1
|
Harwood OE, Matschke LM, Moriarty RV, Balgeman AJ, Weaver AJ, Ellis-Connell AL, Weiler AM, Winchester LC, Fletcher CV, Friedrich TC, Keele BF, O’Connor DH, Lang JD, Reynolds MR, O’Connor SL. CD8+ cells and small viral reservoirs facilitate post-ART control of SIV replication in M3+ Mauritian cynomolgus macaques initiated on ART two weeks post-infection. PLoS Pathog 2023; 19:e1011676. [PMID: 37747933 PMCID: PMC10553806 DOI: 10.1371/journal.ppat.1011676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/05/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
Sustainable HIV remission after antiretroviral therapy (ART) withdrawal, or post-treatment control (PTC), remains a top priority for HIV treatment. We observed surprising PTC in an MHC-haplomatched cohort of MHC-M3+ SIVmac239+ Mauritian cynomolgus macaques (MCMs) initiated on ART at two weeks post-infection (wpi). None of the MCMs possessed MHC haplotypes previously associated with SIV control. For six months after ART withdrawal, we observed undetectable or transient viremia in seven of the eight MCMs, despite detecting replication competent SIV using quantitative viral outgrowth assays. In vivo depletion of CD8α+ cells induced rebound in all animals, indicating the observed PTC was mediated, at least in part, by CD8α+ cells. With intact proviral DNA assays, we found that MCMs had significantly smaller viral reservoirs two wpi than a cohort of identically infected rhesus macaques, a population that rarely develops PTC. We found a similarly small viral reservoir among six additional SIV+ MCMs in which ART was initiated at eight wpi, some of whom exhibited viral rebound. These results suggest that an unusually small viral reservoir is a hallmark among SIV+ MCMs. By evaluating immunological differences between MCMs that did and did not rebound, we identified that PTC was associated with a reduced frequency of CD4+ and CD8+ lymphocyte subsets expressing exhaustion markers. Together, these results suggest a combination of small reservoirs and immune-mediated virus suppression contribute to PTC in MCMs. Further, defining the immunologic mechanisms that engender PTC in this model may identify therapeutic targets for inducing durable HIV remission in humans.
Collapse
Affiliation(s)
- Olivia E. Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lea M. Matschke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan V. Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Abigail J. Weaver
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Amy L. Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Lee C. Winchester
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Courtney V. Fletcher
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Jessica D. Lang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew R. Reynolds
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Harwood OE, Matschke LM, Moriarty RV, Balgeman AJ, Weaver AJ, Ellis-Connell AL, Weiler AM, Winchester LC, Fletcher CV, Friedrich TC, Keele BF, O'Connor DH, Lang JD, Reynolds MR, O'Connor SL. CD8+ cells and small viral reservoirs facilitate post-ART control of SIV in Mauritian cynomolgus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530655. [PMID: 36909458 PMCID: PMC10002716 DOI: 10.1101/2023.03.01.530655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Sustainable HIV remission after antiretroviral therapy (ART) withdrawal, or post-treatment control (PTC), remains a top priority for HIV treatment. We observed surprising PTC in an MHC-haplomatched cohort of MHC-M3+ SIVmac239+ Mauritian cynomolgus macaques (MCMs) initiated on ART at two weeks post-infection (wpi). For six months after ART withdrawal, we observed undetectable or transient viremia in seven of eight MCMs. In vivo depletion of CD8α+ cells induced rebound in all animals, indicating the PTC was mediated, at least in part, by CD8α+ cells. We found that MCMs had smaller acute viral reservoirs than a cohort of identically infected rhesus macaques, a population that rarely develops PTC. The mechanisms by which unusually small viral reservoirs and CD8α+ cell-mediated virus suppression enable PTC can be investigated using this MHC-haplomatched MCM model. Further, defining the immunologic mechanisms that engender PTC in this model may identify therapeutic targets for inducing durable HIV remission in humans.
Collapse
Affiliation(s)
- Olivia E Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Lea M Matschke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711
| | - Ryan V Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Abigail J Weaver
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Amy L Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Andrea M Weiler
- Wisconsin National Primate Research Center, Madison, WI, 53711
| | - Lee C Winchester
- College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198
| | | | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711
- Wisconsin National Primate Research Center, Madison, WI, 53711
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
- Wisconsin National Primate Research Center, Madison, WI, 53711
| | - Jessica D Lang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI 53711
| | - Matthew R Reynolds
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53711
- Wisconsin National Primate Research Center, Madison, WI, 53711
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711
- Wisconsin National Primate Research Center, Madison, WI, 53711
| |
Collapse
|
3
|
Harwood OE, Balgeman AJ, Weaver AJ, Ellis-Connell AL, Weiler AM, Erickson KN, Matschke LM, Golfinos AE, Vezys V, Skinner PJ, Safrit JT, Edlefsen PT, Reynolds MR, Friedrich TC, O’Connor SL. Transient T Cell Expansion, Activation, and Proliferation in Therapeutically Vaccinated Simian Immunodeficiency Virus-Positive Macaques Treated with N-803. J Virol 2022; 96:e0142422. [PMID: 36377872 PMCID: PMC9749465 DOI: 10.1128/jvi.01424-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccine strategies aimed at eliciting human immunodeficiency virus (HIV)-specific CD8+ T cells are one major target of interest in HIV functional cure strategies. We hypothesized that CD8+ T cells elicited by therapeutic vaccination during antiretroviral therapy (ART) would be recalled and boosted by treatment with the interleukin 15 (IL-15) superagonist N-803 after ART discontinuation. We intravenously immunized four simian immunodeficiency virus-positive (SIV+) Mauritian cynomolgus macaques receiving ART with vesicular stomatitis virus (VSV), modified vaccinia virus Ankara strain (MVA), and recombinant adenovirus serotype 5 (rAd-5) vectors all expressing SIVmac239 Gag. Immediately after ART cessation, these animals received three doses of N-803. Four control animals received no vaccines or N-803. The vaccine regimen generated a high-magnitude response involving Gag-specific CD8+ T cells that were proliferative and biased toward an effector memory phenotype. We then compared cells elicited by vaccination (Gag specific) to cells elicited by SIV infection and unaffected by vaccination (Nef specific). We found that N-803 treatment enhanced the frequencies of both bulk and proliferating antigen-specific CD8+ T cells elicited by vaccination and the antigen-specific CD8+ T cells elicited by SIV infection. In sum, we demonstrate that a therapeutic heterologous prime-boost-boost (HPBB) vaccine can elicit antigen-specific effector memory CD8+ T cells that are boosted by N-803. IMPORTANCE While antiretroviral therapy (ART) can suppress HIV replication, it is not a cure. It is therefore essential to develop therapeutic strategies to enhance the immune system to better become activated and recognize virus-infected cells. Here, we evaluated a novel therapeutic vaccination strategy delivered to SIV+ Mauritian cynomolgus macaques receiving ART. ART was then discontinued and we delivered an immunotherapeutic agent (N-803) after ART withdrawal with the goal of eliciting and boosting anti-SIV cellular immunity. Immunologic and virologic analysis of peripheral blood and lymph nodes collected from these animals revealed transient boosts in the frequency, activation, proliferation, and memory phenotype of CD4+ and CD8+ T cells following each intervention. Overall, these results are important in educating the field of the transient nature of the immunological responses to this particular therapeutic regimen and the similar effects of N-803 on boosting T cells elicited by vaccination or elicited naturally by infection.
