1
|
Li Z, Xie H, Peng Z, Heino J, Ma Y, Xiong F, Gao W, Xin W, Kong C, Li L, Fang L, Wang H, Feng G, Wang B, Jin X, Chen Y. Hydrology and water quality drive multiple biological indicators in a dam-modified large river. WATER RESEARCH X 2024; 25:100251. [PMID: 39297053 PMCID: PMC11409044 DOI: 10.1016/j.wroa.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024]
Abstract
Freshwater biodiversity is increasingly threatened by dams and many other anthropogenic stressors, yet our understanding of the complex responses of different biotas and their multiple facets remains limited. Here, we present a multi-faceted and integrated-indices approach to assess the differential responses of freshwater biodiversity to multiple stressors in the Yangtze River, the third longest and most dam-densely river in the world. By combining individual biodiversity indices of phytoplankton, zooplankton, periphyton, macroinvertebrates, and fish with a novel integrated aquatic biodiversity index (IABI), we disentangled the effects of hydrology, water quality, land use, and natural factors on both α and β diversity facets in taxonomic, functional, and phylogenetic dimensions. Our results revealed that phytoplankton and fish species and functional richness increased longitudinally, while fish taxonomic and phylogenetic β diversity increased but phytoplankton and macroinvertebrate β diversity remained unchanged. Hydrology and water quality emerged as the key drivers of all individual biodiversity indices, followed by land use and natural factors, with fish and phytoplankton showed the strongest responses. Importantly, we found that natural, land use, and hydrological factors indirectly affected biodiversity by altering water quality, which in turn directly influenced taxonomic and phylogenetic IABIs. Our findings highlight the complex interplay of multiple stressors in shaping freshwater biodiversity and underscore the importance of considering both individual and integrated indices for effective conservation and management. We propose that our multi-faceted and integrated-indices approach can be applied to other large, dam-modified river basins globally.
Collapse
Affiliation(s)
- Zhongyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiyu Xie
- China National Environmental Monitoring Centre, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhiqi Peng
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jani Heino
- Geography Research Unit, University of Oulu, PO Box 8000, 90014 Oulu, Finland
| | - Yu Ma
- China National Environmental Monitoring Centre, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Fangyuan Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Chiping Kong
- Jiujiang Institute of Agricultural Sciences, Jiujiang, Jiangxi 332005, China
| | - Lekang Li
- Jiujiang Institute of Agricultural Sciences, Jiujiang, Jiangxi 332005, China
| | - Lei Fang
- Jiujiang Institute of Agricultural Sciences, Jiujiang, Jiangxi 332005, China
| | - Haihua Wang
- Jiangxi Institute for Fisheries Sciences, Poyang Lake Fisheries Research Centre of Jiangxi Province, Nanchang, Jiangxi 330039, China
| | - Guangpeng Feng
- Jiangxi Institute for Fisheries Sciences, Poyang Lake Fisheries Research Centre of Jiangxi Province, Nanchang, Jiangxi 330039, China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Beixin Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Yushun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, Jiangsu 223300, China
| |
Collapse
|
2
|
Vila Duplá M, Villar-Argaiz M, Medina-Sánchez JM, González-Olalla JM, Carrillo P. Constant and fluctuating high temperatures interact with Saharan dust leading to contrasting effects on aquatic microbes over time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175777. [PMID: 39182767 DOI: 10.1016/j.scitotenv.2024.175777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Mediterranean lakes are facing heightened exposure to multiple stressors, such as intensified Saharan dust deposition, temperature increases and fluctuations linked to heatwaves. However, the combined impact of dust and water temperature on the microbial community in freshwater ecosystems remains underexplored. To assess the interactive effect of dust deposition and temperature on aquatic microbes (heterotrophic bacteria and phytoplankton), a combination of field mesocosm experiments covering a dust gradient (five levels, 0-320 mg L-1), and paired laboratory microcosms with increased temperature at two levels (constant and fluctuating high temperature) were conducted in a high mountain lake in the Spanish Sierra Nevada, at three points in time throughout the ice-free period. Heterotrophic bacterial production (HBP) increased with dust load regardless of the temperature regime. However, temperature regime affected the magnitude and nature of the interactive Dust×T effect on HBP. Specifically, constant and fluctuating high temperature showed opposing interactive effects in the short term that became additive over time. The relationships between HBP and predictor variables (soluble reactive phosphorus (SRP), excreted organic carbon (EOC), and heterotrophic bacterial abundance (HBA)), coupled with an evaluation of the mechanistic variable photosynthetic carbon use efficiency by bacteria (%CUEb), revealed that bacteria depended on primary production in nearly all treatments when dust was added. The %CUEb increased with dust load in the control temperature treatment, but it was highest at intermediate dust loads under both constant and fluctuating high temperatures. Overall, our results suggest that while dust addition alone strengthens algae-bacteria coupling, high temperatures lead to decoupling in the long term at intermediate dust loads, potentially impacting ecosystem function.
Collapse
Affiliation(s)
- María Vila Duplá
- Institute of Water Research, University of Granada, c/ Ramón y Cajal, 4, 18071, Granada Spain; Department of Ecology, University of Granada, Campus Fuentenueva s/n, 18071, Granada Spain.
| | - Manuel Villar-Argaiz
- Institute of Water Research, University of Granada, c/ Ramón y Cajal, 4, 18071, Granada Spain; Department of Ecology, University of Granada, Campus Fuentenueva s/n, 18071, Granada Spain
| | - Juan Manuel Medina-Sánchez
- Institute of Water Research, University of Granada, c/ Ramón y Cajal, 4, 18071, Granada Spain; Department of Ecology, University of Granada, Campus Fuentenueva s/n, 18071, Granada Spain
| | | | - Presentación Carrillo
- Institute of Water Research, University of Granada, c/ Ramón y Cajal, 4, 18071, Granada Spain
| |
Collapse
|
3
|
Mora-Teddy AK, Closs GP, Matthaei CD. Microplastics and riverine macroinvertebrate communities in a multiple-stressor context: A mesocosm approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175456. [PMID: 39173751 DOI: 10.1016/j.scitotenv.2024.175456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Growing use of synthetic materials has increased the number of stressors that can degrade freshwater ecosystems. Many of these stressors are relatively new and poorly understood, such as microplastics which are now ubiquitous in freshwater systems. The effects of microplastics on freshwater biota must be investigated further in order to better manage and mitigate their impacts. Our experiment provides the first empirical evaluation of stream invertebrate community dynamics in response to microplastics of different concentrations and sizes, in combination with fine sediment, a pervasive known stressor in running waters. In a 7-week streamside experiment using 64 flow-through circular mesocosms, we investigated the effects of exposure to three simulated microplastic influxes (polyethylene microspheres at four levels between 0 and 28,800 items/event) and the addition of fine sediment (to simulate a polluted stream environment). Invertebrate drift was monitored for 48 h immediately after each microplastic influx, and benthic invertebrate communities were sampled after 28 days of microplastic and sediment manipulations. Microplastic concentration, size and fine sediment all had significant factor main effects on several invertebrate drift response metrics, whereas few microplastic main effects were seen in the benthic community. However, interactive stressor effects were common in different combinations between sediment, microplastic size and concentration, suggesting multiple-stressor relationships between microplastics and fine sediment. Microplastic ingestion was witnessed in four of 12 taxa analysed: Hydrobiosidae, Deleatidium spp., Potamopyrgus antipodarum and Archichauliodes diversus. Our findings provide insights into how microplastics affect drift and benthic community dynamics of stream invertebrates in a field-realistic experimental setting and highlight areas requiring further study. These include investigations of invertebrate drift dynamics in response to other types of microplastics, the role invertebrate size may play in determining their vulnerability to microplastic pollution, and framing more microplastic research in a field-realistic multiple-stressor context.
Collapse
|
4
|
Williams BL, Pintor LM, Tiarks J, Gray SM. Multiple stressors disrupt sex hormones and fitness outcomes: effects of hypoxia and turbidity on an African cichlid fish. CONSERVATION PHYSIOLOGY 2024; 12:coae066. [PMID: 39445164 PMCID: PMC11496714 DOI: 10.1093/conphys/coae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
Freshwater organisms face a complex array of environmental stressors that can negatively affect endocrine function and subsequent fitness outcomes. Hypoxia and turbidity are two environmental stressors that are increasing due to human activities that could lead to endocrine disruption and reduced reproductive output. Our research addresses how hypoxia and elevated turbidity affect traits related to reproductive success, specifically sex hormone concentrations, investment in reproductive tissues and body size. We used wild fish from two populations (a river and a swamp) of an African cichlid, Pseudocrenilabrus multicolor, to produce offspring that were reared in a full factorial split brood rearing experiment (hypoxic/normoxic × clear/turbid). River and swamp populations represent divergent habitat types with respect to the stressors of interest, being well-oxygenated but turbid or hypoxic and clear, respectively. Overall, we found evidence for plastic responses to both stressors. Specifically, we found that there was an interactive effect of oxygen and turbidity on testosterone in males from both populations. Additionally, males of both populations reared under hypoxic conditions were significantly smaller in both mass and standard length than those raised under normoxic conditions and invested less in reproductive tissues (quantified as gonadosomatic index). Hypoxia and turbidity are experienced naturally by this species, and these environmental stressors did not affect the number of eggs laid by females when experienced in the absence of another stressor (i.e. normoxic/turbid or hypoxic/clear). However, there was an interactive effect of hypoxia and turbidity, as females reared and maintained under this treatment combination laid fewer eggs. This research underscores the importance of considering the possibility of stressor interactions when determining how anthropogenic stressors affect fitness outcomes.
Collapse
Affiliation(s)
- Bethany L Williams
- School of Environment and Natural Resources, 2021 Coffey Rd, The Ohio State University, Columbus, OH 43210, USA
- Department of Biology, University of Missouri–St. Louis, 1 University Blvd, St. Louis, MO 63121, USA
| | - Lauren M Pintor
- School of Environment and Natural Resources, 2021 Coffey Rd, The Ohio State University, Columbus, OH 43210, USA
| | - Jai Tiarks
- School of Environment and Natural Resources, 2021 Coffey Rd, The Ohio State University, Columbus, OH 43210, USA
| | - Suzanne M Gray
- School of Environment and Natural Resources, 2021 Coffey Rd, The Ohio State University, Columbus, OH 43210, USA
- Department of Biology, University of Prince Edward Island, 550 University Ave, Charlottetown, PE, C1A 4P3 Canada
| |
Collapse
|
5
|
David GM, Pimentel IM, Rehsen PM, Vermiert AM, Leese F, Gessner MO. Multiple stressors affecting microbial decomposer and litter decomposition in restored urban streams: Assessing effects of salinization, increased temperature, and reduced flow velocity in a field mesocosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173669. [PMID: 38839005 DOI: 10.1016/j.scitotenv.2024.173669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
A multitude of anthropogenic stressors impact biological communities and ecosystem processes in urban streams. Prominent among them are salinization, increased temperature, and altered flow regimes, all of which can affect microbial decomposer communities and litter decomposition, a fundamental ecosystem process in streams. Impairments caused by these stressors individually or in combination and recovery of communities and ecosystem processes after release from these stressors are not well understood. To improve our understanding of multiple stressors impacts we performed an outdoor stream mesocosm experiment with 64 experimental units to assess the response of microbial litter decomposers and decomposition. The three stressors we applied in a full-factorial design were increased salinity (NaCl addition, 0.53 mS cm-1 above ambient), elevated temperature (3.5 °C above ambient), and reduced flow velocity (3.5 vs 14.2 cm s-1). After two weeks of stressor exposure (first sampling) and two subsequent weeks of recovery (second sampling), we determined leaf-associated microbial respiration, fungal biomass, and the sporulation activity and community composition of aquatic hyphomycetes in addition to decomposition rates of black alder (Alnus glutinosa) leaves confined in fine-mesh litter bags. Microbial colonization of the litter was accompanied by significant mass loss in all mesocosms. However, there was little indication that mass loss, microbial respiration, fungal biomass, sporulation rate or community composition of aquatic hyphomycetes was strongly affected by either single stressors or their interactions. Two exceptions were temperature effects on sporulation and decomposition rate. Similarly, no notable differences among mesocosms were observed after the recovery phase. These results suggest that microbial decomposers and leaf litter decomposition are either barely impaired by exposure to the tested stressors at the levels applied in our experiment, or that communities in restored urban streams are well adapted to cope with these stressor levels.
