1
|
Bonisoli L, Pelicella I, Arru L. Plant ultrasound detection: a cost-effective method for identifying plant ultrasonic emissions. PLANT SIGNALING & BEHAVIOR 2024; 19:2310974. [PMID: 38345027 PMCID: PMC10863351 DOI: 10.1080/15592324.2024.2310974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Plants have been observed to produce short ultrasonic emissions (UEs), and current research is focusing on developing noninvasive techniques for recording and analyzing these emissions. A standardized methodology has not been established yet; in this paper we suggest a cost-effective procedure for recording, extracting, and identifying plant UEs using only a single ultrasound microphone, a laptop computer, and open-source software.
Collapse
Affiliation(s)
- Luca Bonisoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | | | - Laura Arru
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
2
|
Jin Y, Ye Q, Liu X, Liu H, Gleason SM, He P, Liang X, Wu G. Precipitation, solar radiation, and their interaction modify leaf hydraulic efficiency-safety trade-off across angiosperms at the global scale. THE NEW PHYTOLOGIST 2024. [PMID: 39425251 DOI: 10.1111/nph.20213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
In theory, there is a trade-off between hydraulic efficiency and safety. However, the strength and direction of this trade-off at the leaf level are not consistent across studies, and habitat climate may impact this trade-off. We compiled a leaf hydraulic efficiency and safety dataset for 362 species from 81 sites world-wide, with 280 paired observations of both traits, and tested whether climate was associated with departure from the proposed trade-off. The leaf hydraulic efficiency-safety trade-off was weak (R2 = 0.144) at the global scale. Mean annual precipitation and solar radiation (SR) modified the trade-off. Species from dry and high SR habitats (e.g. desert and tropical savanna) were generally located above the trade-off line, indicating that these species tended to have higher leaf hydraulic safety and efficiency than species from wet habitats with low SR (e.g. subtropical monsoon forest and montane rainforest), which were located below the trade-off line. Leaves with high vein density, dry leaf mass per area, and osmotic regulation enhanced safety without compromising hydraulic efficiency. Variation in the hydraulic efficiency-safety trade-off at the leaf level likely facilitates plant survival in specific habitats and allows for a more nuanced view of leaf hydraulic adaption strategies at the global scale.
Collapse
Affiliation(s)
- Yi Jin
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Jiangxi Provincial Key Laboratory of Carbon Neutrality and Ecosystem Carbon Sink, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaorong Liu
- The Research Center for the Development of Sichuan Old Revolutionary Area, Sichuan University of Arts and Science, Dazhou, 635000, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Jiangxi Provincial Key Laboratory of Carbon Neutrality and Ecosystem Carbon Sink, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, 332900, China
| | - Sean M Gleason
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, 80526, USA
| | - Pengcheng He
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xingyun Liang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Guilin Wu
- Hainan Jianfengling Forest Ecosystem National Field Science Observation and Research Station, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| |
Collapse
|
3
|
Silva LM, Pereira L, Kaack L, Guan X, Pfaff J, Trabi CL, Jansen S. The potential link between gas diffusion and embolism spread in angiosperm xylem: Evidence from flow-centrifuge experiments and modelling. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39119783 DOI: 10.1111/pce.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/19/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Understanding xylem embolism formation is challenging due to dynamic changes and multiphase interactions in conduits. Here, we hypothesise that embolism spread involves gas diffusion in xylem, and is affected by time. We measured hydraulic conductivity (Kh) in flow-centrifuge experiments over 1 h at a given pressure and temperature for stem samples of three angiosperm species. Temporal changes in Kh at 5, 22, and 35°C, and at various pressures were compared to modelled gas concentration changes in a recently embolised vessel in the centre of a centrifuge sample. Temporal changes in Kh were logarithmic and species-specific. Maximum relative increases of Kh between 6% and 40% happened at 22°C for low centrifugal speed (<3250 RPM), while maximum decreases between 41% and 61% occurred at higher speeds. These reductions in Kh were experimentally shown to be associated with a temporal increase of embolism at the centre of centrifuge samples, which was likely associated with gas concentration increases in recently embolized vessels. Although embolism is mostly pressure-driven, our experimental and modelled data indicate that time, conduit characteristics, and temperature are involved due to their potential role in gas diffusion. Gas diffusion, however, does not seem to cover the entire process of embolism spread.
Collapse
Affiliation(s)
| | | | - Lucian Kaack
- Institute of Botany, Ulm University, Ulm, Germany
- Botanical Garden of Ulm University, Hans-Krebs-Weg, Ulm, Germany
| | - Xinyi Guan
- Institute of Botany, Ulm University, Ulm, Germany
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Jonas Pfaff
- Institute of Botany, Ulm University, Ulm, Germany
| | - Christophe L Trabi
- Institute of Botany, Ulm University, Ulm, Germany
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Ulm, Germany
| | | |
Collapse
|
4
|
Keiser L, Dollet B, Marmottant P. Embolism propagation in Adiantum leaves and in a biomimetic system with constrictions. J R Soc Interface 2024; 21:20240103. [PMID: 39140327 PMCID: PMC11323083 DOI: 10.1098/rsif.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/12/2024] [Accepted: 06/04/2024] [Indexed: 08/15/2024] Open
Abstract
Drought poses a significant threat to forest survival worldwide by potentially generating air bubbles that obstruct sap transport within plants' hydraulic systems. However, the detailed mechanism of air entry and propagation at the scale of the veins remains elusive. Building upon a biomimetic model of leaf which we developed, we propose a direct comparison of the air embolism propagation in Adiantum (maidenhair fern) leaves, presented in Brodribb et al. (Brodribb TJ, Bienaimé D, Marmottant P. 2016 Revealing catastrophic failure of leaf networks under stress. Proc. Natl Acad. Sci. USA 113, 4865-4869 (doi:10.1073/pnas.1522569113)) and in our biomimetic leaves. In particular, we evidence that the jerky dynamics of the embolism propagation observed in Adiantum leaves can be recovered through the introduction of micrometric constrictions in the section of our biomimetic veins, mimicking the nanopores present in the bordered pit membranes in real leaves. We show that the intermittency in the propagation can be retrieved by a simple model coupling the variations of pressure induced by the constrictions and the variations of the volume of the compliant microchannels. Our study marks a step with the design of a biomimetic leaf that reproduces particular aspects of embolism propagation in real leaves, using a minimal set of controllable and readily tunable components. This biomimetic leaf constitutes a promising physical analogue and sets the stage for future enhancements to fully embody the unique physical features of embolizing real leaves.
Collapse
|
5
|
Zhang Y, Pereira L, Kaack L, Liu J, Jansen S. Gold perfusion experiments support the multi-layered, mesoporous nature of intervessel pit membranes in angiosperm xylem. THE NEW PHYTOLOGIST 2024; 242:493-506. [PMID: 38404029 DOI: 10.1111/nph.19608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Fluid transport across intervessel pit membranes of angiosperm xylem plays a major role in plant transpiration, with transport resistance largely depending on pore constriction sizes. Traditionally, fluid particles traversing pit membranes are assumed to cross a single instead of multiple pore constrictions. We tested a multi-layered pit membrane model in xylem of eight angiosperm species by estimating the size frequency of pore constrictions in relation to pit membrane thickness and compared modelled data with perfusion characteristics of nanoscale gold particles based on transmission electron microscopy. The size frequency of modelled pore constrictions showed similar patterns to the measured number of perfused particle sizes inside pit membranes, although frequency values measured were 10-50 times below modelled data. Small particles enter pit membranes most easily, especially when injected in thin pit membranes. The trapping of gold particles by pore constrictions becomes more likely with increasing pore constriction number and pit membrane thickness. While quantitative differences between modelled and experimental data are due to various practical limitations, their qualitative agreement supports a multi-layered pit membrane model with multiple pore constrictions. Pore constrictions between 5 and 50 nm are realistic, and confirm the mesoporous nature of pit membranes.
Collapse
Affiliation(s)
- Ya Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Beijingzhong Road 2, Wuhu, 241000, China
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Lucian Kaack
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Jiabao Liu
- College of Ecology and Environment, Anhui Normal University, Beijingzhong Road 2, Wuhu, 241000, China
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|
6
|
Chen S, Zhang H, Guo Z, Pagonabarraga I, Zhang X. A capillary-induced negative pressure is able to initiate heterogeneous cavitation. SOFT MATTER 2024; 20:2863-2870. [PMID: 38465416 DOI: 10.1039/d4sm00143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A capillarity-induced negative pressure is of general importance for understanding the phase behaviors of liquids in small pores and cracks. A unique example is the embolism in the xylem of plants and the cavitation at the limiting negative pressure generated by evaporation of water from nanocapillaries in the cell walls of leaves. In this work, by combining the effect of a capillary and cavitation together, we demonstrate with molecular dynamics (MD) simulations that capillarity is able to induce spontaneous cavitation in the presence of hydrophobic heterogeneities. Our simulation results reveal separately how the capillary generates a negative pressure and how the generated negative pressure affects the onset of cavitation. We then interpret the cavitation mechanism and determine the occurrence of cavitation as a function of the hydrophobicity of the nucleating substrates where the cavitation initiates and as a function of the hydrophilicity of the capillary tube from which the negative pressure generates. Our results reveal that the capillary-induced cavitation can be described well with a heterogeneous nucleation mechanism, within the framework of classical nucleation theory.
Collapse
Affiliation(s)
- Shan Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
- College of Traditional Chinese Medicine, Bozhou University, Bozhou 236800, China
| | - Hongguang Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhenjiang Guo
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ignacio Pagonabarraga
- Department of Condensed Matter Physics, Faculty of Physics, University of Barcelona, C. Martí I Franquès 1, Barcelona E08028, Spain.
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, Barcelona E08028, Spain
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Roth-Nebelsick A, Konrad W. Modeling and Analyzing Xylem Vulnerability to Embolism as an Epidemic Process. Methods Mol Biol 2024; 2722:17-34. [PMID: 37897597 DOI: 10.1007/978-1-0716-3477-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Xylem vulnerability to embolism can be quantified by "vulnerability curves" (VC) that are obtained by subjecting wood samples to increasingly negative water potential and monitoring the progressive loss of hydraulic conductivity. VC are typically sigmoidal, and various approaches are used to fit the experimentally obtained VC data for extracting benchmark data of vulnerability to embolism. In addition to such empirical methods, mechanistic approaches to calculate embolism propagation are epidemic modeling and network theory. Both describe the transmission of "objects" (in this case, the transmission of gas) between interconnected elements. In network theory, a population of interconnected elements is described by graphs in which objects are represented by vertices or nodes and connections between these objections as edges linking the vertices. A graph showing a population of interconnected xylem conduits represents an "individual" wood sample that allows spatial tracking of embolism propagation. In contrast, in epidemic modeling, the transmission dynamics for a population that is subdivided into infection-relevant groups is calculated by an equation system. For this, embolized conduits are considered to be "infected," and the "infection" is the transmission of gas from embolized conduits to their still water-filled neighbors. Both approaches allow for a mechanistic simulation of embolism propagation.