Collapse
Affiliation(s)
- Olivia E. Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Abigail J. Weaver
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Amy L. Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | | | - Lea M. Matschke
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Athena E. Golfinos
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Vaiva Vezys
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Matthew R. Reynolds
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Weinfurter JT, Graham ME, Ericsen AJ, Matschke LM, Llewellyn-Lacey S, Price DA, Wiseman RW, Reynolds MR. Identifying a Minor Histocompatibility Antigen in Mauritian Cynomolgus Macaques Encoded by APOBEC3C. Front Immunol 2020; 11:586251. [PMID: 33193411 PMCID: PMC7649366 DOI: 10.3389/fimmu.2020.586251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplants can lead to dramatic reductions in human immunodeficiency virus (HIV) reservoirs. This effect is partially mediated by donor T cells recognizing lymphocyte-expressed minor histocompatibility antigens (mHAgs). The potential to mark malignant and latently infected cells for destruction makes mHAgs attractive targets for cellular immunotherapies. However, testing such HIV reservoir reduction strategies will likely require preclinical studies in non-human primates (NHPs). In this study, we used a combination of alloimmunization, whole exome sequencing, and bioinformatics to identify an mHAg in Mauritian cynomolgus macaques (MCMs). We mapped the minimal optimal epitope to a 10-mer peptide (SW10) in apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3C (APOBEC3C) and determined the major histocompatibility complex class I restriction element as Mafa-A1∗063, which is expressed in almost 90% of MCMs. APOBEC3C SW10-specific CD8+ T cells recognized immortalized B cells but not fibroblasts from an mHAg-positive MCM. These results provide a framework for identifying mHAgs in a non-transplant setting and suggest that APOBEC3C SW10 could be used as a model antigen to test mHAg-targeted therapies in NHPs.
Collapse
Affiliation(s)
- Jason T. Weinfurter
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael E. Graham
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Adam J. Ericsen
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Lea M. Matschke
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Matthew R. Reynolds
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
5
|
Haj AK, Breitbach ME, Baker DA, Mohns MS, Moreno GK, Wilson NA, Lyamichev V, Patel J, Weisgrau KL, Dudley DM, O'Connor DH. High-Throughput Identification of MHC Class I Binding Peptides Using an Ultradense Peptide Array. THE JOURNAL OF IMMUNOLOGY 2020; 204:1689-1696. [PMID: 32060132 DOI: 10.4049/jimmunol.1900889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/04/2020] [Indexed: 01/02/2023]
Abstract
Rational vaccine development and evaluation requires identifying and measuring the magnitude of epitope-specific CD8 T cell responses. However, conventional CD8 T cell epitope discovery methods are labor intensive and do not scale well. In this study, we accelerate this process by using an ultradense peptide array as a high-throughput tool for screening peptides to identify putative novel epitopes. In a single experiment, we directly assess the binding of four common Indian rhesus macaque MHC class I molecules (Mamu-A1*001, -A1*002, -B*008, and -B*017) to ∼61,000 8-mer, 9-mer, and 10-mer peptides derived from the full proteomes of 82 SIV and simian HIV isolates. Many epitope-specific CD8 T cell responses restricted by these four MHC molecules have already been identified in SIVmac239, providing an ideal dataset for validating the array; up to 64% of these known epitopes are found in the top 192 SIVmac239 peptides with the most intense MHC binding signals in our experiment. To assess whether the peptide array identified putative novel CD8 T cell epitopes, we validated the method by IFN-γ ELISPOT assay and found three novel peptides that induced CD8 T cell responses in at least two Mamu-A1*001-positive animals; two of these were validated by ex vivo tetramer staining. This high-throughput identification of peptides that bind class I MHC will enable more efficient CD8 T cell response profiling for vaccine development, particularly for pathogens with complex proteomes for which few epitope-specific responses have been defined.
Collapse
Affiliation(s)
- Amelia K Haj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Meghan E Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - David A Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Mariel S Mohns
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Gage K Moreno
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Nancy A Wilson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | | | | | - Kim L Weisgrau
- Wisconsin National Primate Research Center, Madison, WI 53715
| | - Dawn M Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705; .,Wisconsin National Primate Research Center, Madison, WI 53715
| |
Collapse
|
6
|
Vaccination of Macaques with DNA Followed by Adenoviral Vectors Encoding Simian Immunodeficiency Virus (SIV) Gag Alone Delays Infection by Repeated Mucosal Challenge with SIV. J Virol 2019; 93:JVI.00606-19. [PMID: 31413132 PMCID: PMC6803269 DOI: 10.1128/jvi.00606-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
The simian immunodeficiency virus (SIV) macaque model represents the best animal model for testing new human immunodeficiency virus type 1 (HIV-1) vaccines. Previous studies employing replication-defective adenovirus (rAd) vectors that transiently express SIV internal proteins induced T cell responses that controlled virus load but did not protect against virus challenge. However, we show for the first time that SIV gag delivered in a DNA prime followed by a boost with an rAd vector confers resistance to SIV intrarectal challenge. Other partially successful SIV/HIV-1 protective vaccines induce antibody to the envelope and neutralize the virus or mediate antibody-dependent cytotoxicity. Induction of CD8 T cells which do not prevent initial infection but eradicate infected cells before infection becomes established has also shown some success. In contrast, the vaccine described here mediates resistance by a different mechanism from that described above, which may reflect CD4 T cell activity. This could indicate an alternative approach for HIV-1 vaccine development. Vaccines aimed at inducing T cell responses to protect against human immunodeficiency virus (HIV) infection have been under development for more than 15 years. Replication-defective adenovirus (rAd) vaccine vectors are at the forefront of this work and have been tested extensively in the simian immunodeficiency virus (SIV) challenge macaque model. Vaccination with rAd vectors coding for SIV Gag or other nonenvelope proteins induces T cell responses that control virus load but disappointingly is unsuccessful so far in preventing infection, and attention has turned to inducing antibodies to the envelope. However, here we report that Mauritian cynomolgus macaques (MCM), Macaca fascicularis, vaccinated with unmodified SIV gag alone in a DNA prime followed by an rAd boost exhibit increased protection from infection by repeated intrarectal challenge with low-dose SIVmac251. There was no evidence of infection followed by eradication. A significant correlation was observed between cytokine expression by CD4 T cells and delayed infection. Vaccination with gag fused to the ubiquitin gene or fragmented, designed to increase CD8 magnitude and breadth, did not confer resistance to challenge or enhance immunity. On infection, a significant reduction in peak virus load was observed in all vaccinated animals, including those vaccinated with modified gag. These findings suggest that a nonpersistent viral vector vaccine coding for internal virus proteins may be able to protect against HIV type 1 (HIV-1) infection. The mechanisms are probably distinct from those of antibody-mediated virus neutralization or cytotoxic CD8 cell killing of virus-infected cells and may be mediated in part by CD4 T cells. IMPORTANCE The simian immunodeficiency virus (SIV) macaque model represents the best animal model for testing new human immunodeficiency virus type 1 (HIV-1) vaccines. Previous studies employing replication-defective adenovirus (rAd) vectors that transiently express SIV internal proteins induced T cell responses that controlled virus load but did not protect against virus challenge. However, we show for the first time that SIV gag delivered in a DNA prime followed by a boost with an rAd vector confers resistance to SIV intrarectal challenge. Other partially successful SIV/HIV-1 protective vaccines induce antibody to the envelope and neutralize the virus or mediate antibody-dependent cytotoxicity. Induction of CD8 T cells which do not prevent initial infection but eradicate infected cells before infection becomes established has also shown some success. In contrast, the vaccine described here mediates resistance by a different mechanism from that described above, which may reflect CD4 T cell activity. This could indicate an alternative approach for HIV-1 vaccine development.
