is appreciated for its long and strong gelatinous bast fibres. The stem of fibre crops is a useful system for cell wall-oriented studies, because it shows a strong tissue polarity with a lignified inner core and a cellulosic hypolignified cortex, as well as a basipetal lignification gradient. Along the stem axis of fibre crops, a specific region, denoted snap point, marks the transition from elongation (above it) to fibre thickening (below it). After empirically determining the snap point by tilting the plant, we divided the stem segment containing it into three non-overlapping consecutive regions measuring 1 cm each, and carried out targeted RT-qPCR on cell wall-related genes separately, in outer and inner tissues. Different gene clusters can be observed, two of which are the major gene groups, i.e., one group with members expressed at higher levels in the inner tissues, and one group whose genes are more expressed in the cortex. The present results provide a molecular validation that the snap point is characterised by a gradient of events associated with the shift from fibre elongation to thickening.
Collapse
Affiliation(s)
- Marc Behr
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| | - Sylvain Legay
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| |
Collapse
|
38
|
Li N, Huang B, Tang N, Jian W, Zou J, Chen J, Cao H, Habib S, Dong X, Wei W, Gao Y, Li Z. The MADS-Box Gene SlMBP21 Regulates Sepal Size Mediated by Ethylene and Auxin in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:2241-2256. [PMID: 29069449 DOI: 10.1093/pcp/pcx158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/14/2017] [Indexed: 05/21/2023]
Abstract
Normal organ size is achieved by successful co-ordination of cell proliferation and cell expansion, which are modulated by multiple factors such as ethylene and auxin. In our work, SlMBP21-RNAi (RNA interference) tomato exhibited longer sepals and improved fruit set. Histological analysis indicated that longer sepals were attributed to cell expansion. To explore how SlMBP21 regulates sepal size, we compared the transcriptomes of sepals between SlMBP21-RNAi and the wild type by RNA sequencing and found that the differentially expressed genes were dominantly related to cell expansion, ethylene and auxin, and photosynthesis. Down-regulation of SlMBP21 affected ethylene production and the free IAA and IAA-Val intensity in sepals. Hormone treatment further indicated that SlMBP21 was involved in the ethylene and auxin pathways. As reported, ethylene and auxin were important factors for cell expansion. Hence, SlMBP21 negatively regulated cell expansion to control sepal size, and ethylene and auxin may mediate this process. Additionally, the contents of Chl and the activity of ribulose-1, 5-bisphosphate carboxylase/oxygenase, the key photosynthetic enzyme, were both increased in SlMBP21-RNAi sepals, which indicated that photosynthesis might be enhanced in transgenic longer sepals. Therefore, the longer sepal, with better protection and enhanced photosynthesis, may contribute to improve fruit set. Altogether, these results suggested that SlMBP21 was a novel factor involved in organ size control. Moreover, our study provided potential application value for improving fruit set.
Collapse
Affiliation(s)
- Ning Li
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Baowen Huang
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Ning Tang
- Collaborative Innovation Center of Special Plant Industry in Chongqing; Institute of Special Plants, Chongqing University of Arts and Sciences; Yongchuan 402160, Chongqing, China
| | - Wei Jian
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Jian Zou
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Jing Chen
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Haohao Cao
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Sidra Habib
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Xuekui Dong
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Wen Wei
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Yanqiang Gao
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University; Key Laboratory of Functional Gene and New Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University; Chongqing 400030, China
| |
Collapse
|
39
|
Kesten C, Menna A, Sánchez-Rodríguez C. Regulation of cellulose synthesis in response to stress. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:106-113. [PMID: 28892802 DOI: 10.1016/j.pbi.2017.08.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/27/2017] [Accepted: 08/18/2017] [Indexed: 05/05/2023]
Abstract
The cell wall is a complex polysaccharide network that provides stability and protection to the plant and is one of the first layers of biotic and abiotic stimuli perception. A controlled remodeling of the primary cell wall is essential for the plant to adapt its growth to environmental stresses. Cellulose, the main component of plant cell walls is synthesized by plasma membrane-localized cellulose synthases moving along cortical microtubule tracks. Recent advancements demonstrate a tight regulation of cellulose synthesis at the primary cell wall by phytohormone networks. Stress-induced perturbations at the cell wall that modify cellulose synthesis and microtubule arrangement activate similar phytohormone-based stress response pathways. The integration of stress perception at the primary cell wall and downstream responses are likely to be tightly regulated by phytohormone signaling pathways in the context of cellulose synthesis and microtubule arrangement.