Collapse
Affiliation(s)
- Gwendoline M David
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.
| | - Iris Madge Pimentel
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Philipp M Rehsen
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Anna-Maria Vermiert
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Bochum, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Mark O Gessner
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Department of Ecology, Berlin Institute of Technology (TU Berlin), Berlin, Germany
| |
Collapse
|
6
|
Zhao F, Huang Y, Wei H, Wang M. Ocean acidification alleviated nickel toxicity to a marine copepod under multigenerational scenarios but at a cost with a loss of transcriptome plasticity during recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173585. [PMID: 38810735 DOI: 10.1016/j.scitotenv.2024.173585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Marine ecosystem has been experiencing multiple stressors caused by anthropogenic activities, including ocean acidification (OA) and nickel (Ni) pollution. Here, we examined the individual/combined effects of OA (pCO2 1000 μatm) and Ni (6 μg/L) exposure on a marine copepod Tigriopus japonicus for six generations (F1-F6), followed by one-generation recovery (F7) in clean seawater. Ni accumulation and several important phenotypic traits were measured in each generation. To explore within-generation response and transgenerational plasticity, we analyzed the transcriptome profile for the copepods of F6 and F7. The results showed that Ni exposure compromised the development, reproduction and survival of copepods during F1-F6, but its toxicity effects were alleviated by OA. Thus, under OA and Ni combined exposure, due to their antagonistic interaction, the disruption of Ca2+ homeostasis, and the inhibition of calcium signaling pathway and oxytocin signaling pathway were not found. However, as a cost of acclimatization/adaption potential to long-term OA and Ni combined exposure, there was a loss of transcriptome plasticity during recovery, which limited the resilience of copepods to previously begin environments. Overall, our work fosters a comprehensive understanding of within- and transgenerational effects of climatic stressor and metal pollution on marine biota.
Collapse
Affiliation(s)
- Fankang Zhao
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuehan Huang
- School of International Education, Beijing University of Chemical Technology, Beijing 102200, China
| | - Hui Wei
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
García-Astillero A, Polazzo F, Rico A. Combined effects of heat waves and pesticide pollution on zooplankton communities: Does the timing of stressor matter? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116751. [PMID: 39024950 DOI: 10.1016/j.ecoenv.2024.116751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Most studies assessing the combined effects of chemical and non-chemical stressors on aquatic ecosystems have been based on synchronous stressor applications. However, asynchronous exposure scenarios may be more common in nature, particularly for pulsed stressors such as heatwaves and pesticide concentration peaks. In this study, we investigated the single and combined effects of the insecticide chlorpyrifos (CPF) and a heatwave (HW) on a zooplankton community representative of a Mediterranean coastal wetland using synchronous (CPF+HW) and asynchronous (HW→CPF and CPF→HW) exposure scenarios. CPF was applied at a concentration of 0.8 µg/L (single pulse), and the HW was simulated by a temperature increase of 8°C above the control temperature (20°C) for 7 days in freshwater microcosms. The interaction between stressors in synchrony resulted in synergistic effects at the population level (Daphnia magna) and additive at the community level. The partial reduction of sensitive species resulted in an abundance increase of competing species that were more tolerant to the evaluated stressors (e.g. Moina sp.). The asynchronous exposure scenarios resulted in a similar abundance decline of sensitive populations as compared to the synchronous one; however, the timing of stressor resulted in different responses in the long term. In the HW→CPF treatment, the D. magna population recovered at least one month faster than in the CPF+HW treatment, probably due to survival selection and cross-tolerance mechanisms. In the CPF→HW treatment, the effects lasted longer than in the CPF+HW, and the population did not recover within the experimental period, most likely due to the energetic costs of detoxification and effects on internal damage recovery. The different timing and magnitude of indirect effects among the tested asynchronous scenarios resulted in more severe effects on the structure of the zooplankton community in the CPF→HW treatment. Our study highlights the relevance of considering the order of stressors to predict the long-term effects of chemicals and heatwaves both at the population and community levels.
Collapse
Affiliation(s)
- Ariadna García-Astillero
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Punto Com 2, Alcalá de Henares, Madrid 28805, Spain; Biodiversity and Conservation Area, Department of Biology and Geology, Fisics and Inorganic Chemistry, University Rey Juan Carlos, Av. del Alcalde de Móstoles, Móstoles 28933, Madrid, Spain.
| | - Francesco Polazzo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Punto Com 2, Alcalá de Henares, Madrid 28805, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain.
| |
Collapse
|
8
|
Hermann M, Polazzo F, Cherta L, Crettaz-Minaglia M, García-Astillero A, Peeters ETHM, Rico A, Van den Brink PJ. Combined stress of an insecticide and heatwaves or elevated temperature induce community and food web effects in a Mediterranean freshwater ecosystem. WATER RESEARCH 2024; 260:121903. [PMID: 38875860 DOI: 10.1016/j.watres.2024.121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Ongoing global climate change will shift nature towards Anthropocene's unprecedented conditions by increasing average temperatures and the frequency and severity of extreme events, such as heatwaves. While such climatic changes pose an increased threat for freshwater ecosystems, other stressors like pesticides may interact with warming and lead to unpredictable effects. Studies that examine the underpinned mechanisms of multiple stressor effects are scarce and often lack environmental realism. Here, we conducted a multiple stressors experiment using outdoor freshwater mesocosms with natural assemblages of macroinvertebrates, zooplankton, phytoplankton, macrophytes, and microbes. The effects of the neonicotinoid insecticide imidacloprid (1 µg/L) were investigated in combination with three temperature scenarios representing ambient, elevated temperatures (+4 °C), and heatwaves (+0 to 8 °C), the latter two having similar energy input. We found similar imidacloprid dissipation patterns for all temperature treatments with lowest average dissipation half-lives under both warming scenarios (DT50: 3 days) and highest under ambient temperatures (DT50: 4 days) throughout the experiment. Amongst all communities, only the zooplankton community was significantly affected by the combined treatments. This community demonstrated low chemical sensitivity with lagged and significant negative imidacloprid effects only for cyclopoids. Heatwaves caused early and long-lasting significant effects on the zooplankton community as compared to elevated temperatures, with Polyarthra, Daphnia longispina, Lecanidae, and cyclopoids being the most negatively affected taxa, whereas Ceriodaphnia and nauplii showed positive responses to temperature. Community recovery from imidacloprid stress was slower under heatwaves, suggesting temperature-enhanced toxicity. Finally, microbial and macrofauna litter degradation were significantly enhanced by temperature, whereas the latter was also negatively affected by imidacloprid. A structural equation model depicted cascading food web effects of both stressors with stronger relationships and significant negative stressor effects at higher than at lower trophic levels. Our study highlights the threat of a series of heatwaves compared to elevated temperatures for imidacloprid-stressed freshwaters.
Collapse
Affiliation(s)
- Markus Hermann
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Francesco Polazzo
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Laura Cherta
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Melina Crettaz-Minaglia
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Ariadna García-Astillero
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Edwin T H M Peeters
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
9
|
Kuppels A, Bayat HS, Gillmann SM, Schäfer RB, Vos M. Putting the Asymmetric Response Concept to the test: Modeling multiple stressor exposure and release in a stream food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174722. [PMID: 39004358 DOI: 10.1016/j.scitotenv.2024.174722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Communities in stream ecosystems often respond asymmetrically to increase and release of stressors, as indicated by slow and incomplete recovery. The Asymmetric Response Concept (ARC) posits that this is due to a shift in the relative importance of three mechanisms: tolerance, dispersal, and biotic interactions. In complex natural communities, these mechanisms may produce alternative outcomes through poorly understood indirect effects. To understand how the three mechanisms respond to different temporal stressor scenarios, we studied multiple scenarios using a stream food web model. We asked the following questions: Do groups of species decline as expected on the basis of individual tolerance rankings derived from laboratory experiments when they are embedded in a complex dynamic food web? Does the response of ecosystem function match that of communities? To address these questions, we aggregated data on individual tolerances at the level of functional groups and studied how single and multiple stressors affect food web dynamics and nutrient cycling. Multiple stressor scenarios involved different intensities of salt and temperature increase. Functional groups exhibited a different relative tolerance ranking between the laboratory and dynamic food web contexts. Salt as a single stressor had only minor and transient effects at low level but led to the loss of one or more functional groups at high level. In contrast, high temperature, alone or in combination with salt, caused the loss of functional groups at all tested levels. Patterns often differed between the response of communities and ecosystem function. We discuss our findings with respect to the ARC.
Collapse
Affiliation(s)
- Annabel Kuppels
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Theoretical and Applied Biodiversity Research, Bochum, Germany
| | - Helena S Bayat
- Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany; Research Center One Health Ruhr, University Alliance Ruhr & Faculty for Biology, University of Duisburg-Essen, Essen, Germany
| | - Svenja M Gillmann
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Ralf B Schäfer
- Research Center One Health Ruhr, University Alliance Ruhr & Faculty for Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthijs Vos
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Theoretical and Applied Biodiversity Research, Bochum, Germany.
| |
Collapse
|
10
|
Parker B, Britton JR, Green ID, Jackson MC, Andreou D. Microplastic-stressor responses are rarely synergistic in freshwater fishes: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174566. [PMID: 38986705 DOI: 10.1016/j.scitotenv.2024.174566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Microplastic exposure can cause a range of negative effects on the biochemistry, condition and ecology of freshwater fishes depending on aspects of the exposure and the exposed fish. However, fishes are typically exposed to microplastics and additional multiple stressors simultaneously, for which the combined effects are poorly understood and may have important management consequences. Additive effects are those where the combined effect is equal to the sum, antagonistic where combined effects are less than the sum and for synergistic effects the combined effect is greater to the sum of the individual effects. Here, we performed a meta-analysis of studies recording freshwater fish responses to microplastic-stressor exposures to test if interactions were primarily non-additive (synergistic or antagonistic), and factors impacting the net response. Individual responses were classified (antagonistic/additive/synergistic) and the fit of net responses to a null additive model determined for 838 responses (36 studies) split by categorical variables for the microplastic exposure (environmental relevance, interacting stressor, microplastic morphology and response category measured), as well as the exposed fish (lifestage, ecology and family). Most responses were classified as antagonistic (48 %) and additive (34 %), with synergistic effects least frequent (17 %). Net responses fitted null additive models for all levels of interacting stressor, fish family and microplastic morphology. In contrast, net antagonism was present for biochemical responses, embryo lifestages, environmentally relevant microplastic exposures and fish with benthopelagic ecology, while synergism was identified for fishes with demersal ecology. While substantial knowledge gaps remain and are discussed, the data thus far suggest microplastic-stressor responses in freshwater fishes are rarely synergistic and, therefore, addressing either or both stressors will likely result in positive management and biological outcomes.
Collapse
Affiliation(s)
- Ben Parker
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK; Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK.
| | - J Robert Britton
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| | - Iain D Green
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| | | | - Demetra Andreou
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| |
Collapse
|
11
|
Dania A, Lutier M, Heimböck MP, Heuschele J, Søreide JE, Jackson MC, Dinh KV. Temporal patterns in multiple stressors shape the vulnerability of overwintering Arctic zooplankton. Ecol Evol 2024; 14:e11673. [PMID: 38952656 PMCID: PMC11215157 DOI: 10.1002/ece3.11673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
The Arctic polar nights bring extreme environmental conditions characterised by cold and darkness, which challenge the survival of organisms in the Arctic. Additionally, multiple anthropogenic stressors can amplify the pressure on the fragile Arctic ecosystems during this period. Determining how multiple anthropogenic stressors may affect the survival of Arctic life is crucial for ecological risk assessments and management, but this topic is understudied. For the first time, our study investigates the complex interactions of multiple stressors, exploring stressor temporal dynamics and exposure duration on a key Arctic copepod Calanus glacialis during the polar nights. We conducted experiments with pulse (intermittent) and press (continuous) exposure scenarios, involving microplastics, pyrene and warming in a fully factorial design. We observed significant effects on copepod survival, with pronounced impacts during later stressor phases. We also detected two-way interactions between microplastics and pyrene, as well as pyrene and warming, further intensified with the presence of a third stressor. Continuous stressor exposure for 9 days (press-temporal scenario) led to greater reductions in copepod survival compared to the pulse-temporal scenario, characterised by two 3-day stressor exposure phases. Notably, the inclusion of recovery phases, free from stressor exposure, positively influenced copepod survival, highlighting the importance of temporal exposure dynamics. We did not find behaviour to be affected by the different treatments. Our findings underscore the intricate interactions amongst multiple stressors and their temporal patterns in shaping the vulnerability of overwintering Arctic copepods with crucial implications for managing Arctic aquatic ecosystems under the fastest rate of ongoing climate change on earth.
Collapse
Affiliation(s)
- Albini Dania
- Department of BiologyUniversity of OxfordOxfordUK
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| | - Mathieu Lutier
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| | - Martin P. Heimböck
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Jan Heuschele
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| | | | | | - Khuong V. Dinh
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
12
|
Chefaoui RM, Martínez BDC, Viejo RM. Temporal variability of sea surface temperature affects marine macrophytes range retractions as well as gradual warming. Sci Rep 2024; 14:14206. [PMID: 38902310 PMCID: PMC11190259 DOI: 10.1038/s41598-024-64745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Record mean sea surface temperatures (SST) during the past decades and marine heatwaves have been identified as responsible for severe impacts on marine ecosystems, but the role of changes in the patterns of temporal variability under global warming has been much less studied. We compare descriptors of two time series of SST, encompassing extirpations (i.e. local extinctions) of six cold-temperate macroalgae species at their trailing range edge. We decompose the effects of gradual warming, extreme events and intrinsic variability (e.g. seasonality). We also relate the main factors determining macroalgae range shifts with their life cycles characteristics and thermal tolerance. We found extirpations of macroalgae were related to stretches of coast where autumn SST underwent warming, increased temperature seasonality, and decreased skewness over time. Regardless of the species, the persisting populations shared a common environmental domain, which was clearly differentiated from those experiencing local extinction. However, macroalgae species responded to temperature components in different ways, showing dissimilar resilience. Consideration of multiple thermal manifestations of climate change is needed to better understand local extinctions of habitat-forming species. Our study provides a framework for the incorporation of unused measures of environmental variability while analyzing the distributions of coastal species.
