1
|
Honda-Okubo Y, Sakala IG, Li L, Bielefeldt-Ohmann H, Lebedin YS, Petrovsky N. Advax®-adjuvanted inactivated influenza vaccine provides accelerated protection of mice via early induction of an influenza-specific IgM response. Vaccine 2025; 56:127144. [PMID: 40273588 DOI: 10.1016/j.vaccine.2025.127144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/31/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
It would be advantageous if a strategy could be found to accelerate vaccine induction of anti-influenza adaptive immunity to more rapidly protect frontline workers and other vulnerable individuals during virus outbreaks. This study asked whether Advax® delta inulin adjuvant could accelerate the kinetics of protection afforded by a single dose of inactivated influenza vaccine (IIV) in two different strains of mice. A single dose of Advax®-adjuvanted IIV, but not IIV alone, gave complete protection if given 7 or 3 days before, and even when given at the same time as virus challenge (same day protection). Co-administration of both IIV and Advax® were critical to obtaining robust same day protection which was not seen with the individual vaccine components. Same day protection was lost in B-cell deficient μMT mice but was still evident in T cell-depleted mice, confirming its dependence on humoral but not T cell immunity. Day 6 post-challenge serum from protected mice demonstrated elevated influenza-binding IgM which had hemagglutination inhibition activity not seen in mice that received IIV alone. This confirmed that Advax® accelerated the kinetics of anti-influenza IgM production in response to IIV. Influenza protection could be transferred to naïve mice using day 6 sera or purified IgM from Advax®-adjuvanted IIV-immunised mice. Draining lymph nodes from protected mice showed increased CD138+ B220+ migratory and IgM+ extrafollicular, antibody secreting cells. These results show Advax® adjuvant accelerates the kinetics of anti-influenza IgM production in response to IIV thereby enabling the vaccine to protect against an infection acquired at the same time as the immunisation. While further studies are required to confirm that this ability to accelerate humoral immune kinetics extends to other species, including non-human primates, the phenomenon of adjuvant-accelerated IIV protection offers promise as a strategy for development of faster-acting vaccines.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia; Australian Respiratory and Sleep Medicine Institute, Adelaide, SA 5042, Australia
| | - Isaac G Sakala
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia; Australian Respiratory and Sleep Medicine Institute, Adelaide, SA 5042, Australia
| | - Lei Li
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia; Australian Respiratory and Sleep Medicine Institute, Adelaide, SA 5042, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre and School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia; Australian Respiratory and Sleep Medicine Institute, Adelaide, SA 5042, Australia.
| |
Collapse
|
2
|
Petrovsky N, Killeen KP. Progress in the development of an Advax-adjuvanted protein capsular matrix vaccine against typhoid fever. MICROBES & IMMUNITY 2024; 2:92-100. [PMID: 39911309 PMCID: PMC11798421 DOI: 10.36922/mi.4497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Typhoid fever, caused by Salmonella Typhi, remains a significant global public health concern, with an estimated 11 - 20 million cases annually. Vaccines are critical to controlling typhoid fever. Widespread vaccination diminishes the emergence of antibiotic-resistant strains of S. Typhi. The economic benefits of vaccination are also substantial, as the costs of treating typhoid fever and its complications can be significant. Ty21a®, a killed whole-cell vaccine, and Vivotif®, a live-attenuated vaccine, have been available for decades but have relatively short durations of action and only provide partial protection. Vi polysaccharide-conjugate vaccines have improved the durability of protection, but there is still room for improvement. Typhax™, a novel alternative to traditional conjugate vaccines, utilizes Vi polysaccharide that is non-covalently entrapped in a poly-L-lysine and CRM197 protein matrix crosslinked by glutaraldehyde. When formulated with Advax-CpG™ adjuvant, Typhax demonstrated promising results in a range of animal models including mice, rabbits, and non-human primates in which it induces high and sustained serum anti-Vi immunoglobulin G and serum bactericidal activity, without any safety or reactogenicity issues. This novel vaccine approach offers the potential for a low-cost, more effective, and durable vaccine against typhoid fever, avoiding the need for frequent booster doses.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Vaxine Pty Ltd, 11-13 Walkley Avenue, Warradale, South Australia, Australia
| | - Kevin P. Killeen
- Matrivax Research and Development Corporation, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Deshmukh R, Sethi P, Singh B, Shiekmydeen J, Salave S, Patel RJ, Ali N, Rashid S, Elossaily GM, Kumar A. Recent Review on Biological Barriers and Host-Material Interfaces in Precision Drug Delivery: Advancement in Biomaterial Engineering for Better Treatment Therapies. Pharmaceutics 2024; 16:1076. [PMID: 39204421 PMCID: PMC11360117 DOI: 10.3390/pharmaceutics16081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Preclinical and clinical studies have demonstrated that precision therapy has a broad variety of treatment applications, making it an interesting research topic with exciting potential in numerous sectors. However, major obstacles, such as inefficient and unsafe delivery systems and severe side effects, have impeded the widespread use of precision medicine. The purpose of drug delivery systems (DDSs) is to regulate the time and place of drug release and action. They aid in enhancing the equilibrium between medicinal efficacy on target and hazardous side effects off target. One promising approach is biomaterial-assisted biotherapy, which takes advantage of biomaterials' special capabilities, such as high biocompatibility and bioactive characteristics. When administered via different routes, drug molecules deal with biological barriers; DDSs help them overcome these hurdles. With their adaptable features and ample packing capacity, biomaterial-based delivery systems allow for the targeted, localised, and prolonged release of medications. Additionally, they are being investigated more and more for the purpose of controlling the interface between the host tissue and implanted biomedical materials. This review discusses innovative nanoparticle designs for precision and non-personalised applications to improve precision therapies. We prioritised nanoparticle design trends that address heterogeneous delivery barriers, because we believe intelligent nanoparticle design can improve patient outcomes by enabling precision designs and improving general delivery efficacy. We additionally reviewed the most recent literature on biomaterials used in biotherapy and vaccine development, covering drug delivery, stem cell therapy, gene therapy, and other similar fields; we have also addressed the difficulties and future potential of biomaterial-assisted biotherapies.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula 244236, India;
| | - Bhupendra Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun 248002, India;
- Department of Pharmacy, S.N. Medical College, Agra 282002, India
| | | | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India;
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Anand 388421, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Arun Kumar
- School of Pharmacy, Sharda University, Greater Noida 201310, India
| |
Collapse
|
4
|
Sajkov D, Woodman R, Honda-Okubo Y, Barbara J, Chew D, Toson B, Petrovsky N. A Multiseason Randomized Controlled Trial of Advax-Adjuvanted Seasonal Influenza Vaccine in Participants With Chronic Disease or Older Age. J Infect Dis 2024; 230:444-454. [PMID: 38157402 PMCID: PMC11326838 DOI: 10.1093/infdis/jiad589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND The aim of the current study was to determine the safety and immunogenicity of trivalent inactivated influenza vaccine (TIV) alone or formulated with Advax delta inulin adjuvant in those who were older (aged >60 years) or had chronic disease. METHODS Over 4 consecutive years from 2008 through 2011, adult participants with chronic disease or >60 years of age were recruited into a randomized controlled study to assess the safety, tolerability and immunogenicity of Advax-adjuvanted TIV (TIV + Adj) versus standard TIV. The per-protocol population with ≥1 postbaseline measurement of influenza antibodies comprised 1297 participants, 447 in the TIV and 850 in the TIV + Adj) group. RESULTS No safety issues were identified. Variables negatively affecting vaccine responses included obesity and diabetes mellitus. Advax adjuvant had a positive impact on anti-influenza immunoglobulin M responses and on H3N2 and B strain seropositivity as assessed by hemagglutination inhibition. CONCLUSIONS TIV + Adj was safe and well tolerated in individuals with chronic disease. There is an ongoing need for research into improved influenza vaccines for high-risk populations. CLINICAL TRIALS REGISTRATION Australia New Zealand Clinical Trial Registry: ACTRN 12608000364370.
Collapse
Affiliation(s)
- Dimitar Sajkov
- Australian Respiratory and Sleep Medicine Institute Ltd, Clovelly Park, South Australia, Australia
- Respiratory Department, Flinders University, Bedford Park, South Australia, Australia
| | - Richard Woodman
- Epidemiology and Biostatistics, Flinders University, Bedford Park, South Australia, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, Warradale, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Jeffrey Barbara
- Renal Department, Flinders University, Bedford Park, South Australia, Australia
| | - Derek Chew
- Cardiology Department, Flinders University, Bedford Park, South Australia, Australia
| | - Barbara Toson
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Nikolai Petrovsky
- Australian Respiratory and Sleep Medicine Institute Ltd, Clovelly Park, South Australia, Australia
- Vaxine Pty Ltd, Warradale, South Australia, Australia
| |
Collapse
|
5
|
Sanchez PL, Andre G, Antipov A, Petrovsky N, Ross TM. Advax-SM™-Adjuvanted COBRA (H1/H3) Hemagglutinin Influenza Vaccines. Vaccines (Basel) 2024; 12:455. [PMID: 38793706 PMCID: PMC11125990 DOI: 10.3390/vaccines12050455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Adjuvants enhance immune responses stimulated by vaccines. To date, many seasonal influenza vaccines are not formulated with an adjuvant. In the present study, the adjuvant Advax-SM™ was combined with next generation, broadly reactive influenza hemagglutinin (HA) vaccines that were designed using a computationally optimized broadly reactive antigen (COBRA) methodology. Advax-SM™ is a novel adjuvant comprising inulin polysaccharide and CpG55.2, a TLR9 agonist. COBRA HA vaccines were combined with Advax-SM™ or a comparator squalene emulsion (SE) adjuvant and administered to mice intramuscularly. Mice vaccinated with Advax-SM™ adjuvanted COBRA HA vaccines had increased serum levels of anti-influenza IgG and IgA, high hemagglutination inhibition activity against a panel of H1N1 and H3N2 influenza viruses, and increased anti-influenza antibody secreting cells isolated from spleens. COBRA HA plus Advax-SM™ immunized mice were protected against both morbidity and mortality following viral challenge and, at postmortem, had no detectable lung viral titers or lung inflammation. Overall, the Advax-SM™-adjuvanted COBRA HA formulation provided effective protection against drifted H1N1 and H3N2 influenza viruses.
Collapse
Affiliation(s)
- Pedro L. Sanchez
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Greiciely Andre
- Vaxine Pty Ltd., Adelaide, SA 5046, Australia; (G.A.); (A.A.); (N.P.)
| | - Anna Antipov
- Vaxine Pty Ltd., Adelaide, SA 5046, Australia; (G.A.); (A.A.); (N.P.)
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Adelaide, SA 5046, Australia; (G.A.); (A.A.); (N.P.)