Collapse
Affiliation(s)
- Christopher Kesten
- Department of Biology, Eidgenössiche Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | - Alexandra Menna
- Department of Biology, Eidgenössiche Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | - Clara Sánchez-Rodríguez
- Department of Biology, Eidgenössiche Technische Hochschule Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
40
|
Exogenous Auxin Elicits Changes in the Arabidopsis thaliana Root Proteome in a Time-Dependent Manner. Proteomes 2017; 5:proteomes5030016. [PMID: 28698516 PMCID: PMC5620533 DOI: 10.3390/proteomes5030016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 11/24/2022] Open
Abstract
Auxin is involved in many aspects of root development and physiology, including the formation of lateral roots. Improving our understanding of how the auxin response is mediated at the protein level over time can aid in developing a more complete molecular framework of the process. This study evaluates the effects of exogenous auxin treatment on the Arabidopsis root proteome after exposure of young seedlings to auxin for 8, 12, and 24 h, a timeframe permitting the initiation and full maturation of individual lateral roots. Root protein extracts were processed to peptides, fractionated using off-line strong-cation exchange, and analyzed using ultra-performance liquid chromatography and data independent acquisition-based mass spectrometry. Protein abundances were then tabulated using label-free techniques and evaluated for significant changes. Approximately 2000 proteins were identified during the time course experiment, with the number of differences between the treated and control roots increasing over the 24 h time period, with more proteins found at higher abundance with exposure to auxin than at reduced abundance. Although the proteins identified and changing in levels at each time point represented similar biological processes, each time point represented a distinct snapshot of the response. Auxin coordinately regulates many physiological events in roots and does so by influencing the accumulation and loss of distinct proteins in a time-dependent manner. Data are available via ProteomeXchange with the identifier PXD001400.
Collapse
|
41
|
Lehman TA, Smertenko A, Sanguinet KA. Auxin, microtubules, and vesicle trafficking: conspirators behind the cell wall. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3321-3329. [PMID: 28666373 DOI: 10.1093/jxb/erx205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant morphogenesis depends on the synchronized anisotropic expansion of individual cells in response to developmental and environmental cues. The magnitude of cell expansion depends on the biomechanical properties of the cell wall, which in turn depends on both its biosynthesis and extensibility. Although the control of cell expansion by the phytohormone auxin is well established, its regulation of cell wall composition, trafficking of H+-ATPases, and K+ influx that drives growth is still being elucidated. Furthermore, the maintenance of auxin fluxes via the interaction between the cytoskeleton and PIN protein recycling on the plasma membrane remains under investigation. This review proposes a model that describes how the cell wall, auxin, microtubule binding-protein CLASP and Kin7/separase complexes, and vesicle trafficking are co-ordinated on a cellular level to mediate cell wall loosening during cell expansion.
Collapse
Affiliation(s)
- Thiel A Lehman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
42
|
BRASSINOSTEROID INSENSITIVE2 negatively regulates cellulose synthesis in Arabidopsis by phosphorylating cellulose synthase 1. Proc Natl Acad Sci U S A 2017; 114:3533-3538. [PMID: 28289192 DOI: 10.1073/pnas.1615005114] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The deposition of cellulose is a defining aspect of plant growth and development, but regulation of this process is poorly understood. Here, we demonstrate that the protein kinase BRASSINOSTEROID INSENSITIVE2 (BIN2), a key negative regulator of brassinosteroid (BR) signaling, can phosphorylate Arabidopsis cellulose synthase A1 (CESA1), a subunit of the primary cell wall cellulose synthase complex, and thereby negatively regulate cellulose biosynthesis. Accordingly, point mutations of the BIN2-mediated CESA1 phosphorylation site abolished BIN2-dependent regulation of cellulose synthase activity. Hence, we have uncovered a mechanism for how BR signaling can modulate cellulose synthesis in plants.