Collapse
Affiliation(s)
- Rosa M Chefaoui
- Department of Biology and Geology, Physics and Inorganic Chemistry, Area of Biodiversity and Conservation, University Rey Juan Carlos (URJC), Móstoles, 28933, Madrid, Spain.
- Global Change Research Institute (IICG-URJC), University Rey Juan Carlos, Móstoles, 28933, Madrid, Spain.
| | - Brezo D-C Martínez
- Department of Biology and Geology, Physics and Inorganic Chemistry, Area of Biodiversity and Conservation, University Rey Juan Carlos (URJC), Móstoles, 28933, Madrid, Spain
- Global Change Research Institute (IICG-URJC), University Rey Juan Carlos, Móstoles, 28933, Madrid, Spain
| | - Rosa M Viejo
- Department of Biology and Geology, Physics and Inorganic Chemistry, Area of Biodiversity and Conservation, University Rey Juan Carlos (URJC), Móstoles, 28933, Madrid, Spain
- Global Change Research Institute (IICG-URJC), University Rey Juan Carlos, Móstoles, 28933, Madrid, Spain
| |
Collapse
|
13
|
Orr JA, Macaulay SJ, Mordente A, Burgess B, Albini D, Hunn JG, Restrepo-Sulez K, Wilson R, Schechner A, Robertson AM, Lee B, Stuparyk BR, Singh D, O'Loughlin I, Piggott JJ, Zhu J, Dinh KV, Archer LC, Penk M, Vu MTT, Juvigny-Khenafou NPD, Zhang P, Sanders P, Schäfer RB, Vinebrooke RD, Hilt S, Reed T, Jackson MC. Studying interactions among anthropogenic stressors in freshwater ecosystems: A systematic review of 2396 multiple-stressor experiments. Ecol Lett 2024; 27:e14463. [PMID: 38924275 DOI: 10.1111/ele.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Understanding the interactions among anthropogenic stressors is critical for effective conservation and management of ecosystems. Freshwater scientists have invested considerable resources in conducting factorial experiments to disentangle stressor interactions by testing their individual and combined effects. However, the diversity of stressors and systems studied has hindered previous syntheses of this body of research. To overcome this challenge, we used a novel machine learning framework to identify relevant studies from over 235,000 publications. Our synthesis resulted in a new dataset of 2396 multiple-stressor experiments in freshwater systems. By summarizing the methods used in these studies, quantifying trends in the popularity of the investigated stressors, and performing co-occurrence analysis, we produce the most comprehensive overview of this diverse field of research to date. We provide both a taxonomy grouping the 909 investigated stressors into 31 classes and an open-source and interactive version of the dataset (https://jamesaorr.shinyapps.io/freshwater-multiple-stressors/). Inspired by our results, we provide a framework to help clarify whether statistical interactions detected by factorial experiments align with stressor interactions of interest, and we outline general guidelines for the design of multiple-stressor experiments relevant to any system. We conclude by highlighting the research directions required to better understand freshwater ecosystems facing multiple stressors.
Collapse
Affiliation(s)
- James A Orr
- Department of Biology, University of Oxford, Oxford, UK
- School of the Environment, University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Benjamin Burgess
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Dania Albini
- Department of Biology, University of Oxford, Oxford, UK
| | - Julia G Hunn
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Ramesh Wilson
- Department of Biology, University of Oxford, Oxford, UK
| | - Anne Schechner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Ruumi ApS, Svendborg, Denmark
| | - Aoife M Robertson
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Bethany Lee
- Department of Biology, University of Oxford, Oxford, UK
| | - Blake R Stuparyk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Delezia Singh
- Natural Resources Institute, University of Manitoba, Winnipeg, Canada
| | | | - Jeremy J Piggott
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jiangqiu Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Khuong V Dinh
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Louise C Archer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Marcin Penk
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Minh Thi Thuy Vu
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Noël P D Juvigny-Khenafou
- Institute of Aquaculture, University of Stirling, Scotland, UK
- Institute of Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Ralf B Schäfer
- Research Center One Health Ruhr, University Alliance Ruhr
- Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Rolf D Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sabine Hilt
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Thomas Reed
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | | |
Collapse
|
14
|
Sun X, Arnott SE. Timing determines zooplankton community responses to multiple stressors. GLOBAL CHANGE BIOLOGY 2024; 30:e17358. [PMID: 38822590 DOI: 10.1111/gcb.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 06/03/2024]
Abstract
Human activities and climate change cause abiotic factors to fluctuate through time, sometimes passing thresholds for organismal reproduction and survival. Multiple stressors can independently or interactively impact organisms; however, few studies have examined how they interact when they overlap spatially but occur asynchronously. Fluctuations in salinity have been found in freshwater habitats worldwide. Meanwhile, heatwaves have become more frequent and extreme. High salinity pulses and heatwaves are often decoupled in time but can still collectively impact freshwater zooplankton. The time intervals between them, during which population growth and community recovery could happen, can influence combined effects, but no one has examined these effects. We conducted a mesocosm experiment to examine how different recovery times (0-, 3-, 6-week) between salt treatment and heatwave exposure influence their combined effects. We hypothesized that antagonistic effects would appear when having short recovery time, because previous study found that similar species were affected by the two stressors, but effects would become additive with longer recovery time since fully recovered communities would respond to heatwave similar to undisturbed communities. Our findings showed that, when combined, the two-stressor joint impacts changed from antagonistic to additive with increased recovery time between stressors. Surprisingly, full compositional recovery was not achieved despite a recovery period that was long enough for population growth, suggesting legacy effects from earlier treatment. The recovery was mainly driven by small organisms, such as rotifers and small cladocerans. As a result, communities recovering from previous salt exposure responded differently to heatwaves than undisturbed communities, leading to similar zooplankton communities regardless of the recovery time between stressors. Our research bolsters the understanding and management of multiple-stressor issues by revealing that prior exposure to one stressor has long-lasting impacts on community recovery that can lead to unexpected joint effects of multiple stressors.
Collapse
Affiliation(s)
- Xinyu Sun
- Biology Department, Queen's University, Kingston, Ontario, Canada
| | - Shelley E Arnott
- Biology Department, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
Madge Pimentel I, Baikova D, Buchner D, Burfeid Castellanos A, David GM, Deep A, Doliwa A, Hadžiomerović U, Mayombo NAS, Prati S, Spyra MA, Vermiert AM, Beisser D, Dunthorn M, Piggott JJ, Sures B, Tiegs SD, Leese F, Beermann AJ. Assessing the response of an urban stream ecosystem to salinization under different flow regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171849. [PMID: 38537828 DOI: 10.1016/j.scitotenv.2024.171849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Urban streams are exposed to a variety of anthropogenic stressors. Freshwater salinization is a key stressor in these ecosystems that is predicted to be further exacerbated by climate change, which causes simultaneous changes in flow parameters, potentially resulting in non-additive effects on aquatic ecosystems. However, the effects of salinization and flow velocity on urban streams are still poorly understood as multiple-stressor experiments are often conducted at pristine rather than urban sites. Therefore, we conducted a mesocosm experiment at the Boye River, a recently restored stream located in a highly urbanized area in Western Germany, and applied recurrent pulses of salinity along a gradient (NaCl, 9 h daily of +0 to +2.5 mS/cm) in combination with normal and reduced current velocities (20 cm/s vs. 10 cm/s). Using a comprehensive assessment across multiple organism groups (macroinvertebrates, eukaryotic algae, fungi, parasites) and ecosystem functions (primary production, organic-matter decomposition), we show that flow velocity reduction has a pervasive impact, causing community shifts for almost all assessed organism groups (except fungi) and inhibiting organic-matter decomposition. Salinization affected only dynamic components of community assembly by enhancing invertebrate emigration via drift and reducing fungal reproduction. We caution that the comparatively small impact of salt in our study can be due to legacy effects from past salt pollution by coal mining activities >30 years ago. Nevertheless, our results suggest that urban stream management should prioritize the continuity of a minimum discharge to maintain ecosystem integrity. Our study exemplifies a holistic approach for the assessment of multiple-stressor impacts on streams, which is needed to inform the establishment of a salinity threshold above which mitigation actions must be taken.
Collapse
Affiliation(s)
- Iris Madge Pimentel
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| | - Daria Baikova
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Dominik Buchner
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Gwendoline M David
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Plankton and Microbial Ecology, Stechlin, Germany
| | - Aman Deep
- Biodiversity, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Annemie Doliwa
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Una Hadžiomerović
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | | | - Sebastian Prati
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | - Anna-Maria Vermiert
- Ruhr University Bochum, Department of Animal Ecology, Evolution and Biodiversity, Bochum, Germany
| | - Daniela Beisser
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Jeremy J Piggott
- Zoology and Trinity Centre for the Environment, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Bernd Sures
- Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - Scott D Tiegs
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Florian Leese
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Arne J Beermann
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
16
|
van Kouwen LAH, Kraak MHS, van der Lee GH, Verdonschot PFM. Four decades of region- and species-specific trends in lowland stream Ephemeroptera abundance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171619. [PMID: 38471583 DOI: 10.1016/j.scitotenv.2024.171619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Lowland stream ecosystems are under threat from climate change, industrialization, urbanization, and intensive agriculture. Since the 1980s, improvements in water quality have led to an increase in lowland stream biodiversity. Despite restoration efforts, however, further recovery is often hampered by the presence of region-specific (combinations of) stressors, and species-specific stressor responses. Identification of these stressors may not be achieved by the analysis of abundance data over large areas for entire communities or species assemblages. Therefore, our study introduces an alternative in-depth approach, selecting Ephemeroptera as a model organism group and analyzing 41 years of species abundance data across distinct geographical regions. Our findings revealed that 15 Ephemeroptera species had already disappeared before 1985, emphasizing the importance of evaluating an extended historical period when analyzing biodiversity trends. While biodiversity was generally characterized by an initial recovery that stagnated over time, the analysis of the past 41 years of Ephemeroptera abundance data revealed strong differences in species' abundance trends between periods, regions, and species. Certain species were likely to have benefitted from local restoration measures in specific geographical regions, while others may have declined due to the presence of region-specific stressors. Our approach underscores the importance of studying the development of region- and species-specific stream biodiversity trends over time to aid the selection of the appropriate restoration measures to recover lowland stream biodiversity.
Collapse
Affiliation(s)
- Leon A H van Kouwen
- HAS green academy, 's-Hertogenbosch 5223 DE, Netherlands; Institute for Biodiversity and Ecosystem Dynamics, Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam 1098 XH, Netherlands.
| | - Michiel H S Kraak
- Institute for Biodiversity and Ecosystem Dynamics, Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam 1098 XH, Netherlands
| | - Gea H van der Lee
- Wageningen Environmental Research, Wageningen University and Research, Wageningen 6708 PB, Netherlands
| | - Piet F M Verdonschot
- Institute for Biodiversity and Ecosystem Dynamics, Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam 1098 XH, Netherlands; Wageningen Environmental Research, Wageningen University and Research, Wageningen 6708 PB, Netherlands
| |
Collapse
|
17
|
French SK, Pepinelli M, Conflitti IM, Jamieson A, Higo H, Common J, Walsh EM, Bixby M, Guarna MM, Pernal SF, Hoover SE, Currie RW, Giovenazzo P, Guzman-Novoa E, Borges D, Foster LJ, Zayed A. Honey bee stressor networks are complex and dependent on crop and region. Curr Biol 2024; 34:1893-1903.e3. [PMID: 38636513 DOI: 10.1016/j.cub.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/23/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Honey bees play a major role in crop pollination but have experienced declining health throughout most of the globe. Despite decades of research on key honey bee stressors (e.g., parasitic Varroa destructor mites and viruses), researchers cannot fully explain or predict colony mortality, potentially because it is caused by exposure to multiple interacting stressors in the field. Understanding which honey bee stressors co-occur and have the potential to interact is therefore of profound importance. Here, we used the emerging field of systems theory to characterize the stressor networks found in honey bee colonies after they were placed in fields containing economically valuable crops across Canada. Honey bee stressor networks were often highly complex, with hundreds of potential interactions between stressors. Their placement in crops for the pollination season generally exposed colonies to more complex stressor networks, with an average of 23 stressors and 307 interactions. We discovered that the most influential stressors in a network-those that substantively impacted network architecture-are not currently addressed by beekeepers. Finally, the stressor networks showed substantial divergence among crop systems from different regions, which is consistent with the knowledge that some crops (e.g., highbush blueberry) are traditionally riskier to honey bees than others. Our approach sheds light on the stressor networks that honey bees encounter in the field and underscores the importance of considering interactions among stressors. Clearly, addressing and managing these issues will require solutions that are tailored to specific crops and regions and their associated stressor networks.
