1
|
Reguzova A, Müller M, Pagallies F, Burri D, Salomon F, Rziha HJ, Bittner-Schrader Z, Verstrepen BE, Böszörményi KP, Verschoor EJ, Gerhauser I, Elbers K, Esen M, Manenti A, Monti M, Rammensee HG, Derouazi M, Löffler MW, Amann R. A multiantigenic Orf virus-based vaccine efficiently protects hamsters and nonhuman primates against SARS-CoV-2. NPJ Vaccines 2024; 9:191. [PMID: 39414789 PMCID: PMC11484955 DOI: 10.1038/s41541-024-00981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Among the common strategies to design next-generation COVID-19 vaccines is broadening the antigenic repertoire thereby aiming to increase efficacy against emerging variants of concern (VoC). This study describes a new Orf virus-based vector (ORFV) platform to design a multiantigenic vaccine targeting SARS-CoV-2 spike and nucleocapsid antigens. Vaccine candidates were engineered, either expressing spike protein (ORFV-S) alone or co-expressing nucleocapsid protein (ORFV-S/N). Mono- and multiantigenic vaccines elicited comparable levels of spike-specific antibodies and virus neutralization in mice. Results from a SARS-CoV-2 challenge model in hamsters suggest cross-protective properties of the multiantigenic vaccine against VoC, indicating improved viral clearance with ORFV-S/N, as compared to equal doses of ORFV-S. In a nonhuman primate challenge model, vaccination with the ORFV-S/N vaccine resulted in long-term protection against SARS-CoV-2 infection. These results demonstrate the potential of the ORFV platform for prophylactic vaccination and represent a preclinical development program supporting first-in-man studies with the multiantigenic ORFV vaccine.
Collapse
Affiliation(s)
- Alena Reguzova
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Melanie Müller
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Felix Pagallies
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Dominique Burri
- Speransa Therapeutics, Bethmannstrasse 8, 60311, Frankfurt am Main, Germany
| | - Ferdinand Salomon
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Hanns-Joachim Rziha
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Zsofia Bittner-Schrader
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Babs E Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Kinga P Böszörményi
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ, Rijswijk, The Netherlands
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Knut Elbers
- Boehringer Ingelheim International GmbH, Binger Strasse 173, 55216, Ingelheim am Rhein, Germany
- ViraTherapeutics GmbH, Bundesstraße 27, 6063, Rum, Austria
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen; Cluster of Excellence (EXC2124) "Controlling Microbes to Fight Infection", Tübingen, Germany
| | - Alessandro Manenti
- VisMederi Srl., Strada del Petriccio e Belriguardo 35, 53100, Siena, Italy
| | - Martina Monti
- VisMederi Srl., Strada del Petriccio e Belriguardo 35, 53100, Siena, Italy
| | - Hans-Georg Rammensee
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Madiha Derouazi
- Speransa Therapeutics, Bethmannstrasse 8, 60311, Frankfurt am Main, Germany
| | - Markus W Löffler
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany.
- Centre for Clinical Transfusion Medicine, Otfried-Müller-Str. 4/1, 72076, Tübingen, Germany.
| | - Ralf Amann
- Institute of Immunology, University Hospital Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.
| |
Collapse
|
2
|
Pagallies F, Labisch JJ, Wronska M, Pflanz K, Amann R. Efficient and scalable clarification of Orf virus from HEK suspension for vaccine development. Vaccine X 2024; 18:100474. [PMID: 38523620 PMCID: PMC10958475 DOI: 10.1016/j.jvacx.2024.100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
The Orf virus (ORFV) is a promising vector platform for the generation of vaccines against infectious diseases and cancer, highlighted by its progression to clinical testing phases. One of the critical steps during GMP manufacturing is the clarification of crude harvest because of the enveloped nature and large size of ORFV. This study presents the first description of ORFV clarification process from a HEK suspension batch process. We examined various filter materials, membrane pore sizes, harvest timings, and nuclease treatments. Employing the Ambr® crossflow system for high-throughput, small-volume experiments, we identified polypropylene-based Sartopure® PP3 filters as ideal. These filters, used in two consecutive stages with reducing pore sizes, significantly enhanced ORFV recovery and addressed scalability challenges. Moreover, we demonstrated that the time of harvest and the use of a nuclease play a decisive role to increase ORFV yields. With these findings, we were able to establish an efficient and scalable clarification process of ORFV derived from a suspension production process, essential for advancing ORFV vaccine manufacturing.
Collapse
Affiliation(s)
- Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Jennifer J. Labisch
- Lab Essentials Applications Development, Sartorius, Otto-Brenner-Straße 20, 37079 Göttingen, Germany
| | - Malgorzata Wronska
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tübingen, Germany
| | - Karl Pflanz
- Lab Essentials Applications Development, Sartorius, Otto-Brenner-Straße 20, 37079 Göttingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tübingen, Germany
| |
Collapse
|
3
|
do Nascimento GM, de Oliveira PSB, Butt SL, Diel DG. Immunogenicity of chimeric hemagglutinins delivered by an orf virus vector platform against swine influenza virus. Front Immunol 2024; 15:1322879. [PMID: 38482020 PMCID: PMC10933025 DOI: 10.3389/fimmu.2024.1322879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/22/2024] [Indexed: 04/05/2024] Open
Abstract
Orf virus (ORFV) is a large DNA virus that can harbor and efficiently deliver viral antigens in swine. Here we used ORFV as a vector platform to deliver chimeric hemagglutinins (HA) of Influenza A virus of swine (IAV-S). Vaccine development against IAV-S faces limitations posed by strain-specific immunity and the antigenic diversity of the IAV-S strains circulating in the field. A promising alternative aiming at re-directing immune responses on conserved epitopes of the stalk segment of the hemagglutinin (HA2) has recently emerged. Sequential immunization with chimeric HAs comprising the same stalk but distinct exotic head domains can potentially induce cross-reactive immune responses against conserved epitopes of the HA2 while breaking the immunodominance of the head domain (HA1). Here, we generated two recombinant ORFVs expressing chimeric HAs encoding the stalk region of a contemporary H1N1 IAV-S strain and exotic heads derived from either H6 or H8 subtypes, ORFVΔ121cH6/1 and ORFVΔ121cH8/1, respectively. The resulting recombinant viruses were able to express the heterologous protein in vitro. Further, the immunogenicity and cross-protection of these vaccine candidates were assessed in swine after sequential intramuscular immunization with OV-cH6/1 and OV-cH8/1, and subsequent challenge with divergent IAV-S strains. Humoral responses showed that vaccinated piglets presented increasing IgG responses in sera. Additionally, cross-reactive IgG and IgA antibody responses elicited by immunization were detected in sera and bronchoalveolar lavage (BAL), respectively, by ELISA against different viral clades and a diverse range of contemporary H1N1 IAV-S strains, indicating induction of humoral and mucosal immunity in vaccinated animals. Importantly, viral shedding was reduced in nasal swabs from vaccinated piglets after intranasal challenge with either Oh07 (gamma clade) or Ca09 (npdm clade) IAV-S strains. These results demonstrated the efficiency of ORFV-based vectors in delivering chimeric IAV-S HA-based vaccine candidates and underline the potential use of chimeric-HAs for prevention and control of influenza in swine.
