1
|
Oliveira HFM, Freire-Jr GB, Silva DC, Mata VA, Abra FD, Camargo NFD, Araujo Goebel LG, Longo GR, Silva JM, Colli GR, Domingos FMCB. Barcoding Brazilian mammals to monitor biological diversity and threats: Trends, perspectives, and knowledge gaps. ENVIRONMENTAL RESEARCH 2024; 258:119374. [PMID: 38885824 DOI: 10.1016/j.envres.2024.119374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/11/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
DNA barcoding and environmental DNA (eDNA) represent significant advances for biomonitoring the world's biodiversity and its threats. However, these methods are highly dependent on the presence of species sequences on molecular databases. Brazil is one of the world's largest and most biologically diverse countries. However, many knowledge gaps still exist for describing, identifying, and monitoring of mammalian biodiversity using molecular methods. We aimed to unravel the patterns of the presence of Brazilian mammal species on molecular databases to improve our understanding of how effectively it would be to monitor them using DNA barcoding and environmental DNA, and contribute to mammalian conservation. We foundt many gaps in molecular databases, with many taxa being poorly represented, particularly from Amazonia, the order Lagomorpha, and arboreal, gomivorous, near extinct, and illegally traded species. Moreover, our analyses revealed that species description year was the most important factor determining the probability of a species to being sequenced. Primates are the group with the highest number of species considered a priority for sequencing due to their high level of combined threats. We highlight where investments are needed to fill knowledge gaps and increase the representativity of species on molecular databases to enable a better monitoring ability of Brazilian mammals encompassing different traits using DNA barcoding and environmental DNA.
Collapse
Affiliation(s)
- Hernani Fernandes Magalhães Oliveira
- Departamento de Zoologia, Universidade Federal do Paraná - UFPR, Curitiba, Brazil; Departamento de Zoologia, Universidade de Brasília - UnB, Brasília, Brazil; Knowledge Center for Biodiversity, Belo Horizonte, MG, 31270-901, Brazil.
| | - Geraldo Brito Freire-Jr
- Departamento de Ecologia, Universidade de Brasília - UnB, Brasília, Brazil; Department of Biology, University of Nevada - UNR, Reno, USA
| | - Daiana Cardoso Silva
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso - UNEMAT, Nova Xavantina, Brazil
| | - Vanessa Alves Mata
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Vila do Conde, Portugal
| | - Fernanda Delborgo Abra
- Smithsonian National Zoo and Conservation Biology Institute-Center for Conservation and Sustainability, Washington, DC, USA; ViaFAUNA Estudos Ambientais, São Paulo, SP, Brazil; Instituto Pró-Carnívoros, Atibaia, SP, Brazil
| | | | - L G Araujo Goebel
- Programa de Pós-graduação em Ciências Ambientais, Universidade do Estado de Mato Grosso - UNEMAT, Cáceres, Brazil
| | - Gabriela Rodrigues Longo
- Programa de Pós-graduação em Ensino de Ciências, Universidade Federal de Mato Grosso do Sul - UFMS, Campo Grande, Brazil
| | - Joaquim Manoel Silva
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso - UNEMAT, Nova Xavantina, Brazil
| | | | | |
Collapse
|
2
|
Carvalho CO, Gromstad W, Dunthorn M, Karlsen HE, Schrøder-Nielsen A, Ready JS, Haugaasen T, Sørnes G, de Boer H, Mauvisseau Q. Harnessing eDNA metabarcoding to investigate fish community composition and its seasonal changes in the Oslo fjord. Sci Rep 2024; 14:10154. [PMID: 38698067 PMCID: PMC11065990 DOI: 10.1038/s41598-024-60762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
In the face of global ecosystem changes driven by anthropogenic activities, effective biomonitoring strategies are crucial for mitigating impacts on vulnerable aquatic habitats. Time series analysis underscores a great significance in understanding the dynamic nature of marine ecosystems, especially amidst climate change disrupting established seasonal patterns. Focusing on Norway's Oslo fjord, our research utilises eDNA-based monitoring for temporal analysis of aquatic biodiversity during a one year period, with bi-monthly sampling along a transect. To increase the robustness of the study, a taxonomic assignment comparing BLAST+ and SINTAX approaches was done. Utilising MiFish and Elas02 primer sets, our study detected 63 unique fish species, including several commercially important species. Our findings reveal a substantial increase in read abundance during specific migratory cycles, highlighting the efficacy of eDNA metabarcoding for fish composition characterization. Seasonal dynamics for certain species exhibit clear patterns, emphasising the method's utility in unravelling ecological complexities. eDNA metabarcoding emerges as a cost-effective tool with considerable potential for fish community monitoring for conservation purposes in dynamic marine environments like the Oslo fjord, contributing valuable insights for informed management strategies.
Collapse
Affiliation(s)
- Cintia Oliveira Carvalho
- Natural History Museum, University of Oslo, Oslo, Norway
- Group for Integrated Biological Investigation, Center for Advanced Studies of Biodiversity, Federal University of Pará, Belém, Brazil
| | | | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | | - Jonathan Stuart Ready
- Group for Integrated Biological Investigation, Center for Advanced Studies of Biodiversity, Federal University of Pará, Belém, Brazil
| | - Torbjørn Haugaasen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Grete Sørnes
- Marine Research Station Drøbak, University of Oslo, Oslo, Norway
| | - Hugo de Boer
- Natural History Museum, University of Oslo, Oslo, Norway
| | | |
Collapse
|
3
|
Han X, Chen J, Wu L, Zhang G, Fan X, Yan T, Zhu L, Guan Y, Zhou L, Hou T, Xue X, Li X, Wang M, Xing H, Xiong X, Wang Z. Species distribution modeling combined with environmental DNA analysis to explore distribution of invasive alien mosquitofish (Gambusia affinis) in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25978-25990. [PMID: 38492140 DOI: 10.1007/s11356-024-32935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
China has become one of the most serious countries suffering from biological invasions in the world. In the context of global climate change, invasive alien species (IAS) are likely to invade a wider area, posing greater ecological and economic threats in China. Western mosquitofish (Gambusia affinis), which is known as one of the 100 most invasive alien species, has distributed widely in southern China and is gradually spreading to the north, causing serious ecological damage and economic losses. However, its distribution in China is still unclear. Hence, there is an urgent need for a more convenient way to detect and monitor the distribution of G. affinis to put forward specific management. Therefore, we detected the distribution of G. affinis in China under current and future climate change by combing Maxent modeling prediction and eDNA verification, which is a more time-saving and reliable method to estimate the distribution of species. The Maxent modeling showed that G. affinis has a broad habitat suitability in China (especially in southern China) and would continue to spread in the future with ongoing climate change. However, eDNA monitoring showed that occurrences can already be detected in regions that Maxent still categorized as unsuitable. Besides temperature, precipitation and human influence were the most important environmental factors affecting the distribution of G. affinis in China. In addition, by environmental DNA analysis, we verified the presence of G. affinis predicted by Maxent in the Qinling Mountains where the presence of G. affinis had not been previously recorded.
Collapse
Affiliation(s)
- Xu Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinxiao Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guo Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tao Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Linjun Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiangju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingrong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haoran Xing
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaofan Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Bernatchez L, Ferchaud AL, Berger CS, Venney CJ, Xuereb A. Genomics for monitoring and understanding species responses to global climate change. Nat Rev Genet 2024; 25:165-183. [PMID: 37863940 DOI: 10.1038/s41576-023-00657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/22/2023]
Abstract
All life forms across the globe are experiencing drastic changes in environmental conditions as a result of global climate change. These environmental changes are happening rapidly, incur substantial socioeconomic costs, pose threats to biodiversity and diminish a species' potential to adapt to future environments. Understanding and monitoring how organisms respond to human-driven climate change is therefore a major priority for the conservation of biodiversity in a rapidly changing environment. Recent developments in genomic, transcriptomic and epigenomic technologies are enabling unprecedented insights into the evolutionary processes and molecular bases of adaptation. This Review summarizes methods that apply and integrate omics tools to experimentally investigate, monitor and predict how species and communities in the wild cope with global climate change, which is by genetically adapting to new environmental conditions, through range shifts or through phenotypic plasticity. We identify advantages and limitations of each method and discuss future research avenues that would improve our understanding of species' evolutionary responses to global climate change, highlighting the need for holistic, multi-omics approaches to ecosystem monitoring during global climate change.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
- Parks Canada, Office of the Chief Ecosystem Scientist, Protected Areas Establishment, Quebec City, Quebec, Canada.
| | - Chloé Suzanne Berger
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
5
|
Hartig F, Abrego N, Bush A, Chase JM, Guillera-Arroita G, Leibold MA, Ovaskainen O, Pellissier L, Pichler M, Poggiato G, Pollock L, Si-Moussi S, Thuiller W, Viana DS, Warton DI, Zurell D, Yu DW. Novel community data in ecology-properties and prospects. Trends Ecol Evol 2024; 39:280-293. [PMID: 37949795 DOI: 10.1016/j.tree.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
New technologies for monitoring biodiversity such as environmental (e)DNA, passive acoustic monitoring, and optical sensors promise to generate automated spatiotemporal community observations at unprecedented scales and resolutions. Here, we introduce 'novel community data' as an umbrella term for these data. We review the emerging field around novel community data, focusing on new ecological questions that could be addressed; the analytical tools available or needed to make best use of these data; and the potential implications of these developments for policy and conservation. We conclude that novel community data offer many opportunities to advance our understanding of fundamental ecological processes, including community assembly, biotic interactions, micro- and macroevolution, and overall ecosystem functioning.
Collapse
Affiliation(s)
- Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany.
| | - Nerea Abrego
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (Survontie 9C), FI-40014 Jyväskylä, Finland
| | - Alex Bush
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | | | - Otso Ovaskainen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (Survontie 9C), FI-40014 Jyväskylä, Finland; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Loïc Pellissier
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092 Zurich, Switzerland; Unit of Land Change Science, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
| | | | - Giovanni Poggiato
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F38000, Grenoble, France
| | - Laura Pollock
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Sara Si-Moussi
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F38000, Grenoble, France
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F38000, Grenoble, France
| | | | | | | | - Douglas W Yu
- Kunming Institute of Zoology; Yunnan, China; University of East Anglia, Norfolk, UK
| |
Collapse
|
6
|
Collins G, Schneider C, Boštjančić LL, Burkhardt U, Christian A, Decker P, Ebersberger I, Hohberg K, Lecompte O, Merges D, Muelbaier H, Romahn J, Römbke J, Rutz C, Schmelz R, Schmidt A, Theissinger K, Veres R, Lehmitz R, Pfenninger M, Bálint M. The MetaInvert soil invertebrate genome resource provides insights into below-ground biodiversity and evolution. Commun Biol 2023; 6:1241. [PMID: 38066075 PMCID: PMC10709333 DOI: 10.1038/s42003-023-05621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Soil invertebrates are among the least understood metazoans on Earth. Thus far, the lack of taxonomically broad and dense genomic resources has made it hard to thoroughly investigate their evolution and ecology. With MetaInvert we provide draft genome assemblies for 232 soil invertebrate species, representing 14 common groups and 94 families. We show that this data substantially extends the taxonomic scope of DNA- or RNA-based taxonomic identification. Moreover, we confirm that theories of genome evolution cannot be generalised across evolutionarily distinct invertebrate groups. The soil invertebrate genomes presented here will support the management of soil biodiversity through molecular monitoring of community composition and function, and the discovery of evolutionary adaptations to the challenges of soil conditions.