Collapse
|
7
|
Current advances in HIV vaccine preclinical studies using Macaque models. Vaccine 2019; 37:3388-3399. [PMID: 31088747 DOI: 10.1016/j.vaccine.2019.04.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
The macaque simian or simian/human immunodeficiency virus (SIV/SHIV) challenge model has been widely used to inform and guide human vaccine trials. Substantial advances have been made recently in the application of repeated-low-dose challenge (RLD) approach to assess SIV/SHIV vaccine efficacies (VE). Some candidate HIV vaccines have shown protective effects in preclinical studies using the macaque SIV/SHIV model but the model's true predictive value for screening potential HIV vaccine candidates needs to be evaluated further. Here, we review key parameters used in the RLD approach and discuss their relevance for evaluating VE to improve preclinical studies of candidate HIV vaccines.
Collapse
|
8
|
Rahman MA, Robert-Guroff M. Accelerating HIV vaccine development using non-human primate models. Expert Rev Vaccines 2018; 18:61-73. [PMID: 30526159 DOI: 10.1080/14760584.2019.1557521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The search for a preventative HIV vaccine is ongoing after three decades of research. Contributions of non-human primate (NHP) models to this research are irrefutable, however interpreting data obtained for translation to humans has been problematic. As knowledge concerning NHP models has accumulated, their utility and value in assessing immunogenicity and efficacy of novel vaccines have become apparent. NHP models have become a critical component of vaccine design. AREAS COVERED Beginning with early vaccine studies, we trace the development and evolution of NHP models concurrent with changes in HIV vaccine concepts and in response to their ability to predict clinical trial efficacy. The value of NHP studies in guiding vaccine design is highlighted along with their importance in opening new areas of investigation and facilitating movement of promising approaches into the clinic. EXPERT COMMENTARY Due to their close relatedness to humans, NHPs are an excellent choice for immunogenicity studies. The ability of NHP models to predict clinical efficacy has improved with the introduction of low-dose challenge viruses and recognition of confounding variables in study outcomes. Use of NHP models has opened new research areas with outstanding potential for generating vaccine efficacy against HIV and other infectious agents.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- a Vaccine Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Marjorie Robert-Guroff
- a Vaccine Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
9
|
Acute-Phase CD4 + T Cell Responses Targeting Invariant Viral Regions Are Associated with Control of Live Attenuated Simian Immunodeficiency Virus. J Virol 2018; 92:JVI.00830-18. [PMID: 30111562 DOI: 10.1128/jvi.00830-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022] Open
Abstract
We manipulated SIVmac239Δnef, a model of major histocompatibility complex (MHC)-independent viral control, to evaluate characteristics of effective cellular responses mounted by Mauritian cynomolgus macaques (MCMs) that express the M3 MHC haplotype, which has been associated with poor control of pathogenic simian immunodeficiency virus (SIV). We created SIVΔnef-8x to test the hypothesis that effective SIV-specific T cell responses targeting invariant viral regions can emerge in the absence of immunodominant CD8+ T cell responses targeting variable epitopes and that control is achievable in individuals lacking known "protective" MHC alleles. Full-proteome gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assays identified six newly targeted immunogenic regions following SIVΔnef-8x infection of M3/M3 MCMs. We deep sequenced circulating virus and found that four of the six newly targeted regions rarely accumulated mutations. Six animals infected with SIVΔnef-8x had T cell responses that targeted at least one of the four invariant regions and had a lower set point viral load than two animals that did not have T cell responses that targeted any invariant regions. We found that MHC class II molecules restricted all four of the invariant peptide regions, while the two variable regions were restricted by MHC class I molecules. Therefore, in the absence of immunodominant CD8+ T cell responses that target variable regions during SIVmac239Δnef infection, individuals without protective MHC alleles developed predominantly CD4+ T cell responses specific for invariant regions that may improve control of virus replication. Our results provide some evidence that antiviral CD4+ T cells during acute SIV infection can contribute to effective viral control and should be considered in strategies to combat HIV infection.IMPORTANCE Studies defining effective cellular immune responses to human immunodeficiency virus (HIV) and SIV have largely focused on a rare population that express specific MHC class I alleles and control virus replication in the absence of antiretroviral treatment. This leaves in question whether similar effective immune responses can be achieved in the larger population. The majority of HIV-infected individuals mount CD8+ T cell responses that target variable viral regions that accumulate high-frequency escape mutations. Limiting T cell responses to these variable regions and targeting invariant viral regions, similar to observations in rare "elite controllers," may provide an ideal strategy for the development of effective T cell responses in individuals with diverse MHC genetics. Therefore, it is of paramount importance to determine whether T cell responses can be redirected toward invariant viral regions in individuals without protective MHC alleles and if these responses improve control of virus replication.
Collapse
|
10
|
Martins MA, Watkins DI. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? Rigorous Simian Immunodeficiency Virus Vaccine Trials Can Be Instructive. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029504. [PMID: 28348034 DOI: 10.1101/cshperspect.a029504] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Simian immunodeficiency virus (SIV) challenge of rhesus macaques provides an invaluable tool to evaluate the clinical prospects of HIV-1 vaccine concepts. However, as with any animal model of human disease, it is crucial to understand the advantages and limitations of this system to maximize the translational value of SIV vaccine studies. Here, we discuss the importance of assessing the efficacy of vaccine prototypes using stringent SIV challenge regimens that mimic HIV-1 transmission and pathogenesis. We also review some of the cautionary tales of HIV-1 vaccine research because they provide general lessons for the preclinical assessment of vaccine candidates.
Collapse
Affiliation(s)
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, Florida 33136
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Only four HIV-1 vaccine concepts have been tested in six efficacy trials with no product licensed to date. Several scientific and programmatic lessons can be learned from these studies generating new hypotheses and guiding future steps. RECENT FINDINGS RV144 [ALVAC-HIV (canarypox vector) and AIDSVAX B/E (bivalent gp120 HIV-1 subtype B and CRF01_AE)] remains the only efficacy trial that demonstrated a modest vaccine efficacy, which led to the identification of immune correlates of risk. Progress on subtype-specific, ALVAC (canarypox vector) and gp120 vaccine prime-boost approaches has been slow, but we are finally close to the launch of an efficacy study in Africa in 2016. The quest of a globally effective HIV-1 vaccine has led to the development of new approaches. Efficacy studies of combinations of Adenovirus type 26 (Ad26)/Modified Vaccinia Ankara (MVA)/gp140 vaccines with mosaic designs will enter efficacy studies mid-2017 and cytomegalovirus (CMV)-vectored vaccines begin Phase I studies at the same time. Future HIV-1 vaccine efficacy trials face practical challenges as effective nonvaccine prevention programs are projected to decrease HIV-1 incidence. SUMMARY An HIV-1 vaccine is urgently needed. Increased industry involvement, mobilization of resources, expansion of a robust pipeline of new concepts, and robust preclinical challenge studies will be essential to accelerate efficacy testing of next generation HIV-1 vaccine candidates.