Collapse
Affiliation(s)
- Sarah K French
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Mateus Pepinelli
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Ida M Conflitti
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Aidan Jamieson
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Heather Higo
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Julia Common
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Elizabeth M Walsh
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, 100038 Township Road 720, Beaverlodge, AB T0H0C0, Canada
| | - Miriam Bixby
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - M Marta Guarna
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, 100038 Township Road 720, Beaverlodge, AB T0H0C0, Canada; University of Victoria, Department of Computer Science, 3800 Finnerty Road, Victoria, BC V8P5C2, Canada
| | - Stephen F Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, 100038 Township Road 720, Beaverlodge, AB T0H0C0, Canada
| | - Shelley E Hoover
- University of Lethbridge, Department of Biological Sciences, 4401 University Drive, Lethbridge, AB T1K3M4, Canada
| | - Robert W Currie
- University of Manitoba, Department of Entomology, 12 Dafoe Road, Winnipeg, MB R3T2N2, Canada
| | - Pierre Giovenazzo
- Université Laval, Département de biologie, 1045, avenue de la Médecine, Québec, QC G1V0A6, Canada
| | - Ernesto Guzman-Novoa
- University of Guelph, School of Environmental Sciences, 50 Stone Road East, Guelph, ON N1G2W1, Canada
| | - Daniel Borges
- Ontario Beekeepers' Association, Technology Transfer Program, 185-5420 Highway 6 North, Guelph, ON N1H6J2, Canada
| | - Leonard J Foster
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Amro Zayed
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada.
| |
Collapse
|
18
|
Xie J, Wang T, Zhang P, Zhang H, Wang H, Wang K, Zhang M, Xu J. Effects of multiple stressors on freshwater food webs: Evidence from a mesocosm experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123819. [PMID: 38508368 DOI: 10.1016/j.envpol.2024.123819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Natural and anthropogenic pressures exert influence on ecosystem structure and function by affecting the physiology and behavior of organisms, as well as the trophic interactions within assemblages. Therefore, understanding how multiple stressors affect aquatic ecosystems can improve our ability to manage and protect these ecosystems and contribute to understanding fundamental ecological principles. Here, we conducted a mesocosm experiment to ascertain the individual and combined effects of multiple stressors on trophic interactions within species in freshwater ecosystems. Furthermore, we investigated how species respond to such changes by adapting their food resources. To mimic a realistic food web, we selected fish and shrimp as top predators, gastropods, zooplankton and zoobenthos as intermediate consumers, with producers (macrophytes, periphyton and phytoplankton) and detritus as basal resources. Twelve different treatments included a control, nutrient loading only, herbicide exposure only, and a combination of nutrient loading and herbicide exposure, each replicated under ambient temperature, constant warming and multiple heat waves to simulate environmental stressors. Our results demonstrated that antagonistic interactions between environmental stressors were widespread in trophic interactions, with a more pronounced and less intense impact observed for the high trophic level species. The responses of freshwater communities to environmental stressors are complex, involving direct effects on individual species as well as indirect effects through species interactions. Moreover, our results confirmed that the combinations of stressors, but not individual stressors, led to a shift to herbivory in top predators, indicating that multiple stressors can be more detrimental to organisms than individual stressors alone. These findings elucidate how changes in the resource utilization of species induced by environmental stressors can potentially influence species interactions and the structural dynamics of food webs in freshwater ecosystems.
Collapse
Affiliation(s)
- Jiayi Xie
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Tao Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Peiyu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Huan Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Huan Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China.
| | - Kang Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Min Zhang
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Huazhong Agricultural University, Wuhan, PR China.
| | - Jun Xu
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
19
|
Hu N, Bourdeau PE, Hollander J. Responses of marine trophic levels to the combined effects of ocean acidification and warming. Nat Commun 2024; 15:3400. [PMID: 38649374 PMCID: PMC11035698 DOI: 10.1038/s41467-024-47563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Marine organisms are simultaneously exposed to anthropogenic stressors associated with ocean acidification and ocean warming, with expected interactive effects. Species from different trophic levels with dissimilar characteristics and evolutionary histories are likely to respond differently. Here, we perform a meta-analysis of controlled experiments including both ocean acidification and ocean warming factors to investigate single and interactive effects of these stressors on marine species. Contrary to expectations, we find that synergistic interactions are less common (16%) than additive (40%) and antagonistic (44%) interactions overall and their proportion decreases with increasing trophic level. Predators are the most tolerant trophic level to both individual and combined effects. For interactive effects, calcifying and non-calcifying species show similar patterns. We also identify climate region-specific patterns, with interactive effects ranging from synergistic in temperate regions to compensatory in subtropical regions, to positive in tropical regions. Our findings improve understanding of how ocean warming, and acidification affect marine trophic levels and highlight the need for deeper consideration of multiple stressors in conservation efforts.
Collapse
Affiliation(s)
- Nan Hu
- Department of Biology- Aquatic Ecology, Lund University, Lund, Sweden
| | - Paul E Bourdeau
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA, USA
| | - Johan Hollander
- World Maritime University, Ocean Sustainability, Governance & Management Unit, 211 18, Malmö, Sweden.
| |
Collapse
|
20
|
Bai Z, Yin J, Cheng L, Song L, Zhang YY, Wang M. Multistress Interplay: Time and Duration of Ocean Acidification Modulate the Toxicity of Mercury and Other Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6487-6498. [PMID: 38579165 DOI: 10.1021/acs.est.3c09112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The current understanding of multistress interplay assumes stresses occur in perfect synchrony, but this assumption is rarely met in the natural marine ecosystem. To understand the interplay between nonperfectly overlapped stresses in the ocean, we manipulated a multigenerational experiment (F0-F3) to explore how different temporal scenarios of ocean acidification will affect mercury toxicity in a marine copepod Pseudodiaptomus annandalei. We found that the scenario of past acidification aggravated mercury toxicity but current and persistent acidification mitigated its toxicity. We specifically performed a proteomics analysis for the copepods of F3. The results indicated that current and persistent acidification initiated the energy compensation for development and mercury efflux, whereas past acidification lacked the barrier of H+ and had dysfunction in the detoxification and efflux system, providing a mechanistic understanding of mercury toxicity under different acidification scenarios. Furthermore, we conducted a meta-analysis on marine animals, demonstrating that different acidification scenarios could alter the toxicity of several other metals, despite evidence from nonsynchronous scenarios remaining limited. Our study thus demonstrates that time and duration of ocean acidification modulate mercury toxicity in marine copepods and suggests that future studies should move beyond the oversimplified scenario of perfect synchrony in understanding multistress interaction.
Collapse
Affiliation(s)
- Zhuoan Bai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Junjie Yin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Luman Cheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Luting Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| |
Collapse
|
21
|
Smith TP, Clegg T, Ransome E, Martin-Lilley T, Rosindell J, Woodward G, Pawar S, Bell T. High-throughput characterization of bacterial responses to complex mixtures of chemical pollutants. Nat Microbiol 2024; 9:938-948. [PMID: 38499812 PMCID: PMC10994839 DOI: 10.1038/s41564-024-01626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024]
Abstract
Our understanding of how microbes respond to micropollutants, such as pesticides, is almost wholly based on single-species responses to individual chemicals. However, in natural environments, microbes experience multiple pollutants simultaneously. Here we perform a matrix of multi-stressor experiments by assaying the growth of model and non-model strains of bacteria in all 255 combinations of 8 chemical stressors (antibiotics, herbicides, fungicides and pesticides). We found that bacterial strains responded in different ways to stressor mixtures, which could not be predicted simply from their phylogenetic relatedness. Increasingly complex chemical mixtures were both more likely to negatively impact bacterial growth in monoculture and more likely to reveal net interactive effects. A mixed co-culture of strains proved more resilient to increasingly complex mixtures and revealed fewer interactions in the growth response. These results show predictability in microbial population responses to chemical stressors and could increase the utility of next-generation eco-toxicological assays.
Collapse
Affiliation(s)
- Thomas P Smith
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK.
| | - Tom Clegg
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| | - Emma Ransome
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| | - Thomas Martin-Lilley
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| | - James Rosindell
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| | - Guy Woodward
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| | - Samraat Pawar
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| | - Thomas Bell
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| |
Collapse
|
22
|
Helbling EW, Villafañe VE, Narvarte MA, Burgueño GM, Saad JF, González RA, Cabrerizo MJ. The impact of extreme weather events exceeds those due to global-change drivers on coastal phytoplankton assemblages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170644. [PMID: 38320708 DOI: 10.1016/j.scitotenv.2024.170644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Extreme wind and rainfall events have become more frequent phenomena, impacting coastal ecosystems by inducing increased mixing regimes in the upper mixed layers (UML) and reduced transparency (i.e. browning), hence affecting phytoplankton photosynthesis. In this study, five plankton assemblages from the South Atlantic Ocean, from a gradient of environmental variability and anthropogenic exposure, were subjected to simulated extreme weather events under a global change scenario (GCS) of increased temperature and nutrients and decreased pH, and compared to ambient conditions (Control). Using multiple linear regression (MLR) analysis we determined that evenness and the ratio of diatoms/ (flagellates + dinoflagellates) significantly explained the variations (81-91 %) of the photosynthesis efficiency (i.e. Pchla/ETRchla ratio) for each site under static conditions. Mixing speed and the optical depth (i.e. attenuation coefficient * depth, kdz), as single drivers, explained 40-76 % of the variability in the Pchla/ETRchla ratio, while GCS drivers <9 %. Overall, assemblages with high diversity and evenness were less vulnerable to extreme weather events under a GCS. Extreme weather events should be considered in global change studies and conservation/management plans as even at local/regional scales, they can exceed the predicted impacts of mean global climate change on coastal primary productivity.
Collapse
Affiliation(s)
- E Walter Helbling
- Estación de Fotobiología Playa Unión, Casilla de Correos 15, 9103 Rawson, Chubut, Argentina.
| | - Virginia E Villafañe
- Estación de Fotobiología Playa Unión, Casilla de Correos 15, 9103 Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Maite A Narvarte
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni & Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, 8520 San Antonio Oeste, Río Negro, Argentina
| | - Giuliana M Burgueño
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni & Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, 8520 San Antonio Oeste, Río Negro, Argentina
| | - Juan F Saad
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni & Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, 8520 San Antonio Oeste, Río Negro, Argentina
| | - Raúl A González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni & Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, 8520 San Antonio Oeste, Río Negro, Argentina
| | - Marco J Cabrerizo
- Estación de Fotobiología Playa Unión, Casilla de Correos 15, 9103 Rawson, Chubut, Argentina; Departamento de Ecología, Facultad de Ciencias, Campus de Fuentenueva s/n & Instituto Universitario de Investigación del Agua, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
23
|
Langangen Ø, Durant JM. Persistence of fish populations to longer, more intense, and more frequent mass mortality events. GLOBAL CHANGE BIOLOGY 2024; 30:e17251. [PMID: 38519869 DOI: 10.1111/gcb.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
Over the last decades, mass mortality events have become increasingly common across taxa with sometimes devastating effects on population biomass. In the aquatic environment, fish are sensitive to mass mortality events, particularly at the early life stages that are crucial for population dynamics. However, it has recently been shown for fish, that a single mass mortality event in early life typically does not lead to population collapse. Moreover, the frequency and intensity of extreme events that can cause mass mortality, such as marine heatwaves, are increasing. Here, we show that increasing frequency and intensity of mass mortality events may lead to population collapse. Since the drivers of mass mortality events are diverse, and often linked to climate change, it is challenging to predict the frequency and severity of future mass mortality events. As an alternative, we quantify the probability of population collapse depending on the frequency and intensity as well as the duration of mass mortality events. Based on 39 fish species, we show that the probability of collapse typically increases with increasing frequency, intensity, and duration of the mortality events. In addition, we show that the collapse depends on key traits such as natural mortality, recruitment variation, and density dependence. The presented framework provides quantitative estimates of the sensitivity of fish species to these increasingly common extreme events, which paves the way for potential mitigation actions to alleviate adverse impacts on harvested fish populations across the globe.
Collapse
Affiliation(s)
| | - Joël M Durant
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Salse J, Barnard RL, Veneault-Fourrey C, Rouached H. Strategies for breeding crops for future environments. TRENDS IN PLANT SCIENCE 2024; 29:303-318. [PMID: 37833181 DOI: 10.1016/j.tplants.2023.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 10/15/2023]
Abstract
The green revolution successfully increased agricultural output in the early 1960s by relying primarily on three pillars: plant breeding, irrigation, and chemical fertilization. Today, the need to reduce the use of chemical fertilizers, water scarcity, and future environmental changes, together with a growing population, requires innovative strategies to adapt to a new context and prevent food shortages. Therefore, scientists from around the world are directing their efforts to breed crops for future environments to sustainably produce more nutritious food. Herein, we propose scientific avenues to be reinforced in selecting varieties, including crop wild relatives, either for monoculture or mixed cropping systems, taking advantage of plant-microbial interactions, while considering the diversity of organisms associated with crops and unlocking combinatorial nutritional stresses.