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
6
|
Sanders JW, Ewing D, Sundaram AK, Gamble CS, Blevins M, Liang Z, Sanders LA, Ornelles DA, Sun P, Lenart K, Feuerstein H, Loré K, Petrovsky N, Williams M, Porter KR. Immunogenicity and Protective Efficacy of Psoralen-Inactivated SARS-CoV-2 Vaccine in Nonhuman Primates. Vaccines (Basel) 2024; 12:451. [PMID: 38793702 PMCID: PMC11125875 DOI: 10.3390/vaccines12050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly impacted public health and the economy worldwide. Most of the currently licensed COVID-19 vaccines act by inhibiting the receptor-binding function of the SARS-CoV-2 spike protein. The constant emergence of SARS-CoV-2 variants resulting from mutations in the receptor-binding domain (RBD) leads to vaccine immune evasion and underscores the importance of broadly acting COVID-19 vaccines. Inactivated whole virus vaccines can elicit broader immune responses to multiple epitopes of several antigens and help overcome such immune evasions. We prepared a psoralen-inactivated SARS-CoV-2 vaccine (SARS-CoV-2 PsIV) and evaluated its immunogenicity and efficacy in nonhuman primates (NHPs) when administered with the Advax-CpG adjuvant. We also evaluated the SARS-CoV-2 PsIV as a booster shot in animals vaccinated with a DNA vaccine that can express the full-length spike protein. The Advax-CpG-adjuvanted SARS-CoV-2 PsIV elicited a dose-dependent neutralizing antibody response in the NHPs, as measured using a serum microneutralization assay against the SARS-CoV-2 Washington strain and the Delta variant. The animals vaccinated with the DNA vaccine followed by a boosting dose of the SARS-CoV-2 PsIV exhibited the highest neutralizing antibody responses and were able to quickly clear infection after an intranasal challenge with the SARS-CoV-2 Delta variant. Overall, the data show that the Advax-CpG-adjuvanted SARS-CoV-2 PsIV, either by itself or as a booster shot following nucleic acid (NA) vaccines, has the potential to protect against emerging variants.
Collapse
Affiliation(s)
- John W. Sanders
- Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (J.W.S.); (C.S.G.); (D.A.O.)
| | - Daniel Ewing
- Agile Vaccines and Therapeutics Department, Naval Medical Research Command, Silver Spring, MD 20910, USA
| | - Appavu K. Sundaram
- Agile Vaccines and Therapeutics Department, Naval Medical Research Command, Silver Spring, MD 20910, USA
| | - Christopher Scott Gamble
- Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (J.W.S.); (C.S.G.); (D.A.O.)
| | - Maria Blevins
- Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (J.W.S.); (C.S.G.); (D.A.O.)
| | - Zhaodong Liang
- Agile Vaccines and Therapeutics Department, Naval Medical Research Command, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation, Rockledge Drive, Bethesda, MD 20817, USA
| | - Leigh Ann Sanders
- Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (J.W.S.); (C.S.G.); (D.A.O.)
| | - David A. Ornelles
- Section on Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (J.W.S.); (C.S.G.); (D.A.O.)
| | - Peifang Sun
- Agile Vaccines and Therapeutics Department, Naval Medical Research Command, Silver Spring, MD 20910, USA
| | - Klara Lenart
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, 17177 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hendrik Feuerstein
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, 17177 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karin Loré
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, 17177 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Maya Williams
- United States Navy Bureau of Medicine and Surgery, Frederick, MD 21702, USA
| | - Kevin R. Porter
- Directorate for Defense Infectious Diseases Research, Naval Medical Research Command, Silver Spring, MD 20910, USA;
| |
Collapse
|
7
|
Stewart EL, Counoupas C, Quan DH, Wang T, Petrovsky N, Britton WJ, Triccas JA. Lung IL-17A-Producing CD4 + T Cells Correlate with Protection after Intrapulmonary Vaccination with Differentially Adjuvanted Tuberculosis Vaccines. Vaccines (Basel) 2024; 12:128. [PMID: 38400112 PMCID: PMC10892942 DOI: 10.3390/vaccines12020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, results in approximately 1.6 million deaths annually. BCG is the only TB vaccine currently in use and offers only variable protection; however, the development of more effective vaccines is hindered by a lack of defined correlates of protection (CoP) against M. tuberculosis. Pulmonary vaccine delivery is a promising strategy since it may promote lung-resident immune memory that can respond rapidly to respiratory infection. In this study, CysVac2, a subunit protein previously shown to be protective against M. tuberculosis in mouse models, was combined with either Advax® adjuvant or a mixture of alum plus MPLA and administered intratracheally into mice. Peripheral immune responses were tracked longitudinally, and lung-local immune responses were measured after challenge. Both readouts were then correlated with protection after M. tuberculosis infection. Although considered essential for the control of mycobacteria, induction of IFN-γ-expressing CD4+ T cells in the blood or lungs did not correlate with protection. Instead, CD4+ T cells in the lungs expressing IL-17A correlated with reduced bacterial burden. This study identified pulmonary IL-17A-expressing CD4+ T cells as a CoP against M. tuberculosis and suggests that mucosal immune profiles should be explored for novel CoP.
Collapse
Affiliation(s)
- Erica L. Stewart
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (E.L.S.); (C.C.)
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Claudio Counoupas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (E.L.S.); (C.C.)
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Diana H. Quan
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- Centre for Inflammation, School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Trixie Wang
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
| | | | - Warwick J. Britton
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - James A. Triccas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (E.L.S.); (C.C.)
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
8
|
Honda-Okubo Y, Antipov A, Andre G, Barati S, Kafi H, Petrovsky N. Ability of SpikoGen®, an Advax-CpG adjuvanted recombinant spike protein vaccine, to induce cross-neutralising antibodies against SARS-CoV-2 variants. Immunology 2023; 170:193-201. [PMID: 37199229 PMCID: PMC10524547 DOI: 10.1111/imm.13661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
SpikoGen® vaccine is a subunit COVID-19 vaccine expressed in insect cells comprising recombinant spike protein extracellular domain formulated with Advax-CpG55.2™ adjuvant. A Phase 2 trial was conducted in 400 adult participants randomised 3:1 to receive two intramuscular doses of SpikoGen® vaccine or saline placebo 3 weeks apart. Some Phase 2 trial participants later enrolled in a separate booster study and received a third dose of SpikoGen® vaccine. This stored serum was used to assess the ability of SpikoGen® vaccine to induce cross-neutralising antibodies against SARS-CoV-2 variants of concern. Sera taken at baseline and 2 weeks after the second vaccine dose from baseline seronegative Phase 2 subjects was evaluated using a panel of spike pseudotype lentivirus neutralisation assays for the ability to cross-neutralise a wide range of SARS-CoV-2 variants, including Omicron BA.1, BA.2 and BA.4/5. Stored samples of subjects who participated in both the 2-dose Phase 2 trial and a third dose booster trial 6 months later were also analysed for changes in cross-neutralising antibodies over time and dose. Two weeks after the second dose, sera broadly cross-neutralised most variants of concern, albeit with titres against Omicron variants being ~10-fold lower. While Omicron titres fell to low levels 6 months after the second vaccine dose in most subjects, they showed a ~20-fold rise after the third dose booster, after which there was only a ~2-3-fold difference in neutralisation of Omicron and the ancestral strains. Despite being based on the ancestral Wuhan sequence, after two doses, SpikoGen® vaccine induced broadly cross-neutralising serum antibodies. Titres then reduced over time but were rapidly restored by a third dose booster. This resulted in high neutralisation including against the Omicron variants. This data supports ongoing use of SpikoGen® vaccine for protection against recent SARS-CoV-2 Omicron variants.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, Bedford Park 5042, South Australia, Australia
- Flinders University, Bedford Park 5042, South Australia, Australia
| | - Anna Antipov
- Vaxine Pty Ltd, Bedford Park 5042, South Australia, Australia
| | - Greiciely Andre
- Vaxine Pty Ltd, Bedford Park 5042, South Australia, Australia
| | - Saghar Barati
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Hamidreza Kafi
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | | |
Collapse
|
9
|
Honda-Okubo Y, Sakala IG, André G, Tarbet EB, Hurst BL, Petrovsky N. An Advax-CpG55.2 adjuvanted recombinant hemagglutinin vaccine provides immunity against H7N9 influenza in adult and neonatal mice. Vaccine 2023; 41:5592-5602. [PMID: 37532610 DOI: 10.1016/j.vaccine.2023.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
There is a major unmet need for strategies to improve the immunogenicity and effectiveness of pandemic influenza vaccines, particularly in poor responder populations such as neonates. Recombinant protein approaches to pandemic influenza offer advantages over more traditional inactivated virus approaches, as they are free of problems such as egg adaptation or need for high level biosecurity containment for manufacture. However, a weakness of recombinant proteins is their low immunogenicity. We asked whether the use of an inulin polysaccharide adjuvant (Advax) alone or combined with a TLR9 agonist (CpG55.2) would enhance the immunogenicity and protection of a recombinant hemagglutinin vaccine against H7N9 influenza (rH7HA), including in neonatal mice. Advax adjuvant induced predominantly IgG1 responses against H7HA, whereas Advax-CpG55.2 adjuvant also induced IgG2a, IgG2b and IgG3 responses, consistent with the TLR9 agonist component inducing a Th1 bias. Advax-CpG55.2 adjuvanted rH7HA induced high serum neutralizing antibody titers in adult mice. In newborns it similarly overcame immune hypo-responsiveness and enhanced serum anti-rH7HA IgG levels in 7-day-old BALB/C and C57BL/6 mice. Immunized adult mice were protected against a lethal H7N9 virus challenge. When formulated with Advax-CpG55.2 adjuvant, greater protection was seen with rH7HA than with inactivated H7 whole virus antigen. Advax-CpG55.2 adjuvanted rH7HA represents a promising influenza vaccine platform for further development.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, Bedford Park, Adelaide, SA 5042, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Isaac G Sakala
- Vaxine Pty Ltd, Bedford Park, Adelaide, SA 5042, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | | | - E Bart Tarbet
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | | |
Collapse
|
10
|
Ryan NM, Hess JA, Robertson EJ, Tricoche N, Turner C, Davis J, Petrovsky N, Ferguson M, Rinaldi WJ, Wong VM, Shimada A, Zhan B, Bottazzi ME, Makepeace BL, Gray SA, Carter D, Lustigman S, Abraham D. Adjuvanted Fusion Protein Vaccine Induces Durable Immunity to Onchocerca volvulus in Mice and Non-Human Primates. Vaccines (Basel) 2023; 11:1212. [PMID: 37515028 PMCID: PMC10385774 DOI: 10.3390/vaccines11071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Onchocerciasis remains a debilitating neglected tropical disease. Due to the many challenges of current control methods, an effective vaccine against the causative agent Onchocerca volvulus is urgently needed. Mice and cynomolgus macaque non-human primates (NHPs) were immunized with a vaccine consisting of a fusion of two O. volvulus protein antigens, Ov-103 and Ov-RAL-2 (Ov-FUS-1), and three different adjuvants: Advax-CpG, alum, and AlT4. All vaccine formulations induced high antigen-specific IgG titers in both mice and NHPs. Challenging mice with O. volvulus L3 contained within subcutaneous diffusion chambers demonstrated that Ov-FUS-1/Advax-CpG-immunized animals developed protective immunity, durable for at least 11 weeks. Passive transfer of sera, collected at several time points, from both mice and NHPs immunized with Ov-FUS-1/Advax-CpG transferred protection to naïve mice. These results demonstrate that Ov-FUS-1 with the adjuvant Advax-CpG induces durable protective immunity against O. volvulus in mice and NHPs that is mediated by vaccine-induced humoral factors.