Collapse
|
12
|
Janes HE, Cohen KW, Frahm N, De Rosa SC, Sanchez B, Hural J, Magaret CA, Karuna S, Bentley C, Gottardo R, Finak G, Grove D, Shen M, Graham BS, Koup RA, Mulligan MJ, Koblin B, Buchbinder SP, Keefer MC, Adams E, Anude C, Corey L, Sobieszczyk M, Hammer SM, Gilbert PB, McElrath MJ. Higher T-Cell Responses Induced by DNA/rAd5 HIV-1 Preventive Vaccine Are Associated With Lower HIV-1 Infection Risk in an Efficacy Trial. J Infect Dis 2017; 215:1376-1385. [PMID: 28199679 PMCID: PMC5853653 DOI: 10.1093/infdis/jix086] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/08/2017] [Indexed: 12/15/2022] Open
Abstract
Background It is important to identify vaccine-induced immune responses that predict the preventative efficacy of a human immunodeficiency virus (HIV)-1 vaccine. We assessed T-cell response markers as correlates of risk in the HIV Vaccine Trials Network (HVTN) 505 HIV-1 vaccine efficacy trial. Methods 2504 participants were randomized to DNA/rAd5 vaccine or placebo, administered at weeks 0, 4, 8, and 24. Peripheral blood mononuclear cells were obtained at week 26 from all 25 primary endpoint vaccine cases and 125 matched vaccine controls, and stimulated with vaccine-insert-matched peptides. Primary variables were total HIV-1-specific CD4+ T-cell magnitude and Env-specific CD4+ polyfunctionality. Four secondary variables were also assessed. Immune responses were evaluated as predictors of HIV-1 infection among vaccinees using Cox proportional hazards models. Machine learning analyses identified immune response combinations best predicting HIV-1 infection. Results We observed an unexpectedly strong inverse correlation between Env-specific CD8+ immune response magnitude and HIV-1 infection risk (hazard ratio [HR] = 0.18 per SD increment; P = .04) and between Env-specific CD8+ polyfunctionality and infection risk (HR = 0.34 per SD increment; P < .01). Conclusions Further research is needed to determine if these immune responses are predictors of vaccine efficacy or markers of natural resistance to HIV-1 infection.
Collapse
Affiliation(s)
- Holly E Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Kristen W Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Brittany Sanchez
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Craig A Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Carter Bentley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Douglas Grove
- The Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mingchao Shen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | | - Beryl Koblin
- Laboratory of Infectious Disease Prevention, New York Blood Center, New York
| | - Susan P Buchbinder
- Departments of Medicine and Epidemiology/Biostatistics, University of California San Francisco
| | - Michael C Keefer
- University of Rochester Medical Center, School of Medicine and Dentistry, New York
| | - Elizabeth Adams
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and
| | - Chuka Anude
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - Magdalena Sobieszczyk
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York
| | - Scott M Hammer
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and
| |
Collapse
|
13
|
Ford T, Wenden C, Mbekeani A, Dally L, Cox JH, Morin M, Winstone N, Hill AVS, Gilmour J, Ewer KJ. Cryopreservation-related loss of antigen-specific IFNγ producing CD4 + T-cells can skew immunogenicity data in vaccine trials: Lessons from a malaria vaccine trial substudy. Vaccine 2017; 35:1898-1906. [PMID: 28285985 PMCID: PMC5387668 DOI: 10.1016/j.vaccine.2017.02.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/31/2017] [Accepted: 02/18/2017] [Indexed: 12/19/2022]
Abstract
Ex vivo functional immunoassays such as ELISpot and intracellular cytokine staining (ICS) by flow cytometry are crucial tools in vaccine development both in the identification of novel immunogenic targets and in the immunological assessment of samples from clinical trials. Cryopreservation and subsequent thawing of PBMCs via validated processes has become a mainstay of clinical trials due to processing restrictions inherent in the disparate location and capacity of trial centres, and also in the need to standardize biological assays at central testing facilities. Logistical and financial requirement to batch process samples from multiple study timepoints are also key. We used ELISpot and ICS assays to assess antigen-specific immunogenicity in blood samples taken from subjects enrolled in a phase II malaria heterologous prime-boost vaccine trial and showed that the freeze thaw process can result in a 3–5-fold reduction of malaria antigen-specific IFNγ-producing CD3+CD4+ effector populations from PBMC samples taken post vaccination. We have also demonstrated that peptide responsive CD8+ T cells are relatively unaffected, as well as CD4+ T cell populations that do not produce IFNγ. These findings contribute to a growing body of data that could be consolidated and synthesised as guidelines for clinical trials with the aim of increasing the efficiency of vaccine development pipelines.
Collapse
Affiliation(s)
- Tom Ford
- IAVI-HIL, Human Immunology Laboratory, International AIDS Vaccine Initiative, London, UK; Department of Medicine, Imperial College, London, UK.
| | - Claire Wenden
- IAVI-HIL, Human Immunology Laboratory, International AIDS Vaccine Initiative, London, UK; Department of Medicine, Imperial College, London, UK
| | - Alison Mbekeani
- IAVI-HIL, Human Immunology Laboratory, International AIDS Vaccine Initiative, London, UK; Department of Medicine, Imperial College, London, UK
| | - Len Dally
- EMMES Corporation, Rockville, MD, USA
| | - Josephine H Cox
- IAVI-HIL, Human Immunology Laboratory, International AIDS Vaccine Initiative, London, UK
| | | | - Nicola Winstone
- IAVI-HIL, Human Immunology Laboratory, International AIDS Vaccine Initiative, London, UK; Department of Medicine, Imperial College, London, UK
| | - Adrian V S Hill
- Centre for Clinical Vaccinology and Tropical Medicine and the Jenner Institute Laboratories, University of Oxford, UK
| | - Jill Gilmour
- IAVI-HIL, Human Immunology Laboratory, International AIDS Vaccine Initiative, London, UK; Department of Medicine, Imperial College, London, UK
| | - Katie J Ewer
- Centre for Clinical Vaccinology and Tropical Medicine and the Jenner Institute Laboratories, University of Oxford, UK
| |
Collapse
|
14
|
Gordon SN, Liyanage NPM, Doster MN, Vaccari M, Vargas-Inchaustegui DA, Pegu P, Schifanella L, Shen X, Tomaras GD, Rao M, Billings EA, Schwartz J, Prado I, Bobb K, Zhang W, Montefiori DC, Foulds KE, Ferrari G, Robert-Guroff M, Roederer M, Phan TB, Forthal DN, Stablein DM, Phogat S, Venzon DJ, Fouts T, Franchini G. Boosting of ALVAC-SIV Vaccine-Primed Macaques with the CD4-SIVgp120 Fusion Protein Elicits Antibodies to V2 Associated with a Decreased Risk of SIVmac251 Acquisition. THE JOURNAL OF IMMUNOLOGY 2016; 197:2726-37. [PMID: 27591322 DOI: 10.4049/jimmunol.1600674] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022]
Abstract
The recombinant ALVAC vaccine coupled with the monomeric gp120/alum protein have decreased the risk of HIV and SIV acquisition. Ab responses to the V1/V2 regions have correlated with a decreased risk of virus acquisition in both humans and macaques. We hypothesized that the breadth and functional profile of Abs induced by an ALVAC/envelope protein regimen could be improved by substituting the monomeric gp120 boost, with the full-length single-chain (FLSC) protein. FLSC is a CD4-gp120 fusion immunogen that exposes cryptic gp120 epitopes to the immune system. We compared the immunogenicity and relative efficiency of an ALVAC-SIV vaccine boosted either with bivalent FLSC proteins or with monomeric gp120 in alum. FLSC was superior to monomeric gp120 in directing Abs to the C3 α2 helix, the V5 loop, and the V3 region that contains the putative CCR5 binding site. In addition, FLSC boosting elicited significantly higher binding Abs to V2 and increased both the Ab-dependent cellular cytotoxicity activity and the breadth of neutralizing Abs. However, the FLSC vaccine regimen demonstrated only a trend in vaccine efficacy, whereas the monomeric gp120 regimen significantly decreased the risk of SIVmac251 acquisition. In both vaccine regimens, anti-V2 Abs correlated with a decreased risk of virus acquisition but differed with regard to systemic or mucosal origin. In the FLSC regimen, serum Abs to V2 correlated, whereas in the monomeric gp120 regimen, V2 Abs in rectal secretions, the site of viral challenge, were associated with efficacy.