Collapse
Affiliation(s)
| | - Wilfried Konrad
- Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Institute of Botany, Technical University of Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Dutta S, Bieling TJ, Verbiest GJ. Evaporation induced acoustic emissions in microfluidic vessels. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231029. [PMID: 38094272 PMCID: PMC10716658 DOI: 10.1098/rsos.231029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Fluid flow processes such as drainage and evaporation in porous media are crucial in geological and biological systems. The motion of the displacement front of a moving fluid through multi-phase interfaces is often associated with abrupt mechanical energy release, detectable as acoustic emissions (AEs). The exact origin of these pulses and their damping mechanisms are still subjects of debate. Here, we study the characteristics of such AEs during evaporation of water from artificial microfluidic vessels, inspired by the physiology of vascular water-transport in plants. From the extracted settling times of the recorded AEs, we identify three pulse types and attribute their origins to bubble formation, snap-off events and rapid pore invasion. We also show that the resonance frequencies between 10 and 70 kHz present in specific pulse types decrease with increasing vessel radius (ranging from 0.25 to 1.0 mm) and length (ranging from 2.5 to 10.0 mm). Our findings provide insight into evaporation-induced AEs from microfluidic systems, and their potential use in non-invasive inspection or vascular health monitoring.
Collapse
Affiliation(s)
- S. Dutta
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, Delft 2628CD, The Netherlands
| | - T. J. Bieling
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, Delft 2628CD, The Netherlands
| | - G. J. Verbiest
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Mekelweg 2, Delft 2628CD, The Netherlands
| |
Collapse
|
9
|
Pereira L, Kaack L, Guan X, Silva LDM, Miranda MT, Pires GS, Ribeiro RV, Schenk HJ, Jansen S. Angiosperms follow a convex trade-off to optimize hydraulic safety and efficiency. THE NEW PHYTOLOGIST 2023; 240:1788-1801. [PMID: 37691289 DOI: 10.1111/nph.19253] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Intervessel pits are considered to function as valves that avoid embolism spreading and optimize efficient transport of xylem sap across neighbouring vessels. Hydraulic transport between vessels would therefore follow a safety-efficiency trade-off, which is directly related to the total intervessel pit area (Ap ), inversely related to the pit membrane thickness (TPM ) and driven by a pressure difference. To test this hypothesis, we modelled the relative transport rate of gas (ka ) and water (Q) at the intervessel pit level for 23 angiosperm species and correlated these parameters with the water potential at which 50% of embolism occurs (Ψ50 ). We also measured ka for 10 species using pneumatic measurements. The pressure difference across adjacent vessels and estimated values of ka and Q were related to Ψ50 , following a convex safety-efficiency trade-off based on modelled and experimental data. Minor changes in TPM and Ap exponentially affected the pressure difference and flow, respectively. Our results provide clear evidence that a xylem safety-efficiency trade-off is not linear, but convex due to flow across intervessel pit membranes, which represent mesoporous media within microporous conduits. Moreover, the convex nature of long-distance xylem transport may contribute to an adjustable fluid balance of plants, depending on environmental conditions.
Collapse
Affiliation(s)
- Luciano Pereira
- Institute of Botany, Ulm University, 89081, Ulm, Albert-Einstein-Allee 11, Germany
| | - Lucian Kaack
- Institute of Botany, Ulm University, 89081, Ulm, Albert-Einstein-Allee 11, Germany
- Botanical Garden of Ulm University, 89081, Ulm, Hans-Krebs-Weg, Germany
| | - Xinyi Guan
- Institute of Botany, Ulm University, 89081, Ulm, Albert-Einstein-Allee 11, Germany
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004, Guangxi, Nanning, China
| | | | - Marcela T Miranda
- Laboratory of Plant Physiology 'Coaracy M. Franco', Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), PO Box 28, Campinas, 13012-970, SP, Brazil
| | - Gabriel S Pires
- Department of Plant Biology, Laboratory of Crop Physiology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, SP, Campinas, PO Box 6109, Brazil
| | - Rafael V Ribeiro
- Department of Plant Biology, Laboratory of Crop Physiology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, SP, Campinas, PO Box 6109, Brazil
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd, Fullerton, 92831-3599, CA, USA
| | - Steven Jansen
- Institute of Botany, Ulm University, 89081, Ulm, Albert-Einstein-Allee 11, Germany
| |
Collapse
|
10
|
Feng F, Wagner Y, Klein T, Hochberg U. Xylem resistance to cavitation increases during summer in Pinus halepensis. PLANT, CELL & ENVIRONMENT 2023; 46:1849-1859. [PMID: 36793149 DOI: 10.1111/pce.14573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 05/04/2023]
Abstract
Cavitation resistance has often been viewed as a relatively static trait, especially for stems of forest trees. Meanwhile, other hydraulic traits, such as turgor loss point (Ψtlp ) and xylem anatomy, change during the season. In this study, we hypothesized that cavitation resistance is also dynamic, changing in coordination with Ψtlp . We began with a comparison of optical vulnerability (OV), microcomputed tomography (µCT) and cavitron methods. All three methods significantly differed in the slope of the curve,Ψ12 and Ψ88 , but not in Ψ50 (xylem pressures that cause 12%, 88%, 50% cavitation, respectively). Thus, we followed the seasonal dynamics (across 2 years) of Ψ50 in Pinus halepensis under Mediterranean climate using the OV method. We found that Ψ50 is a plastic trait with a reduction of approximately 1 MPa from the end of the wet season to the end of the dry season, in coordination with the dynamics of the midday xylem water potential (Ψmidday ) and the Ψtlp . The observed plasticity enabled the trees to maintain a stable positive hydraulic safety margin and avoid cavitation during the long dry season. Seasonal plasticity is vital for understanding the actual risk of cavitation to plants and for modeling species' ability to tolerate harsh environments.
Collapse
Affiliation(s)
- Feng Feng
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Yael Wagner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
11
|
Ingram S, Jansen S, Schenk HJ. Lipid-Coated Nanobubbles in Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1776. [PMID: 37299679 PMCID: PMC10254470 DOI: 10.3390/nano13111776] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
One of the more surprising occurrences of bulk nanobubbles is in the sap inside the vascular transport system of flowering plants, the xylem. In plants, nanobubbles are subjected to negative pressure in the water and to large pressure fluctuations, sometimes encompassing pressure changes of several MPa over the course of a single day, as well as wide temperature fluctuations. Here, we review the evidence for nanobubbles in plants and for polar lipids that coat them, allowing nanobubbles to persist in this dynamic environment. The review addresses how the dynamic surface tension of polar lipid monolayers allows nanobubbles to avoid dissolution or unstable expansion under negative liquid pressure. In addition, we discuss theoretical considerations about the formation of lipid-coated nanobubbles in plants from gas-filled spaces in the xylem and the role of mesoporous fibrous pit membranes between xylem conduits in creating the bubbles, driven by the pressure gradient between the gas and liquid phase. We discuss the role of surface charges in preventing nanobubble coalescence, and conclude by addressing a number of open questions about nanobubbles in plants.
Collapse
Affiliation(s)
- Stephen Ingram
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, 00560 Helsinki, Finland
| | - Steven Jansen
- Institute of Botany, Ulm University, 89081 Ulm, Germany
| | - H. Jochen Schenk
- Department of Biological Science, California State University Fullerton, Fullerton, CA 92831-3599, USA
| |
Collapse
|
12
|
Isasa E, Link RM, Jansen S, Tezeh FR, Kaack L, Sarmento Cabral J, Schuldt B. Addressing controversies in the xylem embolism resistance-vessel diameter relationship. THE NEW PHYTOLOGIST 2023; 238:283-296. [PMID: 36636783 DOI: 10.1111/nph.18731] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Although xylem embolism is a key process during drought-induced tree mortality, its relationship to wood anatomy remains debated. While the functional link between bordered pits and embolism resistance is known, there is no direct, mechanistic explanation for the traditional assumption that wider vessels are more vulnerable than narrow ones. We used data from 20 temperate broad-leaved tree species to study the inter- and intraspecific relationship of water potential at 50% loss of conductivity (P50 ) with hydraulically weighted vessel diameter (Dh ) and tested its link to pit membrane thickness (TPM ) and specific conductivity (Ks ) on species level. Embolism-resistant species had thick pit membranes and narrow vessels. While Dh was weakly associated with TPM , the P50 -Dh relationship remained highly significant after accounting for TPM . The interspecific pattern between P50 and Dh was mirrored by a link between P50 and Ks , but there was no evidence for an intraspecific relationship. Our results provide robust evidence for an interspecific P50 -Dh relationship across our species. As a potential cause for the inconsistencies in published P50 -Dh relationships, our analysis suggests differences in the range of trait values covered, and the level of data aggregation (species, tree or sample level) studied.