Collapse
Affiliation(s)
- Jérôme Salse
- UCA-INRAE UMR 1095 Genetics, Diversity, and Ecophysiology of Cereals (GDEC), 5 Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Romain L Barnard
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, Unité Mixte de Recherche Interactions Arbres-Microorganismes, F-54000 Nancy, France
| | - Hatem Rouached
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA; The Plant Resilience Institute, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
25
|
Rillig MC, Lehmann A, Orr JA, Rongstock R. Factors of global change affecting plants act at different levels of the ecological hierarchy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1781-1785. [PMID: 37873939 DOI: 10.1111/tpj.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Plants and ecosystems worldwide are exposed to a wide range of chemical, physical, and biological factors of global change, many of which act concurrently. As bringing order to the array of factors is required in order to generate an enhanced understanding of simultaneous impacts, classification schemes have been developed. One such classification scheme is dedicated to capturing the different targets of global change factors along the ecological hierarchy. We build on this pioneering work, and refine the conceptual framework in several ways, focusing on plants and terrestrial systems: (i) we more strictly define the target level of the hierarchy, such that every factor typically has just one target level, and not many; (ii) we include effects above the level of the community, that is, there are effects also at the ecosystem scale that cannot be reduced to any level below this; (iii) we introduce the level of the landscape to capture certain land use change effects while abandoning the level below the individual. We discuss how effects can propagate along the levels of the ecological hierarchy, upwards and downwards, presenting opportunities for explaining non-additivity of effects of multiple factors. We hope that this updated conceptual framework will help inform the next generation of plant-focused global change experiments, specifically aimed at non-additivity of effects at the confluence of many factors.
Collapse
Affiliation(s)
- Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Anika Lehmann
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - James A Orr
- Department of Biology, University of Oxford, Oxford, UK
| | - Rebecca Rongstock
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| |
Collapse
|
26
|
Abstract
Understanding the effects of plastic pollution in terrestrial ecosystems is a priority in environmental research. A central aspect of this suite of pollutants is that it entails particles, in addition to chemical compounds, and this makes plastic quite different from the vast majority of chemical environmental pollutants. Particles can be habitats for microbial communities, and plastics can be a source of chemical compounds that are released into the surrounding environment. In the aquatic literature, the term 'plastisphere' has been coined to refer to the microbial community colonizing plastic debris; here, we use a definition that also includes the immediate soil environment of these particles to align the definition with other concepts in soil microbiology. First, we highlight major differences in the plastisphere between aquatic and soil ecosystems, then we review what is currently known about the soil plastisphere, including the members of the microbial community that are enriched, and the possible mechanisms underpinning this selection. Then, we focus on outlining future prospects for research on the soil plastisphere.
Collapse
Affiliation(s)
- Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| | - Shin Woong Kim
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
27
|
Tobin KB, Mandes R, Martinez A, Sadd BM. A simulated natural heatwave perturbs bumblebee immunity and resistance to infection. J Anim Ecol 2024; 93:171-182. [PMID: 38180280 PMCID: PMC10922385 DOI: 10.1111/1365-2656.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
As a consequence of ongoing climate change, heatwaves are predicted to increase in frequency, intensity, and duration in many regions. Such extreme events can shift organisms from thermal optima for physiology and behaviour, with the thermal stress hypothesis predicting reduced performance at temperatures where the maintenance of biological functions is energetically costly. Performance includes the ability to resist biotic stressors, including infectious diseases, with increased exposure to extreme temperatures having the potential to synergise with parasite infection. Climate change is a proposed threat to native bee pollinators, directly and through indirect effects on floral resources, but the thermal stress hypothesis, particularly pertaining to infectious disease resistance, has received limited attention. We exposed adult Bombus impatiens bumblebee workers to simulated, ecologically relevant heatwave or control thermal regimes and assessed longevity, immunity, and resistance to concurrent or future parasite infections. We demonstrate that survival and induced antibacterial immunity are reduced following heatwaves. Supporting that heatwave exposure compromised immunity, the cost of immune activation was thermal regime dependent, with survival costs in control but not heatwave exposed bees. However, in the face of real infections, an inability to mount an optimal immune response will be detrimental, which was reflected by increased trypanosomatid parasite infections following heatwave exposure. These results demonstrate interactions between heatwave exposure and bumblebee performance, including immune and infection outcomes. Thus, the health of bumblebee pollinator populations may be affected through altered interactions with parasites and pathogens, in addition to other effects of extreme manifestations of climate change.
Collapse
Affiliation(s)
- Kerrigan B. Tobin
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, United States of America
| | - Rachel Mandes
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, United States of America
| | - Abraham Martinez
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, United States of America
| | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, United States of America
| |
Collapse
|
28
|
Milles A, Bielcik M, Banitz T, Gallagher CA, Jeltsch F, Jepsen JU, Oro D, Radchuk V, Grimm V. Defining ecological buffer mechanisms should consider diverse approaches. Trends Ecol Evol 2024; 39:119-120. [PMID: 38158240 DOI: 10.1016/j.tree.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Alexander Milles
- Research Institute for Forest Ecology and Forestry Rhineland-Palatinate, Haupstr. 16, 67705 Trippstadt, Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany; University of Potsdam, Department of Plant Ecology and Nature Conservation, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany.
| | - Milos Bielcik
- Leibniz Centre for Agricultural Landscape Research - ZALF, Eberswalder Straße 84, 15374 Müncheberg, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Thomas Banitz
- Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany
| | - Cara A Gallagher
- University of Potsdam, Department of Plant Ecology and Nature Conservation, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany
| | - Florian Jeltsch
- University of Potsdam, Department of Plant Ecology and Nature Conservation, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Jane U Jepsen
- Norwegian Institute for Nature Research, Department of Arctic Ecology, Fram Centre, Hjalmar Johansens gt.14, 9007 Tromsø, Norway
| | - Daniel Oro
- Centre d'Estudis Avançats de Blanes (CEAB - CSIC), Acces Cala Sant Francesc 14, 17300 Blanes, Girona, Spain
| | - Viktoriia Radchuk
- Leibniz Institute for Zoo and Wildlife Research, Ecological Dynamics Department, 10315 Berlin, Germany
| | - Volker Grimm
- Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany; University of Potsdam, Department of Plant Ecology and Nature Conservation, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
| |
Collapse
|
29
|
Sun X, Arnott SE, Little AG. Impacts of sequential salinity and heat stress are recovery time-specific in freshwater crustacean, Daphnia pulicaria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115899. [PMID: 38171229 DOI: 10.1016/j.ecoenv.2023.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Stressors can interact to affect animal fitness, but we have limited knowledge about how temporal variation in stressors may impact their combined effect. This limits our ability to predict the outcomes of pollutants and future dynamic environmental changes. Elevated salinity in freshwater ecosystems has been observed worldwide. Meanwhile, heatwaves have become more frequent and intensified as an outcome of climate change. These two stressors can jointly affect organisms; however, their interaction has rarely been explored in the context of freshwater ecosystems. We conducted lab experiments using Daphnia pulicaria, a key species in lakes, to investigate how elevated salinity and heatwave conditions collectively affect freshwater organisms. We also monitored the impacts of various recovery times between the two stressors. Daphnia physiological conditions (metabolic rate, Na+-K+-ATPase (NKA) activity, and lipid peroxidation level) and life history traits (survival, fecundity, and growth) in response to salt stress as well as mortality in heat treatment were examined. We found that Daphnia responded to elevated salinity by upregulating NKA activity and increasing metabolic rate, causing a high lipid peroxidation level. Survival, fecundity, and growth were all negatively affected by this stressor. These impacts on physiological conditions and life history traits persisted for a few days after the end of the exposure. Heat treatments caused mortality in Daphnia, which increased with rising temperature. Results also showed that individuals that experienced salt exposure were more susceptible to subsequent heat stress, but this effect decreased with increasing recovery time between stressors. Findings from this work suggest that the legacy effects from a previous stressor can reduce individual resistance to a subsequent stressor, adding great difficulties to the prediction of outcomes of multiple stressors. Our work also demonstrates that cross-tolerance/susceptibility and the associated mechanisms remain unclear, necessitating further investigation.
Collapse
Affiliation(s)
- Xinyu Sun
- Biology Department, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Shelley E Arnott
- Biology Department, Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada
| | - Alexander G Little
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1 ON, Canada
| |
Collapse
|
30
|
Jarvis L, Rosenfeld J, Gonzalez-Espinosa PC, Enders EC. A process framework for integrating stressor-response functions into cumulative effects models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167456. [PMID: 37839475 DOI: 10.1016/j.scitotenv.2023.167456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
Stressor-response (SR) functions quantify ecological responses to natural environmental variation or anthropogenic stressors. They are also core drivers of cumulative effects (CE) models, which are increasingly recognized as essential management tools to grapple with the diffuse footprint of human impacts. Here, we provide a process framework for the identification, development, and integration of SR functions into CE models, and highlight their consequential properties, behaviour, criteria for selecting appropriate stressors and responses, and general approaches for deriving them. Management objectives (and causal effect pathways) will determine the ultimate stressor and target response variables of interest (i.e., individual growth/survival, population size, community structure, ecosystem processes), but data availability will constrain whether proxies need to be used for the target stressor or response variables. Available data and confidence in underlying mechanisms will determine whether empirical or mechanistic (theoretical) SR functions are optimal. Uncertainty in underlying SR functions is often the primary source of error in CE modelling, and monitoring outcomes through adaptive management to iteratively refine parameterization of SR functions is a key element of model application. Dealing with stressor interactions is an additional challenge, and in the absence of known or suspected interaction mechanisms, controlling main effects should remain the primary focus. Indicators of suspected interaction presence (i.e., much larger or smaller responses to stressor reduction than expected during monitoring) should be confirmed through adaptive management cycles or targeted stressor manipulations. Where possible, management decisions should selectively take advantage of interactions to strategically mitigate stressor impacts (i.e., by using antagonisms to suppress stressor impacts, and by using synergisms to efficiently reduce them).
Collapse
Affiliation(s)
- Lauren Jarvis
- Fisheries and Oceans Canada, Ontario & Prairie Region, Freshwater Institute, 501 University Avenue, Winnipeg, MB R3T 2N6, Canada.
| | - Jordan Rosenfeld
- UBC Institute for the Oceans and Fisheries, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada; B.C. Ministry of Environment, Vancouver, BC, Canada.
| | - Pedro C Gonzalez-Espinosa
- Nippon Foundation Ocean Nexus, Simon Fraser University, School of Resource and Environmental Management, Technology and Science Complex 1, 643A Science Rd, Burnaby, BC V5A 1S6, Canada
| | - Eva C Enders
- Institut National de la Recherche Scientifique, Eau Terre Environnement Research Centre, 490 de la Couronne Street, Quebec City, QC G1K 9A9, Canada.
| |
Collapse
|
31
|
Papantoniou G, Zervoudaki S, Assimakopoulou G, Stoumboudi MT, Tsagarakis K. Ecosystem-level responses to multiple stressors using a time-dynamic food-web model: The case of a re-oligotrophicated coastal embayment (Saronikos Gulf, E Mediterranean). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165882. [PMID: 37574071 DOI: 10.1016/j.scitotenv.2023.165882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Multiple stressors may combine in unexpected ways to alter the structure of ecological systems, however, our current ability to evaluate their ecological impact is limited due to the lack of information concerning historic trophic interactions and ecosystem dynamics. Saronikos Gulf is a heavily exploited embayment in the E Mediterranean that has undergone significant ecological alterations during the last 20 years including a shift from long-standing eutrophic to oligotrophic conditions in the mid-2000's. Here we used a historical Ecopath food-web model of Saronikos Gulf (1998-2000) and fitted the time-dynamic module Ecosim to biomass and catch time series for the period 2001-2020. We then projected the model forward in time from 2021 to 2050 under 8 scenarios to simulate ecosystem responses to the individual and combined effect of sea surface temperature increase, primary productivity shifts and fishing effort release. Incorporating trophic interactions, climate warming, fishing and primary production improved model fit, depicting that both fishing and the environment have historically influenced ecosystem dynamics. Retrospective simulations of the model captured historical biomass and catch trends of commercially important stocks and reproduced successfully the marked recovery of marine resources 10 years after re-oligotrophication. In future scenarios increasing temperature had a detrimental impact on most functional groups, increasing and decreasing productivity had a positive and negative effect on all respectively, while fishing reductions principally benefited top predators. Combined stressors produced synergistic or antagonistic effects depending on the direction and magnitude of change of each stressor in isolation while their overall impact seemed to be strongly mediated via food-web interactions. Such holistic approaches advance of our mechanistic understanding of ecosystems enabling us to develop more effective management strategies in the face of a rapidly changing marine environment.