Collapse
Affiliation(s)
- Gemma Collins
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
| | - Clément Schneider
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Ljudevit Luka Boštjančić
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
- Department of Molecular Ecology, Institute for Environmental Sciences, Rhineland-Palatinate Technical University Kaiserslautern Landau, Landau, Germany
| | | | - Axel Christian
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Peter Decker
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Ingo Ebersberger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Karin Hohberg
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Odile Lecompte
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Dominik Merges
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hannah Muelbaier
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Juliane Romahn
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
| | - Jörg Römbke
- ECT Oekotoxikologie GmbH, Flörsheim, Germany
| | - Christelle Rutz
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | | | - Alexandra Schmidt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Kathrin Theissinger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Department of Molecular Ecology, Institute for Environmental Sciences, Rhineland-Palatinate Technical University Kaiserslautern Landau, Landau, Germany
| | - Robert Veres
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Institute of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ricarda Lehmitz
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Johannes Gutenberg University, Mainz, Germany
| | - Miklós Bálint
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany.
- Department of Insect Biotechnology, Justus-Liebig University, Gießen, Germany.
| |
Collapse
|
7
|
Graham NR, Krehenwinkel H, Lim JY, Staniczenko P, Callaghan J, Andersen JC, Gruner DS, Gillespie RG. Ecological network structure in response to community assembly processes over evolutionary time. Mol Ecol 2023; 32:6489-6506. [PMID: 36738159 DOI: 10.1111/mec.16873] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 01/07/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
The dynamic structure of ecological communities results from interactions among taxa that change with shifts in species composition in space and time. However, our ability to study the interplay of ecological and evolutionary processes on community assembly remains relatively unexplored due to the difficulty of measuring community structure over long temporal scales. Here, we made use of a geological chronosequence across the Hawaiian Islands, representing 50 years to 4.15 million years of ecosystem development, to sample 11 communities of arthropods and their associated plant taxa using semiquantitative DNA metabarcoding. We then examined how ecological communities changed with community age by calculating quantitative network statistics for bipartite networks of arthropod-plant associations. The average number of interactions per species (linkage density), ratio of plant to arthropod species (vulnerability) and uniformity of energy flow (interaction evenness) increased significantly in concert with community age. The index of specializationH 2 ' has a curvilinear relationship with community age. Our analyses suggest that younger communities are characterized by fewer but stronger interactions, while biotic associations become more even and diverse as communities mature. These shifts in structure became especially prominent on East Maui (~0.5 million years old) and older volcanos, after enough time had elapsed for adaptation and specialization to act on populations in situ. Such natural progression of specialization during community assembly is probably impeded by the rapid infiltration of non-native species, with special risk to younger or more recently disturbed communities that are composed of fewer specialized relationships.
Collapse
Affiliation(s)
- Natalie R Graham
- Department of Environmental Sciences Policy and Management, University of California Berkeley, Berkeley, California, USA
| | - Henrik Krehenwinkel
- Department of Biogeography, Faculty of Regional and Environmental Sciences, Trier University, Trier, Germany
| | - Jun Ying Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Phillip Staniczenko
- Department of Biology, Brooklyn College, City University of New York, New York, New York, USA
| | - Jackson Callaghan
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, San Diego, California, USA
| | - Jeremy C Andersen
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Daniel S Gruner
- Department of Entomology, University of Maryland, College Park, Maryland, USA
| | - Rosemary G Gillespie
- Department of Environmental Sciences Policy and Management, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
8
|
Simon MP, Schatz M, Böhm L, Papp I, Grossart HP, Andersen TJ, Bálint M, Düring RA. Dissent in the sediment? Lake sediments as archives of short- and long-range impact of anthropogenic activities in northeastern Germany. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85867-85888. [PMID: 37395875 PMCID: PMC10404210 DOI: 10.1007/s11356-023-28210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
The suitability of lake sediment cores to reconstruct past inputs, regional pollution, and usage patterns of pesticides has been shown previously. Until now, no such data exist for lakes in eastern Germany. Therefore, 10 sediment cores (length 1 m) of 10 lakes in eastern Germany, the territory of the former German Democratic Republic (GDR), were collected and cut into 5-10-mm layers. In each layer, concentrations of trace elements (TEs) As, Cd, Cr, Cu, Ni, Pb, S, and Zn, as well as of organochlorine pesticides (OCPs), i.e., dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH), were analyzed. A miniaturized solid-liquid extraction technique in conjunction with headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) was used for the latter. The progression of TE concentrations over time is uniform. It follows a trans-regional pattern and is indicative of activity and policy making in West Germany before 1990 instead of those in the GDR. Of OCPs, only transformation products of DDT were found. Congener ratios indicate a mainly aerial input. In the lakes' profiles, several regional features and responses to national policies and measures are visible. Dichlorodiphenyldichloroethane (DDD) concentrations reflect the history of DDT use in the GDR. Lake sediments proved to be suitable to archive short- and long-range impacts of anthropogenic activity. Our data can be used to complement and validate other forms of environmental pollution long-term monitoring and to check for the efficiency of pollution countermeasures in the past.
Collapse
Affiliation(s)
- Marcel Pierre Simon
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Marlene Schatz
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Leonard Böhm
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - István Papp
- Doctoral School of Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Dept. Plankton and Microbial Ecology, Zur alten Fischerhütte 2, OT Neuglobsow, 16775, Stechlin, Germany
- Institute for Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469, Potsdam, Germany
| | - Thorbjørn Joest Andersen
- Section for Geography, Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350, Copenhagen K, Denmark
| | - Miklós Bálint
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute of Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Rolf-Alexander Düring
- Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
9
|
Carraro L, Blackman RC, Altermatt F. Modelling environmental DNA transport in rivers reveals highly resolved spatio-temporal biodiversity patterns. Sci Rep 2023; 13:8854. [PMID: 37258598 DOI: 10.1038/s41598-023-35614-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023] Open
Abstract
The ever-increasing threats to riverine ecosystems call for novel approaches for highly resolved biodiversity assessments across taxonomic groups and spatio-temporal scales. Recent advances in the joint use of environmental DNA (eDNA) data and eDNA transport models in rivers (e.g., eDITH) allow uncovering the full structure of riverine biodiversity, hence elucidating ecosystem processes and supporting conservation measures. We applied eDITH to a metabarcoding dataset covering three taxonomic groups (fish, invertebrates, bacteria) and three seasons for a catchment sampled for eDNA at 73 sites. We upscaled eDNA-based biodiversity predictions to approximately 1900 reaches, and assessed α- and β-diversity patterns across seasons and taxonomic groups over the whole network. Genus richness predicted by eDITH was generally higher than values from direct eDNA analysis. Both predicted α- and β-diversity varied depending on season and taxonomic group. Predicted fish α-diversity increased downstream in all seasons, while invertebrate and bacteria α-diversity either decreased downstream or were unrelated to network position. Spatial β-diversity mostly decreased downstream, especially for bacteria. The eDITH model yielded a more refined assessment of freshwater biodiversity as compared to raw eDNA data, both in terms of spatial coverage, diversity patterns and effect of covariates, thus providing a more complete picture of freshwater biodiversity.
Collapse
Affiliation(s)
- Luca Carraro
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zürich, Switzerland.
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600, Dübendorf, Switzerland.
| | - Rosetta C Blackman
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zürich, Switzerland
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600, Dübendorf, Switzerland
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zürich, Switzerland
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600, Dübendorf, Switzerland
| |
Collapse
|
10
|
Schneider S, Taylor GW, Kremer SC, Fryxell JM. Getting the bugs out of AI: Advancing ecological research on arthropods through computer vision. Ecol Lett 2023. [PMID: 37216316 DOI: 10.1111/ele.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023]
Abstract
Deep learning for computer vision has shown promising results in the field of entomology, however, there still remains untapped potential. Deep learning performance is enabled primarily by large quantities of annotated data which, outside of rare circumstances, are limited in ecological studies. Currently, to utilize deep learning systems, ecologists undergo extensive data collection efforts, or limit their problem to niche tasks. These solutions do not scale to region agnostic models. However, there are solutions that employ data augmentation, simulators, generative models, and self-supervised learning that can supplement limited labelled data. Here, we highlight the success of deep learning for computer vision within entomology, discuss data collection efforts, provide methodologies for optimizing learning from limited annotations, and conclude with practical guidelines for how to achieve a foundation model for entomology capable of accessible automated ecological monitoring on a global scale.
Collapse
Affiliation(s)
| | | | - Stefan C Kremer
- School of Computer Science, University of Guelph, Guelph, Ontario, Canada
| | - John M Fryxell
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
11
|
Boyse E, Beger M, Valsecchi E, Goodman SJ. Sampling from commercial vessel routes can capture marine biodiversity distributions effectively. Ecol Evol 2023; 13:e9810. [PMID: 36789340 PMCID: PMC9919487 DOI: 10.1002/ece3.9810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/13/2023] Open
Abstract
Collecting fine-scale occurrence data for marine species across large spatial scales is logistically challenging but is important to determine species distributions and for conservation planning. Inaccurate descriptions of species ranges could result in designating protected areas with inappropriate locations or boundaries. Optimizing sampling strategies therefore is a priority for scaling up survey approaches using tools such as environmental DNA (eDNA) to capture species distributions. In a marine context, commercial vessels, such as ferries, could provide sampling platforms allowing access to undersampled areas and repeatable sampling over time to track community changes. However, sample collection from commercial vessels could be biased and may not represent biological and environmental variability. Here, we evaluate whether sampling along Mediterranean ferry routes can yield unbiased biodiversity survey outcomes, based on perfect knowledge from a stacked species distribution model (SSDM) of marine megafauna derived from online data repositories. Simulations to allocate sampling point locations were carried out representing different sampling strategies (random vs regular), frames (ferry routes vs unconstrained), and number of sampling points. SSDMs were remade from different sampling simulations and compared with the "perfect knowledge" SSDM to quantify the bias associated with different sampling strategies. Ferry routes detected more species and were able to recover known patterns in species richness at smaller sample sizes better than unconstrained sampling points. However, to minimize potential bias, ferry routes should be chosen to cover the variability in species composition and its environmental predictors in the SSDMs. The workflow presented here can be used to design effective sampling strategies using commercial vessel routes globally for eDNA and other biodiversity survey techniques. This approach has potential to provide a cost-effective method to access remote oceanic areas on a regular basis and can recover meaningful data on spatiotemporal biodiversity patterns.
Collapse
Affiliation(s)
| | | | - Elena Valsecchi
- Department of Environmental and Earth SciencesUniversity of Milano‐BicoccaMilanItaly
| | | |
Collapse
|
12
|
Li H, Zhang H, Chang F, Liu Q, Zhang Y, Liu F, Zhang X. Sedimentary DNA for tracking the long-term changes in biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17039-17050. [PMID: 36622608 DOI: 10.1007/s11356-023-25130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Understanding long-term dynamics is vitally important for explaining current biodiversity patterns and setting conservation goals in a changing world. However, the changes in biodiversity in time and space, particularly the dynamics at the centuries or even longer time scales, are poorly documented because of a lack of continuous monitoring data. The sedimentary DNA (sedDNA) has a great potential for paleo-community reconstruction, and it has recently been used as a powerful tool to characterize past dynamics in terms of biodiversity over geological timescales. In particular, it is useful for prokaryotes and eukaryotes that do not fossilize; hence, it is revolutionizing the scope of paleoecological research. Here, a "Research Weaving" method was performed with systematic maps and bibliometric webs based on the Web of Science for Science Citation Index Expanded, presenting a comprehensive landscape of the sedDNA that traces biological dynamics. We identified that most sedDNA-based studies have focused on microbial dynamics and on using samples from multitypes of sediments. This review summarized the advantages and common applications of sedDNA, focused on the biodiversity in microbial communities, and provided an outlook for the future of sedDNA research.