Collapse
Affiliation(s)
- Gabriela Mansano do Nascimento
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Pablo Sebastian Britto de Oliveira
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- Programa de Pós-graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Salman Latif Butt
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Eilts F, Harsy YMJ, Lothert K, Pagallies F, Amann R, Wolff MW. An investigation of excipients for a stable Orf viral vector formulation. Virus Res 2023; 336:199213. [PMID: 37657509 PMCID: PMC10495626 DOI: 10.1016/j.virusres.2023.199213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The Orf virus (ORFV) is a promising candidate for vector vaccines as well as for immunomodulatory and oncolytic therapies. However, few publications are available on its infectivity degradation or on suitable additives for prolonging its viral stability. In this study, the non-supplemented ORFV itself showed a very high stability at storage temperatures up to 28 °C, with a linear titer loss of 0.10 log infectious particles per day at 4 °C over a period of five weeks. To prolong this inherent stability, thirty additives, i.e., detergents, sugars, proteins, salts, and buffers as well as amino acids, were tested for their time- and temperature-dependent influence on the ORFV infectivity. A stabilizing effect on the infectivity was identified for the addition of all tested proteins, i.e., gelatine, bovine serum albumin, and recombinant human serum albumin (rHSA), of several sugars, i.e., mannitol, galactose, sucrose, and trehalose, of amino acids, i.e., arginine and proline, of the detergent Pluronic F68, and of the salt Na2SO4. The infectivity preservation was especially pronounced for proteins in liquid and frozen formulations, sugars in frozen state, and arginine und Pluronic in liquid formulations at high storage temperatures (37 °C). The addition of 1% rHSA with and without 5% sucrose was evaluated as a very stable formulation with a high safety profile and economic validity at storage temperatures up to 28 °C. At increased temperatures, the supplementation with 200 mM arginine performed better than with rHSA. In summary, this comprehensive data provides different options for a stable ORFV formulation, considering temperature, storage time, economic aspects, and downstream processing integrity.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany
| | - Yasmina M J Harsy
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany
| | - Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, Tuebingen 72076, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, Tuebingen 72076, Germany; PRiME Vector Technologies, Herrenberger Straße 24, Tuebingen 72070, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany.
| |
Collapse
|
5
|
Ren X, Cao N, Tian L, Liu W, Zhu H, Rong Z, Yao M, Li X, Qian P. A self-assembled nanoparticle vaccine based on pseudorabies virus glycoprotein D induces potent protective immunity against pseudorabies virus infection. Vet Microbiol 2023; 284:109799. [PMID: 37327558 DOI: 10.1016/j.vetmic.2023.109799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
Pseudorabies virus (PRV) mainly causes pseudorabies (PR) or Aujeszky's disease in pigs and can infect humans, raising public health concerns about zoonotic and interspecies transmission of PR. With the emergence of PRV variants in 2011, the classic attenuated PRV vaccine strains have failed to protect many swine herds against PR. Herein, we developed a self-assembled nanoparticle vaccine that induces potent protective immunity against PRV infection. PRV glycoprotein D (gD) was expressed using the baculovirus expression system and further presented on the lumazine synthase (LS) 60-meric protein scaffolds via the SpyTag003/SpyCatcher003 covalent coupling system. In mouse and piglet models, LSgD nanoparticles emulsified with the ISA 201VG adjuvant elicited robust humoral and cellular immune responses. Furthermore, LSgD nanoparticles provided effective protection against PRV infection and eliminated pathological symptoms in the brain and lungs. Collectively, the gD-based nanoparticle vaccine design appears to be a promising candidate for potent protection against PRV infection.
Collapse
Affiliation(s)
- Xujiao Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nan Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Linxing Tian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wenqiang Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hechao Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenxiang Rong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Manman Yao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| |
Collapse
|
6
|
Eilts F, Labisch JJ, Orbay S, Harsy YMJ, Steger M, Pagallies F, Amann R, Pflanz K, Wolff MW. Stability studies for the identification of critical process parameters for a pharmaceutical production of the Orf virus. Vaccine 2023:S0264-410X(23)00722-3. [PMID: 37353451 DOI: 10.1016/j.vaccine.2023.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
A promising new vaccine platform is based on the Orf virus, a viral vector of the genus Parapoxvirus, which is currently being tested in phase I clinical trials. The application as a vaccine platform mandates a well-characterised, robust, and efficient production process. To identify critical process parameters in the production process affecting the virus' infectivity, the Orf virus was subjected to forced degradation studies, including thermal, pH, chemical, and mechanical stress conditions. The tests indicated a robust virus infectivity within a pH range of 5-7.4 and in the presence of the tested buffering substances (TRIS, HEPES, PBS). The ionic strength up to 0.5 M had no influence on the Orf virus' infectivity stability for NaCl and MgCl2, while NH4Cl destabilized significantly. Furthermore, short-term thermal stress of 2d up to 37 °C and repeated freeze-thaw cycles (20cycles) did not affect the virus' infectivity. The addition of recombinant human serum albumin was found to reduce virus inactivation. Last, the Orf virus showed a low shear sensitivity induced by peristaltic pumps and mixing, but was sensitive to ultrasonication. The isoelectric point of the applied Orf virus genotype D1707-V was determined at pH3.5. The broad picture of the Orf virus' infectivity stability against environmental parameters is an important contribution for the identification of critical process parameters for the production process, and supports the development of a stable pharmaceutical formulation. The work is specifically relevant for enveloped (large DNA) viruses, like the Orf virus and like most vectored vaccine approaches.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Jennifer J Labisch
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Goettingen, Germany; Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Lower Saxony, Germany
| | - Sabri Orbay
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Yasmina M J Harsy
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Marleen Steger
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15/3.008, 72076 Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15/3.008, 72076 Tuebingen, Germany; Prime Vector Technologies, Herrenberger Straße 24, 72070 Tuebingen, Germany
| | - Karl Pflanz
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, August-Spindler-Straße 11, 37079 Goettingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany.