Collapse
Affiliation(s)
- Nathan M Ryan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jessica A Hess
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Erica J Robertson
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nancy Tricoche
- Laboratory of Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | | | - Jenn Davis
- PAI Life Sciences Inc., Seattle, WA 98102, USA
| | | | | | | | | | - Ayako Shimada
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bin Zhan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin L Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Sean A Gray
- PAI Life Sciences Inc., Seattle, WA 98102, USA
| | | | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - David Abraham
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
11
|
Kumar A, Sharma A, Tirpude NV, Padwad Y, Hallan V, Kumar S. Plant-derived immuno-adjuvants in vaccines formulation: a promising avenue for improving vaccines efficacy against SARS-CoV-2 virus. Pharmacol Rep 2022; 74:1238-1254. [PMID: 36125739 PMCID: PMC9487851 DOI: 10.1007/s43440-022-00418-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 outbreak has posed a plethora of problems for the global healthcare system and socioeconomic burden. Despite valiant efforts to contain the COVID-19 outbreak, the situation has deteriorated to the point that there are no viable preventive therapies to treat this disease. The case count has skyrocketed globally due to the newly evolved variants. Despite vaccination drives, the re-occurrence of recent pandemic waves has reinforced the importance of innovation/utilization of immune-booster to achieve appropriate long-term vaccine protection. Plant-derived immuno-adjuvants, which have multifaceted functions, can impede infections by boosting the immune system. Many previous studies have shown that formulation of vaccines using plant-derived adjuvant results in long-lasting immunity may overcome the natural tendency of coronavirus immunity to wane quickly. Plant polysaccharides, glycosides, and glycoprotein extracts have reportedly been utilized as enticing adjuvants in experimental vaccines, such as Advax, Matrix-M, and Mistletoe lectin, which have been shown to be highly immunogenic and safe. When employed in vaccine formulation, Advax and Matrix-M generate long-lasting antibodies, a balanced robust Th1/Th2 cytokine profile, and the stimulation of cytotoxic T cells. Thus, the use of adjuvants derived from plants may increase the effectiveness of vaccines, resulting in the proper immunological response required to combat COVID-19. A few have been widely used in epidemic outbreaks, including SARS and H1N1 influenza, and their use could also improve the efficacy of COVID-19 vaccines. In this review, the immunological adjuvant properties of plant compounds as well as their potential application in anti-COVID-19 therapy are thoroughly discussed.
Collapse
Affiliation(s)
- Arbind Kumar
- COVID-19 Testing facility, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Aashish Sharma
- COVID-19 Testing facility, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Narendra Vijay Tirpude
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Yogendra Padwad
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Sanjay Kumar
- CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| |
Collapse
|
12
|
Mucosal immunization with a delta-inulin adjuvanted recombinant spike vaccine elicits lung-resident immune memory and protects mice against SARS-CoV-2. Mucosal Immunol 2022; 15:1405-1415. [PMID: 36411332 PMCID: PMC9676795 DOI: 10.1038/s41385-022-00578-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/12/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022]
Abstract
Multiple SARS-CoV-2 vaccine candidates have been approved for use and have had a major impact on the COVID-19 pandemic. There remains, however, a significant need for vaccines that are safe, easily transportable and protective against infection, as well as disease. Mucosal vaccination is favored for its ability to induce immune memory at the site of infection, making it appealing for SARS-CoV-2 vaccine strategies. In this study we performed in-depth analysis of the immune responses in mice to a subunit recombinant spike protein vaccine formulated with the delta-inulin adjuvant Advax when administered intratracheally (IT), versus intramuscular delivery (IM). Both routes produced robust neutralizing antibody titers (NAb) and generated sterilizing immunity against SARS-CoV-2. IT delivery, however, produced significantly higher systemic and lung-local NAb that resisted waning up to six months post vaccination, and only IT delivery generated inducible bronchus-associated lymphoid tissue (iBALT), a site of lymphocyte antigen presentation and proliferation. This was coupled with robust and long-lasting lung tissue-resident memory CD4+ and CD8+ T cells that were not observed in IM-vaccinated mice. This study provides a detailed view of the lung-resident cellular response to IT vaccination against SARS-CoV-2 and demonstrates the importance of delivery site selection in the development of vaccine candidates.
Collapse
|
13
|
Han X, Alu A, Liu H, Shi Y, Wei X, Cai L, Wei Y. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact Mater 2022; 17:29-48. [PMID: 35386442 PMCID: PMC8958282 DOI: 10.1016/j.bioactmat.2022.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Biotherapy has recently become a hotspot research topic with encouraging prospects in various fields due to a wide range of treatments applications, as demonstrated in preclinical and clinical studies. However, the broad applications of biotherapy have been limited by critical challenges, including the lack of safe and efficient delivery systems and serious side effects. Due to the unique potentials of biomaterials, such as good biocompatibility and bioactive properties, biomaterial-assisted biotherapy has been demonstrated to be an attractive strategy. The biomaterial-based delivery systems possess sufficient packaging capacity and versatile functions, enabling a sustained and localized release of drugs at the target sites. Furthermore, the biomaterials can provide a niche with specific extracellular conditions for the proliferation, differentiation, attachment, and migration of stem cells, leading to tissue regeneration. In this review, the state-of-the-art studies on the applications of biomaterials in biotherapy, including drug delivery, vaccine development, gene therapy, and stem cell therapy, have been summarized. The challenges and an outlook of biomaterial-assisted biotherapies have also been discussed.
Collapse
Affiliation(s)
- Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Eichinger KM, Kosanovich JL, Perkins T, Oury TD, Petrovsky N, Marshall CP, Yondola MA, Empey KM. Prior respiratory syncytial virus infection reduces vaccine-mediated Th2-skewed immunity, but retains enhanced RSV F-specific CD8 T cell responses elicited by a Th1-skewing vaccine formulation. Front Immunol 2022; 13:1025341. [PMID: 36268035 PMCID: PMC9577258 DOI: 10.3389/fimmu.2022.1025341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) remains the most common cause of lower respiratory tract infections in children worldwide. Development of a vaccine has been hindered due the risk of enhanced respiratory disease (ERD) following natural RSV exposure and the young age (<6 months) at which children would require protection. Risk factors linked to the development of ERD include poorly neutralizing antibody, seronegative status (never been exposed to RSV), and a Th2-type immune response. Stabilization of the more antigenic prefusion F protein (PreF) has reinvigorated hope for a protective RSV vaccine that elicits potent neutralizing antibody. While anecdotal evidence suggests that children and adults previously exposed to RSV (seropositive) are not at risk for developing vaccine associated ERD, differences in host immune responses in seropositive and seronegative individuals that may protect against ERD remain unclear. It is also unclear if vaccine formulations that skew towards Th1- versus Th2-type immune responses increase pathology or provide greater protection in seropositive individuals. Therefore, the goal of this work was to compare the host immune response to a stabilized prefusion RSV antigen formulated alone or with Th1 or Th2 skewing adjuvants in seronegative and seropositive BALB/c mice. We have developed a novel BALB/c mouse model whereby mice are first infected with RSV (seropositive) and then vaccinated during pregnancy to recapitulate maternal immunization strategies. Results of these studies show that prior RSV infection mitigates vaccine-mediated skewing by Th1- and Th2-polarizing adjuvants that was observed in seronegative animals. Moreover, vaccination with PreF plus the Th1-skewing adjuvant, Advax, increased RSV F85-93-specific CD8 T cells in both seronegative and seropositive dams. These data demonstrate the importance of utilizing seropositive animals in preclinical vaccine studies to assess both the safety and efficacy of candidate RSV vaccines.
Collapse
Affiliation(s)
- Katherine M. Eichinger
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jessica L. Kosanovich
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy N. Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburg, Pittsburgh, PA, United States
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburg, Pittsburgh, PA, United States
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, SA, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | | | | | - Kerry M. Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Honda-Okubo Y, Cartee RT, Thanawastien A, Seung Yang J, Killeen KP, Petrovsky N. A typhoid fever protein capsular matrix vaccine candidate formulated with Advax-CpG adjuvant induces a robust and durable anti-typhoid Vi polysaccharide antibody response in mice, rabbits and nonhuman primates. Vaccine 2022; 40:4625-4634. [PMID: 35750538 DOI: 10.1016/j.vaccine.2022.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Typhax is an investigational typhoid fever vaccine candidate that is comprised of Vi polysaccharide from Salmonella enterica serovar typhi (S. Typhi) non-covalently entrapped in a glutaraldehyde catalyzed, cross-linked α-poly-L-lysine and CRM197 protein matrix. A previous Phase 1 trial of an aluminum phosphate adjuvanted Typhax formulation showed it induced Vi IgG after a single dose but that subsequent doses failed to further boost Vi IgG levels. The current study asked whether Advax-CpG adjuvant might instead be able to overcome polysaccharide-induced immune inhibition and improve Typhax immunogenicity. Advax-CpG adjuvanted Typhax elicited high and sustained Vi IgG responses in mice, rabbits and non-human primates (NHP) with levels being boosted by repeated immunization. High Vi antibody responses were lost in CD4 + T cell depleted mice confirming that despite the lack of conjugation of the polysaccharide to the carrier protein, Typhax nevertheless acts in a T cell dependent manner, explaining its ability to induce long-term B cell memory responses to Vi capable of being boosted. In NHP, Advax-CpG adjuvanted Typhax induced up to 100-fold higher Vi IgG levels than the commercial Typhim Vi polysaccharide vaccine. Typhax induced high and sustained serum bactericidal activity against S. Typhi and stimulated robust Vi IgG responses even in animals previously primed with a pure polysaccharide vaccine. Hence Advax-CpG adjuvanted Typhax vaccine is a highly promising candidate to provide robust and durable protection against typhoid fever.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Adelaide, Australia; School of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robert T Cartee
- Matrivax Research & Development Corporation, Boston, MA, USA
| | | | - Jae Seung Yang
- Clinical Immunology, International Vaccine Institute (IVI), South Korea
| | - Kevin P Killeen
- Matrivax Research & Development Corporation, Boston, MA, USA
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Adelaide, Australia; School of Medicine and Public Health, Flinders University, Adelaide, Australia.
| |
Collapse
|
16
|
Wu SJ, Ewing D, Sundaram AK, Chen HW, Liang Z, Cheng Y, Jani V, Sun P, Gromowski GD, De La Barrera RA, Schilling MA, Petrovsky N, Porter KR, Williams M. Enhanced Immunogenicity of Inactivated Dengue Vaccines by Novel Polysaccharide-Based Adjuvants in Mice. Microorganisms 2022; 10:microorganisms10051034. [PMID: 35630476 PMCID: PMC9146336 DOI: 10.3390/microorganisms10051034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Dengue fever, caused by any of four dengue viruses (DENV1-4), is a major global burden. Currently, there is no effective vaccine that prevents infection in dengue naïve populations. We tested the ability of two novel adjuvants (Advax-PEI and Advax-2), using aluminum hydroxide (alum) as control, to enhance the immunogenicity of formalin- or psoralen-inactivated (PIV or PsIV) DENV2 vaccines in mice. Mice were vaccinated on days 0 and 30, and serum samples were collected on days 30, 60, 90, and 101. Neutralizing antibodies were determined by microneutralization (MN) assays, and the geometric mean 50% MN (MN50) titers were calculated. For the PIV groups, after one dose MN50 titers were higher in the novel adjuvant groups compared to the alum control, while MN50 titers were comparable between the adjuvant groups after the second dose. For the PsIV groups, both novel adjuvants induced higher MN50 titers than the alum control after the second dose. Spleen cells were collected on days 45 and 101 for enzyme-linked immunospot (ELISPOT) for IFNγ and IL4. Both PIV and PsIV groups elicited different degrees of IFNγ and IL4 responses. Overall, Advax-2 gave the best responses just ahead of Advax-PEI. Given Advax-2’s extensive human experience in other vaccine applications, it will be pursued for further development.
Collapse
Affiliation(s)
- Shuenn-Jue Wu
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Correspondence:
| | - Dan Ewing
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
| | - Appavu K. Sundaram
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Hua-Wei Chen
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Zhaodong Liang
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ying Cheng
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Leidos, Inc., Reston, VA 20190, USA
| | - Vihasi Jani
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Peifang Sun
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Rafael A. De La Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Megan A. Schilling
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (A.K.S.); (H.-W.C.); (Z.L.); (Y.C.); (V.J.); (P.S.); (M.A.S.)