Collapse
Affiliation(s)
- Emilie Isasa
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082, Würzburg, Germany
| | - Roman Mathias Link
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082, Würzburg, Germany
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Str. 7, 01737, Tharandt, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Fon Robinson Tezeh
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082, Würzburg, Germany
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Juliano Sarmento Cabral
- Ecosystem Modeling Group, Center for Computational and Theoretical Biology, University of Würzburg, Klara-Oppenheimer-Weg 32, 97074, Würzburg, Germany
- Biodiversity Modelling and Environmental Change, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Bernhard Schuldt
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082, Würzburg, Germany
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Str. 7, 01737, Tharandt, Germany
| |
Collapse
|
13
|
Li M, Dong H, Li J, Dai X, Lin J, Li S, Zhou C, Chiang VL, Li W. PtrVCS2 Regulates Drought Resistance by Changing Vessel Morphology and Stomatal Closure in Populus trichocarpa. Int J Mol Sci 2023; 24:ijms24054458. [PMID: 36901889 PMCID: PMC10003473 DOI: 10.3390/ijms24054458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Drought has severe effects on plant growth, forest productivity, and survival throughout the world. Understanding the molecular regulation of drought resistance in forest trees can enable effective strategic engineering of novel drought-resistant genotypes of tree species. In this study, we identified a gene, PtrVCS2, encoding a zinc finger (ZF) protein of the ZF-homeodomain transcription factor in Populus trichocarpa (Black Cottonwood) Torr. & A. Gray. ex Hook. Overexpression of PtrVCS2 (OE-PtrVCS2) in P. trichocarpa resulted in reduced growth, a higher proportion of smaller stem vessels, and strong drought-resistance phenotypes. Stomatal movement experiments revealed that the OE-PtrVCS2 transgenics showed lower stomata apertures than wild-type plants under drought conditions. RNA-seq analysis of the OE-PtrVCS2 transgenics showed that PtrVCS2 regulates the expression of multiple genes involved in regulation of stomatal opening and closing, particularly the PtrSULTR3;1-1 gene, and several genes related to cell wall biosynthesis, such as PtrFLA11-12 and PtrPR3-3. Moreover, we found that the water use efficiency of the OE-PtrVCS2 transgenic plants was consistently higher than that of wild type plants when subjected to chronic drought stress. Taken together, our results suggest that PtrVCS2 plays a positive role in improving drought adaptability and resistance in P. trichocarpa.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hao Dong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiufang Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiaojiao Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Correspondence:
| |
Collapse
|
14
|
Nanobubble-governed membrane with nanofluidic channels for efficient molecule/ion sieving. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S. Functional xylem characteristics associated with drought-induced embolism in angiosperms. THE NEW PHYTOLOGIST 2022; 236:2019-2036. [PMID: 36039697 DOI: 10.1111/nph.18447] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.
Collapse
Affiliation(s)
- Frederic Lens
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
- Leiden University, Institute of Biology Leiden, Plant Sciences, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
| | - Giovanni Bortolami
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Sylvain Delzon
- University of Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| |
Collapse
|
16
|
Guan X, Schenk HJ, Roth MR, Welti R, Werner J, Kaack L, Trabi CL, Jansen S. Nanoparticles are linked to polar lipids in xylem sap of temperate angiosperm species. TREE PHYSIOLOGY 2022; 42:2003-2019. [PMID: 35552762 DOI: 10.1093/treephys/tpac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
In previous research, xylem sap of angiosperms has been found to include low concentrations of nanoparticles and polar lipids. A major goal of this study was to test predictions arising from the hypothesis that the nanoparticles consist largely of polar lipids from the original cell content of vessel elements. These predictions included that polar lipid and nanoparticle concentrations would be correlated, that they both do not pass through pit membranes and that they do not vary seasonally because they originate from living vessel element cells. We collected xylem sap of six temperate angiosperm species over the whole year to consider seasonal variation. Concentrations of nanoparticles and lipids in xylem sap and contamination control samples were measured with a NanoSight device and mass spectrometry. We found that the concentration of nanoparticles and polar lipids was (i) diluted when an increasing amount of sap was extracted, (ii) significantly correlated to each other for three species, (iii) affected by vessel anatomy, (iv) very low and largely different in chemical composition from contamination controls and (v) hardly variable among seasons. Moreover, there was a minor freezing-thawing effect with respect to nanoparticle amount and size. Xylem sap lipids included polar galactolipids and phospholipids in all species and neutral triacylglycerols in two species. These findings support the predictions and, by implication, the underlying hypothesis that nanoparticles in xylem sap consist of polar lipids from the original cell content of living vessel element cells. Further research is needed to examine the formation and stability of nanoparticles concerning lipid composition and multiphase interactions among gas, liquid and solid phases in xylem conduits of living plants.
Collapse
Affiliation(s)
- Xinyi Guan
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA 92831, USA
| | - Mary R Roth
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Julia Werner
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Christophe L Trabi
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
17
|
Sorek Y, Greenstein S, Hochberg U. Seasonal adjustment of leaf embolism resistance and its importance for hydraulic safety in deciduous trees. PHYSIOLOGIA PLANTARUM 2022; 174:e13785. [PMID: 36151946 PMCID: PMC9828144 DOI: 10.1111/ppl.13785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 05/20/2023]
Abstract
Embolism resistance is often viewed as seasonally stable. Here we examined the seasonality in the leaf xylem vulnerability curve (VC) and turgor loss point (ΨTLP ) of nine deciduous species that originated from Mediterranean, temperate, tropical, or sub-tropical habitats and were growing on the Volcani campus, Israel. All four Mediterranean/temperate species exhibited a shift of their VC to lower xylem pressures (Ψx ) along the dry season, in addition to two of the five tropical/sub-tropical species. In three of the species that exhibited VC seasonality, it was critical for avoiding embolism in the leaf. In total, seven out of the nine species avoided embolism. The seasonal VC adjustment was over two times higher as compared with the seasonal adjustment of ΨTLP , resulting in improved hydraulic safety as the season progressed. The results suggest that seasonality in the leaf xylem vulnerability is common in species that originate from Mediterranean or temperate habitats that have large seasonal environmental changes. This seasonality is advantageous because it enables a gradual seasonal reduction in the Ψx without increasing the danger of embolism. The results also highlight that measuring the minimal Ψx and the VC at different times can lead to erroneous estimations of the hydraulic safety margins. Changing the current hydraulic dogma into a seasonal dynamic in the vulnerability of the xylem itself should enable physiologists to understand plants' responses to their environment better.
Collapse
Affiliation(s)
- Yonatan Sorek
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Smadar Greenstein
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Science, Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
18
|
Levionnois S, Kaack L, Heuret P, Abel N, Ziegler C, Coste S, Stahl C, Jansen S. Pit characters determine drought-induced embolism resistance of leaf xylem across 18 Neotropical tree species. PLANT PHYSIOLOGY 2022; 190:371-386. [PMID: 35567500 PMCID: PMC9434246 DOI: 10.1093/plphys/kiac223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/19/2022] [Indexed: 05/16/2023]
Abstract
Embolism spreading in xylem is an important component of plant drought resistance. Since embolism resistance has been shown to be mechanistically linked to pit membrane characters in stem xylem, we speculate that similar mechanisms account for leaf xylem. We conducted transmission electron microscopy to investigate pit membrane characters in leaf xylem across 18 Neotropical tree species. We also conducted gold perfusion and polar lipid detection experiments on three species covering the full range of leaf embolism resistance. We then related these observations to previously published data on embolism resistance of leaf xylem. We also incorporated previously published data on stem embolism resistance and stem xylem pit membranes to investigate the link between vulnerability segmentation (i.e. difference in embolism resistance) and leaf-stem anatomical variation. Maximum pit membrane thickness (Tpm,max) and the pit membrane thickness-to-diameter ratio (Tpm,max/Dpm) were predictive of leaf embolism resistance, especially when vestured pits were taken into account. Variation in Tpm,max/Dpm was the only trait predictive of vulnerability segmentation between leaves and stems. Gold particles of 5- and 10-nm infiltrated pit membranes in three species, while the entry of 50-nm particles was blocked. Moreover, polar lipids were associated with inner conduit walls and pits. Our results suggest that mechanisms related to embolism spreading are determined by Tpm, pore constrictions (i.e. the narrowest bottlenecks along pore pathways), and lipid surfactants, which are largely similar between leaf and stem xylem and between temperate and tropical trees. However, our mechanistic understanding of embolism propagation and the functional relevance of Tpm,max/Dpm remains elusive.
Collapse
Affiliation(s)
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Ulm D-89081, Germany
| | | | - Nina Abel
- Institute of Systematic Botany and Ecology, Ulm University, Ulm D-89081, Germany
| | - Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, Nancy 54000, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
| | | |
Collapse
|
19
|
Olson ME. Linking xylem structure and function: the comparative method in from the cold. THE NEW PHYTOLOGIST 2022; 235:815-820. [PMID: 35770485 PMCID: PMC9328200 DOI: 10.1111/nph.18179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article is a Commentary on Savage et al. (2022), 235: 953–964.
Collapse
Affiliation(s)
- Mark E. Olson
- Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoTercer Circuito sn de Ciudad UniversitariaCiudad de México04510Mexico
| |
Collapse
|
20
|
The Morpho-Physio-Biochemical Attributes of Urban Trees for Resilience in Regional Ecosystems in Cities: A Mini-Review. URBAN SCIENCE 2022. [DOI: 10.3390/urbansci6020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Increased urbanization means human beings become the dominant species and reduction in canopy cover. Globally, urban trees grow under challenging and complex circumstances with urbanization trends of increasing anthropogenic carbon dioxide (CO2) emissions, high temperature and drought stress. This study aims to provide a better understanding of urban trees’ morpho-physio-biochemical attributes that can support sustainable urban greening programs and urban climate change mitigation policies. Globally, urban dwellers’ population is on the rise and spreading to suburban areas over time with an increase in domestic CO2 emissions. Uncertainty and less information on urban tree diversification and resistance to abiotic stress may create deterioration of ecosystem resilience over time. This review uses general parameters for urban tree physiology studies and employs three approaches for evaluating ecosystem resilience based on urban stress resistance in relation to trees’ morphological, physiological and biochemical attributes. Due to the lack of a research model of ecosystem resilience and urban stress resistance of trees, this review demonstrates that the model concept supports future urban tree physiology research needs. In particular, it is necessary to develop integral methodologies and an urban tree research concept to assess how main and combined effects of drought and/or climate changes affect indigenous and exotic trees that are commonly grown in cities.
Collapse
|
21
|
Song J, Trueba S, Yin XH, Cao KF, Brodribb TJ, Hao GY. Hydraulic vulnerability segmentation in compound-leaved trees: Evidence from an embolism visualization technique. PLANT PHYSIOLOGY 2022; 189:204-214. [PMID: 35099552 PMCID: PMC9070814 DOI: 10.1093/plphys/kiac034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 05/11/2023]
Abstract
The hydraulic vulnerability segmentation (HVS) hypothesis implies the existence of differences in embolism resistance between plant organs along the xylem pathway and has been suggested as an adaptation allowing the differential preservation of more resource-rich tissues during drought stress. Compound leaves in trees are considered a low-cost means of increasing leaf area and may thus be expected to show evidence of strong HVS, given the tendency of compound-leaved tree species to shed their leaf units during drought. However, the existence and role of HVS in compound-leaved tree species during drought remain uncertain. We used an optical visualization technique to estimate embolism occurrence in stems, petioles, and leaflets of shoots in two compound-leaved tree species, Manchurian ash (Fraxinus mandshurica) and Manchurian walnut (Juglans mandshurica). We found higher (less negative) water potentials corresponding to 50% loss of conductivity (P50) in leaflets and petioles than in stems in both species. Overall, we observed a consistent pattern of stem > petiole > leaflet in terms of xylem resistance to embolism and hydraulic safety margins (i.e. the difference between mid-day water potential and P50). The coordinated variation in embolism vulnerability between organs suggests that during drought conditions, trees benefit from early embolism and subsequent shedding of more expendable organs such as leaflets and petioles, as this provides a degree of protection to the integrity of the hydraulic system of the more carbon costly stems. Our results highlight the importance of HVS as an adaptive mechanism of compound-leaved trees to withstand drought stress.