| |
Collapse
|
7
|
Eilts F, Steger M, Pagallies F, Rziha HJ, Hardt M, Amann R, Wolff MW. Comparison of sample preparation techniques for the physicochemical characterization of Orf virus particles. J Virol Methods 2022; 310:114614. [PMID: 36084768 DOI: 10.1016/j.jviromet.2022.114614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022]
Abstract
The determination of the electrostatic charge of biological nanoparticles requires a purified, mono-disperse, and concentrated sample. Previous studies proofed an impact of the preparation protocol on the stability and electro-hydrodynamics of viruses, whereas commonly used methods are often complex and do not allow the required sample throughput. In the present study, the application of the (I) steric exclusion chromatography (SXC) for the Orf virus (ORFV) purification and subsequent physicochemical characterization was evaluated and compared to (II) SXC followed by centrifugal diafiltration and (III) sucrose cushion ultracentrifugation. The three methods were characterized in terms of protein removal, size distribution, infectious virus recovery, visual appearance, and electrophoretic mobility as a function of pH. All preparation techniques achieved a protein removal of more than 99 %, and (I) an infectious ORFV recovery of more than 85 %. Monodisperse samples were realized by (I) and (III). In summary, ORFV samples prepared by (I) and (III) displayed comparable quality. Additionally, (I) offered the shortest operation time and easy application. Based on the obtained data, the three procedures were ranked according to eight criteria of possible practical relevance, which delineate the potential of SXC as virus preparation method for physicochemical analysis.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany.
| | - Marleen Steger
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Hanns-Joachim Rziha
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Martin Hardt
- Imaging Unit, Biomedical Research Centre Seltersberg, Justus Liebig University, Schubertstraße 81, 35392 Giessen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany; PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
8
|
Spencer Clinton JL, Hoornweg TE, Tan J, Peng R, Schaftenaar W, Rutten VPMG, de Haan CAM, Ling PD. EEHV1A glycoprotein B subunit vaccine elicits humoral and cell-mediated immune responses in mice. Vaccine 2022; 40:5131-5140. [PMID: 35879117 DOI: 10.1016/j.vaccine.2022.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
Asian elephants are an endangered species facing many threats, including severe hemorrhagic disease (HD) caused by the elephant endotheliotropic herpesvirus (EEHV). EEHV-HD is the leading cause of death in captive juvenile Asian elephants in North America and Europe, and also affects elephants in their natural range countries. Significant challenges exist for successful treatment of EEHV-HD, which include timely recognition of disease onset and limited availability of highly effective treatment options. To address this problem, our goal is to prevent lethal disease in young elephants by developing a vaccine that elicits robust and durable humoral and cell-mediated immunity against EEHV. EEHV glycoprotein B (gB) is a major target for cellular and humoral immunity in elephants previously exposed to EEHV. Therefore, we generated a vaccine containing recombinant EEHV1A gB together with a liposome formulated TLR-4 and saponin combination adjuvant (SLA-LSQ). CD-1 mice that received one or two vaccinations with the vaccine elicited significant anti-gB antibody and polyfunctional CD4+ and CD8+ T cell responses, while no adverse effects of vaccination were observed. Overall, our findings demonstrate that an adjuvanted gB protein subunit vaccine stimulates robust humoral and cell-mediated immune responses and supports its potential use in elephants.
Collapse
Affiliation(s)
- Jennifer L Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA.
| | - Tabitha E Hoornweg
- Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA.
| | - Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA.
| | - Willem Schaftenaar
- Veterinary Advisor EAZA Elephant TAG, Rotterdam Zoo, Blijdorplaan 8, 3041 JG Rotterdam, The Netherlands.
| | - Victor P M G Rutten
- Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa.
| | - Cornelis A M de Haan
- Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, MS: BCM-385, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Müller M, Reguzova A, Löffler MW, Amann R. Orf Virus-Based Vectors Preferentially Target Professional Antigen-Presenting Cells, Activate the STING Pathway and Induce Strong Antigen-Specific T Cell Responses. Front Immunol 2022; 13:873351. [PMID: 35615366 PMCID: PMC9124846 DOI: 10.3389/fimmu.2022.873351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background Orf virus (ORFV)-based vectors are attractive for vaccine development as they enable the induction of potent immune responses against specific transgenes. Nevertheless, the precise mechanisms of immune activation remain unknown. This study therefore aimed to characterize underlying mechanisms in human immune cells. Methods Peripheral blood mononuclear cells were infected with attenuated ORFV strain D1701-VrV and analyzed for ORFV infection and activation markers. ORFV entry in susceptible cells was examined using established pharmacological inhibitors. Using the THP1-Dual™ reporter cell line, activation of nuclear factor-κB and interferon regulatory factor pathways were simultaneously evaluated. Infection with an ORFV recombinant encoding immunogenic peptides (PepTrio-ORFV) was used to assess the induction of antigen-specific CD8+ T cells. Results ORFV was found to preferentially target professional antigen-presenting cells (APCs) in vitro, with ORFV uptake mediated primarily by macropinocytosis. ORFV-infected APCs exhibited an activated phenotype, required for subsequent lymphocyte activation. Reporter cells revealed that the stimulator of interferon genes pathway is a prerequisite for ORFV-mediated cellular activation. PepTrio-ORFV efficiently induced antigen-specific CD8+ T cell recall responses in a dose-dependent manner. Further, activation and expansion of naïve antigen-specific CD8+ T cells was observed in response. Discussion Our findings confirm that ORFV induces a strong antigen-specific immune response dependent on APC uptake and activation. These data support the notion that ORFV D1701-VrV is a promising vector for vaccine development and the design of innovative immunotherapeutic applications.
Collapse
Affiliation(s)
- Melanie Müller
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Alena Reguzova
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Markus W. Löffler
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
- *Correspondence: Ralf Amann, ; Markus W. Löffler,
| | - Ralf Amann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- *Correspondence: Ralf Amann, ; Markus W. Löffler,
| |
Collapse
|
10
|
Accensi F, Bosch-Camós L, Monteagudo PL, Rodríguez F. DNA Vaccines in Pigs: From Immunization to Antigen Identification. Methods Mol Biol 2022; 2465:109-124. [PMID: 35118618 DOI: 10.1007/978-1-0716-2168-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA vaccination is one of the most fascinating vaccine strategies currently in development. Two of the main advantages of DNA immunization rely on its simplicity and flexibility, being ideal to dissect both the immune mechanisms and the antigens involved in protection against a given pathogen. Here we describe several strategies used to enhance the immune responses induced and the protection afforded by experimental DNA vaccines tested in swine and provide very basic protocols describing the generation and in vivo application of a prototypic DNA vaccine. The future will say the last word regarding the definitive implementation of DNA vaccination in the field.
Collapse
Affiliation(s)
- Francesc Accensi
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Bellaterra, Barcelona, Spain.