Collapse
Affiliation(s)
- Haoyu Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Fengwen Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| |
Collapse
|
13
|
Decomposing predictability to identify dominant causal drivers in complex ecosystems. Proc Natl Acad Sci U S A 2022; 119:e2204405119. [PMID: 36215500 PMCID: PMC9586263 DOI: 10.1073/pnas.2204405119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ecosystems are complex systems of various physical, biological, and chemical processes. Since ecosystem dynamics are composed of a mixture of different levels of stochasticity and nonlinearity, handling these data is a challenge for existing methods of time series-based causal inferences. Here, we show that, by harnessing contemporary machine learning approaches, the concept of Granger causality can be effectively extended to the analysis of complex ecosystem time series and bridge the gap between dynamical and statistical approaches. The central idea is to use an ensemble of fast and highly predictive artificial neural networks to select a minimal set of variables that maximizes the prediction of a given variable. It enables decomposition of the relationship among variables through quantifying the contribution of an individual variable to the overall predictive performance. We show how our approach, EcohNet, can improve interaction network inference for a mesocosm experiment and simulated ecosystems. The application of the method to a long-term lake monitoring dataset yielded interpretable results on the drivers causing cyanobacteria blooms, which is a serious threat to ecological integrity and ecosystem services. Since performance of EcohNet is enhanced by its predictive capabilities, it also provides an optimized forecasting of overall components in ecosystems. EcohNet could be used to analyze complex and hybrid multivariate time series in many scientific areas not limited to ecosystems.
Collapse
|
14
|
Yao M, Zhang S, Lu Q, Chen X, Zhang SY, Kong Y, Zhao J. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol Ecol 2022; 31:5132-5164. [PMID: 35972241 DOI: 10.1111/mec.16659] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Collapse
Affiliation(s)
- Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Shan Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Qi Lu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Si-Yu Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Yueqiao Kong
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Jindong Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
15
|
van Klink R, August T, Bas Y, Bodesheim P, Bonn A, Fossøy F, Høye TT, Jongejans E, Menz MHM, Miraldo A, Roslin T, Roy HE, Ruczyński I, Schigel D, Schäffler L, Sheard JK, Svenningsen C, Tschan GF, Wäldchen J, Zizka VMA, Åström J, Bowler DE. Emerging technologies revolutionise insect ecology and monitoring. Trends Ecol Evol 2022; 37:872-885. [PMID: 35811172 DOI: 10.1016/j.tree.2022.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
Insects are the most diverse group of animals on Earth, but their small size and high diversity have always made them challenging to study. Recent technological advances have the potential to revolutionise insect ecology and monitoring. We describe the state of the art of four technologies (computer vision, acoustic monitoring, radar, and molecular methods), and assess their advantages, current limitations, and future potential. We discuss how these technologies can adhere to modern standards of data curation and transparency, their implications for citizen science, and their potential for integration among different monitoring programmes and technologies. We argue that they provide unprecedented possibilities for insect ecology and monitoring, but it will be important to foster international standards via collaboration.
Collapse
Affiliation(s)
- Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Puschstrasse 4, 04103, Leipzig, Germany; Martin Luther University-Halle Wittenberg, Department of Computer Science, 06099, Halle (Saale), Germany.
| | - Tom August
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, OX10 8BB, UK
| | - Yves Bas
- Centre d'Écologie et des Sciences de la Conservation, Muséum National d'Histoire Naturelle, Paris, France; CEFE, Université Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Paul Bodesheim
- Friedrich Schiller University Jena, Computer Vision Group, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Puschstrasse 4, 04103, Leipzig, Germany; Helmholtz - Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany; Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger Strasse 159, 07743, Jena, Germany
| | - Frode Fossøy
- Norwegian Institute for Nature Research, P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | - Toke T Høye
- Aarhus University, Department of Ecoscience and Arctic Research Centre, C.F. Møllers Allé 8, 8000, Aarhus, Denmark
| | - Eelke Jongejans
- Radboud University, Animal Ecology and Physiology, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands; Netherlands Institute of Ecology, Animal Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Myles H M Menz
- Max Planck Institute for Animal Behaviour, Department of Migration, Am Obstberg 1, 78315, Radolfzell, Germany; College of Science and Engineering, James Cook University, Townsville, Qld, Australia
| | - Andreia Miraldo
- Swedish Museum of Natural Sciences, Department of Bioinformatics and Genetics, Frescativägen 40, 114 18, Stockholm, Sweden
| | - Tomas Roslin
- Swedish University of Agricultural Sciences (SLU), Department of Ecology, Ulls väg 18B, 75651, Uppsala, Sweden
| | - Helen E Roy
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, OX10 8BB, UK
| | - Ireneusz Ruczyński
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| | - Dmitry Schigel
- Global Biodiversity Information Facility (GBIF), Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Livia Schäffler
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113, Bonn, Germany
| | - Julie K Sheard
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Puschstrasse 4, 04103, Leipzig, Germany; Helmholtz - Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany; Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger Strasse 159, 07743, Jena, Germany; University of Copenhagen, Centre for Macroecology, Evolution and Climate, Globe Institute, Universitetsparken 15, bld. 3, 2100, Copenhagen, Denmark
| | - Cecilie Svenningsen
- University of Copenhagen, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Georg F Tschan
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113, Bonn, Germany
| | - Jana Wäldchen
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Puschstrasse 4, 04103, Leipzig, Germany; Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, Hans-Knoell-Str. 10, 07745, Jena, Germany
| | - Vera M A Zizka
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113, Bonn, Germany
| | - Jens Åström
- Norwegian Institute for Nature Research, P.O. Box 5685 Torgarden, 7485, Trondheim, Norway
| | - Diana E Bowler
- German Centre for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, Puschstrasse 4, 04103, Leipzig, Germany; UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, OX10 8BB, UK; Helmholtz - Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany; Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger Strasse 159, 07743, Jena, Germany
| |
Collapse
|
16
|
Yamamichi M. How does genetic architecture affect eco-evolutionary dynamics? A theoretical perspective. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200504. [PMID: 35634922 PMCID: PMC9149794 DOI: 10.1098/rstb.2020.0504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies have revealed the importance of feedbacks between contemporary rapid evolution (i.e. evolution that occurs through changes in allele frequencies) and ecological dynamics. Despite its inherent interdisciplinary nature, however, studies on eco-evolutionary feedbacks have been mostly ecological and tended to focus on adaptation at the phenotypic level without considering the genetic architecture of evolutionary processes. In empirical studies, researchers have often compared ecological dynamics when the focal species under selection has a single genotype with dynamics when it has multiple genotypes. In theoretical studies, common approaches are models of quantitative traits where mean trait values change adaptively along the fitness gradient and Mendelian traits with two alleles at a single locus. On the other hand, it is well known that genetic architecture can affect short-term evolutionary dynamics in population genetics. Indeed, recent theoretical studies have demonstrated that genetic architecture (e.g. the number of loci, linkage disequilibrium and ploidy) matters in eco-evolutionary dynamics (e.g. evolutionary rescue where rapid evolution prevents extinction and population cycles driven by (co)evolution). I propose that theoretical approaches will promote the synthesis of functional genomics and eco-evolutionary dynamics through models that combine population genetics and ecology as well as nonlinear time-series analyses using emerging big data.
This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
17
|
Rinaldo A, Rodriguez-Iturbe I. Ecohydrology 2.0. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022; 33:245-270. [PMID: 35673327 PMCID: PMC9165276 DOI: 10.1007/s12210-022-01071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/27/2022] [Indexed: 11/23/2022]
Abstract
This paper aims at a definition of the domain of ecohydrology, a relatively new discipline borne out of an intrusion-as advertised by this Topical Collection of the Rendiconti Lincei-of hydrology and geomorphology into ecology (or vice-versa, depending on the reader's background). The study of hydrologic controls on the biota proves, in our view, significantly broader than envisioned by its original focus that was centered on the critical zone where much of the action of soil, climate and vegetation interactions takes place. In this review of related topics and contributions, we propose a reasoned broadening of perspective, in particular by firmly centering ecohydrology on the fluvial catchment as its fundamental control volume. A substantial unity of materials and methods suggests that our advocacy may be considered legitimate.
Collapse
Affiliation(s)
- Andrea Rinaldo
- Accademia Nazionale dei Lincei, Rome, Italy
- Laboratory of Ecohydrology ENAC/IIE/ECHO, École Polytechinque Fédérale de Lausanne, Lausanne, Switzerland
- Dipartimento ICEA, Università degli studi di Padova, Padua, Italy
| | - Ignacio Rodriguez-Iturbe
- Department of Ocean Engineering, Texas A&M University, College Station, TX USA
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX USA
| |
Collapse
|
18
|
Liu C, Wu F, Jiang X, Hu Y, Shao K, Tang X, Qin B, Gao G. Salinity Is a Key Determinant for the Microeukaryotic Community in Lake Ecosystems of the Inner Mongolia Plateau, China. Front Microbiol 2022; 13:841686. [PMID: 35495662 PMCID: PMC9039746 DOI: 10.3389/fmicb.2022.841686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
The arid and semiarid areas experienced remarkable lake shrinkage during recent decades due to intensive human activities and climate change, which would result in unprecedented changes of microeukaryotic communities. However, little is known about how climate change affects the structure and ecological mechanisms of microeukaryotic communities in this area. Here, we used an 18S rRNA gene-based high-throughput sequencing approach to explore the structure, interspecies interaction, and assembly processes of the microeukaryotic community in lake ecosystems of the Inner Mongolia Plateau. As a direct result of climate change, salinity has become the key determinant of the lacustrine microeukaryotic community in this region. The microeukaryotic community in this ecosystem can be divided into three groups: salt (Lake Daihai), brackish (Lake Dalinuoer) and freshwater lakes. Co-occurrence network analysis revealed that salinity shapes the interspecies interactions of the microeukaryotic community. This causes interspecies interactions to change from antagonistic to cooperative with an increase in salinity. Phylogenetic-based β-nearest taxon distance analyses revealed that stochastic processes mainly dominated the microeukaryotic community assembly in lake ecosystems of the Inner Mongolia Plateau, and salinity stress drove the assembly processes of the microeukaryotic community from stochastic to deterministic. Overall, these findings expand the current understanding of interspecies interactions and assembly processes of microeukaryotic communities during climate change in lake ecosystems of the Inner Mongolia Plateau.