Collapse
|
43
|
Chen H, Zhang Q, Cai H, Xu F. Ethylene Mediates Alkaline-Induced Rice Growth Inhibition by Negatively Regulating Plasma Membrane H +-ATPase Activity in Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:1839. [PMID: 29114258 PMCID: PMC5660857 DOI: 10.3389/fpls.2017.01839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/10/2017] [Indexed: 05/21/2023]
Abstract
pH is an important factor regulating plant growth. Here, we found that rice was better adapted to low pH than alkaline conditions, as its growth was severely inhibited at high pH, with shorter root length and an extreme biomass reduction. Under alkaline stress, the expression of genes for ethylene biosynthesis enzymes in rice roots was strongly induced by high pH and exogenous ethylene precursor ACC and ethylene overproduction in etol1-1 mutant aggravated the alkaline stress-mediated inhibition of rice growth, especially for the root elongation with decreased cell length in root apical regions. Conversely, the ethylene perception antagonist silver (Ag+) and ein2-1 mutants could partly alleviate the alkaline-induced root elongation inhibition. The H+-ATPase activity was extremely inhibited by alkaline stress and exogenous ACC. However, the H+-ATPase-mediated rhizosphere acidification was enhanced by exogenous Ag+, while H+ efflux on the root surface was extremely inhibited by exogenous ACC, suggesting that ethylene negatively regulated H+-ATPase activity under high-pH stress. Our results demonstrate that H+-ATPase is involved in ethylene-mediated inhibition of rice growth under alkaline stress.
Collapse
Affiliation(s)
- Haifei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, China
| | - Quan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, China
| | - Hongmei Cai
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, China
- *Correspondence: Fangsen Xu,
| |
Collapse
|
44
|
Behr M, Legay S, Žižková E, Motyka V, Dobrev PI, Hausman JF, Lutts S, Guerriero G. Studying Secondary Growth and Bast Fiber Development: The Hemp Hypocotyl Peeks behind the Wall. FRONTIERS IN PLANT SCIENCE 2016; 7:1733. [PMID: 27917184 PMCID: PMC5114303 DOI: 10.3389/fpls.2016.01733] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 05/24/2023]
Abstract
Cannabis sativa L. is an annual herbaceous crop grown for the production of long extraxylary fibers, the bast fibers, rich in cellulose and used both in the textile and biocomposite sectors. Despite being herbaceous, hemp undergoes secondary growth and this is well exemplified by the hypocotyl. The hypocotyl was already shown to be a suitable model to study secondary growth in other herbaceous species, namely Arabidopsis thaliana and it shows an important practical advantage, i.e., elongation and radial thickening are temporally separated. This study focuses on the mechanisms marking the transition from primary to secondary growth in the hemp hypocotyl by analysing the suite of events accompanying vascular tissue and bast fiber development. Transcriptomics, imaging and quantification of phytohormones were carried out on four representative developmental stages (i.e., 6-9-15-20 days after sowing) to provide a comprehensive overview of the events associated with primary and secondary growth in hemp. This multidisciplinary approach provides cell wall-related snapshots of the growing hemp hypocotyl and identifies marker genes associated with the young (expansins, β-galactosidases, and transcription factors involved in light-related processes) and the older hypocotyl (secondary cell wall biosynthetic genes and transcription factors).