Collapse
Affiliation(s)
- Shari N Gordon
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Namal P M Liyanage
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Melvin N Doster
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Monica Vaccari
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Diego A Vargas-Inchaustegui
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, Bethesda, MD 20892
| | - Poonam Pegu
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Luca Schifanella
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Erik A Billings
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | | | - Ilia Prado
- Profectus BioSciences Inc., Baltimore, MD 21224
| | | | | | | | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, Bethesda, MD 20892
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tran B Phan
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA 92868
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA 92868
| | | | | | - David J Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Genoveffa Franchini
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
15
|
Adenoviral Vector Vaccines Antigen Transgene. ADENOVIRAL VECTORS FOR GENE THERAPY 2016. [PMCID: PMC7150117 DOI: 10.1016/b978-0-12-800276-6.00021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the past decade adenovirus-based vaccines have progressed from preclinical studies, which universally showed the vectors’ high immunogenicity, to testing in humans. Clinical trials showed that adenovirus vectors are well tolerated by humans. They induce robust immune responses that can be expanded by booster immunization. The effect of preexisting neutralizing antibodies on vectors’ immunogenicity appears to be less severe than was observed in experimental animals and can readily be circumvented by using vectors to which most humans lack neutralizing antibodies. Additional clinical studies are needed to firmly establish the efficacy of adenoviral vector vaccines.
Collapse
|
16
|
Williamson AL, Rybicki EP. Justification for the inclusion of Gag in HIV vaccine candidates. Expert Rev Vaccines 2015; 15:585-98. [PMID: 26645951 DOI: 10.1586/14760584.2016.1129904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is widely accepted that effective human immunodeficiency virus (HIV) vaccines need to elicit a range of responses, including neutralising antibodies and T-cells. In natural HIV infections, immune responses to Gag are associated with lower viral load in infected individuals, and these responses can be measured against infected cells before the replication of HIV. Priming immune responses to Gag with DNA or recombinant Bacillus Calmette-Guérin (BCG) vaccines, and boosting with Gag virus-like particles as subunit vaccines or Gag produced in vivo by other vaccine vectors, elicits high-magnitude, broad polyfunctional responses, with memory T-cell responses appropriate for virus control. This review provides justification for the inclusion of HIV Gag in vaccine regimens, either as a transgene expressing protein that may assemble to form budded particles, or as purified virus-like particles. Possible benefits would include early control via CD8(+) T-cells at the site of infection, control of spread from the entry portal, and control of viraemia if infection is established.
Collapse
Affiliation(s)
- Anna-Lise Williamson
- a Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Cape Town , South Africa.,b National Health Laboratory Service, Groote Schuur Hospital, Cape Town and Department of Pathology , University of Cape Town , Cape Town , South Africa
| | - Edward P Rybicki
- a Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Cape Town , South Africa.,c Biopharming Research Unit, Department of Molecular and Cell Biology , University of Cape Town , Cape Town , South Africa
| |
Collapse
|
17
|
Abstract
A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis comparing vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent non-human primate (NHP) challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
|
18
|
Excler JL, Robb ML, Kim JH. Prospects for a globally effective HIV-1 vaccine. Vaccine 2015; 33 Suppl 4:D4-12. [PMID: 26100921 DOI: 10.1016/j.vaccine.2015.03.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 11/28/2022]
Abstract
A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis compared vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent NHP challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and MSM in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jerome H Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA
| |
Collapse
|
19
|
Brown J, Excler JL, Kim JH. New prospects for a preventive HIV-1 vaccine. J Virus Erad 2015; 1:78-88. [PMID: 26523292 PMCID: PMC4625840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The immune correlates of risk analysis and recent non-human primate (NHP) challenge studies have generated hypotheses that suggest HIV-1 envelope may be essential and, perhaps, sufficient to induce protective antibody responses against HIV-1 acquisition at the mucosal entry. New prime-boost mosaic and conserved-sequence, together with replicating vector immunisation strategies aiming at inducing immune responses or greater breadth, as well as the development of immunogens inducing broadly neutralising antibodies and mucosal responses, should be actively pursued and tested in humans. Whether the immune correlates of risk identified in RV144 can be extended to other vaccines, other populations, or different modes and intensity of transmission, and against increasing HIV-1 genetic diversity, remains to be demonstrated. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key for answering the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
Affiliation(s)
| | - Jean-Louis Excler
- US Military HIV Research Program,
Bethesda,
MD,
USA,The Henry M Jackson Foundation for the Advancement of Military Medicine,
Bethesda,
MD,
USA,Corresponding author: Jean-Louis Excler,
US Military HIV Research Program,
6720-A Rockledge Drive, Suite 400Bethesda,
MD20817,
USA
| | - Jerome H Kim
- US Military HIV Research Program,
Walter Reed Army Institute of Research,
Silver Spring,
MD,
USA
| |
Collapse
|
20
|
Abstract
Despite major advances in HIV-1 therapeutics and prevention strategies, the development of a safe and effective prophylactic HIV-1 vaccine will likely be critical for ending the global HIV-1 epidemic. Yet only four HIV-1 vaccine concepts have been tested for clinical efficacy over the past 30 years. In this Commentary, we describe key hurdles facing the HIV-1 vaccine development field and outline strategies to accelerate efficacy evaluation of novel HIV-1 vaccine candidates.