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| | - Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Bellaterra, Barcelona, Spain
| | - Paula L Monteagudo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Bellaterra, Barcelona, Spain
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Bellaterra, Barcelona, Spain
| |
Collapse
|
11
|
Reguzova A, Fischer N, Müller M, Salomon F, Jaenisch T, Amann R. A Novel Orf Virus D1701-VrV-Based Dengue Virus (DENV) Vaccine Candidate Expressing HLA-Specific T Cell Epitopes: A Proof-of-Concept Study. Biomedicines 2021; 9:biomedicines9121862. [PMID: 34944678 PMCID: PMC8698572 DOI: 10.3390/biomedicines9121862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Although dengue virus (DENV) affects almost half of the world’s population there are neither preventive treatments nor any long-lasting and protective vaccines available at this time. The complexity of the protective immune response to DENV is still not fully understood. The most advanced vaccine candidates focus specifically on humoral immune responses and the production of virus-neutralizing antibodies. However, results from several recent studies have revealed the protective role of T cells in the immune response to DENV. Hence, in this study, we generated a novel and potent DENV vaccine candidate based on an Orf virus (ORFV, genus Parapoxvirus) vector platform engineered to encode five highly conserved or cross-reactive DENV human leukocyte antigen (HLA)-A*02- or HLA-B*07-restricted epitopes as minigenes (ORFV-DENV). We showed that ORFV-DENV facilitates the in vitro priming of CD8+ T cells from healthy blood donors based on responses to each of the encoded immunogenic peptides. Moreover, we demonstrated that peripheral blood mononuclear cells isolated from clinically confirmed DENV-positive donors stimulated with ORFV-DENV generate cytotoxic T cell responses to at least three of the expressed DENV peptides. Finally, we showed that ORFV-DENV could activate CD8+ T cells isolated from donors who had recovered from Zika virus (ZIKV) infection. ZIKV belongs to the same virus family (Flaviviridae) and has epitope sequences that are homologous to those of DENV. We found that highly conserved HLA-B*07-restricted ZIKV and DENV epitopes induced functional CD8+ T cell responses in PBMCs isolated from confirmed ZIKV-positive donors. In summary, this proof-of-concept study characterizes a promising new ORFV D1701-VrV-based DENV vaccine candidate that induces broad and functional epitope-specific CD8+ T cell responses.
Collapse
Affiliation(s)
- Alena Reguzova
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.M.); (F.S.)
| | - Nico Fischer
- Department of Infectious Diseases, Heidelberg Institute of Global Health (HIGH) & Tropical Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.F.); (T.J.)
| | - Melanie Müller
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.M.); (F.S.)
| | - Ferdinand Salomon
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.M.); (F.S.)
| | - Thomas Jaenisch
- Department of Infectious Diseases, Heidelberg Institute of Global Health (HIGH) & Tropical Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.F.); (T.J.)
| | - Ralf Amann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.M.); (F.S.)
- Correspondence: ; Tel.: +49-707-1298-7614
| |
Collapse
|
12
|
Struzik J, Szulc-Dąbrowska L. NF-κB as an Important Factor in Optimizing Poxvirus-Based Vaccines against Viral Infections. Pathogens 2020; 9:pathogens9121001. [PMID: 33260450 PMCID: PMC7760304 DOI: 10.3390/pathogens9121001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Poxviruses are large dsDNA viruses that are regarded as good candidates for vaccine vectors. Because the members of the Poxviridae family encode numerous immunomodulatory proteins in their genomes, it is necessary to carry out certain modifications in poxviral candidates for vaccine vectors to improve the vaccine. Currently, several poxvirus-based vaccines targeted at viral infections are under development. One of the important aspects of the influence of poxviruses on the immune system is that they encode a large array of inhibitors of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which is the key element of both innate and adaptive immunity. Importantly, the NF-κB transcription factor induces the mechanisms associated with adaptive immunological memory involving the activation of effector and memory T cells upon vaccination. Since poxviruses encode various NF-κB inhibitor proteins, before the use of poxviral vaccine vectors, modifications that influence NF-κB activation and consequently affect the immunogenicity of the vaccine should be carried out. This review focuses on NF-κB as an essential factor in the optimization of poxviral vaccines against viral infections.
Collapse
|
13
|
Lothert K, Pagallies F, Feger T, Amann R, Wolff MW. Selection of chromatographic methods for the purification of cell culture-derived Orf virus for its application as a vaccine or viral vector. J Biotechnol 2020; 323:62-72. [PMID: 32763261 PMCID: PMC7403136 DOI: 10.1016/j.jbiotec.2020.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 12/02/2022]
Abstract
Estimation of the isoelectric point and size of Vero cell-derived Orf virus. Limited dynamic binding capacity of tested Orf virus to sulfated cellulose. Purification of Orf virus by steric exclusion chromatography lead to 84 % recovery. Hydrophobic interaction chromatography suitable for Orf virus purification. Promising unit operations for a scalable DSP to produce Orf virus viral vectors.
In recent years, the Orf virus has become a promising tool for protective recombinant vaccines and oncolytic therapy. However, suitable methods for an Orf virus production, including up- and downstream, are very limited. The presented study focuses on downstream processing, describing the evaluation of different chromatographic unit operations. In this context, ion exchange-, pseudo-affinity- and steric exclusion chromatography were employed for the purification of the cell culture-derived Orf virus, aiming at a maximum in virus recovery and contaminant depletion. The most promising chromatographic methods for capturing the virus particles were the steric exclusion- or salt-tolerant anion exchange membrane chromatography, recovering 84 % and 86 % of the infectious virus. Combining the steric exclusion chromatography with a subsequent Capto™ Core 700 resin or hydrophobic interaction membrane chromatography as a secondary chromatographic step, overall virus recoveries of up to 76 % were achieved. Furthermore, a complete cellular protein removal and a host cell DNA depletion of up to 82 % was possible for the steric exclusion membranes and the Capto™ Core 700 combination. The study reveals a range of possible unit operations suited for the chromatographic purification of the cell culture-derived Orf virus, depending on the intended application, i.e. a human or veterinary use, and the required purity.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Thomas Feger
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.