Collapse
Affiliation(s)
- Marc Behr
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Sylvain Legay
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| | - Eva Žižková
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Václav Motyka
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Petre I. Dobrev
- Institute of Experimental Botany, The Czech Academy of SciencesPrague, Czechia
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| |
Collapse
|
45
|
Zhang G, Feng J, Han L, Zhang X. Antiviral activity of glycoprotein GP-1 isolated from Streptomyces kanasensis ZX01. Int J Biol Macromol 2016; 88:572-7. [PMID: 27091231 DOI: 10.1016/j.ijbiomac.2016.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/27/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Plant virus diseases have seriously damaged global food security. However, current antiviral agents are not efficient enough for the requirement of agriculture production. So, developing new efficient and nontoxic antiviral agents is imperative. GP-1, from Streptomyces kanasensis ZX01, is a new antiviral glycoprotein, of which the antiviral activity and the mode of action against Tobacco mosaic virus (TMV) were investigated in this study. The results showed that GP-1 could fracture TMV particles, and the infection and accumulation of TMV in host plants were inhibited. Moreover, GP-1 could induce systematic resistance against TMV in the host, according to the results of activities of defensive enzymes increasing, MDA decreasing and overexpression of pathogenesis-related proteins. Furthermore, GP-1 could promote growth of the host plant. In conclusion, GP-1 showed the ability to be developed as an efficient antiviral agent and a fertilizer for agriculture.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Research & Development Center of Biorational Pesticide, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Juntao Feng
- Research & Development Center of Biorational Pesticide, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Lirong Han
- Research & Development Center of Biorational Pesticide, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Xing Zhang
- Research & Development Center of Biorational Pesticide, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
46
|
Wang T, McFarlane HE, Persson S. The impact of abiotic factors on cellulose synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:543-52. [PMID: 26552883 DOI: 10.1093/jxb/erv488] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
As sessile organisms, plants require mechanisms to sense and respond to changes in their environment, including both biotic and abiotic factors. One of the most common plant adaptations to environmental changes is differential regulation of growth, which results in growth either away from adverse conditions or towards more favorable conditions. As cell walls shape plant growth, this differential growth response must be accompanied by alterations to the plant cell wall. Here, we review the impact of four abiotic factors (osmotic conditions, ionic stress, light, and temperature) on the synthesis of cellulose, an important component of the plant cell wall. Understanding how different abiotic factors influence cellulose production and addressing key questions that remain in this field can provide crucial information to cope with the need for increased crop production under the mounting pressures of a growing world population and global climate change.
Collapse
Affiliation(s)
- Ting Wang
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam, Germany
| | | | - Staffan Persson
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, 3010, Melbourne, Australia
| |
Collapse
|
47
|
Somssich M, Khan GA, Persson S. Cell Wall Heterogeneity in Root Development of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1242. [PMID: 27582757 PMCID: PMC4987334 DOI: 10.3389/fpls.2016.01242] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/04/2016] [Indexed: 05/19/2023]
Abstract
Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes.
Collapse
Affiliation(s)
- Marc Somssich
- School of Biosciences, University of MelbourneMelbourne, VIC, Australia
| | - Ghazanfar Abbas Khan
- Department of Plant Molecular Biology, University of LausanneLausanne, Switzerland
| | - Staffan Persson
- School of Biosciences, University of MelbourneMelbourne, VIC, Australia
- *Correspondence: Staffan Persson,
| |
Collapse
|
48
|
Shyu C, Brutnell TP. Growth-defence balance in grass biomass production: the role of jasmonates. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4165-76. [PMID: 25711704 DOI: 10.1093/jxb/erv011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Growth-defence balance is the selective partitioning of resources between biomass accumulation and defence responses. Although it is generally postulated that reallocation of limited carbon pools drives the antagonism between growth and defence, little is known about the mechanisms underlying this regulation. Jasmonates (JAs) are a group of oxylipins that are required for a broad range of responses from defence against insects to reproductive growth. Application of JAs to seedlings also leads to inhibited growth and repression of photosynthesis, suggesting a role for JAs in regulating growth-defence balance. The majority of JA research uses dicot models such as Arabidopsis and tomato, while understanding of JA biology in monocot grasses, which comprise most bioenergy feedstocks, food for human consumption, and animal feed, is limited. Interestingly, JA mutants of grasses exhibit unique phenotypes compared with well-studied dicot models. Gene expression analyses in bioenergy grasses also suggest roles for JA in rhizome development, which has not been demonstrated in Arabidopsis. In this review we summarize current knowledge of JA biology in panicoid grasses-the group that consists of the world's emerging bioenergy grasses such as switchgrass, sugarcane, Miscanthus, and sorghum. We discuss outstanding questions regarding the role of JAs in panicoid grasses, and highlight the importance of utilizing emerging grass models for molecular studies to provide a basis for engineering bioenergy grasses that can maximize biomass accumulation while efficiently defending against stress.