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Warradale, SA 5042, Australia;
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Kevin R. Porter
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (K.R.P.); (M.W.)
| | - Maya Williams
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA; (K.R.P.); (M.W.)
| |
Collapse
|
17
|
Akin I, Akdas S, Ceylan MN, Altiner S, Aribal Ayral P, Yazihan N. Evaluation of the safety and efficacy of Advax TM as an adjuvant: A systematic review and meta-analysis. Adv Med Sci 2022; 67:10-17. [PMID: 34562856 DOI: 10.1016/j.advms.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/06/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Developing a vaccine with improved immunogenicity is still a growing priority for many diseases. Different types of adjuvants may be beneficial to initiate and maintain the long-lasting immunogenicity of vaccines. Evidence has shown that polysaccharide adjuvants are efficient in improving immunological mechanisms with their biocompatibility and biodegradability characteristics. In this study, we aimed to investigate the safety and efficacy of AdvaxTM an adjuvant derived from delta inulin. METHODS A systematic research was performed in Pubmed, Web of Science, and Scopus databases for the following keywords; "AdvaxTM" OR "delta inulin" until December 14th, 2020. RevMan 5.4.1 software was used for cumulative meta-analysis and bias analysis. We also used GraphPad Prism 6 software for the figures. RESULTS In the cumulative meta-analysis, it was found that seroconversion and geometric mean titers (GMT) levels significantly increased in AdvaxTM-adjuvanted group (mean difference: 12.31, 95% Cl [4.14, 20.47], p = 0.003; 17.10, 95% Cl [4.35, 29.85], p = 0.009, respectively). We also observed that AdvaxTM could be effective in improving immunogenicity by inducing T-cell responses and plasmablast generation in viral vaccines. CONCLUSIONS In this study, it was shown that AdvaxTM is a safe and well-tolerated adjuvant. AdvaxTM could be a potent adjuvant in increasing the protection and immunogenicity of different vaccines without safety issues. However, further studies are needed to verify these effects of AdvaxTM adjuvant.
Collapse
Affiliation(s)
- Irem Akin
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sevginur Akdas
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Merve Nur Ceylan
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Seda Altiner
- Allergy and Clinical Immunology Clinic, Necip Fazil City Hospital, Kahramanmaras, Ankara, Turkey
| | - Pelin Aribal Ayral
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey; Department of Pathophysiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Nuray Yazihan
- Institute of Health Sciences, Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University Faculty of Medicine, Ankara, Turkey; Department of Pathophysiology, Faculty of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
18
|
Hendy DA, Amouzougan EA, Young IC, Bachelder EM, Ainslie KM. Nano/microparticle Formulations for Universal Influenza Vaccines. AAPS J 2022; 24:24. [PMID: 34997352 PMCID: PMC8741137 DOI: 10.1208/s12248-021-00676-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022] Open
Abstract
Influenza affects millions of people worldwide and can result in severe sickness and even death. The best method of prevention is vaccination; however, the seasonal influenza vaccine often suffers from low efficacy and requires yearly vaccination due to changes in strain and viral mutations. More conserved universal influenza antigens like M2 ectodomain (M2e) and the stalk region of hemagglutinin (HA stalk) have been used clinically but often suffer from low antigenicity. To increase antigenicity, universal antigens have been formulated using nano/microparticles as vaccine carriers against influenza. Utilizing polymers, liposomes, metal, and protein-based particles, indicators of immunity and protection in mouse, pig, ferrets, and chicken models of influenza have been shown. In this review, seasonal and universal influenza vaccine formulations comprised of these materials including their physiochemical properties, fabrication, characterization, and biologic responses in vivo are highlighted. The review is concluded with future perspectives for nano/microparticles as carrier systems and other considerations within the universal influenza vaccine delivery landscape. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Dylan A Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 4012 Marsico Hall, 125 Mason Farm Road, Chapel Hill, North Carolina, 27599, USA
| | - Eva A Amouzougan
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 4012 Marsico Hall, 125 Mason Farm Road, Chapel Hill, North Carolina, 27599, USA
| | - Isabella C Young
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 4012 Marsico Hall, 125 Mason Farm Road, Chapel Hill, North Carolina, 27599, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 4012 Marsico Hall, 125 Mason Farm Road, Chapel Hill, North Carolina, 27599, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 4012 Marsico Hall, 125 Mason Farm Road, Chapel Hill, North Carolina, 27599, USA. .,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA. .,Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
19
|
Li H, Monslow MA, Freed DC, Chang D, Li F, Gindy M, Wang D, Vora K, Espeseth AS, Petrovsky N, Fu TM. Novel adjuvants enhance immune responses elicited by a replication-defective human cytomegalovirus vaccine in nonhuman primates. Vaccine 2021; 39:7446-7456. [PMID: 34852943 DOI: 10.1016/j.vaccine.2021.10.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Adjuvants have long been explored to enhance vaccine efficacy. Current adjuvants approved for human vaccines are mostly studied for their ability to improve antibody responses. There remains a need for development of novel adjuvants, especially those able to enhance cell-mediated immunity (CMI). In this preclinical study we assessed the effect of two novel adjuvants, a delta inulin microparticle Advax formulated with or without a toll-like receptor 9 (TLR9) agonist CpG oligonucleotide, and a Merck & Co., Inc., Kenilworth, NJ, USA proprietary lipid nanoparticle (LNP), on immune responses elicited by V160, an experimental replication-defective human cytomegalovirus vaccine. Adult rhesus macaques were immunized with a low dose of V160 (10 units) either alone or in combination with the adjuvants as compared to those immunized with a high dose of V160 alone (100 units). While neither adjuvant conferred a significant benefit to vaccine-elicited humoral immune responses at the dose tested, both enhanced cellular immune responses to V160, where Advax promoted both CD4+ and CD8+ T cells and LNP predominantly impacted the CD4+ T cell response. Transcriptome analyses of peripheral blood samples demonstrated different modes of action for these adjuvants. One day post vaccination, LNP induced upregulation of a large number of genes involved in the innate immune response similar to those triggered by viral infection. In contrast, Advax did not activate any known inflammatory pathways and did not significantly impact gene expression pattern until day 7 post administration, suggesting a unique, non-inflammatory mechanism. These data warrant further exploration of Advax and LNP as adjuvants in clinical trials for vaccines desiring to elicit both humoral and T cell responses.
Collapse
Affiliation(s)
- Hualin Li
- Merck & Co., Inc., Kenilworth, NJ, USA.
| | | | | | - Dan Chang
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders University, Bedford Park SA 5042, Australia
| | | |
Collapse
|
20
|
Kumbhar PS, Pandya AK, Manjappa AS, Disouza JI, Patravale VB. Carbohydrates-based diagnosis, prophylaxis and treatment of infectious diseases: Special emphasis on COVID-19. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [PMCID: PMC7935400 DOI: 10.1016/j.carpta.2021.100052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
COVID-19 pandemic is taking a dangerous turn due to unavailability of approved and effective vaccines and therapy. Currently available diagnostic techniques are time-consuming, expensive, and maybe impacted by the mutations produced in the virus. Therefore, investigation of novel, rapid, and economic diagnosis techniques, prophylactic vaccines and targeted efficacious drug delivery systems as treatment strategy is imperative. Carbohydrates are essential biomolecules which also act as markers in the realization of immune systems. Moreover, they exhibit antiviral, antimicrobial, and antifungal properties. Carbohydrate-based vaccines and therapeutics including stimuli sensitive systems can be developed successfully and used effectively to fight COVID-19. Thus, carbohydrate-based diagnostic, prophylactic and therapeutic alternatives could be promising to defeat COVID-19 propitiously. Morphology of SARS-CoV-2 and its relevance in devising combat strategies has been discussed. Carbohydrate-based approaches for tackling infectious diseases and their importance in the design of various diagnostic and treatment modalities have been reviewed.
Collapse
|
21
|
An Advax-Adjuvanted Inactivated Cell-Culture Derived Japanese Encephalitis Vaccine Induces Broadly Neutralising Anti-Flavivirus Antibodies, Robust Cellular Immunity and Provides Single Dose Protection. Vaccines (Basel) 2021; 9:vaccines9111235. [PMID: 34835166 PMCID: PMC8618450 DOI: 10.3390/vaccines9111235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 01/24/2023] Open
Abstract
ccJE+Advax is an inactivated cell culture Japanese encephalitis (JE) vaccine formulated with Advax, a novel polysaccharide adjuvant based on delta inulin. This vaccine has previously shown promise in murine and equine studies and the current study sought to better understand its mechanism of action and assess the feasibility of single dose vaccine protection. Mice immunised with ccJE+Advax had higher serum neutralisation titres than those immunised with ccJE alone or with alum adjuvant. ccJE+Advax induced extraordinarily broad cross-neutralising antibodies against multiple flaviviruses including West Nile virus (WNV), Murray Valley encephalitis virus (MVEV), St Louis encephalitis virus (SLEV) and Dengue virus-1 and -2 (DENV-1 and -2). Notably, the DENV-2 cross-neutralising antibodies from ccJE+Advax immunised mice uniquely had no DENV-2 antibody-dependent infection enhancement (ADIE) activity, in contrast to high ADIE activity seen with DENV-1 cross-reactive antibodies induced by mbJE or ccJE alone or with alum adjuvant. JEV-stimulated splenocytes from ccJE+Advax immunised mice showed increased IL-17 and IFN-γ production, consistent with a mixed Th1 and Th17 response, whereas ccJE-alum was associated with production of mainly Th2 cytokines. In a mouse lethal challenge study against highly virulent JaTH160 JEV strain, ccJE+Advax conferred complete protection in a two-dose schedule with 50 ng of vaccine antigen and near complete protection after a single 200 ng dose of vaccine antigen. There is an ongoing lack of human vaccines against particular flaviviruses, including WNV, SLEV and MVEV. Given its ability to provide single-dose JEV protection and induce broadly neutralising antibodies devoid of ADIE activity, ccJE+Advax vaccine could be useful in situations where rapid protection is desirable, e.g., during a local outbreak or for use in travellers or armies requiring rapid deployment to JEV endemic regions.
Collapse
|
22
|
Görander S, Honda-Okubo Y, Bäckström M, Baldwin J, Bergström T, Petrovsky N, Liljeqvist JÅ. A truncated glycoprotein G vaccine formulated with Advax-CpG adjuvant provides protection of mice against genital herpes simplex virus 2 infection. Vaccine 2021; 39:5866-5875. [PMID: 34456075 DOI: 10.1016/j.vaccine.2021.08.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) is a common sexually transmitted disease that affects approximately 500 million individuals globally. There is currently no approved vaccine to prevent HSV-2 infection. EXCT4 is a truncated form of the mature glycoprotein G-2 (mgG-2) that unlike full mature form is secreted by expressing cells enabling it to be rapidly scaled up for production. The current study examined whether EXCT4 immunity in mice could be further enhanced through use of adjuvants. EXCT4 formulated with Advax-CpG adjuvant induced a strong Th1-type immune response characterized by interferon gamma (IFN-γ) and protected animals against a lethal genital challenge with HSV-2. This response was associated with reduced viral load in vaginal washes, spinal cord, and dorsal root ganglia. Together the results provide proof of concept that EXCT4 formulated with Advax-CpG adjuvant is a promising HSV-2 vaccine candidate warranting further investigation.