| |
Collapse
|
14
|
Orf Virus-Based Therapeutic Vaccine for Treatment of Papillomavirus-Induced Tumors. J Virol 2020; 94:JVI.00398-20. [PMID: 32404527 DOI: 10.1128/jvi.00398-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Orf virus (ORFV) represents a suitable vector for the generation of efficient, prophylactic antiviral vaccines against different pathogens. The present study investigated for the first time the therapeutic application of ORFV vector-based vaccines against tumors induced by cottontail rabbit papillomavirus (CRPV). ORFV-CRPV recombinants were constructed expressing the early CRPV gene E1, E2, E7, or LE6. In two independent experiments we used in total 23 rabbits which were immunized with a mixture of the four ORFV-CRPV recombinants or empty ORFV vector as a control 5 weeks after the appearance of skin tumors. For the determination of the therapeutic efficacy, the subsequent growth of the tumors was recorded. In the first experiment, we could demonstrate that three immunizations of rabbits with high tumor burden with the combined four ORFV-CRPV recombinants resulted in significant growth retardation of the tumors compared to the control. A second experiment was performed to test the therapeutic effect of 5 doses of the combined vaccine in rabbits with a lower tumor burden than in nonimmunized rabbits. Tumor growth was significantly reduced after immunization, and one vaccinated rabbit even displayed complete tumor regression until the end of the observation period at 26 weeks. Results of delayed-type hypersensitivity (DTH) skin tests suggest the induction of a cellular immune response mediated by the ORFV-CRPV vaccine. The data presented show for the first time a therapeutic potential of the ORFV vector platform and encourage further studies for the development of a therapeutic vaccine against virus-induced tumors.IMPORTANCE Viral vectors are widely used for the development of therapeutic vaccines for the treatment of tumors. In our study we have used Orf virus (ORFV) strain D1701-V for the generation of recombinant vaccines expressing cottontail rabbit papillomavirus (CRPV) early proteins E1, E2, LE6, and E7. The therapeutic efficacy of the ORFV-CRPV vaccines was evaluated in two independent experiments using the outbred CRPV rabbit model. In both experiments the immunization achieved significant suppression of tumor growth. In total, 84.6% of all outbred animals benefited from the ORFV-CRPV vaccination, showing reduction in tumor size and significant tumor growth inhibition, including one animal with complete tumor regression without recurrence.
Collapse
|
15
|
Reguzova A, Ghosh M, Müller M, Rziha HJ, Amann R. Orf Virus-Based Vaccine Vector D1701-V Induces Strong CD8+ T Cell Response against the Transgene but Not against ORFV-Derived Epitopes. Vaccines (Basel) 2020; 8:E295. [PMID: 32531997 PMCID: PMC7349966 DOI: 10.3390/vaccines8020295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/14/2023] Open
Abstract
The potency of viral vector-based vaccines depends on their ability to induce strong transgene-specific immune response without triggering anti-vector immunity. Previously, Orf virus (ORFV, Parapoxvirus) strain D1701-V was reported as a novel vector mediating protection against viral infections. The short-lived ORFV-specific immune response and the absence of virus neutralizing antibodies enables repeated immunizations and enhancement of humoral immune responses against the inserted antigens. However, only limited information exists about the D1701-V induced cellular immunity. In this study we employed major histocompatibility complex (MHC) ligandomics and immunogenicity analysis to identify ORFV-specific epitopes. Using liquid chromatography-tandem mass spectrometry we detected 36 ORFV-derived MHC I peptides, originating from various proteins. Stimulated splenocytes from ORFV-immunized mice did not exhibit specific CD8+ T cell responses against the tested peptides. In contrast, immunization with ovalbumin-expressing ORFV recombinant elicited strong SIINFEKL-specific CD8+ T lymphocyte response. In conclusion, our data indicate that cellular immunity to the ORFV vector is negligible, while strong CD8+ T cell response is induced against the inserted transgene. These results further emphasize the ORFV strain D1701-V as an attractive vector for vaccine development. Moreover, the presented experiments describe prerequisites for the selection of T cell epitopes exploitable for generation of ORFV-based vaccines by reverse genetics.
Collapse
Affiliation(s)
| | | | | | | | - Ralf Amann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (A.R.); (M.G.); (M.M.); (H.-J.R.)
| |
Collapse
|
16
|
Genomic Characterization of Orf Virus Strain D1701-V ( Parapoxvirus) and Development of Novel Sites for Multiple Transgene Expression. Viruses 2019; 11:v11020127. [PMID: 30704093 PMCID: PMC6409557 DOI: 10.3390/v11020127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
The Orf virus (ORFV; Parapoxvirus) strain D1701 with an attenuated phenotype and excellent immunogenic capacity is successfully used for the generation of recombinant vaccines against different viral infections. Adaption for growth in Vero cells was accompanied by additional major genomic changes resulting in ORFV strain variant D1701-V. In this study, restriction enzyme mapping, blot hybridization and DNA sequencing of the deleted region s (A, AT and D) in comparison to the predecessor strain D1701-B revealed the loss of 7 open reading frames (ORF008, ORF101, ORF102, ORF114, ORF115, ORF116, ORF117). The suitability of deletion site D for expression of foreign genes is demonstrated using novel synthetic early promoter eP1 and eP2. Comparison of promoter strength showed that the original vegf-e promoter Pv as well as promoter eP2 display an up to 11-fold stronger expression than promoter eP1, irrespective of the insertion site. Successful integration and expression of the fluorescent marker genes is demonstrated by gene- and insertion-site specific PCR assays, fluorescence microscopy and flow cytometry. For the first time ORFV recombinants are generated simultaneously expressing transgenes in two different insertion loci. That allows production of polyvalent vaccines containing several antigens against one or different pathogens in a single vectored ORFV vaccine.
Collapse
|
17
|
Wang R, Wang Y, Liu F, Luo S. Orf virus: A promising new therapeutic agent. Rev Med Virol 2018; 29:e2013. [PMID: 30370570 DOI: 10.1002/rmv.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
Abstract
The orf virus (ORFV) is a zoonotic, epitheliotropic, DNA parapoxvirus that infects principally sheep and goats. Exposure of animals to the virus or immunization by an ORFV preparation can accentuate the severity of disease, which has provoked an interest in the underlying cellular, virological, and molecular mechanisms. The identified ORFV virulence genes and the fact that the virus can repeatedly infect a host, owing to its evasive mechanisms, contribute to the development of potent immune modulators in various animal species. ORFV has been developed as a vaccine in veterinary medicine. The unique host immune-evasion ability of ORFV has made it an important candidate for vaccine vectors and biological agents (as an oncolytic virus). Genetic modifications using ORFV to obtain safe and efficient preparations and mechanistic studies are improvements to the currently available methods for disease treatment.