Collapse
|
21
|
Gordon SN, Doster MN, Kines RC, Keele BF, Brocca-Cofano E, Guan Y, Pegu P, Liyanage NPM, Vaccari M, Cuburu N, Buck CB, Ferrari G, Montefiori D, Piatak M, Lifson JD, Xenophontos AM, Venzon D, Robert-Guroff M, Graham BS, Lowy DR, Schiller JT, Franchini G. Antibody to the gp120 V1/V2 loops and CD4+ and CD8+ T cell responses in protection from SIVmac251 vaginal acquisition and persistent viremia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:6172-83. [PMID: 25398324 PMCID: PMC4335709 DOI: 10.4049/jimmunol.1401504] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The human papillomavirus pseudovirions (HPV-PsVs) approach is an effective gene-delivery system that can prime or boost an immune response in the vaginal tract of nonhuman primates and mice. Intravaginal vaccination with HPV-PsVs expressing SIV genes, combined with an i.m. gp120 protein injection, induced humoral and cellular SIV-specific responses in macaques. Priming systemic immune responses with i.m. immunization with ALVAC-SIV vaccines, followed by intravaginal HPV-PsV-SIV/gp120 boosting, expanded and/or recruited T cells in the female genital tract. Using a stringent repeated low-dose intravaginal challenge with the highly pathogenic SIVmac251, we show that although these regimens did not demonstrate significant protection from virus acquisition, they provided control of viremia in a number of animals. High-avidity Ab responses to the envelope gp120 V1/V2 region correlated with delayed SIVmac251 acquisition, whereas virus levels in mucosal tissues were inversely correlated with antienvelope CD4(+) T cell responses. CD8(+) T cell depletion in animals with controlled viremia caused an increase in tissue virus load in some animals, suggesting a role for CD8(+) T cells in virus control. This study highlights the importance of CD8(+) cells and antienvelope CD4(+) T cells in curtailing virus replication and antienvelope V1/V2 Abs in preventing SIVmac251 acquisition.
Collapse
Affiliation(s)
- Shari N Gordon
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892
| | - Melvin N Doster
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892
| | - Rhonda C Kines
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20982
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | | | - Yongjun Guan
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Poonam Pegu
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892
| | - Namal P M Liyanage
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892
| | - Nicolas Cuburu
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20982
| | - Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20982
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Anastasia M Xenophontos
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, MD 20892; and
| | | | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20982
| | - John T Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20982
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892;
| |
Collapse
|
22
|
Kim JH, Excler JL, Michael NL. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu Rev Med 2014; 66:423-37. [PMID: 25341006 DOI: 10.1146/annurev-med-052912-123749] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RV144 remains the only HIV-1 vaccine trial to demonstrate efficacy against HIV-1 acquisition. The prespecified analysis of immune correlates of risk showed that antibodies directed against the V1V2 region of gp120, in particular the IgG1 and IgG3 subclass mediating antibody-dependent cell-mediated cytotoxicity, seem to play a predominant role in protection against HIV-1 acquisition and that plasma envelope (Env)-specific IgA antibodies were directly correlated with risk. RV144 and recent nonhuman primate challenge studies suggest that Env is essential, and perhaps sufficient, to induce protective antibody responses against mucosal HIV-1 acquisition. Follow-up clinical trials are ongoing to further dissect the immune responses elicited by the RV144 ALVAC-HIV and AIDSVAX® B/E regimen. The study of gp120 Env immunogens and immune correlates of risk has resulted in the development of improved antigens. Whether the RV144 immune correlates of risk will generalize to other populations vaccinated with similar immunogens with different modes and intensity of transmission remains to be demonstrated. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand.
Collapse
Affiliation(s)
- Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910; ,
| | | | | |
Collapse
|
23
|
Martins MA, Wilson NA, Piaskowski SM, Weisgrau KL, Furlott JR, Bonaldo MC, Veloso de Santana MG, Rudersdorf RA, Rakasz EG, Keating KD, Chiuchiolo MJ, Piatak M, Allison DB, Parks CL, Galler R, Lifson JD, Watkins DI. Vaccination with Gag, Vif, and Nef gene fragments affords partial control of viral replication after mucosal challenge with SIVmac239. J Virol 2014; 88:7493-516. [PMID: 24741098 PMCID: PMC4054456 DOI: 10.1128/jvi.00601-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/14/2014] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Broadly targeted cellular immune responses are thought to be important for controlling replication of human and simian immunodeficiency viruses (HIV and SIV). However, eliciting such responses by vaccination is complicated by immunodominance, the preferential targeting of only a few of the many possible epitopes of a given antigen. This phenomenon may be due to the coexpression of dominant and subdominant epitopes by the same antigen-presenting cell and may be overcome by distributing these sequences among several different vaccine constructs. Accordingly, we tested whether vaccinating rhesus macaques with "minigenes" encoding fragments of Gag, Vif, and Nef resulted in broadened cellular responses capable of controlling SIV replication. We delivered these minigenes through combinations of recombinant Mycobacterium bovis BCG (rBCG), electroporated recombinant DNA (rDNA) along with an interleukin-12 (IL-12)-expressing plasmid (EP rDNA plus pIL-12), yellow fever vaccine virus 17D (rYF17D), and recombinant adenovirus serotype 5 (rAd5). Although priming with EP rDNA plus pIL-12 increased the breadth of vaccine-induced T-cell responses, this effect was likely due to the improved antigen delivery afforded by electroporation rather than modulation of immunodominance. Indeed, Mamu-A*01(+) vaccinees mounted CD8(+) T cells directed against only one subdominant epitope, regardless of the vaccination regimen. After challenge with SIVmac239, vaccine efficacy was limited to a modest reduction in set point in some of the groups and did not correlate with standard T-cell measurements. These findings suggest that broad T-cell responses elicited by conventional vectors may not be sufficient to substantially contain AIDS virus replication. IMPORTANCE Immunodominance poses a major obstacle to the generation of broadly targeted, HIV-specific cellular responses by vaccination. Here we attempted to circumvent this phenomenon and thereby broaden the repertoire of SIV-specific cellular responses by vaccinating rhesus macaques with minigenes encoding fragments of Gag, Vif, and Nef. In contrast to previous mouse studies, this strategy appeared to minimally affect monkey CD8(+) T-cell immundominance hierarchies, as seen by the detection of only one subdominant epitope in Mamu-A*01(+) vaccinees. This finding underscores the difficulty of inducing subdominant CD8(+) T cells by vaccination and demonstrates that strategies other than gene fragmentation may be required to significantly alter immunodominance in primates. Although some of the regimens tested here were extremely immunogenic, vaccine efficacy was limited to a modest reduction in set point viremia after challenge with SIVmac239. No correlates of protection were identified. These results reinforce the notion that vaccine immunogenicity does not predict control of AIDS virus replication.