Collapse
Affiliation(s)
- Staffan Görander
- Section of Virology, Department of Infectious Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide 5046, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Malin Bäckström
- Mammalian Protein Expression Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jeremy Baldwin
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide 5046, Australia
| | - Tomas Bergström
- Section of Virology, Department of Infectious Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide 5046, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia.
| | - Jan-Åke Liljeqvist
- Section of Virology, Department of Infectious Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
23
|
Li L, Honda-Okubo Y, Huang Y, Jang H, Carlock MA, Baldwin J, Piplani S, Bebin-Blackwell AG, Forgacs D, Sakamoto K, Stella A, Turville S, Chataway T, Colella A, Triccas J, Ross TM, Petrovsky N. Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine 2021; 39:5940-5953. [PMID: 34420786 PMCID: PMC8328570 DOI: 10.1016/j.vaccine.2021.07.087] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
The development of a safe and effective vaccine is a key requirement to overcoming the COVID-19 pandemic. Recombinant proteins represent the most reliable and safe vaccine approach but generally require a suitable adjuvant for robust and durable immunity. We used the SARS-CoV-2 genomic sequence and in silico structural modelling to design a recombinant spike protein vaccine (Covax-19™). A synthetic gene encoding the spike extracellular domain (ECD) was inserted into a baculovirus backbone to express the protein in insect cell cultures. The spike ECD was formulated with Advax-SM adjuvant and first tested for immunogenicity in C57BL/6 and BALB/c mice. Covax-19 vaccine induced high spike protein binding antibody levels that neutralised the original lineage B.1.319 virus from which the vaccine spike protein was derived, as well as the variant B.1.1.7 lineage virus. Covax-19 vaccine also induced a high frequency of spike-specific CD4 + and CD8 + memory T-cells with a dominant Th1 phenotype associated with the ability to kill spike-labelled target cells in vivo. Ferrets immunised with Covax-19 vaccine intramuscularly twice 2 weeks apart made spike receptor binding domain (RBD) IgG and were protected against an intranasal challenge with SARS-CoV-2 virus given two weeks after the last immunisation. Notably, ferrets that received the two higher doses of Covax-19 vaccine had no detectable virus in their lungs or in nasal washes at day 3 post-challenge, suggesting that in addition to lung protection, Covax-19 vaccine may have the potential to reduce virus transmission. This data supports advancement of Covax-19 vaccine into human clinical trials.
Collapse
Affiliation(s)
- Lei Li
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Ying Huang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Michael A Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Jeremy Baldwin
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia
| | - Sakshi Piplani
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | | | - David Forgacs
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, GA, USA
| | - Alberto Stella
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Stuart Turville
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Tim Chataway
- College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Alex Colella
- College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Jamie Triccas
- School of Medical Sciences and Marie Bashir Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia.
| |
Collapse
|
24
|
Sundaram AK, Ewing D, Liang Z, Jani V, Cheng Y, Sun P, Raviprakash K, Wu SJ, Petrovsky N, Defang G, Williams M, Porter KR. Immunogenicity of Adjuvanted Psoralen-Inactivated SARS-CoV-2 Vaccines and SARS-CoV-2 Spike Protein DNA Vaccines in BALB/c Mice. Pathogens 2021; 10:626. [PMID: 34069575 PMCID: PMC8160882 DOI: 10.3390/pathogens10050626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023] Open
Abstract
The development of a safe and effective vaccine to protect against COVID-19 is a global priority due to the current high SARS-CoV-2 infection rate. Currently, there are over 160 SARS-CoV-2 vaccine candidates at the clinical or pre-clinical stages of development. Of these, there are only three whole-virus vaccine candidates produced using β-propiolactone or formalin inactivation. Here, we prepared a whole-virus SARS-CoV-2 vaccine (SARS-CoV-2 PsIV) using a novel psoralen inactivation method and evaluated its immunogenicity in mice using two different adjuvants, alum and Advax-2. We compared the immunogenicity of SARS-CoV-2 PsIV against SARS-CoV-2 DNA vaccines expressing either full-length or truncated spike proteins. We also compared the psoralen-inactivated vaccine against a DNA prime, psoralen-inactivated vaccine boost regimen. After two doses, the psoralen-inactivated vaccine, when administered with alum or Advax-2 adjuvants, generated a dose-dependent neutralizing antibody responses in mice. Overall, the pattern of cytokine ELISPOT responses to antigen-stimulation observed in this study indicates that SARS-CoV-2 PsIV with the alum adjuvant promotes a Th2-type response, while SARS-CoV-2 PsIV with the Advax-2 adjuvant promotes a Th1-type response.
Collapse
Affiliation(s)
- Appavu K. Sundaram
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (Z.L.); (V.J.); (Y.C.); (P.S.); (K.R.); (S.-J.W.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Daniel Ewing
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (Z.L.); (V.J.); (Y.C.); (P.S.); (K.R.); (S.-J.W.)
| | - Zhaodong Liang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (Z.L.); (V.J.); (Y.C.); (P.S.); (K.R.); (S.-J.W.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Vihasi Jani
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (Z.L.); (V.J.); (Y.C.); (P.S.); (K.R.); (S.-J.W.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ying Cheng
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (Z.L.); (V.J.); (Y.C.); (P.S.); (K.R.); (S.-J.W.)
- Leidos, 1750 Presidents St, Reston, VA 20190, USA
| | - Peifang Sun
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (Z.L.); (V.J.); (Y.C.); (P.S.); (K.R.); (S.-J.W.)
| | - Kanakatte Raviprakash
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (Z.L.); (V.J.); (Y.C.); (P.S.); (K.R.); (S.-J.W.)
| | - Shuenn-Jue Wu
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (Z.L.); (V.J.); (Y.C.); (P.S.); (K.R.); (S.-J.W.)
| | | | - Gabriel Defang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA; (D.E.); (Z.L.); (V.J.); (Y.C.); (P.S.); (K.R.); (S.-J.W.)
| | - Maya Williams
- Naval Research Laboratory, Washington, DC 20375, USA;
| | - Kevin R. Porter
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA;
| |
Collapse
|
25
|
Ferrell KC, Stewart EL, Counoupas C, Ashhurst TM, Britton WJ, Petrovsky N, Triccas JA. Intrapulmonary vaccination with delta-inulin adjuvant stimulates non-polarised chemotactic signalling and diverse cellular interaction. Mucosal Immunol 2021; 14:762-773. [PMID: 33542494 PMCID: PMC7859722 DOI: 10.1038/s41385-021-00379-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 02/04/2023]
Abstract
There is an urgent need for novel vaccination strategies to combat respiratory pathogens. Mucosal vaccine delivery is an attractive option as it directly targets the site of infection; however, preclinical development has been hindered by a lack of suitable mucosal adjuvants and a limited understanding of their immune effects in the lung environment. Herein, we define the early immune events following the intrapulmonary delivery of a vaccine incorporating the adjuvant delta-inulin. Analysis of the early inflammatory response showed vaccine-induced innate cell recruitment to lungs and local lymph nodes (LN) was transient and non-polarised, correlating with an increase in pulmonary chemotactic factors. Use of fluorescently labelled adjuvant revealed widespread tissue dissemination of adjuvant particles, coupled with broad cellular uptake and transit to the lung-draining LN by a range of innate immune cells. Mass cytometric analysis revealed extensive phenotypic changes in innate and adaptive cell subsets induced by vaccination; this included identification of unconventional lymphocytes such as γδ-T cells and MAIT cells that increased following vaccination and displayed an activated phenotype. This study details a comprehensive view of the immune response to intrapulmonary adjuvant administration and provides pre-clinical evidence to support delta-inulin as a suitable adjuvant for pulmonary vaccines.
Collapse
Affiliation(s)
- Kia C Ferrell
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Erica L Stewart
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale and Flinders University, Adelaide, Australia
| | - Claudio Counoupas
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research Facility, Centenary Institute and The University of Sydney, Camperdown, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Warwick J Britton
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale and Flinders University, Adelaide, Australia
| | - James A Triccas
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
26
|
Luczo JM, Bousse T, Johnson SK, Jones CA, Pearce N, Neiswanger CA, Wang MX, Miller EA, Petrovsky N, Wentworth DE, Bronshtein V, Papania M, Tompkins SM. Intranasal powder live attenuated influenza vaccine is thermostable, immunogenic, and protective against homologous challenge in ferrets. NPJ Vaccines 2021; 6:59. [PMID: 33883559 PMCID: PMC8060263 DOI: 10.1038/s41541-021-00320-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Influenza viruses cause annual seasonal epidemics and sporadic pandemics; vaccination is the most effective countermeasure. Intranasal live attenuated influenza vaccines (LAIVs) are needle-free, mimic the natural route of infection, and elicit robust immunity. However, some LAIVs require reconstitution and cold-chain requirements restrict storage and distribution of all influenza vaccines. We generated a dry-powder, thermostable LAIV (T-LAIV) using Preservation by Vaporization technology and assessed the stability, immunogenicity, and efficacy of T-LAIV alone or combined with delta inulin adjuvant (Advax™) in ferrets. Stability assays demonstrated minimal loss of T-LAIV titer when stored at 25 °C for 1 year. Vaccination of ferrets with T-LAIV alone or with delta inulin adjuvant elicited mucosal antibody and robust serum HI responses in ferrets, and was protective against homologous challenge. These results suggest that the Preservation by Vaporization-generated dry-powder vaccines could be distributed without refrigeration and administered without reconstitution or injection. Given these significant advantages for vaccine distribution and delivery, further research is warranted.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, 30602, USA
| | - Tatiana Bousse
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Scott K Johnson
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Cheryl A Jones
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Nicholas Pearce
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Carlie A Neiswanger
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Min-Xuan Wang
- Universal Stabilization Technologies, Inc., San Diego, California, USA
| | - Erin A Miller
- Universal Stabilization Technologies, Inc., San Diego, California, USA
| | - Nikolai Petrovsky
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Vaxine Pty Ltd, Warradale, South Australia, Australia
| | - David E Wentworth
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Victor Bronshtein
- Universal Stabilization Technologies, Inc., San Diego, California, USA
| | - Mark Papania
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen M Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA.
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, 30602, USA.
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
27
|
Advax-CpG Adjuvant Provides Antigen Dose-Sparing and Enhanced Immunogenicity for Inactivated Poliomyelitis Virus Vaccines. Pathogens 2021; 10:pathogens10050500. [PMID: 33919442 PMCID: PMC8143488 DOI: 10.3390/pathogens10050500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
Global immunization campaigns have resulted in a major decline in the global incidence of polio cases, with wild-type poliovirus remaining endemic in only two countries. Live oral polio vaccine (OPV) played a role in the reduction in polio case numbers; however, the risk of OPV developing into circulating vaccine-derived poliovirus makes it unsuitable for eradication programs. Trivalent inactivated polio virus (TIPV) vaccines which contain formalin-inactivated antigens produced from virulent types 1, 2 and 3 reference polio strains grown in Vero monkey kidney cells have been advocated as a replacement for OPV; however, TIPVs have weak immunogenicity and multiple boosts are required before peak neutralizing titers are reached. This study examined whether the incorporation of the novel polysaccharide adjuvant, Advax-CpG, could boost the immunogenicity of two TIPV vaccines, (i) a commercially available polio vaccine (IPOL®, Sanofi Pasteur) and (ii) a new TIPV formulation developed by Statens Serum Institut (SSI). Mice were immunized intramuscularly based on recommended vaccine dosage schedules and serum antibody titers were followed for 12 months post-immunization. Advax-CpG significantly enhanced the long-term immunogenicity of both TIPV vaccines and had at least a 10-fold antigen dose-sparing effect. An exception was the poor ability of the SSI TIPV to induce serotype type 1 neutralizing antibodies. Immunization with monovalent IPVs suggested that the low type 1 response to TIPV may be due to antigen competition when the type 1 antigen was co-formulated with the type 2 and 3 antigens. This study provides valuable insights into the complexity of the formulation of multivalent polio vaccines and supports the further development of adjuvanted antigen-sparing TIPV vaccines in the fight to eradicate polio.