Collapse
Affiliation(s)
- Ruixue Wang
- Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China.,Department of Basic Medical Sciences, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Yong Wang
- Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Fang Liu
- Department of Basic Medical Sciences, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Shuhong Luo
- Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| |
Collapse
|
18
|
Li A, Lu G, Qi J, Wu L, Tian K, Luo T, Shi Y, Yan J, Gao GF. Structural basis of nectin-1 recognition by pseudorabies virus glycoprotein D. PLoS Pathog 2017; 13:e1006314. [PMID: 28542478 PMCID: PMC5453625 DOI: 10.1371/journal.ppat.1006314] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 06/01/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
An early and yet indispensable step in the alphaherpesvirus infection is the engagement of host receptors by the viral envelope glycoprotein D (gD). Of the thus-far identified gD receptors, nectin-1 is likely the most effective in terms of its wide usage by multiple alphaherpesviruses for cell entry. The molecular basis of nectin-1 recognition by the gD protein is therefore an interesting scientific question in the alphaherpesvirus field. Previous studies focused on the herpes simplex virus (HSV) of the Simplexvirus genus, for which both the free gD structure and the gD/nectin-1 complex structure were reported at high resolutions. The structural and functional features of other alphaherpesviral gDs, however, remain poorly characterized. In the current study, we systematically studied the characteristics of nectin-1 binding by the gD of a Varicellovirus genus member, the pseudorabies virus (PRV). We first showed that PRV infects host cells via both human and swine nectin-1, and that its gD exhibits similar binding affinities for nectin-1 of the two species. Furthermore, we demonstrated that removal of the PRV gD membrane-proximal residues could significantly increase its affinity for the receptor binding. The structures of PRV gD in the free and the nectin-1-bound states were then solved, revealing a similar overall 3D fold as well as a homologous nectin-1 binding mode to its HSV counterpart. However, several unique features were observed at the binding interface of PRV gD, enabling the viral ligand to utilize different gD residues (from those of HSV) for nectin-1 engagement. These observed binding characteristics were further verified by the mutagenesis study using the key-residue mutants of nectin-1. The structural and functional data obtained in this study, therefore, provide the basis of receptor recognition by PRV gD.
Collapse
Affiliation(s)
- An Li
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lili Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kegong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- National Research Center for veterinary Medicine, High-Tech District, Luoyang, Henan, China
| | - Tingrong Luo
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- * E-mail: (GFG); (JY); (TL)
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (GFG); (JY); (TL)
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- * E-mail: (GFG); (JY); (TL)
| |
Collapse
|
19
|
Vaccines against pseudorabies virus (PrV). Vet Microbiol 2016; 206:3-9. [PMID: 27890448 DOI: 10.1016/j.vetmic.2016.11.019] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022]
Abstract
Aujeszkýs disease (AD, pseudorabies) is a notifiable herpesvirus infection of pigs causing substantial economic losses to swine producers. AD in pigs is controlled by the use of vaccination with inactivated and attenuated live vaccines. Starting with classically attenuated live vaccines derived from low virulent field isolates, AD vaccination has pioneered novel strategies in animal disease control by the first use of genetically engineered live virus vaccines lacking virulence-determining genes, and the concept of DIVA, i.e. the serological differentiation of vaccinated from field-virus infected animals by the use of marker vaccines and respective companion diagnostic tests. The basis for this concept has been the molecular characterization of PrV and the identification of so-called nonessential envelope glycoproteins, e.g. glycoprotein E, which could be eliminated from the virus without harming viral replication or immunogenicity. Eradication of AD using the strategy of vaccination-DIVA testing has successfully been performed in several countries including Germany and the United States. Furthermore, by targeted genetic modification PrV has been developed into a powerful vector system for expression of foreign genes to vaccinate against several infectious diseases of swine, while heterologous vector systems have been used for expression of major immunogens of PrV. This small concise review summarizes the state-of-the-art information on PrV vaccines and provides an outlook for the future.
Collapse
|
20
|
Hain KS, Joshi LR, Okda F, Nelson J, Singrey A, Lawson S, Martins M, Pillatzki A, Kutish GF, Nelson EA, Flores EF, Diel DG. Immunogenicity of a recombinant parapoxvirus expressing the spike protein of Porcine epidemic diarrhea virus. J Gen Virol 2016; 97:2719-2731. [PMID: 27558814 DOI: 10.1099/jgv.0.000586] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The parapoxvirus Orf virus (ORFV), has long been recognized for its immunomodulatory properties in permissive and non-permissive animal species. Here, a new recombinant ORFV expressing the full-length spike (S) protein of Porcine epidemic diarrhea virus (PEDV) was generated and its immunogenicity and protective efficacy were evaluated in pigs. The PEDV S was inserted into the ORFV121 gene locus, an immunomodulatory gene that inhibits activation of the NF-κB signalling pathway and contributes to ORFV virulence in the natural host. The recombinant ORFV-PEDV-S virus efficiently and stably expressed the PEDV S protein in cell culture in vitro. Three intramuscular (IM) immunizations with the recombinant ORFV-PEDV-S in 3-week-old pigs elicited robust serum IgG, IgA and neutralizing antibody responses against PEDV. Additionally, IM immunization with the recombinant ORFV-PEDV-S virus protected pigs from clinical signs of porcine epidemic diarrhoea (PED) and reduced virus shedding in faeces upon challenge infection. These results demonstrate the suitability of ORFV121 gene locus as an insertion site for heterologous gene expression and delivery by ORFV-based viral vectors. Additionally, the results provide evidence of the potential of ORFV as a vaccine delivery vector for enteric viral diseases of swine. This study may have important implications for future development of ORFV-vectored vaccines for swine.
Collapse
Affiliation(s)
- Kyle S Hain
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Lok R Joshi
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Faten Okda
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.,National Research Center, Giza, Egypt
| | - Julie Nelson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Aaron Singrey
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Steven Lawson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Mathias Martins
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Angela Pillatzki
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Gerald F Kutish
- Department of Pathobiology, University of Connecticut, Storrs, CT, USA
| | - Eric A Nelson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Eduardo F Flores
- Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Diego G Diel
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
21
|
Zouharova D, Lipenska I, Fojtikova M, Kulich P, Neca J, Slany M, Kovarcik K, Turanek-Knotigova P, Hubatka F, Celechovska H, Masek J, Koudelka S, Prochazka L, Eyer L, Plockova J, Bartheldyova E, Miller AD, Ruzek D, Raska M, Janeba Z, Turanek J. Antiviral activities of 2,6-diaminopurine-based acyclic nucleoside phosphonates against herpesviruses: In vitro study results with pseudorabies virus (PrV, SuHV-1). Vet Microbiol 2016; 184:84-93. [PMID: 26854349 DOI: 10.1016/j.vetmic.2016.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/22/2022]
Abstract
Pseudorabies virus (PrV), a causative agent of Aujeszky's disease, is deadly to most mammals with the exception of higher primates and men. This disease causes serious economic loses among farm animals, especially pigs, yet many European countries are today claimed to be Aujeszky's disease free because of the discovery of an efficient vaccination for pigs. In reality, the virus is still present in wild boar. Current vaccines are neither suitable for dogs nor are there anti-PrV drugs approved for veterinary use. Therefore, the disease still represents a high threat, particularly for expensive hunting dogs that can come into close contact with infected boars. Here we report on the anti-PrV activities of a series of synthetic diaminopurine-based acyclic nucleoside phosphonate (DAP-ANP) analogues. Initially, all synthetic DAP-ANPs under investigation are shown to exhibit minimal cytotoxicity by MTT and XTT tests (1-100μM range). Thereafter in vitro infection models are established using PrV virus SuHV-1, optimized on PK-15 and RK-13 cell lines. Out of the six DAP-ANP analogues tested, analogue VI functionalized with a cyclopropyl group on the 6-amino position of the purine ring proves the most effective antiviral DAP-ANP analogue against PrV infection, aided by sufficient hydrophobic character to enhance bioavailability to its cellular target viral DNA-polymerase. Four other DAP-ANP analogues with functional groups introduced to the C2'position are shown ineffective against PrV infection, even with favourable hydrophobic properties. Cidofovir(®), a drug approved against various herpesvirus infections, is found to exert only low activity against PrV in these same in vitro models.