Collapse
Affiliation(s)
- Changqing Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fan Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China
| | - Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China
| | - Boqiang Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China
| |
Collapse
|
19
|
Tedersoo L, Bahram M, Zinger L, Nilsson RH, Kennedy PG, Yang T, Anslan S, Mikryukov V. Best practices in metabarcoding of fungi: From experimental design to results. Mol Ecol 2022; 31:2769-2795. [PMID: 35395127 DOI: 10.1111/mec.16460] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
The development of high-throughput sequencing (HTS) technologies has greatly improved our capacity to identify fungi and unveil their ecological roles across a variety of ecosystems. Here we provide an overview of current best practices in metabarcoding analysis of fungal communities, from experimental design through molecular and computational analyses. By reanalysing published data sets, we demonstrate that operational taxonomic units (OTUs) outperform amplified sequence variants (ASVs) in recovering fungal diversity, a finding that is particularly evident for long markers. Additionally, analysis of the full-length ITS region allows more accurate taxonomic placement of fungi and other eukaryotes compared to the ITS2 subregion. Finally, we show that specific methods for compositional data analyses provide more reliable estimates of shifts in community structure. We conclude that metabarcoding analyses of fungi are especially promising for integrating fungi into the full microbiome and broader ecosystem functioning context, recovery of novel fungal lineages and ancient organisms as well as barcoding of old specimens including type material.
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Bahram
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lucie Zinger
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Naturalis Biodiversity Center, Leiden, The Netherlands
| | - R Henrik Nilsson
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Vladimir Mikryukov
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
20
|
Pfenninger M, Bálint M. On the use of population genomic time series for environmental monitoring. AMERICAN JOURNAL OF BOTANY 2022; 109:497-499. [PMID: 35253207 DOI: 10.1002/ajb2.1836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Markus Pfenninger
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Miklós Bálint
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Agricultural Sciences, Nutritional Sciences, and Environmental Management, Universität Giessen, Giessen, Germany
| |
Collapse
|
21
|
Ghanam J, Chetty VK, Barthel L, Reinhardt D, Hoyer PF, Thakur BK. DNA in extracellular vesicles: from evolution to its current application in health and disease. Cell Biosci 2022; 12:37. [PMID: 35346363 PMCID: PMC8961894 DOI: 10.1186/s13578-022-00771-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicle (EV) secretion is a highly conserved evolutionary trait in all organisms in the three domains of life. The packaging and release of EVs appears to be a bulk-flow process which takes place mainly under extreme conditions. EVs participate in horizontal gene transfer, which supports the survival of prokaryotic and eukaryotic microbes. In higher eukaryotes, almost all cells secrete a heterogeneous population of EVs loaded with various biomolecules. EV secretion is typically higher in cancer microenvironments, promoting tumor progression and metastasis. EVs are now recognized as additional mediators of autocrine and paracrine communication in health and disease. In this context, proteins and RNAs have been studied the most, but extracellular vesicle DNA (EV-DNA) has started to gain in importance in the last few years. In this review, we summarize new findings related to the loading mechanism(s), localization, and post-shedding function of EV-DNA. We also discuss the feasibility of using EV-DNA as a biomarker when performing a liquid biopsy, at the same time emphasizing the lack of data from clinical trials in this regard. Finally, we outline the potential of EV-DNA uptake and its interaction with the host genome as a promising tool for understanding the mechanisms of cancer evolution. Protecting DNA in membrane vesicles seems to be a conserved phenomenon for the horizontal genetic flux between prokaryotes and lower eukaryotes. Capturing and analyzing this vesicular DNA enables quick and non-invasive monitoring of natural ecosystems. Cancer-derived extracellular vesicles containing DNA open up novel directions in cell-to-cell communication and therefore disease monitoring. Complex and fluctuating conditions of the tumor microenvironment, mimicking natural ecosystems, could favor EV-DNA release, mediating tumor multi-clonal evolution and providing survival benefits.
Collapse
Affiliation(s)
- Jamal Ghanam
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Venkatesh Kumar Chetty
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.,Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Peter-Friedrich Hoyer
- Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Basant Kumar Thakur
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
22
|
Koskinen JS, Abrego N, Vesterinen EJ, Schulz T, Roslin T, Nyman T. Imprints of latitude, host taxon, and decay stage on fungus‐associated arthropod communities. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Janne S. Koskinen
- Department of Environmental and Biological Sciences University of Eastern Finland Joensuu Finland
- Department of Agricultural Sciences University of Helsinki Finland
| | - Nerea Abrego
- Department of Agricultural Sciences University of Helsinki Finland
- Department of Biological and Environmental Science University of Jyväskylä Finland
| | | | - Torsti Schulz
- Organismal and Evolutionary Biology Research Programme University of Helsinki Finland
| | - Tomas Roslin
- Department of Agricultural Sciences University of Helsinki Finland
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region Norwegian Institute of Bioeconomy Research Svanvik Norway
| |
Collapse
|
23
|
Cuenca-Cambronero M, Courtney-Mustaphi CJ, Greenway R, Heiri O, Hudson CM, King L, Lemmen KD, Moosmann M, Muschick M, Ngoepe N, Seehausen O, Matthews B. An integrative paleolimnological approach for studying evolutionary processes. Trends Ecol Evol 2022; 37:488-496. [DOI: 10.1016/j.tree.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
24
|
van Klink R, Bowler DE, Gongalsky KB, Chase JM. Long-term abundance trends of insect taxa are only weakly correlated. Biol Lett 2022; 18:20210554. [PMID: 35193369 PMCID: PMC8864342 DOI: 10.1098/rsbl.2021.0554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 11/12/2022] Open
Abstract
Changes in the abundances of animals, such as with the ongoing concern about insect declines, are often assumed to be general across taxa. However, this assumption is largely untested. Here, we used a database of assemblage-wide long-term insect and arachnid monitoring to compare abundance trends among co-occurring pairs of taxa. We show that 60% of co-occurring taxa qualitatively showed long-term trends in the same direction-either both increasing or both decreasing. However, in terms of magnitude, temporal trends were only weakly correlated (mean freshwater r = 0.05 (±0.03), mean terrestrial r = 0.12 (±0.09)). The strongest correlation was between trends of beetles and those of moths/butterflies (r = 0.26). Overall, even though there is some support for directional similarity in temporal trends, we find that changes in the abundance of one taxon provide little information on the changes of other taxa. No clear candidate for umbrella or indicator taxa emerged from our analysis. We conclude that obtaining a better picture of changes in insect abundances will require monitoring of multiple taxa, which remains uncommon, especially in the terrestrial realm.
Collapse
Affiliation(s)
- Roel van Klink
- German Centre for Integrative Biodiversity research – iDiv - Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
- Department of Computer Science, Martin Luther University-Halle Wittenberg, 06099 Halle (Saale), Germany
| | - Diana E. Bowler
- German Centre for Integrative Biodiversity research – iDiv - Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany
- Helmholtz - Centre for Environmental Research – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Konstantin B. Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr., 33, Moscow 119071, Russia
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity research – iDiv - Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
- Department of Computer Science, Martin Luther University-Halle Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
25
|
Blaxter M, Archibald JM, Childers AK, Coddington JA, Crandall KA, Di Palma F, Durbin R, Edwards SV, Graves JAM, Hackett KJ, Hall N, Jarvis ED, Johnson RN, Karlsson EK, Kress WJ, Kuraku S, Lawniczak MKN, Lindblad-Toh K, Lopez JV, Moran NA, Robinson GE, Ryder OA, Shapiro B, Soltis PS, Warnow T, Zhang G, Lewin HA. Why sequence all eukaryotes? Proc Natl Acad Sci U S A 2022; 119:e2115636118. [PMID: 35042801 PMCID: PMC8795522 DOI: 10.1073/pnas.2115636118] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.
Collapse
Affiliation(s)
- Mark Blaxter
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom;
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada
| | - Anna K Childers
- Bee Research Laboratory, Agricultural Research Service, US Department of Agriculture (USDA), Beltsville, MD 20705
| | - Jonathan A Coddington
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Keith A Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC 20052
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC 20013
| | - Federica Di Palma
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Richard Durbin
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Jennifer A M Graves
- School of Life Sciences, La Trobe University, Bundoora, VIC 751 23, Australia
- University of Canberra, Bruce, ACT 2617, Australia
| | - Kevin J Hackett
- Crop Production and Protection, Office of National Programs, Agricultural Research Service, USDA, Beltsville, MD 20705
| | - Neil Hall
- Earlham Institute, Norwich, Norfolk NR4 7UZ, United Kingdom
| | - Erich D Jarvis
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY 10065
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Rebecca N Johnson
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - W John Kress
- Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012
| | - Shigehiro Kuraku
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | | | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 751 23, Sweden
| | - Jose V Lopez
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL 33004
- Guy Harvey Oceanographic Center, Dania Beach, FL 33004
| | - Nancy A Moran
- Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Oliver A Ryder
- Conservation Genetics, Division of Biology, San Diego Zoo Wildlife Alliance, Escondido, CA 92027
- Department of Evolution, Behavior and Ecology, University of California, San Diego, La Jolla, CA 92039
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
- Biodiversity Institute, University of Florida, Gainesville, FL 32611
| | - Tandy Warnow
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61301
| | - Guojie Zhang
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
- China National Genebank, Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Harris A Lewin
- Department of Evolution and Ecology, College of Biological Sciences, University of California, Davis, CA 95616
- Department of Population Health and Reproduction, University of California, Davis, CA 95616
| |
Collapse
|
26
|
Huang S, Stoof-Leichsenring KR, Liu S, Courtin J, Andreev AA, Pestryakova LA, Herzschuh U. Plant Sedimentary Ancient DNA From Far East Russia Covering the Last 28,000 Years Reveals Different Assembly Rules in Cold and Warm Climates. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.763747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Woody plants are expanding into the Arctic in response to the warming climate. The impact on arctic plant communities is not well understood due to the limited knowledge about plant assembly rules. Records of past plant diversity over long time series are rare. Here, we applied sedimentary ancient DNA metabarcoding targeting the P6 loop of the chloroplast trnL gene to a sediment record from Lake Ilirney (central Chukotka, Far Eastern Russia) covering the last 28 thousand years. Our results show that forb-rich steppe-tundra and dwarf-shrub tundra dominated during the cold climate before 14 ka, while deciduous erect-shrub tundra was abundant during the warm period since 14 ka. Larix invasion during the late Holocene substantially lagged behind the likely warmest period between 10 and 6 ka, where the vegetation biomass could be highest. We reveal highest richness during 28–23 ka and a second richness peak during 13–9 ka, with both periods being accompanied by low relative abundance of shrubs. During the cold period before 14 ka, rich plant assemblages were phylogenetically clustered, suggesting low genetic divergence in the assemblages despite the great number of species. This probably originates from environmental filtering along with niche differentiation due to limited resources under harsh environmental conditions. In contrast, during the warmer period after 14 ka, rich plant assemblages were phylogenetically overdispersed. This results from a high number of species which were found to harbor high genetic divergence, likely originating from an erratic recruitment process in the course of warming. Some of our evidence may be of relevance for inferring future arctic plant assembly rules and diversity changes. By analogy to the past, we expect a lagged response of tree invasion. Plant richness might overshoot in the short term; in the long-term, however, the ongoing expansion of deciduous shrubs will eventually result in a phylogenetically more diverse community.