Collapse
|
28
|
Dong X, Li B, Yu B, Chen T, Hu Q, Peng B, Sheng W. Poria cocos polysaccharide induced Th1-type immune responses to ovalbumin in mice. PLoS One 2021; 16:e0245207. [PMID: 33411807 PMCID: PMC7790389 DOI: 10.1371/journal.pone.0245207] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
In the present study, we evaluated adjuvant potential of Poria cocos polysaccharide (PCP) on the Th1-type immune responses of C57/BL6 mice against ovalbumin (OVA). We first determined the effect of PCP on maturation of murine bone marrow derived dendritic cells (BMDCs), PCP significantly upregulated surface expression of MHCII, CD40, CD80, CD86 and enhanced production of IL-6 and IL-12p40. In addition, PCP affected receptor-mediated endocytosis, but not pinocytosis in BMDCs. Furthermore, OVA + PCP immunization induced specific cytotoxic CD8+ T cell killing of OVA (257–264) peptide pulsed cell. When mice were immunized subcutaneously in a week interval with OVA + PCP. Serum were collected for measuring OVA-specific antibody and splenocytes were harvested for analyzing CD69, IFN-γ ELISpot and cytokines production. The result indicated that OVA-specific IgG, IgG2a and IgG1 antibody levels in serum were significantly elevated by PCP compared with control. PCP increased OVA-specific IFN-γ-secreting CD8+, CD4+ T cells, promoted CD8+ T cell proliferation and up-regulated Th-1 type (IFN-γ, IL-2) cytokine production. In conclusion, data suggest that PCP enhanced cellular immune response and possess potential as a vaccine adjuvant for Th1 immune response.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, PR China
| | - Boye Li
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, PR China
| | - Boyang Yu
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, PR China
| | - Tian Chen
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, PR China
| | - Qin Hu
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, PR China
- * E-mail: (QH); (BP); (WS)
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
- * E-mail: (QH); (BP); (WS)
| | - Wang Sheng
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, PR China
- * E-mail: (QH); (BP); (WS)
| |
Collapse
|
29
|
Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem 2021; 5:197-216. [PMID: 37117529 PMCID: PMC7829660 DOI: 10.1038/s41570-020-00244-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 01/31/2023]
Abstract
Modern subunit vaccines based on homogeneous antigens offer more precise targeting and improved safety compared with traditional whole-pathogen vaccines. However, they are also less immunogenic and require an adjuvant to increase the immunogenicity of the antigen and potentiate the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new, potent and safe adjuvants. Notably, a number of natural and synthetic carbohydrate structures have been used as adjuvants in clinical trials, and two have recently been approved in human vaccines. However, naturally derived carbohydrate adjuvants are heterogeneous, difficult to obtain and, in some cases, unstable. In addition, their molecular mechanisms of action are generally not fully understood, partly owing to the lack of tools to elucidate their immune-potentiating effects, thus hampering the rational development of optimized adjuvants. To address these challenges, modification of the natural product structure using synthetic chemistry emerges as an attractive approach to develop well-defined, improved carbohydrate-containing adjuvants and chemical probes for mechanistic investigation. This Review describes selected examples of natural and synthetic carbohydrate-based adjuvants and their application in synthetic self-adjuvanting vaccines, while also discussing current understanding of their molecular mechanisms of action.
Collapse
|
30
|
Man S, Liu T, Yao Y, Lu Y, Ma L, Lu F. Friend or foe? The roles of inulin-type fructans. Carbohydr Polym 2021; 252:117155. [DOI: 10.1016/j.carbpol.2020.117155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
|
31
|
Counoupas C, Ferrell KC, Ashhurst A, Bhattacharyya ND, Nagalingam G, Stewart EL, Feng CG, Petrovsky N, Britton WJ, Triccas JA. Mucosal delivery of a multistage subunit vaccine promotes development of lung-resident memory T cells and affords interleukin-17-dependent protection against pulmonary tuberculosis. NPJ Vaccines 2020; 5:105. [PMID: 33298977 PMCID: PMC7665186 DOI: 10.1038/s41541-020-00255-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/02/2020] [Indexed: 11/29/2022] Open
Abstract
The development of effective vaccines against bacterial lung infections requires the induction of protective, pathogen-specific immune responses without deleterious inflammation within the pulmonary environment. Here, we made use of a polysaccharide-adjuvanted vaccine approach to elicit resident pulmonary T cells to protect against aerosol Mycobacterium tuberculosis infection. Intratracheal administration of the multistage fusion protein CysVac2 and the delta-inulin adjuvant Advax™ (formulated with a TLR9 agonist) provided superior protection against aerosol M. tuberculosis infection in mice, compared to parenteral delivery. Surprisingly, removal of the TLR9 agonist did not impact vaccine protection despite a reduction in cytokine-secreting T cell subsets, particularly CD4+IFN-γ+IL-2+TNF+ multifunctional T cells. CysVac2/Advax-mediated protection was associated with the induction of lung-resident, antigen-specific memory CD4+ T cells that expressed IL-17 and RORγT, the master transcriptional regulator of Th17 differentiation. IL-17 was identified as a key mediator of vaccine efficacy, with blocking of IL-17 during M. tuberculosis challenge reducing phagocyte influx, suppressing priming of pathogen-specific CD4+ T cells in local lymph nodes and ablating vaccine-induced protection. These findings suggest that tuberculosis vaccines such as CysVac2/Advax that are capable of eliciting Th17 lung-resident memory T cells are promising candidates for progression to human trials.
Collapse
Affiliation(s)
- Claudio Counoupas
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.
| | - Kia C Ferrell
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Anneliese Ashhurst
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Nayan D Bhattacharyya
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Gayathri Nagalingam
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Erica L Stewart
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale and Flinders University, Adelaide, Australia
| | - Carl G Feng
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale and Flinders University, Adelaide, Australia
| | - Warwick J Britton
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - James A Triccas
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.
- Charles Perkins Centre and Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
32
|
Gupta T, Gupta SK. Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses. Int Immunopharmacol 2020; 86:106717. [PMID: 32585611 PMCID: PMC7301105 DOI: 10.1016/j.intimp.2020.106717] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
The extensive efforts around the globe are being made to develop a suitable vaccine against COVID-19 (Coronavirus Disease-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2). An effective vaccine should be able to induce high titers of neutralizing antibodies to prevent the virus from attaching to the host cell receptors. However, to elicit the protective levels of antibodies, a vaccine may require multiple doses or assistance from other immunostimulatory molecules. Further, the vaccine should be able to induce protective levels of antibodies rapidly with the least amount of antigen used. This decreases the cost of a vaccine and makes it affordable. As the pandemic has hit most countries across the globe, there will be an overwhelming demand for the vaccine in a quick time. Incorporating a suitable adjuvant in a SARS-CoV-2 vaccine may address these requirements. This review paper will discuss the experimental results of the adjuvanted vaccine studies with similar coronaviruses (CoVs) which might be useful to select an appropriate adjuvant for a vaccine against rapidly emergingSARS-CoV-2. We also discuss the current progress in the development of adjuvanted vaccines against the disease.
Collapse
Affiliation(s)
- Tania Gupta
- Dr GC Negi College of Veterinary and Animal Sciences, Palampur 176062, Himachal Pradesh, India.
| | - Shishir K Gupta
- CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
33
|
Epiphanies of well-known and newly discovered macromolecular carbohydrates – A review. Int J Biol Macromol 2020; 156:51-66. [DOI: 10.1016/j.ijbiomac.2020.04.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/08/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
|
34
|
Stronsky SM, Cooper CL, Steffens J, Van Tongeren S, Bavari S, Martins KA, Petrovsky N. Adjuvant selection impacts the correlates of vaccine protection against Ebola infection. Vaccine 2020; 38:4601-4608. [PMID: 32418798 DOI: 10.1016/j.vaccine.2020.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/23/2020] [Accepted: 05/04/2020] [Indexed: 01/13/2023]
Abstract
The establishment of correlates of protection is particularly relevant in the context of rare, highly lethal pathogens such as filoviruses. We previously demonstrated that an Ebola glycoprotein virus-like particle (VLP) vaccine, when given as two intramuscular doses, conferred protection from challenge in a murine challenge model. In this study, we compared the ability of Advax inulin-based adjuvant formulations (Advax1-4) to enhance Ebola VLP vaccine protection in mice. After two immunizations, Advax-adjuvants that included a TLR9 agonist component induced high IgG responses, with complete protection against Ebola virus challenge. Although anti-Ebola IgG levels waned over time, protection was durable and was still evident 150 days post-immunization. Mice were protected after just a single VLP immunization with Advax-2 or -4 adjuvants. Advax-adjuvanted VLPs induced a stronger IFN-γ, TNF and IL-12 signature and serum transferred from Advax-adjuvanted vaccinees was able to transfer protection to naïve animals, showing that Ebola protection can be achieved by antibodies in the absence of cellular immunity. By contrast, serum from vaccinees incorporating a pICLC adjuvant did not transfer protection despite high IgG levels on ELISA. These data highlight the importance of adjuvant selection for development of a successful Ebola VLP vaccine.
Collapse
Affiliation(s)
- Sabrina M Stronsky
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Christopher L Cooper
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Jesse Steffens
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Sean Van Tongeren
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Sina Bavari
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Karen A Martins
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, Australia; Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
35
|
Self-conjugated protective antigen elicits strong and durable protective antibody response against anthrax. Int J Biol Macromol 2019; 137:790-800. [DOI: 10.1016/j.ijbiomac.2019.06.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 02/01/2023]
|
36
|
Adjuvant Strategies for More Effective Tuberculosis Vaccine Immunity. Microorganisms 2019; 7:microorganisms7080255. [PMID: 31409028 PMCID: PMC6724148 DOI: 10.3390/microorganisms7080255] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis infection is responsible for the most deaths by a single infectious agent worldwide, with 1.6 million deaths in 2017 alone. The World Health Organization, through its "End TB" strategy, aims to reduce TB deaths by 95% by 2035. In order to reach this goal, a more effective vaccine than the Bacillus Calmette-Guerin (BCG) vaccine currently in use is needed. Subunit TB vaccines are ideal candidates, because they can be used as booster vaccinations for individuals who have already received BCG and would also be safer for use in immunocompromised individuals in whom BCG is contraindicated. However, subunit TB vaccines will almost certainly require formulation with a potent adjuvant. As the correlates of vaccine protection against TB are currently unclear, there are a variety of adjuvants currently being used in TB vaccines in preclinical and clinical development. This review describes the various adjuvants in use in TB vaccines, their effectiveness, and their proposed mechanisms of action. Notably, adjuvants with less inflammatory and reactogenic profiles that can be administered safely via mucosal routes, may have the biggest impact on future directions in TB vaccine design.