Collapse
Affiliation(s)
- Jia Song
- CAS Key Laboratory of Forest Ecology and Management & Key Laboratory of Terrestrial Ecosystem Carbon Neutrality Liaoning Province, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China
- Yangtze River Delta National Observatory of Wetland Ecosystem, Shanghai Normal University, Shanghai 200234, China
| | - Santiago Trueba
- University of Bordeaux, INRAE, BIOGECO, 33615 Pessac, France
| | - Xiao-Han Yin
- CAS Key Laboratory of Forest Ecology and Management & Key Laboratory of Terrestrial Ecosystem Carbon Neutrality Liaoning Province, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, and College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Timothy J Brodribb
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | |
Collapse
|
22
|
Abstract
Nanobubbles are nanoscopic gaseous domains than can exist on solid surfaces or in bulk liquids. They have attracted significant attention in the last decade due to their long-time (meta)stability and ready potential for real-world applications, especially in environmental engineering and more sustainable ecosystems, water treatment, irrigation, and crop growth. After reviewing important nano-bubble science and activity, with some of the latest promising results in agriculture, we point out important directions in applications of nano-bubble phenomena for boosting sustainability, with viewpoints on how to revolutionise best-practice environmental and green sustainability, taking into account economic drivers and impacts. More specifically, it is pointed out how nanobubbles may be used as delivery vehicles, or “nano-carriers”, for nutrients or other agents to specific targets in a variety of ecosystems of environmental relevance, and how core this is to realising a vision of ultra-dense NBs in shaping a positive and lasting impact on ecosystems and our natural environment.
Collapse
|
23
|
Ingram S, Salmon Y, Lintunen A, Hölttä T, Vesala T, Vehkamäki H. Dynamic Surface Tension Enhances the Stability of Nanobubbles in Xylem Sap. FRONTIERS IN PLANT SCIENCE 2021; 12:732701. [PMID: 34975934 PMCID: PMC8716698 DOI: 10.3389/fpls.2021.732701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/29/2021] [Indexed: 05/28/2023]
Abstract
Air seeded nanobubbles have recently been observed within tree sap under negative pressure. They are stabilized by an as yet unidentified process, although some embolize their vessels in extreme circumstances. Current literature suggests that a varying surface tension helps bubbles survive, but few direct measurements of this quantity have been made. Here, we present calculations of dynamic surface tension for two biologically relevant lipids using molecular dynamics simulations. We find that glycolipid monolayers resist expansion proportionally to the rate of expansion. Their surface tension increases with the tension applied, in a similar way to the viscosity of a non-Newtonian fluid. In contrast, a prototypical phospholipid was equally resistant to all applied tensions, suggesting that the fate of a given nanobubble is dependent on its surface composition. By incorporating our results into a Classical Nucleation Theory (CNT) framework, we predict nanobubble stability with respect to embolism. We find that the metastable radius of glycolipid coated nanobubbles is approximately 35 nm, and that embolism is in this case unlikely when the external pressure is less negative than -1.5 MPa.
Collapse
Affiliation(s)
- Stephen Ingram
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Anna Lintunen
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
- Laboratory of Ecosystem-Atmospheric Interactions of Forest – Mire Complexes, Yugra State University, Khanty-Mansiysk, Russia
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Jupa R, Krabičková D, Plichta R, Mayr S, Gloser V. Do angiosperm tree species adjust intervessel lateral contact in response to soil drought? PHYSIOLOGIA PLANTARUM 2021; 172:2048-2058. [PMID: 33876443 DOI: 10.1111/ppl.13435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
During soil drought (i.e. limited soil water availability to plants), woody species may adjust the structure of their vessel network to improve their resistance against future soil drought stress. Impacts of soil drought on intervessel lateral contact remain poorly understood despite of its significance to xylem transport efficiency and safety. Here, we analysed drought-induced modifications in xylem structures of temperate angiosperm trees with a focus on intervessel lateral contact. Anatomical analyses were performed both in stems of seedlings cultivated under different substrate water availability and annual rings of mature individuals developed during years of low and high soil drought intensities. In response to limited water availability, a decrease in vessel diameter (up to -20%) and simultaneous increase in vessel density (up to +60%) were observed both in seedlings and mature trees. Conversely, there were only small and inconsistent drought-induced changes in intervessel contact frequency and intervessel contact fraction (typically up to ±15%) observed across species, indicating that intervessel lateral contact is a conservative trait. The small adjustments in intervessel lateral contacts were primarily driven by changes in the contact frequencies between neighbouring vessels (i.e. vessel grouping) rather than by changes in proportions of shared cell walls. Our results demonstrate that angiosperm tree species, despite remarkable adjustments in vessel dimensions and densities upon soil drought, exhibit surprisingly invariant intervessel lateral contact architecture.
Collapse
Affiliation(s)
- Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Forest Botany, Dendrology and Geobiocenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Dita Krabičková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Plichta
- Department of Forest Botany, Dendrology and Geobiocenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Vít Gloser
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
25
|
Mrad A, Johnson DM, Love DM, Domec JC. The roles of conduit redundancy and connectivity in xylem hydraulic functions. THE NEW PHYTOLOGIST 2021; 231:996-1007. [PMID: 33908055 DOI: 10.1111/nph.17429] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Wood anatomical traits shape a xylem segment's hydraulic efficiency and resistance to embolism spread due to declining water potential. It has been known for decades that variations in conduit connectivity play a role in altering xylem hydraulics. However, evaluating the precise effect of conduit connectivity has been elusive. The objective here is to establish an analytical linkage between conduit connectivity and grouping and tissue-scale hydraulics. It is hypothesized that an increase in conduit connectivity brings improved resistance to embolism spread due to increased hydraulic pathway redundancy. However, an increase in conduit connectivity could also reduce resistance due to increased speed of embolism spread with respect to pressure. We elaborate on this trade-off using graph theory, percolation theory and computational modeling of xylem. The results are validated using anatomical measurements of Acer branch xylem. Considering only species with vessels, increases in connectivity improve resistance to embolism spread without negatively affecting hydraulic conductivity. The often measured grouping index fails to capture the totality of the effect of conduit connectivity on xylem hydraulics. Variations in xylem network characteristics, such as conduit connectivity, might explain why hypothesized trends among woody species, such as the 'safety-efficiency' trade-off hypothesis, are weaker than expected.
Collapse
Affiliation(s)
- Assaad Mrad
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92697, USA
- Department of Engineering, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - David M Love
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Jean-Christophe Domec
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Bordeaux Sciences Agro, UMR 1391 INRA-ISPA, Gradignan Cedex, 33175, France
| |
Collapse
|
26
|
Park J, Ryu J, Park SH, Lee SJ. Air spread through a wetted deformable membrane: Implications for the mechanism of soft valves in plants. Phys Rev E 2021; 103:062407. [PMID: 34271721 DOI: 10.1103/physreve.103.062407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 11/07/2022]
Abstract
Plants have a special structure, torus-margo (TM) pit, which comprises a thickened torus at the center encircled by a highly porous margo. It is regarded as a key evolutionary structure to enable stable water transport, minimizing the air spread in the vessels. However, its valve-like dynamics to regulate two-phase flows still remains unclear even at a single pit level. Here, we study the air spreading dynamics using a bioinspired model of this soft pit valve. We divide it into the initial onset and the consecutive air-spreads, and propose the criteria of TM structures as the valve-like function. To delay the onset of air spread, the margo region should be thin and deformable enough to seal the pit aperture with the torus before the air penetration. Even after the onset, the membranes whose maximum pore size is smaller than its thickness can avoid continuous air-spread. The criteria also fit properly into botanical data on the morphologies of TM pits, implying that their valve-like behaviors may alleviate the tradeoff between hydraulic safety and efficiency at the single pit level. Our study would help to understand of the mechanistic pit-level strategy and also can provide insight into fluidic systems to control interfacial phenomena.
Collapse
Affiliation(s)
- Jooyoung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| | - Jeongeun Ryu
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| | - Sung Ho Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| |
Collapse
|
27
|
Kaack L, Weber M, Isasa E, Karimi Z, Li S, Pereira L, Trabi CL, Zhang Y, Schenk HJ, Schuldt B, Schmidt V, Jansen S. Pore constrictions in intervessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms. THE NEW PHYTOLOGIST 2021; 230:1829-1843. [PMID: 33595117 DOI: 10.1111/nph.17282] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/09/2021] [Indexed: 05/27/2023]
Abstract
Embolism spreading in angiosperm xylem occurs via mesoporous pit membranes between vessels. Here, we investigate how the size of pore constrictions in pit membranes is related to pit membrane thickness and embolism resistance. Pit membranes were modelled as multiple layers to investigate how pit membrane thickness and the number of intervessel pits per vessel determine pore constriction sizes, the probability of encountering large pores, and embolism resistance. These estimations were complemented by measurements of pit membrane thickness, embolism resistance, and number of intervessel pits per vessel in stem xylem (n = 31, 31 and 20 species, respectively). The modelled constriction sizes in pit membranes decreased with increasing membrane thickness, explaining the measured relationship between pit membrane thickness and embolism resistance. The number of pits per vessel affected constriction size and embolism resistance much less than pit membrane thickness. Moreover, a strong relationship between modelled and measured embolism resistance was observed. Pore constrictions provide a mechanistic explanation for why pit membrane thickness determines embolism resistance, which suggests that hydraulic safety can be uncoupled from hydraulic efficiency. Although embolism spreading remains puzzling and encompasses more than pore constriction sizes, angiosperms are unlikely to have leaky pit membranes, which enables tensile transport of water.