Collapse
Affiliation(s)
- Mauricio A Martins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nancy A Wilson
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shari M Piaskowski
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jessica R Furlott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Myrna C Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Richard A Rudersdorf
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karen D Keating
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maria J Chiuchiolo
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn Army Terminal, Brooklyn, New York, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - David B Allison
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher L Parks
- International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn Army Terminal, Brooklyn, New York, USA
| | - Ricardo Galler
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - David I Watkins
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
24
|
Del Prete GQ, Park H, Fennessey CM, Reid C, Lipkey L, Newman L, Oswald K, Kahl C, Piatak M, Quiñones OA, Alvord WG, Smedley J, Estes JD, Lifson JD, Picker LJ, Keele BF. Molecularly tagged simian immunodeficiency virus SIVmac239 synthetic swarm for tracking independent infection events. J Virol 2014; 88:8077-90. [PMID: 24807714 PMCID: PMC4097795 DOI: 10.1128/jvi.01026-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 04/30/2014] [Indexed: 12/20/2022] Open
Abstract
Following mucosal human immunodeficiency virus type 1 transmission, systemic infection is established by one or only a few viral variants. Modeling single-variant, mucosal transmission in nonhuman primates using limiting-dose inoculations with a diverse simian immunodeficiency virus isolate stock may increase variability between animals since individual variants within the stock may have substantial functional differences. To decrease variability between animals while retaining the ability to enumerate transmitted/founder variants by sequence analysis, we modified the SIVmac239 clone to generate 10 unique clones that differ by two or three synonymous mutations (molecular tags). Transfection- and infection-derived virus stocks containing all 10 variants showed limited phenotypic differences in 9 of the 10 clones. Twenty-nine rhesus macaques were challenged intrarectally or intravenously with either a single dose or repeated, limiting doses of either stock. The proportion of each variant within each inoculum and in plasma from infected animals was determined by using a novel real-time single-genome amplification assay. Each animal was infected with one to five variants, the number correlating with the dose. Longitudinal sequence analysis revealed that the molecular tags are highly stable with no reversion to the parental sequence detected in >2 years of follow-up. Overall, the viral stocks are functional and mucosally transmissible and the number of variants is conveniently discernible by sequence analysis of a small amplicon. This approach should be useful for tracking individual infection events in preclinical vaccine evaluations, long-term viral reservoir establishment/clearance research, and transmission/early-event studies. Importance: Human immunodeficiency virus type 1 transmission is established by one or only a few viral variants. Modeling of limited variant transmission in nonhuman primates with a diverse simian immunodeficiency virus isolate stock may increase the variability between animals because of functional differences in the individual variants within the stock. To decrease such variability while retaining the ability to distinguish and enumerate transmitted/founder variants by sequence analysis, we generated a viral stock with 10 sequence-identifiable but otherwise genetically identical variants. This virus was characterized in vitro and in vivo and shown to allow discrimination of distinct transmission events. This approach provides a novel nonhuman primate challenge system for the study of viral transmission, evaluation of vaccines and other prevention approaches, and characterization of viral reservoirs and strategies to target them.
Collapse
Affiliation(s)
- Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carolyn Reid
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Leslie Lipkey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Laura Newman
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Christoph Kahl
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Octavio A Quiñones
- Statistical Consulting, Data Management Services, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - W Gregory Alvord
- Statistical Consulting, Data Management Services, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
25
|
Excler JL, Robb ML, Kim JH. HIV-1 vaccines: challenges and new perspectives. Hum Vaccin Immunother 2014; 10:1734-46. [PMID: 24637946 DOI: 10.4161/hv.28462] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Merlin L Robb
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Jerome H Kim
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA
| |
Collapse
|
26
|
Kanagavelu S, Termini JM, Gupta S, Raffa FN, Fuller KA, Rivas Y, Philip S, Kornbluth RS, Stone GW. HIV-1 adenoviral vector vaccines expressing multi-trimeric BAFF and 4-1BBL enhance T cell mediated anti-viral immunity. PLoS One 2014; 9:e90100. [PMID: 24587225 PMCID: PMC3938597 DOI: 10.1371/journal.pone.0090100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/28/2014] [Indexed: 12/15/2022] Open
Abstract
Adenoviral vectored vaccines have shown considerable promise but could be improved by molecular adjuvants. Ligands in the TNF superfamily (TNFSF) are potential adjuvants for adenoviral vector (Ad5) vaccines based on their central role in adaptive immunity. Many TNFSF ligands require aggregation beyond the trimeric state (multi-trimerization) for optimal biological function. Here we describe Ad5 vaccines for HIV-1 Gag antigen (Ad5-Gag) adjuvanted with the TNFSF ligands 4-1BBL, BAFF, GITRL and CD27L constructed as soluble multi-trimeric proteins via fusion to Surfactant Protein D (SP-D) as a multimerization scaffold. Mice were vaccinated with Ad5-Gag combined with Ad5 expressing one of the SP-D-TNFSF constructs or single-chain IL-12p70 as adjuvant. To evaluate vaccine-induced protection, mice were challenged with vaccinia virus expressing Gag (vaccinia-Gag) which is known to target the female genital tract, a major route of sexually acquired HIV-1 infection. In this system, SP-D-4-1BBL or SP-D-BAFF led to significantly reduced vaccinia-Gag replication when compared to Ad5-Gag alone. In contrast, IL-12p70, SP-D-CD27L and SP-D-GITRL were not protective. Histological examination following vaccinia-Gag challenge showed a dramatic lymphocytic infiltration into the uterus and ovaries of SP-D-4-1BBL and SP-D-BAFF-treated animals. By day 5 post challenge, proinflammatory cytokines in the tissue were reduced, consistent with the enhanced control over viral replication. Splenocytes had no specific immune markers that correlated with protection induced by SP-D-4-1BBL and SP-D-BAFF versus other groups. IL-12p70, despite lack of anti-viral efficacy, increased the total numbers of splenic dextramer positive CD8+ T cells, effector memory T cells, and effector Gag-specific CD8+ T cells, suggesting that these markers are poor predictors of anti-viral immunity in this model. In conclusion, soluble multi-trimeric 4-1BBL and BAFF adjuvants led to strong protection from vaccinia-Gag challenge, but the protection was independent of standard immune markers. Soluble multi-trimeric SP-D-4-1BBL and SP-D-BAFF provide a novel technology to enhance adenoviral vector vaccines against HIV-1.
Collapse
Affiliation(s)
- Saravana Kanagavelu
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - James M. Termini
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sachin Gupta
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Francesca N. Raffa
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Katherine A. Fuller
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Yaelis Rivas
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sakhi Philip
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Richard S. Kornbluth
- Multimeric Biotherapeutics, Inc., La Jolla, California, United States of America
| | - Geoffrey W. Stone
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
27
|
HIV vaccine research and discovery in the nonhuman primates model: a unified theory in acquisition prevention and control of SIV infection. Curr Opin HIV AIDS 2013; 8:288-94. [PMID: 23666390 DOI: 10.1097/coh.0b013e328361cfe8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Here we highlight the latest advances in HIV vaccine concepts that will expand our knowledge on how to elicit effective acquisition-prevention and/or control of simian immunodeficiency virus (SIV) replication in the nonhuman primate (NHP) model. RECENT FINDINGS In the context of the promising analyses from the RV144 Thai Trial and the effective control of SIV replication exerted by rhCMV-(SIV) elicited EM CD8 T cells, the HIV field has recently shifted toward vaccine concepts that combine protection from acquisition with effective control of SIV replication. Current studies in the NHP model have demonstrated the efficacy of HIV-neutralizing antibodies via passive transfer, the potential importance of the CD4 Tfh subset, the ability to effectively model the RV144 vaccine trial and the capacity of an Ad26 prime and modified vaccinia Ankara virus boost to elicit Env-specific antibody and cellular responses that both limit acquisition and control heterologous SIVmac251 challenge. SUMMARY The latest work in the NHP model suggests that the next generation HIV-1 vaccines should aim to provoke a comprehensive adaptive immune response for both prevention of SIV acquisition as well as control of replication in breakthrough infection.