Collapse
|
27
|
Amarasiri M, Furukawa T, Nakajima F, Sei K. Pathogens and disease vectors/hosts monitoring in aquatic environments: Potential of using eDNA/eRNA based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148810. [PMID: 34265610 DOI: 10.1016/j.scitotenv.2021.148810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Infectious diseases are spreading in to previously unreported geographical regions, and are reappeared in regions 75 or 100 years after their last reported case, as a result of environmental changes caused by anthropogenic activities. A pathogen, vector/host monitoring methodology is therefore indispensable in identifying potential transmission sites, providing early warnings and evaluating the human health risks of these infectious diseases in a given area. Recently, environmental DNA (eDNA) and environmental RNA approach (eRNA) have become widespread in monitoring organisms in the environment due to advantages like lower cost, time, and labour requirements. However, eDNA/eRNA based monitoring of pathogens and vectors/hosts using aquatic samples is limited to very few studies. In this review, we summarized the currently available eDNA/eRNA based human and non-human pathogens and vectors/hosts detection studies in aquatic samples. Species-specific shedding, transport, and decay of eDNA/eRNA in aquatic environments which is essential in estimating the abundance of pathogen, vectors/host in focus is also summarized. We also suggest the usage of eDNA/eRNA approach in urban aquatic samples like runoff in identifying the disease vectors/hosts inhabiting in locations which are not accessible easily.
Collapse
Affiliation(s)
- Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami 252-0373, Japan.
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami 252-0373, Japan
| | - Fumiyuki Nakajima
- Environmental Science Center, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami 252-0373, Japan
| |
Collapse
|
28
|
Shirazi S, Meyer RS, Shapiro B. Revisiting the effect of PCR replication and sequencing depth on biodiversity metrics in environmental DNA metabarcoding. Ecol Evol 2021; 11:15766-15779. [PMID: 34824788 PMCID: PMC8601883 DOI: 10.1002/ece3.8239] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
Environmental DNA (eDNA) metabarcoding is an increasingly popular tool for measuring and cataloguing biodiversity. Because the environments and substrates in which DNA is preserved differ considerably, eDNA research often requires bespoke approaches to generating eDNA data. Here, we explore how two experimental choices in eDNA study design-the number of PCR replicates and the depth of sequencing of PCR replicates-influence the composition and consistency of taxa recovered from eDNA extracts. We perform 24 PCR replicates from each of six soil samples using two of the most common metabarcodes for Fungi and Viridiplantae (ITS1 and ITS2), and sequence each replicate to an average depth of ~84,000 reads. We find that PCR replicates are broadly consistent in composition and relative abundance of dominant taxa, but that low abundance taxa are often unique to one or a few PCR replicates. Taxa observed in one out of 24 PCR replicates make up 21-29% of the total taxa detected. We also observe that sequencing depth or rarefaction influences alpha diversity and beta diversity estimates. Read sampling depth influences local contribution to beta diversity, placement in ordinations, and beta dispersion in ordinations. Our results suggest that, because common taxa drive some alpha diversity estimates, few PCR replicates and low read sampling depths may be sufficient for many biological applications of eDNA metabarcoding. However, because rare taxa are recovered stochastically, eDNA metabarcoding may never fully recover the true amplifiable alpha diversity in an eDNA extract. Rare taxa drive PCR replicate outliers of alpha and beta diversity and lead to dispersion differences at different read sampling depths. We conclude that researchers should consider the complexity and unevenness of a community when choosing analytical approaches, read sampling depths, and filtering thresholds to arrive at stable estimates.
Collapse
Affiliation(s)
- Sabrina Shirazi
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Rachel S. Meyer
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Beth Shapiro
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of California Santa CruzSanta CruzCaliforniaUSA
| |
Collapse
|
29
|
Eastwood N, Stubbings WA, Abou-Elwafa Abdallah MA, Durance I, Paavola J, Dallimer M, Pantel JH, Johnson S, Zhou J, Hosking JS, Brown JB, Ullah S, Krause S, Hannah DM, Crawford SE, Widmann M, Orsini L. The Time Machine framework: monitoring and prediction of biodiversity loss. Trends Ecol Evol 2021; 37:138-146. [PMID: 34772522 DOI: 10.1016/j.tree.2021.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 10/19/2022]
Abstract
Transdisciplinary solutions are needed to achieve the sustainability of ecosystem services for future generations. We propose a framework to identify the causes of ecosystem function loss and to forecast the future of ecosystem services under different climate and pollution scenarios. The framework (i) applies an artificial intelligence (AI) time-series analysis to identify relationships among environmental change, biodiversity dynamics and ecosystem functions; (ii) validates relationships between loss of biodiversity and environmental change in fabricated ecosystems; and (iii) forecasts the likely future of ecosystem services and their socioeconomic impact under different pollution and climate scenarios. We illustrate the framework by applying it to watersheds, and provide system-level approaches that enable natural capital restoration by associating multidecadal biodiversity changes to chemical pollution.
Collapse
Affiliation(s)
- Niamh Eastwood
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - William A Stubbings
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Isabelle Durance
- School of Biosciences and Water Research Institute, Cardiff University, Cardiff, CF10 3AX, UK
| | - Jouni Paavola
- Sustainability Research Institute, School of Earth & Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Martin Dallimer
- Sustainability Research Institute, School of Earth & Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Jelena H Pantel
- Department of Computer Science, Mathematics, and Environmental Science, The American University of Paris, 6 rue du Colonel Combes, 75007 Paris, France
| | - Samuel Johnson
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK; The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK
| | - Jiarui Zhou
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - J Scott Hosking
- British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, UK; The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK
| | - James B Brown
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sami Ullah
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephan Krause
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David M Hannah
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sarah E Crawford
- Institute of Ecology, Evolution and Diversity, Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, 60438, Germany
| | - Martin Widmann
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK; The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK.
| |
Collapse
|
30
|
Foster NR, van Dijk KJ, Biffin E, Young JM, Thomson VA, Gillanders BM, Jones AR, Waycott M. A Multi-Gene Region Targeted Capture Approach to Detect Plant DNA in Environmental Samples: A Case Study From Coastal Environments. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabarcoding of plant DNA recovered from environmental samples, termed environmental DNA (eDNA), has been used to detect invasive species, track biodiversity changes, and reconstruct past ecosystems. The P6 loop of the trnL intron is the most widely utilised gene region for metabarcoding plants due to the short fragment length and subsequent ease of recovery from degraded DNA, which is characteristic of environmental samples. However, the taxonomic resolution for this gene region is limited, often precluding species level identification. Additionally, targeting gene regions using universal primers can bias results as some taxa will amplify more effectively than others. To increase the ability of DNA metabarcoding to better resolve flowering plant species (angiosperms) within environmental samples, and reduce bias in amplification, we developed a multi-gene targeted capture method that simultaneously targets 20 chloroplast gene regions in a single assay across all flowering plant species. Using this approach, we effectively recovered multiple chloroplast gene regions for three species within artificial DNA mixtures down to 0.001 ng/μL of DNA. We tested the detection level of this approach, successfully recovering target genes for 10 flowering plant species. Finally, we applied this approach to sediment samples containing unknown compositions of eDNA and confidently detected plant species that were later verified with observation data. Targeting multiple chloroplast gene regions in environmental samples, enabled species-level information to be recovered from complex DNA mixtures. Thus, the method developed here, confers an improved level of data on community composition, which can be used to better understand flowering plant assemblages in environmental samples.
Collapse
|
31
|
Pichler M, Hartig F. A new joint species distribution model for faster and more accurate inference of species associations from big community data. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Florian Hartig
- Theoretical Ecology University of Regensburg Regensburg Germany
| |
Collapse
|
32
|
Brasell KA, Howarth J, Pearman JK, Fitzsimons SJ, Zaiko A, Pochon X, Vandergoes MJ, Simon K, Wood SA. Lake microbial communities are not resistant or resilient to repeated large-scale natural pulse disturbances. Mol Ecol 2021; 30:5137-5150. [PMID: 34379827 DOI: 10.1111/mec.16110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
Opportunities to study community level responses to extreme natural pulse disturbances in unaltered ecosystems are rare. Lake sediment records that span thousands of years can contain well resolved sediment pulses, triggered by earthquakes. These paleo-records provide a means to study repeated pulse disturbance and processes of resistance (insensitivity to disturbance) and ecological resilience (capacity to regain structure, function and process). In this study, sedimentary DNA was extracted from a sediment core from Lake Paringa (New Zealand) that is situated in a near natural catchment. Metabarcoding and inferred functions were used to assess the lake microbial community over the past 1,100 years - a period that included four major earthquakes. Microbial community composition and function differed significantly between highly perturbed (postseismic, c. 50 yrs) phases directly after the earthquakes and more stable (interseismic, c. 250 yr) phases, indicating a lack of community resistance. Although community structure differed significantly in successive postseismic phases, function did not, suggesting potential functional redundancy. Significant differences in composition and function in successive interseismic phases demonstrates communities are not resilient to large-scale natural pulse disturbances. The clear difference in structure and function, and high number of indicator taxa (responsible for driving differences in communities between phases) in the fourth interseismic phase likely represents a regime shift, possibly due to the two-fold increase in sediment and terrestrial biospheric organic carbon fluxes recorded following the fourth earthquake. Large pulse disturbances that enhance sediment inputs into lake systems may produce an underappreciated mechanism that destabilises lake ecosystem processes.
Collapse
Affiliation(s)
- Katie A Brasell
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,University of Auckland, Auckland, New Zealand
| | | | - John K Pearman
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | | | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,University of Auckland, Auckland, New Zealand
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,University of Auckland, Auckland, New Zealand
| | | | - Kevin Simon
- University of Auckland, Auckland, New Zealand
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
33
|
Cordier T, Alonso‐Sáez L, Apothéloz‐Perret‐Gentil L, Aylagas E, Bohan DA, Bouchez A, Chariton A, Creer S, Frühe L, Keck F, Keeley N, Laroche O, Leese F, Pochon X, Stoeck T, Pawlowski J, Lanzén A. Ecosystems monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap. Mol Ecol 2021; 30:2937-2958. [PMID: 32416615 PMCID: PMC8358956 DOI: 10.1111/mec.15472] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/25/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
A decade after environmental scientists integrated high-throughput sequencing technologies in their toolbox, the genomics-based monitoring of anthropogenic impacts on the biodiversity and functioning of ecosystems is yet to be implemented by regulatory frameworks. Despite the broadly acknowledged potential of environmental genomics to this end, technical limitations and conceptual issues still stand in the way of its broad application by end-users. In addition, the multiplicity of potential implementation strategies may contribute to a perception that the routine application of this methodology is premature or "in development", hence restraining regulators from binding these tools into legal frameworks. Here, we review recent implementations of environmental genomics-based methods, applied to the biomonitoring of ecosystems. By taking a general overview, without narrowing our perspective to particular habitats or groups of organisms, this paper aims to compare, review and discuss the strengths and limitations of four general implementation strategies of environmental genomics for monitoring: (a) Taxonomy-based analyses focused on identification of known bioindicators or described taxa; (b) De novo bioindicator analyses; (c) Structural community metrics including inferred ecological networks; and (d) Functional community metrics (metagenomics or metatranscriptomics). We emphasise the utility of the three latter strategies to integrate meiofauna and microorganisms that are not traditionally utilised in biomonitoring because of difficult taxonomic identification. Finally, we propose a roadmap for the implementation of environmental genomics into routine monitoring programmes that leverage recent analytical advancements, while pointing out current limitations and future research needs.