Collapse
Affiliation(s)
- Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Matthias Weber
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, Ulm, D-89069, Germany
| | - Emilie Isasa
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg, D-97082, Germany
| | - Zohreh Karimi
- Department of Biology, Faculty of Sciences, Golestan University, Shahid Beheshti St., Gorgan, 15759-49138, Iran
| | - Shan Li
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Luciano Pereira
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Christophe L Trabi
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Ya Zhang
- College of Life Sciences, Anhui Normal University, Beijingdong Road 1, Wuhu, 241000, China
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, Fullerton, CA, 92834-6850, USA
| | - Bernhard Schuldt
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg, D-97082, Germany
| | - Volker Schmidt
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, Ulm, D-89069, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|
28
|
Wason J, Bouda M, Lee EF, McElrone AJ, Phillips RJ, Shackel KA, Matthews MA, Brodersen C. Xylem network connectivity and embolism spread in grapevine(Vitis vinifera L.). PLANT PHYSIOLOGY 2021; 186:373-387. [PMID: 33576825 PMCID: PMC8154096 DOI: 10.1093/plphys/kiab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/17/2021] [Indexed: 05/20/2023]
Abstract
Xylem networks are vulnerable to the formation and spread of gas embolisms that reduce water transport. Embolisms spread through interconduit pits, but the three-dimensional (3D) complexity and scale of xylem networks means that the functional implications of intervessel connections are not well understood. Here, xylem networks of grapevine (Vitis vinifera L.) were reconstructed from 3D high-resolution X-ray micro-computed tomography (microCT) images. Xylem network performance was then modeled to simulate loss of hydraulic conductivity under increasingly negative xylem sap pressure simulating drought stress conditions. We also considered the sensitivity of xylem network performance to changes in key network parameters. We found that the mean pit area per intervessel connection was constant across 10 networks from three, 1.5-m stem segments, but short (0.5 cm) segments fail to capture complete network connectivity. Simulations showed that network organization imparted additional resistance to embolism spread beyond the air-seeding threshold of pit membranes. Xylem network vulnerability to embolism spread was most sensitive to variation in the number and location of vessels that were initially embolized and pit membrane vulnerability. Our results show that xylem network organization can increase stem resistance to embolism spread by 40% (0.66 MPa) and challenge the notion that a single embolism can spread rapidly throughout an entire xylem network.
Collapse
Affiliation(s)
- Jay Wason
- School of Forest Resources, University of Maine, Orono, Maine 04469
- School of the Environment, Yale University, New Haven, CT 06520
| | - Martin Bouda
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Eric F Lee
- Department of Engineering Sciences, Clackamas Community College, Oregon City, Oregon 97045
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California Davis, Davis, California
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, California
| | - Ronald J Phillips
- Department of Chemical Engineering, University of California Davis, Davis, California
| | - Kenneth A Shackel
- Department of Plant Science, University of California Davis, Davis, California
| | - Mark A Matthews
- Department of Viticulture and Enology, University of California Davis, Davis, California
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT 06520
- Author for communication:
| |
Collapse
|
29
|
Degraeve S, De Baerdemaeker NJF, Ameye M, Leroux O, Haesaert GJW, Steppe K. Acoustic Vulnerability, Hydraulic Capacitance, and Xylem Anatomy Determine Drought Response of Small Grain Cereals. FRONTIERS IN PLANT SCIENCE 2021; 12:599824. [PMID: 34113357 PMCID: PMC8186553 DOI: 10.3389/fpls.2021.599824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/12/2021] [Indexed: 06/01/2023]
Abstract
Selection of high-yielding traits in cereal plants led to a continuous increase in productivity. However, less effort was made to select on adaptive traits, favorable in adverse and harsh environments. Under current climate change conditions and the knowledge that cereals are staple foods for people worldwide, it is highly important to shift focus to the selection of traits related to drought tolerance, and to evaluate new tools for efficient selection. Here, we explore the possibility to use vulnerability to drought-induced xylem embolism of wheat cultivars Excalibur and Hartog (Triticum aestivum L.), rye cultivar Duiker Max (Secale cereale L.), and triticale cultivars Dublet and US2014 (x Triticosecale Wittmack) as a proxy for their drought tolerance. Multiple techniques were combined to underpin this hypothesis. During bench-top dehydration experiments, acoustic emissions (AEs) produced by formation of air emboli were detected, and hydraulic capacitances quantified. By only looking at the AE50 values, one would classify wheat cultivar Excalibur as most tolerant and triticale cultivar Dublet as most vulnerable to drought-induced xylem embolism, though Dublet had significantly higher hydraulic capacitances, which are essential in terms of internal water storage to temporarily buffer or delay water shortage. In addition, xylem anatomical traits revealed that both cultivars have a contrasting trade-off between hydraulic safety and efficiency. This paper emphasizes the importance of including a cultivar's hydraulic capacitance when evaluating its drought response and vulnerability to drought-induced xylem embolism, instead of relying on the AE50 as the one parameter.
Collapse
Affiliation(s)
- Szanne Degraeve
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niels J. F. De Baerdemaeker
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Maarten Ameye
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Olivier Leroux
- Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | | | - Kathy Steppe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Guan X, Pereira L, McAdam SAM, Cao KF, Jansen S. No gas source, no problem: Proximity to pre-existing embolism and segmentation affect embolism spreading in angiosperm xylem by gas diffusion. PLANT, CELL & ENVIRONMENT 2021; 44:1329-1345. [PMID: 33529382 DOI: 10.1111/pce.14016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 05/12/2023]
Abstract
Embolism spreading in dehydrating angiosperm xylem is driven by gas movement between embolized and sap-filled conduits. Here we examine how the proximity to pre-existing embolism and hydraulic segmentation affect embolism propagation. Based on the optical method, we compare xylem embolism resistance between detached leaves and leaves attached to branches, and between intact leaves and leaves with cut minor veins, for six species. Embolism resistance of detached leaves was significantly lower than that of leaves attached to stems, except for two species, with all vessels ending in their petioles. Cutting of minor veins showed limited embolism spreading in minor veins near the cuts prior to major veins. Moreover, despite strong agreement in the overall embolism resistance of detached leaves between the optical and pneumatic method, minor differences were observed during early stages of embolism formation. We conclude that embolism resistance may represent a relative trait due to an open-xylem artefact, with embolism spreading possibly affected by the proximity and connectivity to pre-existing embolism as a gas source, while hydraulic segmentation prevents such artefact. Since embolism formation may not rely on a certain pressure difference threshold between functional and embolized conduits, we speculate that embolism is facilitated by pressure-driven gas diffusion across pit membranes.
Collapse
Affiliation(s)
- Xinyi Guan
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Luciano Pereira
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
- Laboratory of Plant Physiology "Coaracy M. Franco", Center R&D in Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas, Brazil
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| |
Collapse
|
31
|
Perspectives and design considerations of capillary-driven artificial trees for fast dewatering processes. Sci Rep 2021; 11:8631. [PMID: 33883623 PMCID: PMC8060284 DOI: 10.1038/s41598-021-88006-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
Recent progresses on nanocapillary-driven water transport under metastable conditions have substantiated the potential of artificial trees for dewatering applications in a wide pressure range. This paper presents a comprehensive performance analysis of artificial trees encompassing the principle for negative capillary pressure generation; impacts of structural, compositional, and environmental conditions on dewatering performance; and design considerations. It begins by delineating functionalities of artificial trees for evaporation (leaves), conduction (xylem), and filtration (root) of water, in the analogy to natural trees. The analysis revealed that the magnitude of (negative) capillary pressure in the artificial leaves and xylem must be sufficiently large to overcome the osmotic pressure of feed at the root. The required magnitude can be reduced by increasing the osmotic pressure in the artificial xylem conduits, which reduces the risk of cavitation and subsequent blockage of water transport. However, a severe concentration polarization that can occur in long xylem conduits would negate such compensation effect of xylem osmotic pressure, leading to vapor pressure depression at the artificial leaves and therefore reduced dewatering rates. Enhanced Taylor dispersions by increasing xylem conduit diameters are found to alleviate the concentration polarization, allowing for water flux enhancement directly by increasing leaf-to-root membrane area ratio.
Collapse
|
32
|
Why is Tree Drought Mortality so Hard to Predict? Trends Ecol Evol 2021; 36:520-532. [PMID: 33674131 DOI: 10.1016/j.tree.2021.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/18/2023]
Abstract
Widespread tree mortality following droughts has emerged as an environmentally and economically devastating 'ecological surprise'. It is well established that tree physiology is important in understanding drought-driven mortality; however, the accuracy of predictions based on physiology alone has been limited. We propose that complicating factors at two levels stymie predictions of drought-driven mortality: (i) organismal-level physiological and site factors that obscure understanding of drought exposure and vulnerability and (ii) community-level ecological interactions, particularly with biotic agents whose effects on tree mortality may reverse expectations based on stress physiology. We conclude with a path forward that emphasizes the need for an integrative approach to stress physiology and biotic agent dynamics when assessing forest risk to drought-driven morality in a changing climate.
Collapse
|
33
|
Schenk HJ, Michaud JM, Mocko K, Espino S, Melendres T, Roth MR, Welti R, Kaack L, Jansen S. Lipids in xylem sap of woody plants across the angiosperm phylogeny. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1477-1494. [PMID: 33295003 DOI: 10.1111/tpj.15125] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing six major angiosperm clades, including basal magnoliids, monocots and eudicots, to characterize and quantify phospholipids, galactolipids and sulfolipids in sap using mass spectrometry. Locations of lipids in vessels of Laurus nobilis were imaged using transmission electron microscopy and confocal microscopy. Xylem sap contained the galactolipids di- and monogalactosyldiacylglycerol, as well as all common plant phospholipids, but only traces of sulfolipids, with total lipid concentrations in extracted sap ranging from 0.18 to 0.63 nmol ml-1 across all seven species. Contamination of extracted sap from lipids in cut living cells was found to be negligible. Lipid composition of sap was compared with wood in two species and was largely similar, suggesting that sap lipids, including galactolipids, originate from cell content of living vessels. Seasonal changes in lipid composition of sap were observed for one species. Lipid layers coated all lumen-facing vessel surfaces of L. nobilis, and lipids were highly concentrated in inter-vessel pits. The findings suggest that apoplastic, amphiphilic xylem lipids are a universal feature of angiosperms. The findings require a reinterpretation of the cohesion-tension theory of water transport to account for the effects of apoplastic lipids on dynamic surface tension and hydraulic conductance in xylem.