Collapse
Affiliation(s)
- Georgia Papantoniou
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7 km Athinon-Souniou Ave, P.O. BOX 712, Anavyssos, GR19013, Greece.
| | - Soultana Zervoudaki
- Hellenic Centre for Marine Research, Institute of Oceanography, 46.7 km Athinon-Souniou Ave, P.O. BOX 712, Anavyssos, GR19013, Greece
| | - Georgia Assimakopoulou
- Hellenic Centre for Marine Research, Institute of Oceanography, 46.7 km Athinon-Souniou Ave, P.O. BOX 712, Anavyssos, GR19013, Greece
| | - Maria Th Stoumboudi
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7 km Athinon-Souniou Ave, P.O. BOX 712, Anavyssos, GR19013, Greece
| | - Konstantinos Tsagarakis
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7 km Athinon-Souniou Ave, P.O. BOX 712, Anavyssos, GR19013, Greece
| |
Collapse
|
32
|
Dinh KV, Albini D, Orr JA, Macaulay SJ, Rillig MC, Borgå K, Jackson MC. Winter is coming: Interactions of multiple stressors in winter and implications for the natural world. GLOBAL CHANGE BIOLOGY 2023; 29:6834-6845. [PMID: 37776127 DOI: 10.1111/gcb.16956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023]
Abstract
Winter is a key driver of ecological processes in freshwater, marine and terrestrial ecosystems, particularly in higher latitudes. Species have evolved various adaptive strategies to cope with food limitations and the cold and dark wintertime. However, human-induced climate change and other anthropogenic stressors are impacting organisms in winter in unpredictable ways. In this paper, we show that global change experiments investigating multiple stressors have predominantly been conducted during summer months. However, effects of anthropogenic stressors sometimes differ between winter and other seasons, necessitating comprehensive investigations. Here, we outline a framework for understanding the different effects of anthropogenic stressors in winter compared to other seasons and discuss the primary mechanisms that will alter ecological responses of organisms (microbes, animals and plants). For instance, while the magnitude of some anthropogenic stressors can be greater in winter than in other seasons (e.g. some pollutants), others may alleviate natural winter stress (e.g. warmer temperatures). These changes can have immediate, delayed or carry-over effects on organisms during winter or later seasons. Interactions between stressors may also vary with season. We call for a renewed research direction focusing on multiple stressor effects on winter ecology and evolution to fully understand, and predict, how ecosystems will fare under changing winters. We also argue the importance of incorporating the interactions of anthropogenic stressors with winter into ecological risk assessments, management and conservation efforts.
Collapse
Affiliation(s)
- Khuong V Dinh
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dania Albini
- Department of Biology, University of Oxford, Oxford, UK
| | - James A Orr
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Matthias C Rillig
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg-Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Katrine Borgå
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
33
|
Milles A, Banitz T, Bielcik M, Frank K, Gallagher CA, Jeltsch F, Jepsen JU, Oro D, Radchuk V, Grimm V. Local buffer mechanisms for population persistence. Trends Ecol Evol 2023; 38:1051-1059. [PMID: 37558537 DOI: 10.1016/j.tree.2023.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023]
Abstract
Assessing and predicting the persistence of populations is essential for the conservation and control of species. Here, we argue that local mechanisms require a better conceptual synthesis to facilitate a more holistic consideration along with regional mechanisms known from metapopulation theory. We summarise the evidence for local buffer mechanisms along with their capacities and emphasise the need to include multiple buffer mechanisms in studies of population persistence. We propose an accessible framework for local buffer mechanisms that distinguishes between damping (reducing fluctuations in population size) and repelling (reducing population declines) mechanisms. We highlight opportunities for empirical and modelling studies to investigate the interactions and capacities of buffer mechanisms to facilitate better ecological understanding in times of ecological upheaval.
Collapse
Affiliation(s)
- Alexander Milles
- Department of Plant Ecology and Nature Conservation, University of Potsdam, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany; Department of Ecological Modelling, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Nationalparkamt Hunsrück-Hochwald, Research, Biotope- and Wildlife Management, Brückener Straße 24, 55765 Birkenfeld, Germany.
| | - Thomas Banitz
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Milos Bielcik
- Freie Universität Berlin, Institute of Biology, Altensteinstr. 6, 14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Karin Frank
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; University of Osnabrück, Institute for Environmental Systems Research, Barbarastr. 12, 49076 Osnabrück, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
| | - Cara A Gallagher
- Department of Plant Ecology and Nature Conservation, University of Potsdam, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany
| | - Florian Jeltsch
- Department of Plant Ecology and Nature Conservation, University of Potsdam, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Jane Uhd Jepsen
- Department of Arctic Ecology, Norwegian Institute for Nature Research, Fram Centre, Hjalmar Johansens gt.14, 9007 Tromsø, Norway
| | - Daniel Oro
- Centre d'Estudis Avançats de Blanes (CEAB - CSIC), Acces Cala Sant Francesc 14, 17300 Blanes, Girona, Spain.
| | - Viktoriia Radchuk
- Ecological Dynamics Department, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Volker Grimm
- Department of Plant Ecology and Nature Conservation, University of Potsdam, Am Muhlenberg 3, 14476, Potsdam-Golm, Germany; Department of Ecological Modelling, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
| |
Collapse
|
34
|
Volery L, Vaz Fernandez M, Wegmann D, Bacher S. A general framework to quantify and compare ecological impacts under temporal dynamics. Ecol Lett 2023; 26:1726-1739. [PMID: 37515418 DOI: 10.1111/ele.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Biodiversity is diminishing at alarming rates due to multiple anthropogenic drivers. To mitigate these drivers, their impacts must be quantified accurately and comparably across drivers. To enable that, we present a generally applicable framework introducing fundamental principles of ecological impact quantification, including the quantification of interactions between multiple drivers. The framework contrasts biodiversity variables in impacted against those in unimpacted or other reference situations while accounting for their temporal dynamics through modelling. Properly accounting for temporal dynamics reduces biases in impact quantification and comparison. The framework addresses key questions around ecological impacts in global change science, namely, how to compare impacts under temporal dynamics across stressors, how to account for stressor interactions in such comparisons, and how to compare the success of management actions over time.
Collapse
Affiliation(s)
- Lara Volery
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Margarida Vaz Fernandez
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Sven Bacher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
35
|
Schäfer RB, Jackson M, Juvigny-Khenafou N, Osakpolor SE, Posthuma L, Schneeweiss A, Spaak J, Vinebrooke R. Chemical Mixtures and Multiple Stressors: Same but Different? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1915-1936. [PMID: 37036219 DOI: 10.1002/etc.5629] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Ecosystems are strongly influenced by multiple anthropogenic stressors, including a wide range of chemicals and their mixtures. Studies on the effects of multiple stressors have largely focussed on nonchemical stressors, whereas studies on chemical mixtures have largely ignored other stressors. However, both research areas face similar challenges and require similar tools and methods to predict the joint effects of chemicals or nonchemical stressors, and frameworks to integrate multiple chemical and nonchemical stressors are missing. We provide an overview of the research paradigms, tools, and methods commonly used in multiple stressor and chemical mixture research and discuss potential domains of cross-fertilization and joint challenges. First, we compare the general paradigms of ecotoxicology and (applied) ecology to explain the historical divide. Subsequently, we compare methods and approaches for the identification of interactions, stressor characterization, and designing experiments. We suggest that both multiple stressor and chemical mixture research are too focused on interactions and would benefit from integration regarding null model selection. Stressor characterization is typically more costly for chemical mixtures. While for chemical mixtures comprehensive classification systems at suborganismal level have been developed, recent classification systems for multiple stressors account for environmental context. Both research areas suffer from rather simplified experimental designs that focus on only a limited number of stressors, chemicals, and treatments. We discuss concepts that can guide more realistic designs capturing spatiotemporal stressor dynamics. We suggest that process-based and data-driven models are particularly promising to tackle the challenge of prediction of effects of chemical mixtures and nonchemical stressors on (meta-)communities and (meta-)food webs. We propose a framework to integrate the assessment of effects for multiple stressors and chemical mixtures. Environ Toxicol Chem 2023;42:1915-1936. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ralf B Schäfer
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | | | - Noel Juvigny-Khenafou
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Stephen E Osakpolor
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Leo Posthuma
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| | - Anke Schneeweiss
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Jürg Spaak
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Rolf Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
36
|
Grunst ML, Grunst AS, Grémillet D, Fort J. Combined threats of climate change and contaminant exposure through the lens of bioenergetics. GLOBAL CHANGE BIOLOGY 2023; 29:5139-5168. [PMID: 37381110 DOI: 10.1111/gcb.16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
37
|
G-Santoyo I, Ramírez-Carrillo E, Sanchez JD, López-Corona O. Potential long consequences from internal and external ecology: loss of gut microbiota antifragility in children from an industrialized population compared with an indigenous rural lifestyle. J Dev Orig Health Dis 2023; 14:469-480. [PMID: 37222148 DOI: 10.1017/s2040174423000144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Human health is strongly mediated by the gut microbiota ecosystem, which, in turn, depends not only on its state but also on its dynamics and how it responds to perturbations. Healthy microbiota ecosystems tend to be in criticality and antifragile dynamics corresponding to a maximum complexity configuration, which may be assessed with information and network theory analysis. Under this complex system perspective, we used a new analysis of published data to show that a children's population with an industrialized urban lifestyle from Mexico City exhibits informational and network characteristics similar to parasitized children from a rural indigenous population in the remote mountainous region of Guerrero, México. We propose then, that in this critical age for gut microbiota maturation, the industrialized urban lifestyle could be thought of as an external perturbation to the gut microbiota ecosystem, and we show that it produces a similar loss in criticality/antifragility as the one observed by internal perturbation due to parasitosis by the helminth A. lumbricoides. Finally, several general complexity-based guidelines to prevent or restore gut ecosystem antifragility are discussed.
Collapse
Affiliation(s)
- Isaac G-Santoyo
- Neuroecology Lab, Department of Psychology, UNAM, México, 04510
- Unidad de Investigación en Psicobiología y Neurociencias, Department of Psychology, UNAM, México, 04510
| | | | | | - Oliver López-Corona
- Investigadores por México (IxM)-CONACyT, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), UNAM, México, 04510
| |
Collapse
|
38
|
Pérez J, Cornejo A, Alonso A, Guerra A, García G, Nieto C, Correa-Araneda F, Rojo D, Boyero L. Warming overrides eutrophication effects on leaf litter decomposition in stream microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 332:121966. [PMID: 37290635 DOI: 10.1016/j.envpol.2023.121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Several human activities often result in increased nitrogen (N) and phosphorus (P) inputs to running waters through runoff. Although headwater streams are less frequently affected by these inputs than downstream reaches, the joint effects of moderate eutrophication and global warming can affect the functioning of these ecosystems, which represent two thirds of total river length and thus are of major global relevance. In a microcosm study representing streams from a temperate area (northern Spain), we assessed the combined effects of increased water temperature (10.0, 12.5, and 15.0 °C) and nutrient enrichment (control, high N, high P, and high N + P concentrations) on the key process of leaf litter decomposition (mediated by microorganisms and detritivores) and associated changes in different biological compartments (leaf litter, aquatic hyphomycetes and detritivores). While warming consistently enhanced decomposition rates and associated variables (leaf litter microbial conditioning, aquatic hyphomycete sporulation rates and taxon richness, and detritivore growth and nutrient contents), effects of eutrophication were weaker and more variable: P addition inhibited decomposition, addition of N + P promoted leaf litter conditioning, and detritivore stoichiometry was affected by the addition of both nutrients separately or together. In only a few cases (variables related to detritivore performance, but not microbial performance or leaf litter decomposition) we found interactions between warming and eutrophication, which contrasts with other experiments reporting synergistic effects. Our results suggest that both stressors can importantly alter the functioning of stream ecosystems even when occurring in isolation, although non-additive effects should not be neglected and might require exploring an array of ecosystem processes (not just leaf litter decomposition) in order to be detected.
Collapse
Affiliation(s)
- Javier Pérez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; Ecology and Aquatic Ecotoxicology Laboratory. Research Center for Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, 0816-02593. Divisa, Veraguas province, Panama.
| | - Aydeé Cornejo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; Ecology and Aquatic Ecotoxicology Laboratory. Research Center for Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, 0816-02593. Divisa, Veraguas province, Panama; National Research System of Panama, Panama
| | - Alberto Alonso
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alisson Guerra
- Ecology and Aquatic Ecotoxicology Laboratory. Research Center for Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, 0816-02593. Divisa, Veraguas province, Panama
| | - Gabriela García
- Ecology and Aquatic Ecotoxicology Laboratory. Research Center for Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, 0816-02593. Divisa, Veraguas province, Panama
| | - Carlos Nieto
- Ecology and Aquatic Ecotoxicology Laboratory. Research Center for Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, 0816-02593. Divisa, Veraguas province, Panama
| | - Francisco Correa-Araneda
- Climate Change and Environment Unit, IberoAmerican Institute for Sustainable Development, Autonomous University of Chile, Temuco, Chile
| | - Diana Rojo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Luz Boyero
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; Ecology and Aquatic Ecotoxicology Laboratory. Research Center for Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, 0816-02593. Divisa, Veraguas province, Panama; IKERBASQUE, Bilbao, Spain
| |
Collapse
|
39
|
Wear B, O'Connor NE, Schmid MJ, Jackson MC. What does the future look like for kelp when facing multiple stressors? Ecol Evol 2023; 13:e10203. [PMID: 37384243 PMCID: PMC10293785 DOI: 10.1002/ece3.10203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
As primary producers and ecosystem engineers, kelp (generally Order Laminariales) are ecologically important, and their decline could have far-reaching consequences. Kelp are valuable in forming habitats for fish and invertebrates and are crucial for adaptation to climate change by creating coastal defenses and in providing key functions, such as carbon sequestration and food provision. Kelp are threatened by multiple stressors, such as climate change, over-harvesting of predators, and pollution. In this opinion paper, we discuss how these stressors may interact to affect kelp, and how this varies under different contexts. We argue that more research that bridges kelp conservation and multiple stressor theory is needed and outline key questions that should be addressed as a priority. For instance, it is important to understand how previous exposure (either to earlier generations or life stages) determines responses to emerging stressors, and how responses in kelp scale up to alter food webs and ecosystem functioning. By increasing the temporal and biological complexity of kelp research in this way, we will improve our understanding allowing better predictions. This research is essential for the effective conservation and potential restoration of kelp in our rapidly changing world.