Collapse
Affiliation(s)
- Tristan Cordier
- Department of Genetics and EvolutionScience IIIUniversity of GenevaGenevaSwitzerland
| | - Laura Alonso‐Sáez
- AZTIMarine ResearchBasque Research and Technology Alliance (BRTA)Spain
| | | | - Eva Aylagas
- Red Sea Research Center (RSRC)Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - David A. Bohan
- AgroécologieINRAEUniversity of BourgogneUniversity Bourgogne Franche‐ComtéDijonFrance
| | | | - Anthony Chariton
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| | - Simon Creer
- School of Natural SciencesBangor UniversityGwyneddUK
| | - Larissa Frühe
- Department of EcologyTechnische Universität KaiserslauternKaiserslauternGermany
| | | | - Nigel Keeley
- Benthic Resources and Processes GroupInstitute of Marine ResearchTromsøNorway
| | - Olivier Laroche
- Benthic Resources and Processes GroupInstitute of Marine ResearchTromsøNorway
| | - Florian Leese
- Aquatic Ecosystem ResearchFaculty of BiologyUniversity of Duisburg‐EssenEssenGermany
- Centre for Water and Environmental Research (ZWU)University of Duisburg‐EssenEssenGermany
| | - Xavier Pochon
- Coastal & Freshwater GroupCawthron InstituteNelsonNew Zealand
- Institute of Marine ScienceUniversity of AucklandWarkworthNew Zealand
| | - Thorsten Stoeck
- Department of EcologyTechnische Universität KaiserslauternKaiserslauternGermany
| | - Jan Pawlowski
- Department of Genetics and EvolutionScience IIIUniversity of GenevaGenevaSwitzerland
- ID‐Gene EcodiagnosticsGenevaSwitzerland
- Institute of OceanologyPolish Academy of SciencesSopotPoland
| | - Anders Lanzén
- AZTIMarine ResearchBasque Research and Technology Alliance (BRTA)Spain
- Basque Foundation for ScienceIKERBASQUEBilbaoSpain
| |
Collapse
|
34
|
Sediment archives reveal irreversible shifts in plankton communities after World War II and agricultural pollution. Curr Biol 2021; 31:2682-2689.e7. [PMID: 33887182 DOI: 10.1016/j.cub.2021.03.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/12/2021] [Accepted: 03/23/2021] [Indexed: 01/04/2023]
Abstract
To evaluate the stability and resilience1 of coastal ecosystem communities to perturbations that occurred during the Anthropocene,2 pre-industrial biodiversity baselines inferred from paleoarchives are needed.3,4 The study of ancient DNA (aDNA) from sediments (sedaDNA)5 has provided valuable information about past dynamics of microbial species6-8 and communities9-18 in relation to ecosystem variations. Shifts in planktonic protist communities might significantly affect marine ecosystems through cascading effects,19-21 and therefore the analysis of this compartment is essential for the assessment of ecosystem variations. Here, sediment cores collected from different sites of the Bay of Brest (northeast Atlantic, France) allowed ca. 1,400 years of retrospective analyses of the effects of human pollution on marine protists. Comparison of sedaDNA extractions and metabarcoding analyses with different barcode regions (V4 and V7 18S rDNA) revealed that protist assemblages in ancient sediments are mainly composed of species known to produce resting stages. Heavy-metal pollution traces in sediments were ascribed to the World War II period and coincided with community shifts within dinoflagellates and stramenopiles. After the war and especially from the 1980s to 1990s, protist genera shifts followed chronic contaminations of agricultural origin. Community composition reconstruction over time showed that there was no recovery to a Middle Ages baseline composition. This demonstrates the irreversibility of the observed shifts after the cumulative effect of war and agricultural pollutions. Developing a paleoecological approach, this study highlights how human contaminations irreversibly affect marine microbial compartments, which contributes to the debate on coastal ecosystem preservation and restoration.
Collapse
|
35
|
Wesselmann M, Geraldi NR, Duarte CM, Garcia-Orellana J, Díaz-Rúa R, Arias-Ortiz A, Hendriks IE, Apostolaki ET, Marbà N. Seagrass (Halophila stipulacea) invasion enhances carbon sequestration in the Mediterranean Sea. GLOBAL CHANGE BIOLOGY 2021; 27:2592-2607. [PMID: 33843114 DOI: 10.1111/gcb.15589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
The introduction and establishment of exotic species often result in significant changes in recipient communities and their associated ecosystem services. However, usually the magnitude and direction of the changes are difficult to quantify because there is no pre-introduction data. Specifically, little is known about the effect of marine exotic macrophytes on organic carbon sequestration and storage. Here, we combine dating sediment cores (210 Pb) with sediment eDNA fingerprinting to reconstruct the chronology of pre- and post-arrival of the Red Sea seagrass Halophila stipulacea spreading into the Eastern Mediterranean native seagrass meadows. We then compare sediment organic carbon storage and burial rates before and after the arrival of H. stipulacea and between exotic (H. stipulacea) and native (C. nodosa and P. oceanica) meadows since the time of arrival following a Before-After-Control-Impact (BACI) approach. This analysis revealed that H. stipulacea arrived at the areas of study in Limassol (Cyprus) and West Crete (Greece) in the 1930s and 1970s, respectively. Average sediment organic carbon after the arrival of H. stipulacea to the sites increased in the exotic meadows twofold, from 8.4 ± 2.5 g Corg m-2 year-1 to 14.7 ± 3.6 g Corg m-2 year-1 , and, since then, burial rates in the exotic seagrass meadows were higher than in native ones of Cymodocea nodosa and Posidonia oceanica. Carbon isotopic data indicated a 50% increase of the seagrass contribution to the total sediment Corg pool since the arrival of H. stipulacea. Our results demonstrate that the invasion of H. stipulacea may play an important role in maintaining the blue carbon sink capacity in the future warmer Mediterranean Sea, by developing new carbon sinks in bare sediments and colonizing areas previously occupied by the colder thermal affinity P. oceanica.
Collapse
Affiliation(s)
- Marlene Wesselmann
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Esporles, Spain
| | - Nathan R Geraldi
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jordi Garcia-Orellana
- Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rubén Díaz-Rúa
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ariane Arias-Ortiz
- Ecosystem Science Division, Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
- Institute of Marine Science, University of California, Santa Cruz, CA, USA
| | - Iris E Hendriks
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Esporles, Spain
| | - Eugenia T Apostolaki
- Institute of Oceanography, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Núria Marbà
- Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Esporles, Spain
| |
Collapse
|
36
|
Takahashi M, Wada K, Takano Y, Matsuno K, Masuda Y, Arai K, Murayama M, Tomaru Y, Tanaka K, Nagasaki K. Chronological distribution of dinoflagellate-infecting RNA virus in marine sediment core. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145220. [PMID: 33517015 DOI: 10.1016/j.scitotenv.2021.145220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
A bivalve-killing marine dinoflagellate, Heterocapsa circularisquama, is susceptible to the infectious single-stranded RNA virus, Heterocapsa circularisquama RNA virus (HcRNAV). The ecological relationship between H. circularisquama and HcRNAV was intensively studied from 2001 through 2005; however, only limited data are available for the ecological dynamics of HcRNAV before 2001. In this study, we applied radiometric dating and reverse transcription PCR (RT-PCR) to determine the chronological distribution of HcRNAV in a marine sediment core sampled from the Uranouchi Inlet, Kochi, Japan, where H. circularisquama was first discovered. Our results show that HcRNAV had existed in the inlet long before its first bloom in 1988. Furthermore, five HcRNAV variants, phylogenetically distinguishable based on the nucleotide sequence of the major capsid protein (MCP) gene, were identified. These variants were found to be distributed throughout the core over time, suggesting that the HcRNAV sequences registered in the NCBI database are only a portion of the variants that have emerged in the history of HcRNAV diversification. Herein, we have verified the applicability of the retrospective approach for speculating the distribution of algal RNA viruses over time in aquatic environments.
Collapse
Affiliation(s)
- Michiko Takahashi
- Faculty of Science and Technology, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yoshihito Takano
- Faculty of Science and Technology, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Kyouhei Matsuno
- Japan Software Management, Yokohama 221-0056, Kanagawa, Japan
| | - Yuichi Masuda
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Kazuno Arai
- Center for Advanced Marine Core Research, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Masafumi Murayama
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan; Center for Advanced Marine Core Research, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi 739-0452, Hiroshima, Japan
| | - Kouki Tanaka
- Usa Marine Biological Institute, Kochi University, Usa 781-1164, Kochi, Japan
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Nankoku 783-8502, Kochi, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan; Center for Advanced Marine Core Research, Kochi University, Nankoku 783-8502, Kochi, Japan.
| |
Collapse
|
37
|
Liu S, Li K, Jia W, Stoof-Leichsenring KR, Liu X, Cao X, Herzschuh U. Vegetation Reconstruction From Siberia and the Tibetan Plateau Using Modern Analogue Technique–Comparing Sedimentary (Ancient) DNA and Pollen Data. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.668611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To reconstruct past vegetation from pollen or, more recently, lake sedimentary DNA (sedDNA) data is a common goal in palaeoecology. To overcome the bias of a researcher’s subjective assessment and to assign past assemblages to modern vegetation types quantitatively, the modern analogue technique (MAT) is often used for vegetation reconstruction. However, a rigorous comparison of MAT-derived pollen-based and sedDNA-based vegetation reconstruction is lacking. Here, we assess the dissimilarity between modern taxa assemblages from lake surface-sediments and fossil taxa assemblages from four lake sediment cores from the south-eastern Tibetan Plateau and northern Siberia using receiver operating characteristic (ROC) curves, ordination methods, and Procrustes analyses. Modern sedDNA samples from 190 lakes and pollen samples from 136 lakes were collected from a variety of vegetation types. Our results show that more modern analogues are found with sedDNA than pollen when applying similarly derived thresholds. In particular, there are few modern pollen analogues for open vegetation such as alpine or arctic tundra, limiting the ability of treeline shifts to be clearly reconstructed. In contrast, the shifts in the main vegetation communities are well captured by sedimentary ancient DNA (sedaDNA). For example, pronounced shifts from late-glacial alpine meadow/steppe to early–mid-Holocene coniferous forests to late Holocene Tibetan shrubland vegetation types are reconstructed for Lake Naleng on the south-eastern Tibetan Plateau. Procrustes and PROTEST analyses reveal that intertaxa relationships inferred from modern sedaDNA datasets align with past relationships generally, while intertaxa relationships derived from modern pollen spectra are mostly significantly different from fossil pollen relationships. Overall, we conclude that a quantitative sedaDNA-based vegetation reconstruction using MAT is more reliable than a pollen-based reconstruction, probably because of the more straightforward taphonomy that can relate sedDNA assemblages to the vegetation surrounding the lake.
Collapse
|
38
|
Troth CR, Sweet MJ, Nightingale J, Burian A. Seasonality, DNA degradation and spatial heterogeneity as drivers of eDNA detection dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144466. [PMID: 33736342 DOI: 10.1016/j.scitotenv.2020.144466] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
In recent years, eDNA-based assessments have evolved as valuable tools for research and conservation. Most eDNA-based applications rely on comparisons across time or space. However, temporal, and spatial dynamics of eDNA concentrations are shaped by various drivers that can affect the reliability of such comparative approaches. Here, we assessed (i) seasonal variability, (ii) degradation rates and (iii) micro-habitat heterogeneity of eDNA concentrations as key factors likely to inflict uncertainty in across site and time comparisons. In a controlled mesocosm experiment, using the white-clawed crayfish as a model organism, we found detection probabilities of technical replicates to vary substantially and range from as little as 20 to upwards of 80% between seasons. Further, degradation rates of crayfish eDNA were low and target eDNA was still detectable 14-21 days after the removal of crayfish. Finally, we recorded substantial small-scale in-situ heterogeneity and large variability among sampling sites in a single pond of merely 1000m2 in size. Consequently, all three tested drivers of spatial and temporal variation have the potential to severely impact the reliability of eDNA-based site comparisons and need to be accounted for in sampling design and data analysis of field-based applications.