Collapse
|
37
|
Wanandy T, Honda-Okubo Y, Davies NW, Rose HE, Heddle RJ, Brown SGA, Woodman RJ, Petrovsky N, Wiese MD. Pharmaceutical and preclinical evaluation of Advax adjuvant as a dose-sparing strategy for ant venom immunotherapy. J Pharm Biomed Anal 2019; 172:1-8. [PMID: 31009889 PMCID: PMC7127811 DOI: 10.1016/j.jpba.2019.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
A major challenge in broader clinical application of Jack Jumper ant venom immunotherapy (JJA VIT) is the scarcity of ant venom which needs to be manually harvested from wild ants. Adjuvants are commonly used for antigen sparing in other vaccines, and thereby could potentially have major benefits to extend JJA supplies if they were to similarly enhance JJA VIT immunogenicity. The purpose of this study was to evaluate the physicochemical and microbiological stability and murine immunogenicity of low-dose JJA VIT formulated with a novel polysaccharide adjuvant referred to as delta inulin or Advax™. Jack Jumper ant venom (JJAV) protein stability was assessed by UPLC-UV, SDS-PAGE, SDS-PAGE immunoblot, and ELISA inhibition. Diffraction light scattering was used to assess particle size distribution of Advax; pH and benzyl alcohol quantification by UPLC-UV were used to assess the physicochemical stability of JJAV diluent, and endotoxin content and preservative efficacy test was used to investigate the microbiological properties of the adjuvanted VIT formulation. To assess the effect of adjuvant on JJA venom immunogenicity, mice were immunised four times with JJAV alone or formulated with Advax adjuvant. JJA VIT formulated with Advax was found to be physicochemically and microbiologically stable for at least 2 days when stored at 4 and 25 °C with a trend for an increase in allergenic potency observed beyond 2 days of storage. Low-dose JJAV formulated with Advax adjuvant induced significantly higher JJAV-specific IgG than a 5-fold higher dose of JJAV alone, consistent with a powerful allergen-sparing effect. The pharmaceutical data provides important guidance on the formulation, storage and use of JJA VIT formulated with Advax adjuvant, with the murine immunogenicity studies providing a strong rationale for a planned clinical trial to test the ability of Advax adjuvant to achieve 4-fold JJAV dose sparing in JJA-allergic human patients.
Collapse
Affiliation(s)
- Troy Wanandy
- Jack Jumper Allergy Program, Royal Hobart Hospital, GPO Box 1061L, Hobart, Tasmania, 7001, Australia; Division of Pharmacy, School of Medicine, University of Tasmania, Private Bag 26, Hobart, Tasmania, 7001, Australia; School of Medicine, University of Tasmania, Private Bag 68, Hobart, Tasmania, 7001, Australia; Department of Pharmacy, Royal Hobart Hospital, GPO Box 1061L, Hobart, Tasmania, 7001, Australia.
| | - Yoshikazu Honda-Okubo
- Flinders University, Bedford Park, South Australia, 5042, Australia; Vaxine Pty Ltd, Bedford Park, Adelaide, 5042, Australia
| | - Noel W Davies
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, Tasmania, 7001, Australia
| | - Hayley E Rose
- Jack Jumper Allergy Program, Royal Hobart Hospital, GPO Box 1061L, Hobart, Tasmania, 7001, Australia
| | - Robert J Heddle
- Flinders University, Bedford Park, South Australia, 5042, Australia; Division of Immunology, SA Pathology, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia, 5000, Australia; Clinical Immunology and Allergy Unit, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia; University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Simon G A Brown
- Jack Jumper Allergy Program, Royal Hobart Hospital, GPO Box 1061L, Hobart, Tasmania, 7001, Australia; School of Medicine, University of Tasmania, Private Bag 68, Hobart, Tasmania, 7001, Australia; Ambulance Tasmania, Hobart, Tasmania 7000, Australia; Department of Emergency Medicine, Royal Hobart Hospital, GPO Box 1061L, Hobart, Tasmania, 7001, Australia
| | | | - Nikolai Petrovsky
- Flinders University, Bedford Park, South Australia, 5042, Australia; Vaxine Pty Ltd, Bedford Park, Adelaide, 5042, Australia
| | - Michael D Wiese
- Jack Jumper Allergy Program, Royal Hobart Hospital, GPO Box 1061L, Hobart, Tasmania, 7001, Australia; School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
38
|
Heddle R, Smith A, Woodman R, Hissaria P, Petrovsky N. Randomized controlled trial demonstrating the benefits of delta inulin adjuvanted immunotherapy in patients with bee venom allergy. J Allergy Clin Immunol 2019; 144:504-513.e16. [PMID: 31300280 PMCID: PMC7112352 DOI: 10.1016/j.jaci.2019.03.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/29/2022]
Abstract
Background Allergic reactions to Hymenoptera insect stings remain a major global clinical problem. Although effective, parenteral desensitization regimens require use of costly venom extracts and require frequent visits over extended periods of time. Objective Adjuvants are commonly used to enhance the efficacy of infectious disease vaccines, and this study asked whether Advax (Vaxine Pty Ltd, Adelaide, Australia), a novel noninflammatory polysaccharide adjuvant, might provide similar benefits for allergy desensitization. Methods A randomized, controlled phase 1/2 trial was undertaken in 27 adults with a history of rapid-onset systemic allergic reactions to honeybee stings and positive specific IgE levels to evaluate the safety and efficacy of honeybee venom immunotherapy (HBVIT) combined with Advax adjuvant. Venom immunotherapy (VIT) was administered monthly for 30 months after achievement of maintenance doses. Results Advax-adjuvanted HBVIT was well tolerated. Around week 14 of VIT, specific IgG4 responses peaked in both groups but increased earlier, peaked higher, and were better maintained through the end of the study in the Advax-adjuvanted arm. Several different patterns of serologic response to VIT were seen; some subjects had a dominant IgG4 response, some had a combined IgG4 and IgG1 response, and some had an exclusively IgG1 response. In some subjects specific IgE levels increased during the induction phase and then decreased, whereas in others specific IgE levels progressively decreased from the start of VIT. Conclusion Advax adjuvant favorably enhanced the immunogenicity of HBVIT, with an early and prolonged switch to specific IgG4 production. The ability of Advax adjuvant to enhance VIT efficacy warrants further study.
Collapse
Affiliation(s)
- Robert Heddle
- University of Adelaide, North Terrace, Adelaide, Australia; Royal Adelaide Hospital, North Terrace, Adelaide, Australia; Flinders University, Bedford Park, Australia
| | - Anthony Smith
- Allergy and Clinical Immunology Department, Flinders Medical Centre, Bedford Park, Australia
| | - Richard Woodman
- Flinders Centre for Epidemiology and Biostatistics, Flinders University, Bedford Park, Australia
| | | | - Nikolai Petrovsky
- Flinders University, Bedford Park, Australia; Vaxine, Bedford Park, Australia.
| |
Collapse
|
39
|
Wallis J, Shenton DP, Carlisle RC. Novel approaches for the design, delivery and administration of vaccine technologies. Clin Exp Immunol 2019; 196:189-204. [PMID: 30963549 PMCID: PMC6468175 DOI: 10.1111/cei.13287] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
It is easy to argue that vaccine development represents humankind's most important and successful endeavour, such is the impact that vaccination has had on human morbidity and mortality over the last 200 years. During this time the original method of Jenner and Pasteur, i.e. that of injecting live-attenuated or inactivated pathogens, has been developed and supplemented with a wide range of alternative approaches which are now in clinical use or under development. These next-generation technologies have been designed to produce a vaccine that has the effectiveness of the original live-attenuated and inactivated vaccines, but without the associated risks and limitations. Indeed, the method of development has undoubtedly moved away from Pasteur's three Is paradigm (isolate, inactivate, inject) towards an approach of rational design, made possible by improved knowledge of the pathogen-host interaction and the mechanisms of the immune system. These novel vaccines have explored methods for targeted delivery of antigenic material, as well as for the control of release profiles, so that dosing regimens can be matched to the time-lines of immune system stimulation and the realities of health-care delivery in dispersed populations. The methods by which vaccines are administered are also the subject of intense research in the hope that needle and syringe dosing, with all its associated issues regarding risk of injury, cross-infection and patient compliance, can be replaced. This review provides a detailed overview of new vaccine vectors as well as information pertaining to the novel delivery platforms under development.
Collapse
Affiliation(s)
- J. Wallis
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| | - D. P. Shenton
- Defence Science and Technology LaboratoryPorton DownUK
| | - R. C. Carlisle
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| |
Collapse
|
40
|
Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine 2019; 37:3167-3178. [PMID: 31047671 DOI: 10.1016/j.vaccine.2019.04.055] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022]
Abstract
In conjugate, inactivated, recombinant, and toxoid vaccines, adjuvants are extensively and essentially used for enhanced and long-lasting protective immune responses. Depending on the type of diseases and immune responses required, adjuvants with different design strategies are developed. With aluminum salt-based adjuvants as the most used ones in commercial vaccines, other limited adjuvants, e.g., AS01, AS03, AS04, CpG ODN, and MF59, are used in FDA-approved vaccines for human use. In this paper, we review the uses of different adjuvants in vaccines including the ones used in FDA-approved vaccines and vaccines under clinical investigations. We discuss how adjuvants with different formulations could affect the magnitude and quality of adaptive immune response for optimized protection against specific pathogens. We emphasize the molecular mechanisms of various adjuvants, with the aim to establish structure-activity relationships (SARs) for designing more effective and safer adjuvants for both preventative and therapeutic vaccines.
Collapse
Affiliation(s)
- Shuting Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Haoru Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Xinyu Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| |
Collapse
|
41
|
Yu L, Sun Q, Hui Y, Seth A, Petrovsky N, Zhao CX. Microfluidic formation of core-shell alginate microparticles for protein encapsulation and controlled release. J Colloid Interface Sci 2018; 539:497-503. [PMID: 30611045 DOI: 10.1016/j.jcis.2018.12.075] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022]
Abstract
Alginate hydrogel particles are promising delivery systems for protein encapsulation and controlled release because of their excellent biocompatibility, biodegradability, and mild gelation process. In this study, a facile microfluidic approach is developed for making uniform core-shell hydrogel microparticles. To address the challenge of protein retention within the alginate gel matrix, poly(ethyleneimine) (PEI)- and chitosan-coated alginate microparticles were fabricated demonstrating improved protein retention as well as controlled release. Furthermore, a model protein ovalbumin was loaded along with delta inulin microparticulate adjuvant into the water-core of the alginate microparticles. Compared to those microparticles with only antigen loaded, the antigen + adjuvant loaded microparticles showed a delayed and sustained release of antigen. This microfluidic approach provides a convenient method for making well-controlled alginate microgel particles with uniform size and controlled properties, and demonstrates the ability to tune the release profiles of proteins by engineering microparticle structure and properties.
Collapse
Affiliation(s)
- Lei Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Qi Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Arjun Seth
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, SA 5042, Australia; Department of Endocrinology, Flinders University, Bedford Park, SA 5042, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
42
|
Tomar J, Patil HP, Bracho G, Tonnis WF, Frijlink HW, Petrovsky N, Vanbever R, Huckriede A, Hinrichs WLJ. Advax augments B and T cell responses upon influenza vaccination via the respiratory tract and enables complete protection of mice against lethal influenza virus challenge. J Control Release 2018; 288:199-211. [PMID: 30218687 PMCID: PMC7111335 DOI: 10.1016/j.jconrel.2018.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
Abstract
Administration of influenza vaccines via the respiratory tract has potential benefits over conventional parenteral administration, inducing immunity directly at the site of influenza exposure as well as being needle free. In this study, we investigated the suitability of Advax™, a stable particulate polymorph of inulin, also referred to as delta inulin, as a mucosal adjuvant for whole inactivated influenza vaccine (WIV) administered either as a liquid or dry powder formulation. Spray freeze-drying produced Advax-adjuvanted WIV powder particles in a size range (1-5 μm) suitable for inhalation. The physical and biological characteristics of both WIV and Advax remained unaltered both by admixing WIV with Advax and by spray freeze drying. Upon intranasal or pulmonary immunization, both liquid and dry powder formulations containing Advax induced significantly higher systemic, mucosal and cellular immune responses than non-adjuvanted WIV formulations. Furthermore, pulmonary immunization with Advax-adjuvanted WIV led to robust memory B cell responses along with an increase of lung localization factors i.e. CXCR3, CD69, and CD103. A less pronounced but still positive effect of Advax was seen on memory T cell responses. In contrast to animals immunized with WIV alone, all animals pulmonary immunized with a single dose of Advax-adjuvanted WIV were fully protected with no visible clinical symptoms against a lethal dose of influenza virus. These data confirm that Advax is a potent mucosal adjuvant that boosts vaccine-induced humoral and cellular immune responses both in the lung and systemically with major positive effects on B-cell memory and complete protection against live virus. Hence, respiratory tract immunization, particularly via the lungs, with Advax-adjuvanted WIV formulation as a liquid or dry powder is a promising alternative to parenteral influenza vaccination.