Collapse
Affiliation(s)
- H Jochen Schenk
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Joseph M Michaud
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Kerri Mocko
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Susana Espino
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Tatiana Melendres
- Department of Biological Science, California State University Fullerton, 800 N. State College Boulevard, Fullerton, CA, 92831, USA
| | - Mary R Roth
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|
34
|
Sorek Y, Greenstein S, Netzer Y, Shtein I, Jansen S, Hochberg U. An increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point and intervessel pit membranes. THE NEW PHYTOLOGIST 2021; 229:1955-1969. [PMID: 33098088 DOI: 10.1111/nph.17025] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 05/27/2023]
Abstract
Although xylem embolism resistance is traditionally considered as static, we hypothesized that in grapevine (Vitis vinifera) leaf xylem becomes more embolism-resistant over the growing season. We evaluated xylem architecture, turgor loss point (ΨTLP ) and water potentials leading to 25% of maximal stomatal conductance (gs25 ) or 50% embolism in the leaf xylem (P50 ) in three irrigation treatments and at three time points during the growing season, while separating the effects of leaf age and time of season. Hydraulic traits acclimated over the growing season in a coordinated manner. Without irrigation, ΨTLP , gs25 , and P50 decreased between late May and late August by 0.95, 0.77 and 0.71 MPa, respectively. A seasonal shift in P50 occurred even in mature leaves, while irrigation had only a mild effect (< 0.2 MPa) on P50 . Vessel size and pit membrane thickness were also seasonally dynamic, providing a plausible explanation for the shift in P50 . Our findings provide clear evidence that grapevines can modify their hydraulic traits along a growing season to allow lower xylem water potential, without compromising gas exchange, leaf turgor or xylem integrity. Seasonal changes should be considered when modeling ecosystem vulnerability to drought or comparing datasets acquired at different phenological stages.
Collapse
Affiliation(s)
- Yonatan Sorek
- Institute of Soil, Water and Environmental Science, Volcani Center, Agricultural Research Organization, PO Box 6, Bet-Dagan, 50250, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Smadar Greenstein
- Institute of Soil, Water and Environmental Science, Volcani Center, Agricultural Research Organization, PO Box 6, Bet-Dagan, 50250, Israel
| | - Yishai Netzer
- Department of Chemical engineering, Ariel University, Ariel, 40700, Israel
- Agriculture and Oenology Department, Eastern R&D Center, Ariel, 40700, Israel
| | - Ilana Shtein
- Agriculture and Oenology Department, Eastern R&D Center, Ariel, 40700, Israel
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Science, Volcani Center, Agricultural Research Organization, PO Box 6, Bet-Dagan, 50250, Israel
| |
Collapse
|
35
|
Aritsara ANA, Razakandraibe VM, Ramananantoandro T, Gleason SM, Cao KF. Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimisation of hydraulic efficiency and safety. THE NEW PHYTOLOGIST 2021; 229:1467-1480. [PMID: 32981106 DOI: 10.1111/nph.16969] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The evolution of angiosperms was accompanied by the segregation and specialisation of their xylem tissues. This study aimed to determine whether the fraction and arrangement of parenchyma tissue influence the hydraulic efficiency-safety trade-off in the basal angiosperms. We examined xylem anatomical structure and hydraulic functioning of 28 woody species of Magnoliids in a tropical rainforest of Madagascar and reported, for the first time, quantitative measurements that support the relationship between vessel-to-xylem parenchyma connectivity and the hydraulic efficiency-safety trade-off. We also introduced a new measurement - the distance of species from the trade-off limit - to quantify the co-optimisation of hydraulic efficiency and safety. Although the basal angiosperms in this study had low hydraulic conductivity and safety, species with higher axial parenchyma fraction (APf) had significantly higher hydraulic conductivity. Hydraulic efficiency-safety optimisation was accompanied by higher APf and vessel-to-axial parenchyma connectivity. Conversely, species exhibiting high ray parenchyma fraction and high vessel-to-ray connectivity had lower Ks and were further away from the hydraulic trade-off limit line. Our results provide evidence that axial parenchyma fraction and paratracheal arrangement are associated with both enhanced hydraulic efficiency and safety.
Collapse
Affiliation(s)
- Amy Ny Aina Aritsara
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
- Unité de Formation et de Recherche Sciences du Bois, Département Foresterie et Environnement, Ecole Supérieure des Sciences Agronomiques, Université d'Antananarivo, BP 175, Antananarivo, 101, Madagascar
| | - Vonjisoa M Razakandraibe
- Unité de Formation et de Recherche Sciences du Bois, Département Foresterie et Environnement, Ecole Supérieure des Sciences Agronomiques, Université d'Antananarivo, BP 175, Antananarivo, 101, Madagascar
| | - Tahiana Ramananantoandro
- Unité de Formation et de Recherche Sciences du Bois, Département Foresterie et Environnement, Ecole Supérieure des Sciences Agronomiques, Université d'Antananarivo, BP 175, Antananarivo, 101, Madagascar
| | - Sean M Gleason
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, 80526, USA
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| |
Collapse
|
36
|
Kyzas GZ, Favvas EP, Kostoglou M, Mitropoulos AC. Effect of agitation on batch adsorption process facilitated by using nanobubbles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Rabinowitz J, Whittier E, Liu Z, Jayant K, Frank J, Shepard K. Nanobubble-controlled nanofluidic transport. SCIENCE ADVANCES 2020; 6:6/46/eabd0126. [PMID: 33188030 PMCID: PMC7673748 DOI: 10.1126/sciadv.abd0126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/23/2020] [Indexed: 05/03/2023]
Abstract
Nanofluidic platforms offering tunable material transport are applicable in biosensing, chemical detection, and filtration. Prior studies have achieved selective and controllable ion transport through electrical, optical, or chemical gating of complex nanostructures. Here, we mechanically control nanofluidic transport using nanobubbles. When plugging nanochannels, nanobubbles rectify and occasionally enhance ionic currents in a geometry-dependent manner. These conductance effects arise from nanobubbles inducing surface-governed ion transport through interfacial electrolyte films residing between nanobubble surfaces and nanopipette walls. The nanobubbles investigated here are mechanically generated, made metastable by surface pinning, and verified with cryogenic transmission electron microscopy. Our findings are relevant to nanofluidic device engineering, three-phase interface properties, and nanopipette-based applications.
Collapse
Affiliation(s)
- Jake Rabinowitz
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Elizabeth Whittier
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Zheng Liu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Krishna Jayant
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Joachim Frank
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Kenneth Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
38
|
Olson ME. From Carlquist's ecological wood anatomy to Carlquist's Law: why comparative anatomy is crucial for functional xylem biology. AMERICAN JOURNAL OF BOTANY 2020; 107:1328-1341. [PMID: 33078405 DOI: 10.1002/ajb2.1552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
All students of xylem structure-function relations need to be familiar with the work of Sherwin Carlquist. He studies xylem through the lens of the comparative method, which uses the appearance of similar anatomical features under similar conditions of natural selection to infer function. "Function" in biology implies adaptation; maximally supported adaptation inferences require experimental and comparative xylem scientists to work with one another. Engaging with comparative inferences of xylem function will, more likely sooner rather than later, bring one to the work of Sherwin Carlquist. To mark his 90th birthday, I highlight just a few examples of his extraordinarily perceptive and general comparative insights. One is "Carlquist's Law", the pervasive tendency for vessels to be solitary when background cells are conductive. I cover his pioneering of "ecological" wood anatomy, viewing xylem variation as reflecting the effects of selection across climate and habit variation. Another is the embolism vulnerability-conduit diameter relationship, one of the most widely invoked structure-function relationships in xylem biology. I discuss the inferential richness within the notion of Carlquistian paedomorphosis, including detailed functional inferences regarding ray cell orientation. My final example comes from his very recent work offering the first satisfactory hypothesis accounting for the geographical and histological distribution of scalariform perforation plates as an adaptation, including "Carlquist's Ratchet", why scalariform plates are adaptive but do not re-evolve once lost. This extraordinarily rich production over six decades is filled with comparative inferences that should keep students of xylem function busy testing for decades to come.
Collapse
Affiliation(s)
- Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Mexico, DF, 04510, México
| |
Collapse
|
39
|
De Roo L, Salomón RL, Oleksyn J, Steppe K. Woody tissue photosynthesis delays drought stress in Populus tremula trees and maintains starch reserves in branch xylem tissues. THE NEW PHYTOLOGIST 2020; 228:70-81. [PMID: 32416019 DOI: 10.1111/nph.16662] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis in woody tissues (Pwt ) is less sensitive to water shortage than in leaves, hence, Pwt might be a crucial carbon source to alleviate drought stress. To evaluate the impact of Pwt on tree drought tolerance, woody tissues of 4-m-tall drought-stressed Populus tremula trees were subjected to a light-exclusion treatment across the entire plant to inhibit Pwt . Xylem water potential (Ψxylem ), sap flow ( FH2O ), leaf net photosynthesis (Pn,l ), stem diameter variations (ΔD), in vivo acoustic emissions in stems (AEs) and nonstructural carbohydrate concentrations ([NSC]) were monitored to comprehensively assess water and carbon relations at whole-tree level. Under well-watered conditions, Pwt kept Ψxylem at a higher level, lowered FH2O and had no effect on [NSC]. Under drought, Ψxylem , FH2O and Pn,l in light-excluded trees rapidly decreased in concert with reductions in branch xylem starch concentration. Moreover, sub-daily patterns of ΔD, FH2O and AEs were strongly related, suggesting that in vivo AEs may inform not only about embolism events, but also about capacitive release and replenishment of stem water pools. Results highlight the importance of Pwt in maintaining xylem hydraulic integrity under drought conditions and in sustaining NSC pools to potentially limit increases in xylem tension.