Collapse
Affiliation(s)
- Christopher R Troth
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby DE22 1GB, UK; SureScreen Scientifics Ltd, Morley Retreat, Church Lane, Morley DE7 6DE, UK.
| | - Michael J Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby DE22 1GB, UK.
| | - Jen Nightingale
- Bristol Zoological Society, Clifton, Bristol, UK; School of Biological Sciences, University of Bristol, Bristol, UK
| | - Alfred Burian
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby DE22 1GB, UK; Marine Ecology Department, Lurio University, Nampula, Mozambique
| |
Collapse
|
39
|
Jurburg SD, Keil P, Singh BK, Chase JM. All together now: Limitations and recommendations for the simultaneous analysis of all eukaryotic soil sequences. Mol Ecol Resour 2021; 21:1759-1771. [PMID: 33943001 DOI: 10.1111/1755-0998.13401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The soil environment contains a large, but historically underexplored, reservoir of biodiversity. Sequencing prokaryotic marker genes has become commonplace for the discovery and characterization of soil bacteria and archaea. Increasingly, this approach is also applied to eukaryotic marker genes to characterize the diversity and distribution of soil eukaryotes. However, understanding the properties and limitations of eukaryotic marker sequences is essential for correctly analysing, interpreting, and synthesizing the resulting data. Here, we illustrate several biases from sequencing data that affect measurements of biodiversity that arise from variation in morphology, taxonomy and phylogeny between organisms, as well as from sampling designs. We recommend analytical approaches to overcome these limitations, and outline how the benchmarking and standardization of sequencing protocols may improve the comparability of the data.
Collapse
Affiliation(s)
- Stephanie D Jurburg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Petr Keil
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Computer Science, Martin Luther University, Halle-Wittenberg, Halle, Germany.,Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha-Suchdol, Czech Republic
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, and Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Computer Science, Martin Luther University, Halle-Wittenberg, Halle, Germany
| |
Collapse
|
40
|
Pearman JK, Thomson-Laing G, Howarth JD, Vandergoes MJ, Thompson L, Rees A, Wood SA. Investigating variability in microbial community composition in replicate environmental DNA samples down lake sediment cores. PLoS One 2021; 16:e0250783. [PMID: 33939728 PMCID: PMC8092796 DOI: 10.1371/journal.pone.0250783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/14/2021] [Indexed: 01/04/2023] Open
Abstract
Lake sediments are natural archives that accumulate information on biological communities and their surrounding catchments. Paleolimnology has traditionally focussed on identifying fossilized organisms to reconstruct past environments. In the last decade, the application of molecular methodologies has increased in paleolimnological studies, but further research investigating factors such as sample heterogeneity and DNA degradation are required. In the present study we investigated bacterial community heterogeneity (16S rRNA metabarcoding) within depth slices (1-cm width). Sediment cores were collected from three lakes with differing sediment compositions. Samples were collected from a variety of depths which represent a period of time of approximately 1,200 years. Triplicate samples were collected from each depth slice and bacterial 16S rRNA metabarcoding was undertaken on each sample. Accumulation curves demonstrated that except for the deepest (oldest) slices, the combination of three replicate samples were insufficient to characterise the entire bacterial diversity. However, shared Amplicon Sequence Variants (ASVs) accounted for the majority of the reads in each depth slice (max. shared proportional read abundance 96%, 86%, 65% in the three lakes). Replicates within a depth slice generally clustered together in the Non-metric multidimensional scaling analysis. There was high community dissimilarity in older sediment in one of the cores, which was likely due to the laminae in the sediment core not being horizontal. Given that most paleolimnology studies explore broad scale shifts in community structure rather than seeking to identify rare species, this study demonstrates that a single sample is adequate to characterise shifts in dominant bacterial ASVs.
Collapse
Affiliation(s)
- John K. Pearman
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | | | | | | | - Lucy Thompson
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Andrew Rees
- Victoria University of Wellington, Wellington, New Zealand
| | - Susanna A. Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
41
|
Holman LE, de Bruyn M, Creer S, Carvalho G, Robidart J, Rius M. Animals, protists and bacteria share marine biogeographic patterns. Nat Ecol Evol 2021; 5:738-746. [PMID: 33859375 DOI: 10.1038/s41559-021-01439-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Over millennia, ecological and evolutionary mechanisms have shaped macroecological patterns across the tree of life. Research describing these patterns at both regional and global scales has traditionally focused on the study of metazoan species. Consequently, there is a limited understanding of cross-phylum biogeographic structuring and an escalating need to understand the macroecology of both microscopic and macroscopic organisms. Here we used environmental DNA (eDNA) metabarcoding to explore the biodiversity of marine metazoans, protists and bacteria along an extensive and highly heterogeneous coastline. Our results showed remarkably consistent biogeographic structure across the kingdoms of life despite billions of years of evolution. Analyses investigating the drivers of these patterns for each taxonomic kingdom found that environmental conditions (such as temperature) and, to a lesser extent, anthropogenic stressors (such as fishing pressure and pollution) explained some of the observed variation. Additionally, metazoans displayed biogeographic patterns that suggested regional biotic homogenization. Against the backdrop of global pervasive anthropogenic environmental change, our work highlights the importance of considering multiple domains of life to understand the maintenance and drivers of biodiversity patterns across broad taxonomic, ecological and geographical scales.
Collapse
Affiliation(s)
- Luke E Holman
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK.
| | - Mark de Bruyn
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.,Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, UK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, UK
| | - Julie Robidart
- Ocean Technology and Engineering Group, National Oceanography Centre Southampton, Southampton, UK
| | - Marc Rius
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK.,Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
42
|
Arribas P, Andújar C, Bidartondo MI, Bohmann K, Coissac É, Creer S, deWaard JR, Elbrecht V, Ficetola GF, Goberna M, Kennedy S, Krehenwinkel H, Leese F, Novotny V, Ronquist F, Yu DW, Zinger L, Creedy TJ, Meramveliotakis E, Noguerales V, Overcast I, Morlon H, Vogler AP, Papadopoulou A, Emerson BC. Connecting high-throughput biodiversity inventories: Opportunities for a site-based genomic framework for global integration and synthesis. Mol Ecol 2021; 30:1120-1135. [PMID: 33432777 PMCID: PMC7986105 DOI: 10.1111/mec.15797] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 01/03/2023]
Abstract
High-throughput sequencing (HTS) is increasingly being used for the characterization and monitoring of biodiversity. If applied in a structured way, across broad geographical scales, it offers the potential for a much deeper understanding of global biodiversity through the integration of massive quantities of molecular inventory data generated independently at local, regional and global scales. The universality, reliability and efficiency of HTS data can potentially facilitate the seamless linking of data among species assemblages from different sites, at different hierarchical levels of diversity, for any taxonomic group and regardless of prior taxonomic knowledge. However, collective international efforts are required to optimally exploit the potential of site-based HTS data for global integration and synthesis, efforts that at present are limited to the microbial domain. To contribute to the development of an analogous strategy for the nonmicrobial terrestrial domain, an international symposium entitled "Next Generation Biodiversity Monitoring" was held in November 2019 in Nicosia (Cyprus). The symposium brought together evolutionary geneticists, ecologists and biodiversity scientists involved in diverse regional and global initiatives using HTS as a core tool for biodiversity assessment. In this review, we summarize the consensus that emerged from the 3-day symposium. We converged on the opinion that an effective terrestrial Genomic Observatories network for global biodiversity integration and synthesis should be spatially led and strategically united under the umbrella of the metabarcoding approach. Subsequently, we outline an HTS-based strategy to collectively build an integrative framework for site-based biodiversity data generation.
Collapse
Affiliation(s)
- Paula Arribas
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| | - Carmelo Andújar
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| | - Martin I. Bidartondo
- Department of Life SciencesImperial College LondonLondonUK
- Comparative Plant and Fungal BiologyRoyal Botanic GardensLondonUK
| | - Kristine Bohmann
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Éric Coissac
- Université Grenoble Alpes, CNRS, Université Savoie Mont BlancLECA, Laboratoire d’Ecologie AlpineGrenobleFrance
| | - Simon Creer
- School of Natural SciencesBangor UniversityGwyneddUK
| | - Jeremy R. deWaard
- Centre for Biodiversity GenomicsUniversity of GuelphGuelphCanada
- School of Environmental SciencesUniversity of GuelphGuelphCanada
| | - Vasco Elbrecht
- Centre for Biodiversity Monitoring (ZBM)Zoological Research Museum Alexander KoenigBonnGermany
| | - Gentile F. Ficetola
- Université Grenoble Alpes, CNRS, Université Savoie Mont BlancLECA, Laboratoire d’Ecologie AlpineGrenobleFrance
- Department of Environmental Sciences and PolicyUniversity of MilanoMilanoItaly
| | - Marta Goberna
- Department of Environment and AgronomyINIAMadridSpain
| | - Susan Kennedy
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
- Department of BiogeographyTrier UniversityTrierGermany
| | | | - Florian Leese
- Aquatic Ecosystem Research, Faculty of BiologyUniversity of Duisburg‐EssenEssenGermany
- Centre for Water and Environmental Research (ZWU) EssenUniversity of Duisburg‐EssenEssenGermany
| | - Vojtech Novotny
- Biology Centre, Institute of EntomologyCzech Academy of SciencesCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Fredrik Ronquist
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
| | - Douglas W. Yu
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Lucie Zinger
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | | | | | | | - Isaac Overcast
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
- Division of Vertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA
| | - Hélène Morlon
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Alfried P. Vogler
- Department of Life SciencesImperial College LondonLondonUK
- Department of Life SciencesNatural History MuseumLondonUK
| | | | - Brent C. Emerson
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| |
Collapse
|
43
|
Tarof SA, Crookes S, Moxley K, Hathaway J, Cameron G, Hanner RH. Environmental DNA bioassays corroborate field data for detection of overwintering species at risk Blanding's turtles ( Emydoidea blandingii). Genome 2021; 64:299-310. [PMID: 33538216 DOI: 10.1139/gen-2020-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Environmental DNA (eDNA) is gaining traction in conservation ecology as a powerful tool for detecting species at risk. We developed a quantitative polymerase chain reaction assay to detect a DNA amplicon fragment of the mitochondrial nicotinamide adenine dinucleotide locus of the Blanding's turtle (Emydoidea blandingii) for detecting overwintering individuals. Seventy-eight water samples were collected from 17 wetland sites in Ontario, Canada. We used traditional field data to identify a priori positive and negative control sites. Fifty percent of positive control sites amplified. Detection was related to the number of individuals estimated from field observations in at least one region surveyed. Positive control sites had lower total dissolved solids and electrical conductivity in relation to negative control sites. Shedding rates were within the same order of magnitude for brumating and active turtles. We recommend collecting additional samples at a larger number of locations to maximize detection. Recommended sampling design changes may overshadow the additional effects of water chemistry and low eDNA shedding rates. eDNA offers tremendous potential to practitioners conducting species at risk assessments in environmental consulting by providing a faster, more efficient method of detection compared with traditional surveys.