Collapse
Affiliation(s)
- Darina Zouharova
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic
| | - Ivana Lipenska
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic
| | - Martina Fojtikova
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic
| | - Pavel Kulich
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic
| | - Jiri Neca
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic
| | - Michal Slany
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic
| | - Kamil Kovarcik
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic
| | | | - Frantisek Hubatka
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic
| | - Hana Celechovska
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic
| | - Josef Masek
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic
| | - Stepan Koudelka
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic; International Clinical Research Center, St. Annés University Hospital, Brno, Czech Republic
| | - Lubomir Prochazka
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic
| | - Ludek Eyer
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic
| | - Jana Plockova
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic
| | - Eliska Bartheldyova
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic
| | - Andrew D Miller
- King's College London, Institute of Pharmaceutical Science, London, United Kingdom, and GlobalAcorn Ltd., London, United Kingdom
| | - Daniel Ruzek
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, and Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Milan Raska
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic; Palacky University of Olomouc, Faculty of Medicine, Department of Immunology, Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Turanek
- Veterinary Research Institute, Department of Pharmacology and Immunotherapy, Brno, Czech Republic.
| |
Collapse
|
22
|
Abstract
In approaching the development of a veterinary vaccine, researchers must choose from a bewildering array of options that can be combined to enhance benefit. The choice and combination of options is not just driven by efficacy, but also consideration of the cost, practicality, and challenges faced in licensing the product. In this review we set out the different choices faced by veterinary vaccine developers, highlight some issues, and propose some pressing needs to be addressed.
Collapse
Affiliation(s)
- Mark A Chambers
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK.
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK.
| | - Simon P Graham
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
| |
Collapse
|
23
|
Accensi F, Rodríguez F, Monteagudo PL. DNA Vaccines: Experiences in the Swine Model. Methods Mol Biol 2016; 1349:49-62. [PMID: 26458829 DOI: 10.1007/978-1-4939-3008-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DNA vaccination is one of the most fascinating vaccine-strategies currently in development. Two of the main advantages of DNA immunization rely on its simplicity and flexibility, being ideal to dissect both the immune mechanisms and the antigens involved in protection against a given pathogen. Here, we describe several strategies used to enhance the immune responses induced and the protection afforded by experimental DNA vaccines tested in swine and provide with very basic protocol describing the generation and in vivo application of a prototypic DNA vaccine. Only time will tell the last word regarding the definitive implementation of DNA vaccination in the field.
Collapse
Affiliation(s)
- Francesc Accensi
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Barcelona, 08193, Spain.
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Paula L Monteagudo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
24
|
Abstract
Orf virus (ORFV) is an epitheliotropic poxvirus, which belongs to the genus Parapoxvirus. Among them the highly attenuated, apathogenic strain D1701-V is regarded as a promising candidate for novel virus vector vaccines. Our recent work demonstrated that those ORFV-based recombinants were able to induce protective, long-lasting immunity in various hosts that are non-permissive for ORFV. In this chapter we describe procedures for the generation, selection, propagation, and titration of ORFV recombinants as well as transgene detection by PCR or immunohistochemical staining.
Collapse
Affiliation(s)
- Hanns-Joachim Rziha
- Institute of Immunology, Friedrich-Loeffler-Institute, Südufer 10, Island of Riems, Greifswald, Germany. .,Department of Immunology, Interfaculty Institute of Cell Biology, Eberhard Karls Universität, Auf der Morgenstelle 15, Tübingen, 72076, Germany.
| | - Jörg Rohde
- Institute of Immunology, Friedrich-Loeffler-Institute, Südufer 10, Island of Riems, Greifswald, Germany
| | - Ralf Amann
- Institute of Immunology, Friedrich-Loeffler-Institute, Südufer 10, Island of Riems, Greifswald, Germany.,Department of Immunology, Interfaculty Institute of Cell Biology, Eberhard Karls Universität, Auf der Morgenstelle 15, Tübingen, 72076, Germany
| |
Collapse
|
25
|
Pseudorabies in farmed foxes fed pig offal in Shandong province, China. Arch Virol 2015; 161:445-8. [DOI: 10.1007/s00705-015-2659-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
|
26
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
27
|
Lacek K, Bauer B, Bieńkowska-Szewczyk K, Rziha HJ. Orf virus (ORFV) ANK-1 protein mitochondrial localization is mediated by ankyrin repeat motifs. Virus Genes 2014; 49:68-79. [PMID: 24743940 DOI: 10.1007/s11262-014-1069-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
Orf virus (ORFV) strain D1701-V, a Parapoxvirus belonging to the family Poxviridae, became attractive as a novel virus vector system that we successfully used for the generation of recombinant vaccines. Therefore, the identification of viral genes involved in host tropisms or immune modulation is of great interest, as for instance the ORFV-encoded ankyrin-repeat (AR) containing proteins. The present study shows for the first time that the ANK-1 designated gene product of ORFV126 is targeted to mitochondria of ORFV-infected and in ANK-1 transiently expressing cells. Taking advantage of ANK-1 EGFP fusion proteins and confocal fluorescence microscopy mutational and deletion analyses indicated the importance of AR8 and AR9, which may contain a novel class of mitochondria-targeting sequence (MTS) in the central to C-terminal part of this AR-containing protein. The fluorescent findings were corroborated by cell fractionation and Western blotting experiments. The presented results open the avenue for more detailed investigations on cellular binding partners and the function of ANK-1 in viral replication or virulence.