Collapse
Affiliation(s)
- Linus De Roo
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62-035, Kórnik, Poland
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| |
Collapse
|
40
|
Paljakka T, Rissanen K, Vanhatalo A, Salmon Y, Jyske T, Prisle NL, Linnakoski R, Lin JJ, Laakso T, Kasanen R, Bäck J, Hölttä T. Is Decreased Xylem Sap Surface Tension Associated With Embolism and Loss of Xylem Hydraulic Conductivity in Pathogen-Infected Norway Spruce Saplings? FRONTIERS IN PLANT SCIENCE 2020; 11:1090. [PMID: 32765568 PMCID: PMC7378778 DOI: 10.3389/fpls.2020.01090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 07/02/2020] [Indexed: 05/23/2023]
Abstract
Increased abiotic stress along with increasing temperatures, dry periods and forest disturbances may favor biotic stressors such as simultaneous invasion of bark beetle and ophiostomatoid fungi. It is not fully understood how tree desiccation is associated with colonization of sapwood by fungi. A decrease in xylem sap surface tension (σxylem) as a result of infection has been hypothesized to cause xylem embolism by lowering the threshold for air-seeding at the pits between conduits and disruptions in tree water transport. However, this hypothesis has not yet been tested. We investigated tree water relations by measuring the stem xylem hydraulic conductivity (Kstem), σxylem, stem relative water content (RWCstem), and water potential (Ψstem), and canopy conductance (gcanopy), as well as the compound composition in xylem sap in Norway spruce (Picea abies) saplings. We conducted our measurements at the later stage of Endoconidiophora polonica infection when visible symptoms had occurred in xylem. Saplings of two clones (44 trees altogether) were allocated to treatments of inoculated, wounded control and intact control trees in a greenhouse. The saplings were destructively sampled every second week during summer 2016. σxylem, Kstem and RWCstem decreased following the inoculation, which may indicate that decreased σxylem resulted in increased embolism. gcanopy did not differ between treatments indicating that stomata responded to Ψstem rather than to embolism formation. Concentrations of quinic acid, myo-inositol, sucrose and alkylphenol increased in the xylem sap of inoculated trees. Myo-inositol concentrations also correlated negatively with σxylem and Kstem. Our study is a preliminary investigation of the role of σxylem in E. polonica infected trees based on previous hypotheses. The results suggest that E. polonica infection can lead to a simultaneous decrease in xylem sap surface tension and a decline in tree hydraulic conductivity, thus hampering tree water transport.
Collapse
Affiliation(s)
- Teemu Paljakka
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Kaisa Rissanen
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Anni Vanhatalo
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Yann Salmon
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
- Faculty of Science, Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland
| | - Tuula Jyske
- Natural Resources Institute Finland (Luke), Espoo, Finland
| | - Nønne L. Prisle
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | | | - Jack J. Lin
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Tapio Laakso
- Natural Resources Institute Finland (Luke), Espoo, Finland
| | - Risto Kasanen
- Forest Sciences/Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Jaana Bäck
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
- Forest Sciences/Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Teemu Hölttä
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
- Forest Sciences/Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Olson M, Rosell JA, Martínez‐Pérez C, León‐Gómez C, Fajardo A, Isnard S, Cervantes‐Alcayde MA, Echeverría A, Figueroa‐Abundiz VA, Segovia‐Rivas A, Trueba S, Vázquez‐Segovia K. Xylem vessel‐diameter–shoot‐length scaling: ecological significance of porosity types and other traits. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mark Olson
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Julieta A. Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad Instituto de Ecología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Cecilia Martínez‐Pérez
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Calixto León‐Gómez
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Alex Fajardo
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP) Camino Baguales s/n Coyhaique 5951601 Chile
| | - Sandrine Isnard
- Botanique et Modélisation de l’Architecture de Plantes de des Végétations Institut de Recherche pourle Développement Centre de Coopération Internationale en Recherche Agronomique pour le Développement Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique Université de Montpellier Montpellier 34398 France
- Botanique et Modélisation de l’Architecture de Plantes de des Végétations Institut de Recherche pourle Développement Herbier de Nouvelle‐Caledonia Nouméa 98848 New Caledonia
| | - María Angélica Cervantes‐Alcayde
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Alberto Echeverría
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Víctor A. Figueroa‐Abundiz
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Alí Segovia‐Rivas
- Instituto de Biología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| | - Santiago Trueba
- Botanique et Modélisation de l’Architecture de Plantes de des Végétations Institut de Recherche pourle Développement Centre de Coopération Internationale en Recherche Agronomique pour le Développement Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique Université de Montpellier Montpellier 34398 France
- Botanique et Modélisation de l’Architecture de Plantes de des Végétations Institut de Recherche pourle Développement Herbier de Nouvelle‐Caledonia Nouméa 98848 New Caledonia
- School of Forestry & Environmental Studies Yale University New Haven Connecticut 06511 USA
| | - Karen Vázquez‐Segovia
- Laboratorio Nacional de Ciencias de la Sostenibilidad Instituto de Ecología Universidad Nacional Autónoma de México Tercer Circuito s/n de Ciudad Universitaria Ciudad de México 04510 México
| |
Collapse
|
42
|
Yang J, M Michaud J, Jansen S, Schenk HJ, Zuo YY. Dynamic surface tension of xylem sap lipids. TREE PHYSIOLOGY 2020; 40:433-444. [PMID: 32031666 DOI: 10.1093/treephys/tpaa006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/01/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The surface tension of xylem sap has been traditionally assumed to be close to that of the pure water because decreasing surface tension is thought to increase vulnerability to air seeding and embolism. However, xylem sap contains insoluble lipid-based surfactants, which also coat vessel and pit membrane surfaces, where gas bubbles can enter xylem under negative pressure in the process known as air seeding. Because of the insolubility of amphiphilic lipids, the surface tension influencing air seeding in pit pores is not the equilibrium surface tension of extracted bulk sap but the local surface tension at gas-liquid interfaces, which depends dynamically on the local concentration of lipids per surface area. To estimate the dynamic surface tension in lipid layers that line surfaces in the xylem apoplast, we studied the time-dependent and surface area-regulated surface tensions of apoplastic lipids extracted from xylem sap of four woody angiosperm plants using constrained drop surfactometry. Xylem lipids were found to demonstrate potent surface activity, with surface tensions reaching an equilibrium at ~25 mN m-1 and varying between a minimum of 19 mN m-1 and a maximum of 68 mN m-1 when changing the surface area between 50 and 160% around the equilibrium surface area. It is concluded that xylem lipid films in natural conditions most likely range from nonequilibrium metastable conditions of a supersaturated compression state to an undersaturated expansion state, depending on the local surface areas of gas-liquid interfaces. Together with findings that maximum pore constrictions in angiosperm pit membranes are much smaller than previously assumed, low dynamic surface tension in xylem turns out to be entirely compatible with the cohesion-tension and air-seeding theories, as well as with the existence of lipid-coated nanobubbles in xylem sap, and with the range of vulnerabilities to embolism observed in plants.
Collapse
Affiliation(s)
- Jinlong Yang
- Department of Mechanical Engineering, University of Hawaii at Manoa, 2540 Dole Street, Holmes Hall 302, Honolulu, HI 96822, USA
| | - Joseph M Michaud
- Department of Biological Science, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - H Jochen Schenk
- Department of Biological Science, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, 2540 Dole Street, Holmes Hall 302, Honolulu, HI 96822, USA
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, 1319 Punahou Street, Honolulu, HI 96826, USA
| |
Collapse
|
43
|
Li S, Wang J, Yin Y, Li X, Deng L, Jiang X, Chen Z, Li Y. Investigating Effects of Bordered Pit Membrane Morphology and Properties on Plant Xylem Hydraulic Functions-A Case Study from 3D Reconstruction and Microflow Modelling of Pit Membranes in Angiosperm Xylem. PLANTS (BASEL, SWITZERLAND) 2020; 9:E231. [PMID: 32054100 PMCID: PMC7076482 DOI: 10.3390/plants9020231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/18/2020] [Accepted: 02/08/2020] [Indexed: 01/12/2023]
Abstract
Pit membranes in between neighboring conduits of xylem play a crucial role in plant water transport. In this review, the morphological characteristics, chemical composition and mechanical properties of bordered pit membranes were summarized and linked with their functional roles in xylem hydraulics. The trade-off between xylem hydraulic efficiency and safety was closely related with morphology and properties of pit membranes, and xylem embolism resistance was also determined by the pit membrane morphology and properties. Besides, to further investigate the effects of bordered pit membranes morphology and properties on plant xylem hydraulic functions, here we modelled three-dimensional structure of bordered pit membranes by applying a deposition technique. Based on reconstructed 3D pit membrane structures, a virtual fibril network was generated to model the microflow pattern across inter-vessel pit membranes. Moreover, the mechanical behavior of intervessel pit membranes was estimated from a single microfibril's mechanical property. Pit membranes morphology varied among different angiosperm and gymnosperm species. Our modelling work suggested that larger pores of pit membranes do not necessarily contribute to major flow rate across pit membranes; instead, the obstructed degree of flow pathway across the pit membranes plays a more important role. Our work provides useful information for studying the mechanism of microfluid flow transport across pit membranes and also sheds light on investigating the response of pit membranes both at normal and stressed conditions, thus improving our understanding on functional roles of pit membranes in xylem hydraulic function. Further work could be done to study the morphological and mechanical response of bordered pit membranes under different dehydrated conditions, as well as the related microflow behavior, based on our constructed model.
Collapse
Affiliation(s)
- Shan Li
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Jie Wang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Yafang Yin
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Xin Li
- College of Forestry, Beijing Forestry University, Beijing 100083, China;
| | - Liping Deng
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xiaomei Jiang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; (S.L.); (J.W.); (Y.Y.); (L.D.); (X.J.)
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China
| | - Zhicheng Chen
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing 100083, China;
| | - Yujun Li
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
44
|
Wang Y, Lee J, Werber JR, Elimelech M. Capillary-driven desalination in a synthetic mangrove. SCIENCE ADVANCES 2020; 6:eaax5253. [PMID: 32128394 PMCID: PMC7034996 DOI: 10.1126/sciadv.aax5253] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 11/26/2019] [Indexed: 05/31/2023]
Abstract
According to the cohesion-tension theory, mangrove trees desalinate salty water using highly negative pressure (or tension) that is generated by evaporative capillary forces in mangrove leaves. Here, we demonstrate a synthetic mangrove that mimics the main features of the natural mangrove: capillary pumping (leaves), stable water conduction in highly metastable states (stem), and membrane desalination (root). When using nanoporous membranes as leaves, the maximum osmotic pressures of saline feeds (10 to 30 bar) allowing pure water uptake precisely correspond to expected capillary pressures based on the Young-Laplace equation. Hydrogel-based leaves allow for stable operation and desalination of hypersaline solutions with osmotic pressures approaching 400 bar, fivefold greater than the pressure limits of conventional reverse osmosis. Our findings support the applicability of the cohesion-tension theory to desalination in mangroves, provide a new platform to study plant hydraulics, and create possibilities for engineered membrane separations using large, passively generated capillary pressures.