Collapse
|
28
|
Sui Y, Gordon S, Franchini G, Berzofsky JA. Nonhuman primate models for HIV/AIDS vaccine development. ACTA ACUST UNITED AC 2013; 102:12.14.1-12.14.30. [PMID: 24510515 DOI: 10.1002/0471142735.im1214s102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of HIV vaccines has been hampered by the lack of an animal model that can accurately predict vaccine efficacy. Chimpanzees can be infected with HIV-1 but are not practical for research. However, several species of macaques are susceptible to the simian immunodeficiency viruses (SIVs) that cause disease in macaques, which also closely mimic HIV in humans. Thus, macaque-SIV models of HIV infection have become a critical foundation for AIDS vaccine development. Here we examine the multiple variables and considerations that must be taken into account in order to use this nonhuman primate (NHP) model effectively. These include the species and subspecies of macaques, virus strain, dose and route of administration, and macaque genetics, including the major histocompatibility complex molecules that affect immune responses, and other virus restriction factors. We illustrate how these NHP models can be used to carry out studies of immune responses in mucosal and other tissues that could not easily be performed on human volunteers. Furthermore, macaques are an ideal model system to optimize adjuvants, test vaccine platforms, and identify correlates of protection that can advance the HIV vaccine field. We also illustrate techniques used to identify different macaque lymphocyte populations and review some poxvirus vaccine candidates that are in various stages of clinical trials. Understanding how to effectively use this valuable model will greatly increase the likelihood of finding a successful vaccine for HIV.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Shari Gordon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Genoveffa Franchini
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| |
Collapse
|
29
|
Schiffner T, Sattentau QJ, Dorrell L. Development of prophylactic vaccines against HIV-1. Retrovirology 2013; 10:72. [PMID: 23866844 PMCID: PMC3722125 DOI: 10.1186/1742-4690-10-72] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/11/2013] [Indexed: 01/12/2023] Open
Abstract
The focus of most current HIV-1 vaccine development is on antibody-based approaches. This is because certain antibody responses correlated with protection from HIV-1 acquisition in the RV144 phase III trial, and because a series of potent and broad spectrum neutralizing antibodies have been isolated from infected individuals. Taken together, these two findings suggest ways forward to develop a neutralizing antibody-based vaccine. However, understanding of the correlates of protection from disease in HIV-1 and other infections strongly suggests that we should not ignore CTL-based research. Here we review recent progress in the field and highlight the challenges implicit in HIV-1 vaccine design and some potential solutions.
Collapse
Affiliation(s)
- Torben Schiffner
- The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW One of the major obstacles in fully understanding HIV transmission comes from the impracticality of studying transmission in humans. Because of this encumbrance, the early phases of HIV transmission and systemic dissemination are poorly understood. In order to fully comprehend these critical steps in HIV infection, animal models must be devised to accurately reflect HIV's mode of action. This review seeks to highlight the essential nature of modelling HIV transmission in nonhuman primates (NHPs). RECENT FINDINGS Recently, it was discovered that HIV infection is established in newly infected recipients by a single or few transmitted/founder variants. This has reshaped how animal modelling is conducted with researchers currently recapitulating a physiologically relevant, low-titre infection. Pertinent animal models have been established for the most common routes of infection, including rectal, vaginal and penile transmission; models for intravenous and oral transmission are still in developmental stages. SUMMARY These limited dose models now accurately reflect HIV transmission in humans and provide a realistic experimental platform for vaccine development and other intervention strategies that can be used to inform vaccine development in humans. Using information obtained in NHP and human trials, it is conceivable to envision effective prevention modalities in the near future.
Collapse
Affiliation(s)
- Christine M. Fennessey
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| |
Collapse
|
31
|
Abstract
As the threat of exposure to emerging and reemerging viruses within a naive population increases, it is vital that the basic mechanisms of pathogenesis and immune response be thoroughly investigated. By using animal models in this endeavor, the response to viruses can be studied in a more natural context to identify novel drug targets, and assess the efficacy and safety of new products. This is especially true in the advent of the Food and Drug Administration's animal rule. Although no one animal model is able to recapitulate all the aspects of human disease, understanding the current limitations allows for a more targeted experimental design. Important facets to be considered before an animal study are the route of challenge, species of animals, biomarkers of disease, and a humane endpoint. This chapter covers the current animal models for medically important human viruses, and demonstrates where the gaps in knowledge exist.
Collapse
|
32
|
Antibodies with high avidity to the gp120 envelope protein in protection from simian immunodeficiency virus SIV(mac251) acquisition in an immunization regimen that mimics the RV-144 Thai trial. J Virol 2012; 87:1708-19. [PMID: 23175374 DOI: 10.1128/jvi.02544-12] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8(+) T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIV(mac251) that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4(+) and CD8(+) T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIV(mac251) acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIV(mac251)-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIV(mac251) infectivity in cells that express high levels of α(4)β(7) integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines.
Collapse
|
33
|
Klasse PJ, Moore JP. Good CoP, bad CoP? Interrogating the immune responses to primate lentiviral vaccines. Retrovirology 2012; 9:80. [PMID: 23025660 PMCID: PMC3484039 DOI: 10.1186/1742-4690-9-80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/14/2012] [Indexed: 11/17/2022] Open
Abstract
Correlates of protection (CoPs) against infection by primate lentiviruses remain undefined. Modest protection against HIV-1 was observed in one human vaccine trial, whereas previous trials and vaccine-challenge experiments in non-human primates have yielded inconsistent but intriguing results. Although high levels of neutralizing antibodies are known to protect macaques from mucosal and intravenous viral challenges, antibody or other adaptive immune responses associated with protection might also be mere markers of innate immunity or susceptibility. Specific strategies for augmenting the design of both human trials and animal experiments could help to identify mechanistic correlates of protection and clarify the influences of confounding factors. Robust protection may, however, require the combined actions of immune responses and other host factors, thereby limiting what inferences can be drawn from statistical associations. Here, we discuss how to analyze immune protection against primate lentiviruses, and how host factors could influence both the elicitation and effectiveness of vaccine-induced responses.
Collapse
Affiliation(s)
- Per Johan Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornel University, 1300 York Avenue, Box 62, New York, NY 10065-4896, USA.
| | | |
Collapse
|
34
|
Louz D, Bergmans HE, Loos BP, Hoeben RC. Animal models in virus research: their utility and limitations. Crit Rev Microbiol 2012; 39:325-61. [PMID: 22978742 DOI: 10.3109/1040841x.2012.711740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viral diseases are important threats to public health worldwide. With the number of emerging viral diseases increasing the last decades, there is a growing need for appropriate animal models for virus studies. The relevance of animal models can be limited in terms of mimicking human pathophysiology. In this review, we discuss the utility of animal models for studies of influenza A viruses, HIV and SARS-CoV in light of viral emergence, assessment of infection and transmission risks, and regulatory decision making. We address their relevance and limitations. The susceptibility, immune responses, pathogenesis, and pharmacokinetics may differ between the various animal models. These complexities may thwart translating results from animal experiments to the humans. Within these constraints, animal models are very informative for studying virus immunopathology and transmission modes and for translation of virus research into clinical benefit. Insight in the limitations of the various models may facilitate further improvements of the models.
Collapse
Affiliation(s)
- Derrick Louz
- National Institute for Public Health and the Environment (RIVM), GMO Office , Bilthoven , The Netherlands
| | | | | | | |
Collapse
|