Collapse
Affiliation(s)
- Brigitte Wear
- Department of BiologyUniversity of OxfordOxfordUK
- Somerville CollegeOxfordUK
| | - Nessa E. O'Connor
- School of Natural Sciences, Discipline of ZoologyTrinity College DublinDublinIreland
| | - Matthias J. Schmid
- School of Natural Sciences, Discipline of ZoologyTrinity College DublinDublinIreland
- School of Natural ScienceUniversity of GalwayGalwayIreland
| | | |
Collapse
|
40
|
Zhou L, Wang S. The bright side of ecological stressors. Trends Ecol Evol 2023; 38:568-578. [PMID: 36906435 DOI: 10.1016/j.tree.2023.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 03/12/2023]
Abstract
Ecological stressors are considered to negatively affect biological systems; however, corresponding responses to stressors can be complex, depending on the ecological functions and the number and duration of the stressors. Mounting evidence indicates potential benefits of stressors. Here, we develop an integrative framework to understand stressor-induced benefits by clarifying three categories of mechanisms: seesaw effects, cross-tolerance, and memory effects. These mechanisms operate across various organizational levels (e.g., individual, population, community) and can be extended to an evolutionary context. One remaining challenge is to develop scaling approaches for linking stressor-induced benefits across organizational levels. Our framework provides a novel platform for predicting the consequences of global environmental changes and informing management strategies in conservation and restoration practices.
Collapse
Affiliation(s)
- Libin Zhou
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Shaopeng Wang
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China.
| |
Collapse
|
41
|
Helbling EW, Banaszak AT, Valiñas MS, Vizzo JI, Villafañe VE, Cabrerizo MJ. Browning, nutrient inputs, and fast vertical mixing from simulated extreme rainfall and wind stress alter estuarine phytoplankton productivity. THE NEW PHYTOLOGIST 2023; 238:1876-1888. [PMID: 36908076 DOI: 10.1111/nph.18874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/25/2023] [Indexed: 05/04/2023]
Abstract
Browning and nutrient inputs from extreme rainfall, together with increased vertical mixing due to strong winds, are more frequent in coastal ecosystems; however, their interactive effects on phytoplankton are poorly understood. We conducted experiments to quantify how browning, together with different mixing speeds (fluctuating radiation), and a nutrient pulse alter primary productivity and photosynthetic efficiency in estuarine phytoplankton communities. Phytoplankton communities (grazers excluded) were exposed simultaneously to these drivers, and key photosynthetic targets were quantified: oxygen production, electron transport rates (ETRs), and carbon fixation immediately following collection and after a 2-d acclimation/adaptation period. Increasing mixing speeds in a turbid water column (e.g. browning) significantly decreased ETRs and carbon fixation in the short term. Acclimation/adaptation to this condition for 2 d resulted in an increase in nanoplanktonic diatoms and a community that was photosynthetically more efficient; however, this did not revert the decreasing trend in carbon fixation with increased mixing speed. The observed interactive effects (resulting from extreme rainfall and strong winds) may have profound implications in the trophodynamics of highly productive system such as the Southwest Atlantic Ocean due to changes in the size structure of the community and reduced productivity.
Collapse
Affiliation(s)
- E Walter Helbling
- Estación de Fotobiología Playa Unión, 9103, Chubut, Rawson, Casilla de Correos 15, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Anastazia T Banaszak
- Integrative Reef Conservation Research Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prol. Av. Niños Héroes S/N, Puerto Morelos, CP 77580, Mexico
| | - Macarena S Valiñas
- Estación de Fotobiología Playa Unión, 9103, Chubut, Rawson, Casilla de Correos 15, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan I Vizzo
- Estación de Fotobiología Playa Unión, 9103, Chubut, Rawson, Casilla de Correos 15, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia E Villafañe
- Estación de Fotobiología Playa Unión, 9103, Chubut, Rawson, Casilla de Correos 15, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marco J Cabrerizo
- Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidad de Vigo, Campus Lagoas Marcosende, s/n, Vigo, 36310, Spain
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, Vigo, 36331, Spain
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, 18071, Spain
| |
Collapse
|
42
|
Vos M, Hering D, Gessner MO, Leese F, Schäfer RB, Tollrian R, Boenigk J, Haase P, Meckenstock R, Baikova D, Bayat H, Beermann A, Beisser D, Beszteri B, Birk S, Boden L, Brauer V, Brauns M, Buchner D, Burfeid-Castellanos A, David G, Deep A, Doliwa A, Dunthorn M, Enß J, Escobar-Sierra C, Feld CK, Fohrer N, Grabner D, Hadziomerovic U, Jähnig SC, Jochmann M, Khaliq S, Kiesel J, Kuppels A, Lampert KP, Le TTY, Lorenz AW, Madariaga GM, Meyer B, Pantel JH, Pimentel IM, Mayombo NS, Nguyen HH, Peters K, Pfeifer SM, Prati S, Probst AJ, Reiner D, Rolauffs P, Schlenker A, Schmidt TC, Shah M, Sieber G, Stach TL, Tielke AK, Vermiert AM, Weiss M, Weitere M, Sures B. The Asymmetric Response Concept explains ecological consequences of multiple stressor exposure and release. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162196. [PMID: 36781140 DOI: 10.1016/j.scitotenv.2023.162196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Our capacity to predict trajectories of ecosystem degradation and recovery is limited, especially when impairments are caused by multiple stressors. Recovery may be fast or slow and either complete or partial, sometimes result in novel ecosystem states or even fail completely. Here, we introduce the Asymmetric Response Concept (ARC) that provides a basis for exploring and predicting the pace and magnitude of ecological responses to, and release from, multiple stressors. The ARC holds that three key mechanisms govern population, community and ecosystem trajectories. Stress tolerance is the main mechanism determining responses to increasing stressor intensity, whereas dispersal and biotic interactions predominantly govern responses to the release from stressors. The shifting importance of these mechanisms creates asymmetries between the ecological trajectories that follow increasing and decreasing stressor intensities. This recognition helps to understand multiple stressor impacts and to predict which measures will restore communities that are resistant to restoration.
Collapse
Affiliation(s)
- Matthijs Vos
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Theoretical and Applied Biodiversity Research, Bochum, Germany
| | - Daniel Hering
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), Essen, Germany.
| | - Mark O Gessner
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Department of Ecology, Berlin Institute of Technology (TU Berlin), Berlin, Germany
| | - Florian Leese
- Centre for Water and Environmental Research (ZWU), Essen, Germany; Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Ralf B Schäfer
- Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Ralph Tollrian
- Department of Animal Ecology, Ruhr University Bochum, Evolution and Biodiversity, Germany
| | - Jens Boenigk
- Centre for Water and Environmental Research (ZWU), Essen, Germany; Biodiversity, University of Duisburg-Essen, Essen, Germany
| | - Peter Haase
- Centre for Water and Environmental Research (ZWU), Essen, Germany; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Rainer Meckenstock
- Centre for Water and Environmental Research (ZWU), Essen, Germany; Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Daria Baikova
- Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Helena Bayat
- Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Arne Beermann
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Daniela Beisser
- Centre for Water and Environmental Research (ZWU), Essen, Germany; Biodiversity, University of Duisburg-Essen, Essen, Germany
| | - Bánk Beszteri
- Centre for Water and Environmental Research (ZWU), Essen, Germany; Phycology, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Birk
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), Essen, Germany
| | - Lisa Boden
- Biodiversity, University of Duisburg-Essen, Essen, Germany
| | - Verena Brauer
- Centre for Water and Environmental Research (ZWU), Essen, Germany; Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Mario Brauns
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Magdeburg, Germany
| | - Dominik Buchner
- Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | | | - Gwendoline David
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Aman Deep
- Biodiversity, University of Duisburg-Essen, Essen, Germany
| | - Annemie Doliwa
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Micah Dunthorn
- Eukaryotic Microbiology, University of Duisburg-Essen, Essen, Germany; Natural History Museum, University of Oslo, Oslo, Norway
| | - Julian Enß
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | | | - Christian K Feld
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), Essen, Germany
| | - Nicola Fohrer
- Department of Hydrology and Water Resources Management, Institute of Natural Resource Conservation, CAU Kiel, Germany
| | - Daniel Grabner
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), Essen, Germany
| | - Una Hadziomerovic
- Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Sonja C Jähnig
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maik Jochmann
- Centre for Water and Environmental Research (ZWU), Essen, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Shaista Khaliq
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jens Kiesel
- Department of Hydrology and Water Resources Management, Institute of Natural Resource Conservation, CAU Kiel, Germany
| | - Annabel Kuppels
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Theoretical and Applied Biodiversity Research, Bochum, Germany
| | | | - T T Yen Le
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Armin W Lorenz
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Graciela Medina Madariaga
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benjamin Meyer
- Aquatic Microbial Ecology, University of Duisburg-, Essen, Germany
| | - Jelena H Pantel
- Ecological Modelling, University of Duisburg-Essen, Essen, Germany
| | | | | | - Hong Hanh Nguyen
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Kristin Peters
- Department of Hydrology and Water Resources Management, Institute of Natural Resource Conservation, CAU Kiel, Germany
| | | | - Sebastian Prati
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | | | - Dominik Reiner
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Peter Rolauffs
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Schlenker
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Magdeburg, Germany
| | - Torsten C Schmidt
- Centre for Water and Environmental Research (ZWU), Essen, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Manan Shah
- Biodiversity, University of Duisburg-Essen, Essen, Germany; Aquatic Microbial Ecology, University of Duisburg-, Essen, Germany
| | - Guido Sieber
- Biodiversity, University of Duisburg-Essen, Essen, Germany
| | | | - Ann-Kathrin Tielke
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Theoretical and Applied Biodiversity Research, Bochum, Germany
| | - Anna-Maria Vermiert
- Department of Animal Ecology, Ruhr University Bochum, Evolution and Biodiversity, Germany
| | - Martina Weiss
- Centre for Water and Environmental Research (ZWU), Essen, Germany; Aquatic Ecosystem Research, University of Duisburg-Essen, Essen, Germany
| | - Markus Weitere
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Magdeburg, Germany
| | - Bernd Sures
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), Essen, Germany
| |
Collapse
|
43
|
Fernandes JF, Calado R, Jerónimo D, Madeira D. Thermal tolerance limits and physiological traits as indicators of Hediste diversicolor's acclimation capacity to global and local change drivers. J Therm Biol 2023; 114:103577. [PMID: 37263039 DOI: 10.1016/j.jtherbio.2023.103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 06/03/2023]
Abstract
Global projections predict significant increases in ocean temperature and changes in ocean chemistry, including salinity variations by 2100. This has led to a substantial interest in the study of thermal ecophysiology, as temperature is a major factor shaping marine ectotherm communities. However, responses to temperature may be influenced by other factors such as salinity, highlighting the relevance of multiple stressor studies. In the present work, we experimentally evaluated the thermal tolerance of the marine ragworm Hediste diversicolor under predicted global change scenarios. Organisms were subjected to an experimental trial under control (24 °C), and two temperature treatment scenarios (ocean warming +3 °C - (27 °C) and heat wave +6 °C - (30 °C)), combined with salinity variations (20 and 30) in a full factorial design for 29 days. Environmental data from the field were collected during 2019 and 2020. At day 30 post exposure, upper thermal limits (Critical Thermal Maximum - CTMax), thermal safety margins (TSM) and acclimation capacity were measured. Higher acclimation temperatures led to higher thermal tolerance limits, confirming that H. diversicolor features some physiological plasticity, acclimation capacity and a positive thermal safety margin. This margin was greater considering in situ temperature data from 2019 than maximum temperatures for 2020 (CTMax > maximum habitat temperature-MHT). Moreover, smaller organisms displayed higher upper thermal limits suggesting that thermal tolerance is size dependent. Ragworms subjected to higher salinity also showed a higher CTMax than those acclimated to lower salinity. However, temperature and salinity showed an additive effect on CTMax, as no significant interaction was detected. We conclude that H. diversicolor can easily acclimate to increased water temperature, independently of salinity variations. Given the key role of ragworms in food webs in estuaries and coastal lagoons, substrate bioturbation and aquaculture, this information is relevant to support conservation actions, optimize culture protocols and identify thermal resistant strains.