Collapse
Affiliation(s)
- Krzysztof Lacek
- Laboratory of Virus Molecular Biology, University of Gdańsk, 80-822, Gdańsk, Poland
| | | | | | | |
Collapse
|
28
|
Rohde J, Amann R, Rziha HJ. New Orf virus (Parapoxvirus) recombinant expressing H5 hemagglutinin protects mice against H5N1 and H1N1 influenza A virus. PLoS One 2013; 8:e83802. [PMID: 24376753 PMCID: PMC3869816 DOI: 10.1371/journal.pone.0083802] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/16/2013] [Indexed: 12/16/2022] Open
Abstract
Previously we demonstrated the versatile utility of the Parapoxvirus Orf virus (ORFV) as a vector platform for the development of potent recombinant vaccines. In this study we present the generation of new ORFV recombinants expressing the hemagglutinin (HA) or nucleoprotein (NP) of the highly pathogenic avian influenza virus (HPAIV) H5N1. Correct foreign gene expression was examined in vitro by immunofluorescence, Western blotting and flow cytometry. The protective potential of both recombinants was evaluated in the mouse challenge model. Despite adequate expression of NP, the recombinant D1701-V-NPh5 completely failed to protect mice from lethal challenge. However, the H5 HA-expressing recombinant D1701-V-HAh5n mediated solid protection in a dose-dependent manner. Two intramuscular (i.m.) injections of the HA-expressing recombinant protected all animals from lethal HPAIV infection without loss of body weight. Notably, the immunized mice resisted cross-clade H5N1 and heterologous H1N1 (strain PR8) influenza virus challenge. In vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T-cell subpopulations during immunization and/or challenge infection implicated the relevance of CD4-positive T-cells for induction of protective immunity by D1701-V-HAh5n, whereas the absence of CD8-positive T-cells did not significantly influence protection. In summary, this study validates the potential of the ORFV vectored vaccines also to combat HPAIV.
Collapse
Affiliation(s)
- Jörg Rohde
- Institute of Immunology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Island of Riems, Greifswald, Germany
| | - Ralf Amann
- Institute of Immunology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Island of Riems, Greifswald, Germany
| | - Hanns-Joachim Rziha
- Institute of Immunology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Island of Riems, Greifswald, Germany
- * E-mail:
| |
Collapse
|
29
|
Reschner A, Scohy S, Vandermeulen G, Daukandt M, Jacques C, Michel B, Nauwynck H, Xhonneux F, Préat V, Vanderplasschen A, Szpirer C. Use of Staby(®) technology for development and production of DNA vaccines free of antibiotic resistance gene. Hum Vaccin Immunother 2013; 9:2203-10. [PMID: 24051431 DOI: 10.4161/hv.25086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby(®) technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby(®) technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1).
Collapse
Affiliation(s)
- Anca Reschner
- University of Liège; Immunology-Vaccinology; Faculty of Veterinary Medicine; Liège, Belgium
| | | | - Gaëlle Vandermeulen
- Université catholique de Louvain; Louvain Drug Research Institute; Pharmaceutics and Drug Delivery; Brussels, Belgium
| | | | | | | | - Hans Nauwynck
- Ghent University; Laboratory of Virology, Faculty of Veterinary Medicine; Merelbeke, Belgium
| | | | - Véronique Préat
- Université catholique de Louvain; Louvain Drug Research Institute; Pharmaceutics and Drug Delivery; Brussels, Belgium
| | - Alain Vanderplasschen
- University of Liège; Immunology-Vaccinology; Faculty of Veterinary Medicine; Liège, Belgium
| | | |
Collapse
|
30
|
Bhanuprakash V, Hosamani M, Venkatesan G, Balamurugan V, Yogisharadhya R, Singh RK. Animal poxvirus vaccines: a comprehensive review. Expert Rev Vaccines 2013; 11:1355-74. [PMID: 23249235 DOI: 10.1586/erv.12.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The family Poxviridae includes several viruses of medical and veterinary importance. Global concerted efforts combined with an intensive mass-vaccination campaign with highly efficaceious live vaccine of vaccinia virus have led to eradication of smallpox. However, orthopoxviruses affecting domestic animals continue to cause outbreaks in several endemic countries. Different kinds of vaccines starting from conventional inactivated/attenuated to recombinant protein-based vaccines have been used for control of poxvirus infections. Live virus homologous vaccines are currently in use for diseases including capripox, parapox, camelpox and fowlpox, and these vaccines are highly effective in eliciting (with the exception of parapoxviruses) long-lasting immunity. Attenuated strains of poxviruses have been exploited as vectored vaccines to deliver heterologous immunogens, many of them being licensed for use in animals. Worthy of note are vaccinia virus, fowlpox virus, capripoxvirus, parapoxvirus and canary pox, which have been successfully used for developing new-generation vaccines targeting many important pathogens. Remarkable features of these vaccines are thermostability and their ability to engender both cellular and humoral immune responses to the target pathogens. This article updates the important vaccines available for poxviruses of livestock and identifies some of the research gaps in the present context of poxvirus research.
Collapse
|
31
|
A new rabies vaccine based on a recombinant ORF virus (parapoxvirus) expressing the rabies virus glycoprotein. J Virol 2012; 87:1618-30. [PMID: 23175365 DOI: 10.1128/jvi.02470-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The present study describes the generation of a new Orf virus (ORFV) recombinant, D1701-V-RabG, expressing the rabies virus (RABV) glycoprotein that is correctly presented on the surface of infected cells without the need of replication or production of infectious recombinant virus. One single immunization with recombinant ORFV can stimulate high RABV-specific virus-neutralizing antibody (VNA) titers in mice, cats, and dogs, representing all nonpermissive hosts for the ORFV vector. The protective immune response against severe lethal challenge infection was analyzed in detail in mice using different dosages, numbers, and routes for immunization with the ORFV recombinant. Long-term levels of VNA could be elicited that remained greater than 0.5 IU per ml serum, indicative for the protective status. Single applications of higher doses (10(7) PFU) can be sufficient to confer complete protection against intracranial (i.c.) challenge, whereas booster immunization was needed for protection by the application of lower dosages. Anamnestic immune responses were achieved by each of the seven tested routes of inoculation, including oral application. Finally, in vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T cell subpopulations during immunization and/or challenge infection attested the importance of CD4 T cells for the induction of protective immunity by D1701-V-RabG. This report demonstrates another example of the potential of the ORFV vector and also indicates the capability of the new recombinant for vaccination of animals.
Collapse
|
32
|
Tan JL, Ueda N, Heath D, Mercer AA, Fleming SB. Development of orf virus as a bifunctional recombinant vaccine: Surface display of Echinococcus granulosus antigen EG95 by fusion to membrane structural proteins. Vaccine 2012; 30:398-406. [DOI: 10.1016/j.vaccine.2011.10.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 09/01/2011] [Accepted: 10/28/2011] [Indexed: 01/24/2023]
|