Collapse
Affiliation(s)
- Scott A Tarof
- Azimuth Environmental Consulting, Inc., 642 Welham Road, Barrie, ON L4N 9A1, Canada
| | - Steven Crookes
- Precision Biomonitoring Inc., Orchard Park, Suite #226, 5420 Highway 6 North, Guelph, ON N1H 6J2, Canada
| | - Kelsey Moxley
- Scales Nature Park, 82 Line 15 South, Oro-Medonte, ON L3V 8H9, Canada
| | - Jeff Hathaway
- Scales Nature Park, 82 Line 15 South, Oro-Medonte, ON L3V 8H9, Canada
| | - Graham Cameron
- Ministry of Natural Resources and Forestry (Bancroft District), 106 Monck Street, Bancroft, ON K0L 1C0, Canada
| | - Robert H Hanner
- Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
44
|
Sales NG, Wangensteen OS, Carvalho DC, Deiner K, Præbel K, Coscia I, McDevitt AD, Mariani S. Space-time dynamics in monitoring neotropical fish communities using eDNA metabarcoding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142096. [PMID: 32898783 DOI: 10.1016/j.scitotenv.2020.142096] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
The biodiverse Neotropical ecoregion remains insufficiently assessed, poorly managed, and threatened by unregulated human activities. Novel, rapid and cost-effective DNA-based approaches are valuable to improve understanding of the biological communities and for biomonitoring in remote areas. Here, we evaluate the potential of environmental DNA (eDNA) metabarcoding for assessing the structure and distribution of fish communities by analysing water and sediment from 11 locations along the Jequitinhonha River catchment (Brazil). Each site was sampled twice, before and after a major rain event in a five-week period and fish diversity was estimated using high-throughput sequencing of 12S rRNA amplicons. In total, 252 Molecular Operational Taxonomic Units (MOTUs) and 34 fish species were recovered, including endemic, introduced, and previously unrecorded species for this basin. Spatio-temporal variation of eDNA from fish assemblages was observed and species richness was nearly twice as high before the major rain event compared to afterwards. Yet, peaks of diversity were primarily associated with only four of the locations. No correlation between β-diversity and longitudinal distance or presence of dams was detected, but low species richness observed at sites located near dams might that these anthropogenic barriers may have an impact on local fish diversity. Unexpectedly high α-diversity levels recorded at the river mouth suggest that these sections should be further evaluated as putative "eDNA reservoirs" for rapid monitoring. By uncovering spatio-temporal changes, unrecorded biodiversity components, and putative anthropogenic impacts on fish assemblages, we further strengthen the potential of eDNA metabarcoding as a biomonitoring tool, especially in regions often neglected or difficult to access.
Collapse
Affiliation(s)
- Naiara Guimarães Sales
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, UK; CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal.
| | - Owen Simon Wangensteen
- Norwegian College of Fishery Science, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Daniel Cardoso Carvalho
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
| | | | - Kim Præbel
- Norwegian College of Fishery Science, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ilaria Coscia
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, UK
| | - Allan D McDevitt
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, UK
| | - Stefano Mariani
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, UK; School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
45
|
Lacoursière-Roussel A, Deiner K. Environmental DNA is not the tool by itself. JOURNAL OF FISH BIOLOGY 2021; 98:383-386. [PMID: 31644816 DOI: 10.1111/jfb.14177] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/22/2019] [Indexed: 05/19/2023]
Affiliation(s)
- Anaïs Lacoursière-Roussel
- St. Andrews Biological Station (SABS), Fisheries and Oceans Canada (DFO), St. Andrews, New Brunswick, Canada
| | | |
Collapse
|
46
|
Mitchell KJ, Rawlence NJ. Examining Natural History through the Lens of Palaeogenomics. Trends Ecol Evol 2021; 36:258-267. [PMID: 33455740 DOI: 10.1016/j.tree.2020.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
The many high-resolution tools that are uniquely applicable to specimens from the Quaternary period (the past ~2.5 Ma) provide an opportunity to cross-validate data and test hypotheses based on the morphology and distribution of fossils. Among these tools is palaeogenomics - the genome-scale sequencing of genetic material from ancient specimens - that can provide direct insight into ecology and evolution, potentially improving the accuracy of inferences about past ecological communities over longer timescales. Palaeogenomics has revealed instances of over- and underestimation of extinct diversity, detected cryptic faunal migration and turnover, allowed quantification of widespread sex biases and sexual dimorphism in the fossil record, revealed past hybridisation events and hybrid individuals, and has highlighted previously unrecognised routes of zoonotic disease transfer.
Collapse
Affiliation(s)
- Kieren J Mitchell
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia; Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Nicolas J Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
47
|
Varotto C, Pindo M, Bertoni E, Casarotto C, Camin F, Girardi M, Maggi V, Cristofori A. A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy). Sci Rep 2021; 11:1208. [PMID: 33441696 PMCID: PMC7807053 DOI: 10.1038/s41598-020-79738-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/13/2020] [Indexed: 11/09/2022] Open
Abstract
Current biodiversity loss is a major concern and thus biodiversity assessment of modern ecosystems is compelling and needs to be contextualized on a longer timescale. High Throughput Sequencing (HTS) is progressively becoming a major source of data on biodiversity time series. In this multi proxy study, we tested, for the first time, the potential of HTS to estimate plant biodiversity archived in the surface layers of a temperate alpine glacier, amplifying the trnL barcode for vascular plants from eDNA of firn samples. A 573 cm long core was drilled by the Adamello glacier and cut into sections; produced samples were analyzed for physical properties, stable isotope ratio, and plant biodiversity by eDNA metabarcoding and conventional light microscopy analysis. Results highlighted the presence of pollen and plant remains within the distinct layers of snow, firn and ice. While stable isotope ratio showed a scarcely informative pattern, DNA metabarcoding described distinct plant species composition among the different samples, with a broad taxonomic representation of the biodiversity of the catchment area and a high-ranking resolution. New knowledge on climate and plant biodiversity changes of large catchment areas can be obtained by this novel approach, relevant for future estimates of climate change effects.
Collapse
Affiliation(s)
- Claudio Varotto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | | | | | - Federica Camin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Matteo Girardi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Valter Maggi
- Earth and Environmental Sciences, University of Milano Bicocca, Milan, Italy
| | - Antonella Cristofori
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, TN, Italy.
| |
Collapse
|
48
|
Wauchope HS, Amano T, Geldmann J, Johnston A, Simmons BI, Sutherland WJ, Jones JPG. Evaluating Impact Using Time-Series Data. Trends Ecol Evol 2020; 36:196-205. [PMID: 33309331 DOI: 10.1016/j.tree.2020.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022]
Abstract
Humanity's impact on the environment is increasing, as are strategies to conserve biodiversity, but a lack of understanding about how interventions affect ecological and conservation outcomes hampers decision-making. Time series are often used to assess impacts, but ecologists tend to compare average values from before to after an impact; overlooking the potential for the intervention to elicit a change in trend. Without methods that allow for a range of responses, erroneous conclusions can be drawn, especially for large, multi-time-series datasets, which are increasingly available. Drawing on literature in other disciplines and pioneering work in ecology, we present a standardised framework to robustly assesses how interventions, like natural disasters or conservation policies, affect ecological time series.
Collapse
Affiliation(s)
- Hannah S Wauchope
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, CB2 3QZ, UK; Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK.
| | - Tatsuya Amano
- School of Biological Sciences, University of Queensland, Brisbane, Australia; Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Australia
| | - Jonas Geldmann
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, CB2 3QZ, UK; Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alison Johnston
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, CB2 3QZ, UK; Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Benno I Simmons
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, CB2 3QZ, UK; Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, TR10 9FE, UK; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - William J Sutherland
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, CB2 3QZ, UK
| | - Julia P G Jones
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| |
Collapse
|
49
|
McClintock BT, Langrock R, Gimenez O, Cam E, Borchers DL, Glennie R, Patterson TA. Uncovering ecological state dynamics with hidden Markov models. Ecol Lett 2020; 23:1878-1903. [PMID: 33073921 PMCID: PMC7702077 DOI: 10.1111/ele.13610] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023]
Abstract
Ecological systems can often be characterised by changes among a finite set of underlying states pertaining to individuals, populations, communities or entire ecosystems through time. Owing to the inherent difficulty of empirical field studies, ecological state dynamics operating at any level of this hierarchy can often be unobservable or 'hidden'. Ecologists must therefore often contend with incomplete or indirect observations that are somehow related to these underlying processes. By formally disentangling state and observation processes based on simple yet powerful mathematical properties that can be used to describe many ecological phenomena, hidden Markov models (HMMs) can facilitate inferences about complex system state dynamics that might otherwise be intractable. However, HMMs have only recently begun to gain traction within the broader ecological community. We provide a gentle introduction to HMMs, establish some common terminology, review the immense scope of HMMs for applied ecological research and provide a tutorial on implementation and interpretation. By illustrating how practitioners can use a simple conceptual template to customise HMMs for their specific systems of interest, revealing methodological links between existing applications, and highlighting some practical considerations and limitations of these approaches, our goal is to help establish HMMs as a fundamental inferential tool for ecologists.
Collapse
Affiliation(s)
| | - Roland Langrock
- Department of Business Administration and EconomicsBielefeld UniversityBielefeldGermany
| | - Olivier Gimenez
- CNRS Centre d'Ecologie Fonctionnelle et EvolutiveMontpellierFrance
| | - Emmanuelle Cam
- Laboratoire des Sciences de l'Environnement MarinInstitut Universitaire Européen de la MerUniv. BrestCNRS, IRDIfremerFrance
| | - David L. Borchers
- School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
| | - Richard Glennie
- School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK
| | | |
Collapse
|
50
|
Li Y, Miao Y, Zhang W, Yang N, Niu L, Zhang H, Wang L. Sertraline inhibits top-down forces (predation) in microbial food web and promotes nitrification in sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115580. [PMID: 33254665 DOI: 10.1016/j.envpol.2020.115580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Sertraline is a widely used antidepressant that becomes an aquatic pollutant through metabolic excretion and improper disposal. Determining the impact of sertraline on benthic microbial ecosystems is important for the transformation of river biogenic elements. However, the molecular initiating event induced by sertraline is more readily observed at higher levels, such as the individual or population level of larger organisms, and the effect is not pronounced in benthic organisms, which are directly involved in nitrogen transformation. Therefore, this study used DNA metabarcoding to analyze the effect of sertraline on the microbial ecosystem and material cycles in river sediment through the lens of a microbial food web. The presence of sertraline in the river sediment enhanced the mineralization capacity of nitrogen and increased the accumulation of nitrate in the sediment. Sertraline affected the structure of the microbial food web by stimulating different successions of bacteria and eukaryotes. A structural equation model revealed that sertraline affected the microbial food web model through top-down forces (predation) by reducing the trophic transfer efficiency from metazoans to protozoans. This effect resulted in decreases in the trophic transfer efficiency from protozoans to bacteria and increases in nitrogen mineralization capacity. This was followed by a gradual increase in the nitrification reaction under the action of nitrifying bacteria, increasing the threat to the ecological health of rivers. The results show that sertraline affects the material cycle of river ecosystems and emphasizes that the assessment of the ecological risks of sertraline needs to be considered from the perspective of the material cycle of ecosystems.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuanyuan Miao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|