Collapse
Affiliation(s)
- Joana Filipa Fernandes
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal.
| | - Ricardo Calado
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Daniel Jerónimo
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Diana Madeira
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal; UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal.
| |
Collapse
|
44
|
Cornford R, Spooner F, McRae L, Purvis A, Freeman R. Ongoing over-exploitation and delayed responses to environmental change highlight the urgency for action to promote vertebrate recoveries by 2030. Proc Biol Sci 2023; 290:20230464. [PMID: 37072041 PMCID: PMC10113031 DOI: 10.1098/rspb.2023.0464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023] Open
Abstract
To safeguard nature, we must understand the drivers of biodiversity loss. Time-delayed biodiversity responses to environmental changes (ecological lags) are often absent from models of biodiversity change, despite their well-documented existence. We quantify how lagged responses to climate and land-use change have influenced mammal and bird populations around the world, while incorporating effects of direct exploitation and conservation interventions. Ecological lag duration varies between drivers, vertebrate classes and body size groupings-e.g. lags linked to climate-change impacts are 13 years for small birds, rising to 40 years for larger species. Past warming and land conversion generally combine to predict population declines; however, such conditions are associated with population increases for small mammals. Positive effects of management (>+4% annually for large mammals) and protected areas (>+6% annually for large birds) on population trends contrast with the negative impact of exploitation (<-7% annually for birds), highlighting the need to promote sustainable use. Model projections suggest a future with winners (e.g. large birds) and losers (e.g. medium-sized birds), with current/recent environmental change substantially influencing abundance trends to 2050. Without urgent action, including effective conservation interventions and promoting sustainable use, ambitious targets to stop declines by 2030 may already be slipping out of reach.
Collapse
Affiliation(s)
- Richard Cornford
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- Department of Life Sciences, Imperial College London, Ascot SL5 7PY, UK
| | - Fiona Spooner
- Our World in Data at the Global Change Data Lab, Oxford OX2 0DP, UK
| | - Louise McRae
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
| | - Andy Purvis
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Robin Freeman
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
| |
Collapse
|
45
|
Lourenço J, Gutiérrez-Cánovas C, Carvalho F, Cássio F, Pascoal C, Pace G. Non-interactive effects drive multiple stressor impacts on the taxonomic and functional diversity of atlantic stream macroinvertebrates. ENVIRONMENTAL RESEARCH 2023; 229:115965. [PMID: 37105281 DOI: 10.1016/j.envres.2023.115965] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/18/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Freshwaters are considered among the most endangered ecosystems globally due to multiple stressors, which coincide in time and space. These local stressors typically result from land-use intensification or hydroclimatic alterations, among others. Despite recent advances on multiple stressor effects, current knowledge is still limited to manipulative approaches minimizing biological and abiotic variability. Thus, the assessment of multiple stressor effects in real-world ecosystems is required. Using an extensive survey of 50 stream reaches across North Portugal, we evaluated taxonomic and functional macroinvertebrate responses to multiple stressors, including marked gradients of nutrient enrichment, flow reduction, riparian vegetation structure, thermal stress and dissolved oxygen depletion. We analyzed multiple stressor effects on two taxonomic (taxon richness, Shannon-diversity) and two trait-based diversity indices (functional richness, functional dispersion), as well as changes in trait composition. We found that multiple stressors had additive effects on all diversity metrics, with nutrient enrichment identified as the most important stressor in three out of four metrics, followed by dissolved oxygen depletion and thermal stress. Taxon richness, Shannon-diversity and functional richness responded similarly, whereas functional dispersion was driven by changes in flow velocity and thermal stress. Functional trait composition changed along a major stress gradient determined by nutrient enrichment and oxygen depletion, which was positively correlated with organisms possessing fast-living strategies, aerial respiration, adult phases, and gathering-collector feeding habits. Overall, our results reinforce the need to consider complementary facets of biodiversity to better identify assembly processes in response to multiple stressors. Our data suggest that stressor interactions may be less frequent in real-word streams than predicted by manipulative experiments, which can facilitate mitigation strategies. By combining an extensive field survey with an integrative consideration of multiple biodiversity facets, our study provides new insights that can help to better assess and manage rivers in a global change context.
Collapse
Affiliation(s)
- J Lourenço
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal.
| | - C Gutiérrez-Cánovas
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - F Carvalho
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - F Cássio
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - C Pascoal
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - G Pace
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| |
Collapse
|
46
|
Maucieri DG, Starko S, Baum JK. Tipping points and interactive effects of chronic human disturbance and acute heat stress on coral diversity. Proc Biol Sci 2023; 290:20230209. [PMID: 37040801 PMCID: PMC10089722 DOI: 10.1098/rspb.2023.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
Multiple anthropogenic stressors co-occur ubiquitously in natural ecosystems. However, multiple stressor studies often produce conflicting results, potentially because the nature and direction of stressor interactions depends upon the strength of the underlying stressors. Here, we first examine how coral α- and β-diversities vary across sites spanning a gradient of chronic local anthropogenic stress before and after a prolonged marine heatwave. Developing a multiple stressor framework that encompasses non-discrete stressors, we then examine interactions between the continuous and discrete stressors. We provide evidence of additive effects, antagonistic interactions (with heatwave-driven turnover in coral community composition diminishing as the continuous stressor increased), and tipping points (at which the response of coral Hill-richness to stressors changed from additive to near synergistic). We show that community-level responses to multiple stressors can vary, and even change qualitatively, with stressor intensity, underscoring the importance of examining complex, but realistic continuous stressors to understand stressor interactions and their ecological impacts.
Collapse
Affiliation(s)
- Dominique G. Maucieri
- Department of Biological Sciences, University of Victoria, Victoria, British Columbia, Canada V8P 5C2
| | - Samuel Starko
- Department of Biological Sciences, University of Victoria, Victoria, British Columbia, Canada V8P 5C2
- UWA Oceans Institute, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Julia K. Baum
- Department of Biological Sciences, University of Victoria, Victoria, British Columbia, Canada V8P 5C2
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, 96744, USA
| |
Collapse
|
47
|
Rocha BS, Logez M, Jamoneau A, Argillier C. Assessing resilience and sensitivity patterns for fish and phytoplankton in French lakes. Glob Ecol Conserv 2023. [DOI: 10.1016/j.gecco.2023.e02458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
48
|
Diamant ES, Boyd S, Lozano-Huntelman NA, Enriquez V, Kim AR, Savage VM, Yeh PJ. Meta-analysis of three-stressor combinations on population-level fitness reveal substantial higher-order interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161163. [PMID: 36572303 DOI: 10.1016/j.scitotenv.2022.161163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Although natural populations are typically subjected to multiple stressors, most past research has focused on single-stressor and two-stressor interactions, with little attention paid to higher-order interactions among three or more stressors. However, higher-order interactions increasingly appear to be widespread. Consequently, we used a recently introduced and improved framework to re-analyze higher-order ecological interactions. We conducted a literature review of the last 100 years (1920-2020) and reanalyzed 142 ecological three-stressor interactions on species' populations from 38 published papers; the vast majority of these studies were from the past 10 years. We found that 95.8 % (n = 136) of the three-stressor combinations had either not been categorized before or resulted in different interactions than previously reported. We also found substantial levels of emergent properties-interactions that are not due to strong pairwise interactions within the combination but rather uniquely due to all three stressors being combined. Calculating net interactions-the overall accounting for all possible interactions within a combination including the emergent and all pairwise interactions-we found that the most prevalent interaction type is antagonism, corresponding to a smaller than expected effect based on single stressor effects. In contrast, for emergent interactions, the most prevalent interaction type is synergistic, resulting in a larger than expected effect based on single stressor effects. Additionally, we found that hidden suppressive interactions-where a pairwise interaction is suppressed by a third stressor-are found in the majority of combinations (74 %). Collectively, understanding multiple stressor interactions through applying an appropriate framework is crucial for answering fundamental questions in ecology and has implications for conservation biology and population management. Crucially, identifying emergent properties can reveal hidden suppressive interactions that could be particularly important for the ecological management of at-risk populations.
Collapse
Affiliation(s)
- Eleanor S Diamant
- Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Sada Boyd
- Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | | | - Vivien Enriquez
- Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Alexis R Kim
- Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Van M Savage
- Ecology and Evolutionary Biology, University of California, Los Angeles, USA; Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA; Santa Fe Institute, Santa Fe, NM, USA
| | - Pamela J Yeh
- Ecology and Evolutionary Biology, University of California, Los Angeles, USA; Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
49
|
Vilas D, Buszowski J, Sagarese S, Steenbeek J, Siders Z, Chagaris D. Evaluating red tide effects on the West Florida Shelf using a spatiotemporal ecosystem modeling framework. Sci Rep 2023; 13:2541. [PMID: 36781942 PMCID: PMC9925760 DOI: 10.1038/s41598-023-29327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
The West Florida Shelf (WFS), located in the eastern Gulf of Mexico, fosters high species richness and supports highly valuable fisheries. However, red tide events occur regularly that can impact fisheries resources as well as ecosystem state, functioning, and derived services. Therefore, it is important to evaluate and quantify the spatiotemporal impacts of red tides to improve population assessments, mitigate potential negative effects through management, and better understand disturbances to support an ecosystem-based management framework. To model red tide effects on the marine community, we used Ecospace, the spatiotemporal module of the ecosystem modeling framework Ecopath with Ecosim. The inclusion of both lethal and sublethal response functions to red tide and a comprehensive calibration procedure allowed to systematically evaluate red tide effects and increased the robustness of the model and management applicability. Our results suggest severe red tide impacts have occurred on the WFS at the ecosystem, community, and population levels in terms of biomass, catch, and productivity. Sublethal and indirect food-web effects of red tide triggered compensatory responses such as avoidance behavior and release from predation and/or competition.. This study represents a step forward to operationalize spatiotemporal ecosystem models for management purposes that may increase the ability of fisheries managers to respond more effectively and be more proactive to episodic mortality events, such as those caused by red tides.
Collapse
Affiliation(s)
- Daniel Vilas
- Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA.
- Nature Coast Biological Station, Institute of Food and Agricultural Sciences, University of Florida, Cedar Key, FL, 32625, USA.
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA, 98195, USA.
- Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, 98115, USA.
| | | | - Skyler Sagarese
- NOAA Fisheries Service - Southeast Fisheries Science Center, Miami, FL, 33149, USA
| | | | - Zach Siders
- Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - David Chagaris
- Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA.
- Nature Coast Biological Station, Institute of Food and Agricultural Sciences, University of Florida, Cedar Key, FL, 32625, USA.
| |
Collapse
|
50
|
Sun S, Dziuba MK, Jaye RN, Duffy MA. Transgenerational plasticity in a zooplankton in response to elevated temperature and parasitism. Ecol Evol 2023; 13:e9767. [PMID: 36760704 PMCID: PMC9897957 DOI: 10.1002/ece3.9767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Organisms are increasingly facing multiple stressors, which can simultaneously interact to cause unpredictable impacts compared with a single stressor alone. Recent evidence suggests that phenotypic plasticity can allow for rapid responses to altered environments, including biotic and abiotic stressors, both within a generation and across generations (transgenerational plasticity). Parents can potentially "prime" their offspring to better cope with similar stressors or, alternatively, might produce offspring that are less fit because of energetic constraints. At present, it remains unclear exactly how biotic and abiotic stressors jointly mediate the responses of transgenerational plasticity and whether this plasticity is adaptive. Here, we test the effects of biotic and abiotic environmental changes on within- and transgenerational plasticity using a Daphnia-Metschnikowia zooplankton-fungal parasite system. By exposing parents and their offspring consecutively to the single and combined effects of elevated temperature and parasite infection, we showed that transgenerational plasticity induced by temperature and parasite stress influenced host fecundity and lifespan; offsprings of mothers who were exposed to one of the stressors were better able to tolerate elevated temperature, compared with the offspring of mothers who were exposed to neither or both stressors. Yet, the negative effects caused by parasite infection were much stronger, and this greater reduction in host fitness was not mitigated by transgenerational plasticity. We also showed that elevated temperature led to a lower average immune response, and that the relationship between immune response and lifetime fecundity reversed under elevated temperature: the daughters of exposed mothers showed decreased fecundity with increased hemocyte production at ambient temperature but the opposite relationship at elevated temperature. Together, our results highlight the need to address questions at the interface of multiple stressors and transgenerational plasticity and the importance of considering multiple fitness-associated traits when evaluating the adaptive value of transgenerational plasticity under changing environments.
Collapse
Affiliation(s)
- Syuan‐Jyun Sun
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- International Degree Program in Climate Change and Sustainable DevelopmentNational Taiwan UniversityTaipeiTaiwan
| | - Marcin K. Dziuba
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Riley N. Jaye
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Meghan A. Duffy
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|