Collapse
Affiliation(s)
- Christine Shyu
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | | |
Collapse
|
49
|
Li K, Kamiya T, Fujiwara T. Differential Roles of PIN1 and PIN2 in Root Meristem Maintenance Under Low-B Conditions in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:1205-14. [PMID: 25814435 DOI: 10.1093/pcp/pcv047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/12/2015] [Indexed: 05/09/2023]
Abstract
Boron (B) is an essential element for plants; its deficiency causes rapid cessation of root elongation. In addition, B influences auxin accumulation in plants. To assess the importance of auxin transport in B-dependent root elongation, Arabidopsis thaliana pin1-pin4 mutants were grown under low-B conditions. Among them, only the pin2/eir1-1 mutant showed a significantly shorter root under low-B conditions than under control conditions. Moreover, the root meristem size of pin2/eir1-1 was reduced under low-B conditions. Among the PIN-FORMED (PIN) family, PIN1 and PIN2 are important for root meristem growth/maintenance under normal conditions. To investigate the differential response of pin1 and pin2 mutants under low-B conditions, the effect of low-B on PIN1-green fluorescent protein (GFP) and PIN2-GFP accumulation and localization was examined. Low-B did not affect PIN2-GFP, while it reduced the accumulation of PIN1-GFP. Moreover, no signal from DII-VENUS, an auxin sensor, was detected under the low-B condition in the stele of wild-type root meristems. Taken together, these results indicate that under low-B conditions PIN1 is down-regulated and PIN2 plays an important role in root meristem maintenance.
Collapse
Affiliation(s)
- Ke Li
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| |
Collapse
|
50
|
Contreras-Cornejo HA, López-Bucio JS, Méndez-Bravo A, Macías-Rodríguez L, Ramos-Vega M, Guevara-García ÁA, López-Bucio J. Mitogen-Activated Protein Kinase 6 and Ethylene and Auxin Signaling Pathways Are Involved in Arabidopsis Root-System Architecture Alterations by Trichoderma atroviride. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:701-10. [PMID: 26067203 DOI: 10.1094/mpmi-01-15-0005-r] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Trichoderma atroviride is a symbiotic fungus that interacts with roots and stimulates plant growth and defense. Here, we show that Arabidopsis seedlings cocultivated with T. atroviride have an altered root architecture and greater biomass compared with axenically grown seedlings. These effects correlate with increased activity of mitogen-activated protein kinase 6 (MPK6). The primary roots of mpk6 mutants showed an enhanced growth inhibition by T. atroviride when compared with wild-type (WT) plants, while T. atroviride increases MPK6 activity in WT roots. It was also found that T. atroviride produces ethylene (ET), which increases with l-methionine supply to the fungal growth medium. Analysis of growth and development of WT seedlings and etr1, ein2, and ein3 ET-related Arabidopsis mutants indicates a role for ET in root responses to the fungus, since etr1 and ein2 mutants show defective root-hair induction and enhanced primary-root growth inhibition when cocultivated with T. atroviride. Increased MPK6 activity was evidenced in roots of ctr1 mutants, which correlated with repression of primary root growth, thus connecting MPK6 signaling with an ET response pathway. Auxin-inducible gene expression analysis using the DR5:uidA reporter construct further revealed that ET affects auxin signaling through the central regulator CTR1 and that fungal-derived compounds, such as indole-3-acetic acid and indole-3-acetaldehyde, induce MPK6 activity. Our results suggest that T. atroviride likely alters root-system architecture modulating MPK6 activity and ET and auxin action.
Collapse
Affiliation(s)
- Hexon Angel Contreras-Cornejo
- 1 Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. C. P. 58030, Morelia, Michoacán, México
| | - Jesús Salvador López-Bucio
- 2 Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - Alejandro Méndez-Bravo
- 1 Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. C. P. 58030, Morelia, Michoacán, México
| | - Lourdes Macías-Rodríguez
- 1 Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. C. P. 58030, Morelia, Michoacán, México
| | - Maricela Ramos-Vega
- 2 Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - Ángel Arturo Guevara-García
- 2 Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - José López-Bucio
- 1 Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. C. P. 58030, Morelia, Michoacán, México
| |
Collapse
|