Collapse
Affiliation(s)
- Yunkun Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Jongho Lee
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jay R. Werber
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| |
Collapse
|
45
|
Zhang Y, Carmesin C, Kaack L, Klepsch MM, Kotowska M, Matei T, Schenk HJ, Weber M, Walther P, Schmidt V, Jansen S. High porosity with tiny pore constrictions and unbending pathways characterize the 3D structure of intervessel pit membranes in angiosperm xylem. PLANT, CELL & ENVIRONMENT 2020; 43:116-130. [PMID: 31595539 DOI: 10.1111/pce.13654] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 05/29/2023]
Abstract
Pit membranes between xylem vessels play a major role in angiosperm water transport. Yet, their three-dimensional (3D) structure as fibrous porous media remains unknown, largely due to technical challenges and sample preparation artefacts. Here, we applied a modelling approach based on thickness measurements of fresh and fully shrunken pit membranes of seven species. Pore constrictions were also investigated visually by perfusing fresh material with colloidal gold particles of known sizes. Based on a shrinkage model, fresh pit membranes showed tiny pore constrictions of ca. 20 nm, but a very high porosity (i.e. pore volume fraction) of on average 0.81. Perfusion experiments showed similar pore constrictions in fresh samples, well below 50 nm based on transmission electron microscopy. Drying caused a 50% shrinkage of pit membranes, resulting in much smaller pore constrictions. These findings suggest that pit membranes represent a mesoporous medium, with the pore space characterized by multiple constrictions. Constrictions are much smaller than previously assumed, but the pore volume is large and highly interconnected. Pores do not form highly tortuous, bent, or zigzagging pathways. These insights provide a novel view on pit membranes, which is essential to develop a mechanistic, 3D understanding of air-seeding through this porous medium.
Collapse
Affiliation(s)
- Ya Zhang
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- College of Life Sciences, Anhui Normal University, Beijingdong Road 1, 241000, Wuhu, Anhui, China
| | - Cora Carmesin
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Matthias M Klepsch
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Martyna Kotowska
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Tabea Matei
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd, CA, 92831-3599, Fullerton, USA
| | - Matthias Weber
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Volker Schmidt
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069, Ulm, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
46
|
Tomasella M, Petrussa E, Petruzzellis F, Nardini A, Casolo V. The Possible Role of Non-Structural Carbohydrates in the Regulation of Tree Hydraulics. Int J Mol Sci 2019; 21:E144. [PMID: 31878253 PMCID: PMC6981889 DOI: 10.3390/ijms21010144] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 12/29/2022] Open
Abstract
The xylem is a complex system that includes a network of dead conduits ensuring long-distance water transport in plants. Under ongoing climate changes, xylem embolism is a major and recurrent cause of drought-induced tree mortality. Non-structural carbohydrates (NSC) play key roles in plant responses to drought and frost stress, and several studies putatively suggest their involvement in the regulation of xylem water transport. However, a clear picture on the roles of NSCs in plant hydraulics has not been drawn to date. We summarize the current knowledge on the involvement of NSCs during embolism formation and subsequent hydraulic recovery. Under drought, sugars are generally accumulated in xylem parenchyma and in xylem sap. At drought-relief, xylem functionality is putatively restored in an osmotically driven process involving wood parenchyma, xylem sap and phloem compartments. By analyzing the published data on stem hydraulics and NSC contents under drought/frost stress and subsequent stress relief, we found that embolism build-up positively correlated to stem NSC depletion, and that the magnitude of post-stress hydraulic recovery positively correlated to consumption of soluble sugars. These findings suggest a close relationship between hydraulics and carbohydrate dynamics. We call for more experiments on hydraulic and NSC dynamics in controlled and field conditions.
Collapse
Affiliation(s)
- Martina Tomasella
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.P.); (A.N.)
| | - Elisa Petrussa
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 91, 33100 Udine, Italy; (E.P.); (V.C.)
| | - Francesco Petruzzellis
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.P.); (A.N.)
| | - Andrea Nardini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.P.); (A.N.)
| | - Valentino Casolo
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 91, 33100 Udine, Italy; (E.P.); (V.C.)
| |
Collapse
|
47
|
De Baerdemaeker NJF, Arachchige KNR, Zinkernagel J, Van den Bulcke J, Van Acker J, Schenk HJ, Steppe K. The stability enigma of hydraulic vulnerability curves: addressing the link between hydraulic conductivity and drought-induced embolism. TREE PHYSIOLOGY 2019; 39:1646-1664. [PMID: 31274162 DOI: 10.1093/treephys/tpz078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/29/2019] [Accepted: 06/13/2019] [Indexed: 05/29/2023]
Abstract
Maintaining xylem water transport under drought is vital for plants, but xylem failure does occur when drought-induced embolisms form and progressively spread through the xylem. The hydraulic method is widely considered the gold standard to quantify drought-induced xylem embolism. The method determines hydraulic conductivity (Kh) in cut branch samples, dehydrated to specific drought levels, by pushing water through them. The technique is widely considered for its reliable Kh measurements, but there is some uncertainty in the literature over how to define stable Kh and how that relates to the degree of xylem embolism formation. Therefore, the most common setup for this method was extended to measure four parameters: (i) inlet Kh, (ii) outlet Kh, (iii) radial flow from xylem to surrounding living tissue and (iv) the pressure difference across the sample. From a strictly theoretical viewpoint, hydraulic steady state, where inflow equals outflow and radial flow is zero, will result in stable Kh. Application of the setup to Malus domestica Borkh. branches showed that achieving hydraulic steady state takes considerable time (up to 300 min) and that time to reach steady state increased with declining xylem water potentials. During each experimental run, Kh and xylem water potentials dynamically increased, which was supported by X-ray computed microtomography visualizations of embolism refilling under both high- (8 kPa) and low-pressure (2 kPa) heads. Supplying pressurized water can hence cause artificial refilling of vessels, which makes it difficult to achieve a truly stable Kh in partially embolized xylem.
Collapse
Affiliation(s)
- Niels J F De Baerdemaeker
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | | | - Jana Zinkernagel
- Department of Vegetable Crops, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Jan Van den Bulcke
- UGCT-Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Joris Van Acker
- UGCT-Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - H Jochen Schenk
- Plants and H2O Laboratory, Department of Biological Science, California State University Fullerton, PO Box 6850, Fullerton, CA 92834-6850, USA
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
48
|
Park J, Go T, Ryu J, Lee SJ. Air spreading through wetted cellulose membranes: Implications for the safety function of hydraulic valves in plants. Phys Rev E 2019; 100:032409. [PMID: 31640020 DOI: 10.1103/physreve.100.032409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Plants transport water against the risk of cavitation inside xylem vessels, called "embolism." As one of their hydraulic strategies, pit membranes composed of cellulose fibers have been known as safety valves that prevent the spreading of embolism towards adjacent xylem vessels. However, detailed observation of embolism spreading through a pit membrane is still lacking. Here, we hypothesized that the pit membranes normally remain to be wetted in xylem vessels and noticed in particular the hydraulic role of water film on air spreading that has been overlooked previously. For the hydrodynamic study of the embolism spreading through a wetted pit membrane, we investigated the penetration and spreading dynamics of air plugs through the wetted cellulose membrane in a channel flow. Air spreading exhibits two types of dynamics: continuous and discrete spreading. We elucidated the correlation of dynamic characteristics of air flow and pressure variations according to membrane thickness. Our study speculates that the thickness of pit membranes affects the behaviors of water film captured by cellulose fibers, and it is a crucial criterion for the reversible gating of further spreading of embolism throughout xylem networks.
Collapse
Affiliation(s)
- JooYoung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| | - Taesik Go
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| | - Jeongeun Ryu
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 37673, South Korea
| |
Collapse
|
49
|
Bär A, Michaletz ST, Mayr S. Fire effects on tree physiology. THE NEW PHYTOLOGIST 2019; 223:1728-1741. [PMID: 31032970 DOI: 10.1111/nph.15871] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/07/2019] [Indexed: 05/02/2023]
Abstract
Heat injuries sustained in a fire can initiate a cascade of complex mechanisms that affect the physiology of trees after fires. Uncovering the exact physiological mechanisms and relating specific injuries to whole-plant and ecosystem functioning is the focus of intense current research. Recent studies have made critical steps forward in our understanding of tree physiological processes after fires, and have suggested mechanisms by which fire injuries may interact with disturbances such as drought, insects and pathogens. We outline a conceptual framework that unifies the involved processes, their interconnections, and possible feedbacks, and contextualizes these responses with existing hypotheses for disturbance effects on plants and ecosystems. By focusing on carbon and water as currencies of plant functioning, we demonstrate fire-induced cambium/phloem necrosis and xylem damage to be main disturbance effects. The resulting carbon starvation and hydraulic dysfunction are linked with drought and insect impacts. Evaluating the precise process relationships will be crucial for fully understanding how fires can affect tree functionality, and will help improve fire risk assessment and mortality model predictions. Especially considering future climate-driven increases in fire frequency and intensity, knowledge of the physiological tree responses is important to better estimate postfire ecosystem dynamics and interactions with climate disturbances.
Collapse
Affiliation(s)
- Andreas Bär
- Department of Botany, University of Innsbruck, Sternwartestraße 15, Innsbruck, 6020, Austria
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, Innsbruck, 6020, Austria
| |
Collapse
|
50
|
Trueba S, Delzon S, Isnard S, Lens F. Similar hydraulic efficiency and safety across vesselless angiosperms and vessel-bearing species with scalariform perforation plates. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3227-3240. [PMID: 30921455 DOI: 10.1093/jxb/erz133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The evolution of xylem vessels from tracheids is put forward as a key innovation that boosted hydraulic conductivity and photosynthetic capacities in angiosperms. Yet, the role of xylem anatomy and interconduit pits in hydraulic performance across vesselless and vessel-bearing angiosperms is incompletely known, and there is a lack of functional comparisons of ultrastructural pits between species with different conduit types. We assessed xylem hydraulic conductivity and vulnerability to drought-induced embolism in 12 rain forest species from New Caledonia, including five vesselless species, and seven vessel-bearing species with scalariform perforation plates. We measured xylem conduit traits, along with ultrastructural features of the interconduit pits, to assess the relationships between conduit traits and hydraulic efficiency and safety. In spite of major differences in conduit diameter, conduit density, and the presence/absence of perforation plates, the species studied showed similar hydraulic conductivity and vulnerability to drought-induced embolism, indicating functional similarity between both types of conduits. Interconduit pit membrane thickness (Tm) was the only measured anatomical feature that showed a relationship to significant vulnerability to embolism. Our results suggest that the incidence of drought in rain forest ecosystems can have similar effects on species bearing water-conducting cells with different morphologies.
Collapse
Affiliation(s)
- Santiago Trueba
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Dr. South, Los Angeles, CA, USA
- AMAP, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Nouméa, New Caledonia
| | | | - Sandrine Isnard
- AMAP, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Nouméa, New Caledonia
| | - Frederic Lens
- Naturalis Biodiversity Center, Leiden University, Leiden, The Netherlands
| |
Collapse
|