Collapse
Affiliation(s)
- Jasmine Tomar
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Harshad P Patil
- Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels 1200, Belgium
| | - Gustavo Bracho
- Vaxine Pty Ltd., Flinders Medical Centre, Bedford Park, Adelaide 5042, Australia
| | - Wouter F Tonnis
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Flinders Medical Centre, Bedford Park, Adelaide 5042, Australia; Department of Diabetes and Endocrinology, Flinders University, Adelaide 5042, Australia
| | - Rita Vanbever
- Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels 1200, Belgium
| | - Anke Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
43
|
Lee J, Arun Kumar S, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater 2018; 80:31-47. [PMID: 30172933 PMCID: PMC7105045 DOI: 10.1016/j.actbio.2018.08.033] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
Engineering vaccine-based therapeutics for infectious diseases is highly challenging, as trial formulations are often found to be nonspecific, ineffective, thermally or hydrolytically unstable, and/or toxic. Vaccines have greatly improved the therapeutic landscape for treating infectious diseases and have significantly reduced the threat by therapeutic and preventative approaches. Furthermore, the advent of recombinant technologies has greatly facilitated growth within the vaccine realm by mitigating risks such as virulence reversion despite making the production processes more cumbersome. In addition, seroconversion can also be enhanced by recombinant technology through kinetic and nonkinetic approaches, which are discussed herein. Recombinant technologies have greatly improved both amino acid-based vaccines and DNA-based vaccines. A plateau of interest has been reached between 2001 and 2010 for the scientific community with regard to DNA vaccine endeavors. The decrease in interest may likely be attributed to difficulties in improving immunogenic properties associated with DNA vaccines, although there has been research demonstrating improvement and optimization to this end. Despite improvement, to the extent of our knowledge, there are currently no regulatory body-approved DNA vaccines for human use (four vaccines approved for animal use). This article discusses engineering DNA vaccines against infectious diseases while discussing advantages and disadvantages of each, with an emphasis on applications of these DNA vaccines. Statement of Significance This review paper summarizes the state of the engineered/recombinant DNA vaccine field, with a scope entailing “Engineering DNA vaccines against infectious diseases”. We endeavor to emphasize recent advances, recapitulating the current state of the field. In addition to discussing DNA therapeutics that have already been clinically translated, this review also examines current research developments, and the challenges thwarting further progression. Our review covers: recombinant DNA-based subunit vaccines; internalization and processing; enhancing immune protection via adjuvants; manufacturing and engineering DNA; the safety, stability and delivery of DNA vaccines or plasmids; controlling gene expression using plasmid engineering and gene circuits; overcoming immunogenic issues; and commercial successes. We hope that this review will inspire further research in DNA vaccine development.
Collapse
|
44
|
de Paula Oliveira Santos B, Trentini MM, Machado RB, Rúbia Nunes Celes M, Kipnis A, Petrovsky N, Junqueira-Kipnis AP. Advax4 delta inulin combination adjuvant together with ECMX, a fusion construct of four protective mTB antigens, induces a potent Th1 immune response and protects mice against Mycobacterium tuberculosis infection. Hum Vaccin Immunother 2018; 13:2967-2976. [PMID: 28937879 DOI: 10.1080/21645515.2017.1368598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Tuberculosis (TB) remains a main public health concern and 10.4 million new cases occurred in 2015 around the world. BCG is the only approved vaccine against TB, but has variable efficacy and new vaccines are needed. We developed two new mTB vaccine candidates based on the recombinant fusion proteins, rCMX and rECMX formulated with Advax4, a new combination adjuvant combining delta inulin, CpG oligonucleotide and murabutide. BALB/c mice were immunized three times intramuscularly with these vaccine formulations. Injection of Advax4 alone increased the percentage of lymphatic endothelial cells and activated macrophages (F480/CD11b+) in the draining lymph nodes consistent with a chemotactic adjuvant effect. Advax4+CMX and Advax4+ECMX induced the highest levels of IgG1 and IgG2a antibodies against rCMX and rECMX, respectively. Immunized mice challenged with Mycobacterium tuberculosis (Mtb) had increased vaccine-specific Th1 responses in the lungs together with reduced Mtb - associated alveolar damage, although only the Advax4+ECMX vaccine demonstrated significant reduction of lung bacterial load. This study confirmed Advax4+ECMX as a potential TB vaccine candidate, with potential for further optimization and clinical development.
Collapse
Affiliation(s)
- Bruno de Paula Oliveira Santos
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Monalisa Martins Trentini
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Renato Beilner Machado
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Mara Rúbia Nunes Celes
- b Laboratory of Pathology, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - André Kipnis
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| | - Nikolai Petrovsky
- c Flinders University and Vaxine Pty Ltd, Flinders Medical Center , Adelaide , Australia
| | - Ana Paula Junqueira-Kipnis
- a Laboratory of Immunopathology of Infectious Diseases, Department of Microbiology, Immunology, Parasitology, and Pathology, Tropical Institute of Pathology and Public Health , Federal University of Goiás , Goiás , Brazil
| |
Collapse
|
45
|
Weinberger B. Adjuvant strategies to improve vaccination of the elderly population. Curr Opin Pharmacol 2018; 41:34-41. [PMID: 29677646 DOI: 10.1016/j.coph.2018.03.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
Immunosenescence contributes to increased incidence and severity of many infections in old age and is responsible for impaired immunogenicity and efficacy of vaccines. Adjuvants are one strategy to enhance immunogenicity of vaccines. The oil-in-water emulsions MF59TM and AS03, as well as a virosomal vaccine have been licensed in seasonal or pandemic influenza vaccines and are/were used successfully in the elderly. AS01, a liposome-based adjuvant comprising two immunostimulants has recently been approved in a recombinant protein vaccine for older adults, which showed very high efficacy against herpes zoster in clinical trials. Several adjuvants for use in the older population are in clinical and preclinical development and will hopefully improve vaccines for this age group in the future.
Collapse
Affiliation(s)
- Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria.
| |
Collapse
|
46
|
Abstract
In spite of current influenza vaccines being immunogenic, evolution of the influenza virus can reduce efficacy and so influenza remains a major threat to public health. One approach to improve influenza vaccines is to include adjuvants; substances that boost the immune response. Adjuvants are particularly beneficial for influenza vaccines administered during a pandemic when a rapid response is required or for use in patients with impaired immune responses, such as infants and the elderly. This review outlines the current use of adjuvants in human influenza vaccines, including what they are, why they are used and what is known of their mechanism of action. To date, six adjuvants have been used in licensed human vaccines: Alum, MF59, AS03, AF03, virosomes and heat labile enterotoxin (LT). In general these adjuvants are safe and well tolerated, but there have been some rare adverse events when adjuvanted vaccines are used at a population level that may discourage the inclusion of adjuvants in influenza vaccines, for example the association of LT with Bell's Palsy. Improved understanding about the mechanisms of the immune response to vaccination and infection has led to advances in adjuvant technology and we describe the experimental adjuvants that have been tested in clinical trials for influenza but have not yet progressed to licensure. Adjuvants alone are not sufficient to improve influenza vaccine efficacy because they do not address the underlying problem of mismatches between circulating virus and the vaccine. However, they may contribute to improved efficacy of next-generation influenza vaccines and will most likely play a role in the development of effective universal influenza vaccines, though what that role will be remains to be seen.
Collapse
Affiliation(s)
- John S Tregoning
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ryan F Russell
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ekaterina Kinnear
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| |
Collapse
|
47
|
Counoupas C, Pinto R, Nagalingam G, Britton WJ, Petrovsky N, Triccas JA. Delta inulin-based adjuvants promote the generation of polyfunctional CD4 + T cell responses and protection against Mycobacterium tuberculosis infection. Sci Rep 2017; 7:8582. [PMID: 28819247 PMCID: PMC5561132 DOI: 10.1038/s41598-017-09119-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/19/2017] [Indexed: 01/16/2023] Open
Abstract
There is an urgent need for the rational design of safe and effective vaccines to protect against chronic bacterial pathogens such as Mycobacterium tuberculosis. Advax™ is a novel adjuvant based on delta inulin microparticles that enhances immunity with a minimal inflammatory profile and has entered human trials to protect against viral pathogens. In this report we determined if Advax displays broad applicability against important human pathogens by assessing protective immunity against infection with M. tuberculosis. The fusion protein CysVac2, comprising the M. tuberculosis antigens Ag85B (Rv1886c) and CysD (Rv1285) formulated with Advax provided significant protection in the lungs of M. tuberculosis-infected mice. Protection was associated with the generation of CysVac2-specific multifunctional CD4+ T cells (IFN-γ+TNF+IL-2+). Addition to Advax of the TLR9 agonist, CpG oligonucleotide (AdvaxCpG), improved both the immunogenicity and protective efficacy of CysVac2. Immunisation with CysVac2/AdvaxCpG resulted in heightened release of the chemoattractants, CXCL1, CCL3, and TNF, and rapid influx of monocytes and neutrophils to the site of vaccination, with pronounced early priming of CysVac2-specific CD4+ T cells. As delta inulin adjuvants have shown an excellent safety and tolerability profile in humans, CysVac2/AdvaxCpG is a strong candidate for further preclinical evaluation for progression to human trials.
Collapse
Affiliation(s)
- Claudio Counoupas
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Rachel Pinto
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Gayathri Nagalingam
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Warwick J Britton
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia
| | - Nikolai Petrovsky
- Department of Endocrinology, Flinders University, Adelaide, Australia
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, Australia
| | - James A Triccas
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, Australia.
- Mycobacterial Research Program, Centenary Institute, Sydney, Australia.
| |
Collapse
|
48
|
Honda-Okubo Y, Rajapaksha H, Sajkov D, Gordon D, Cox MMJ, Petrovsky N. Panblok-H1+advax H1N1/2009pdm vaccine: Insights into rapid development of a delta inulin adjuvanted recombinant pandemic influenza vaccine. Hum Vaccin Immunother 2017; 13:1-11. [PMID: 28301280 PMCID: PMC5489286 DOI: 10.1080/21645515.2017.1279765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Timely vaccine supply is critical during influenza pandemics but is impeded by current virus-based manufacturing methods. The 2009 H1N1/2009pdm 'swine flu' pandemic reinforced the need for innovation in pandemic vaccine design. We report on insights gained during rapid development of a pandemic vaccine based on recombinant haemagglutinin (rHA) formulated with Advax™ delta inulin adjuvant (Panblok-H1/Advax). Panblok-H1/Advax was designed and manufactured within 1 month of the pandemic declaration by WHO and successfully entered human clinical testing in under 3 months from first isolation and sequencing of the novel pandemic virus, requiring several major challenges to be overcome. Panblok-H1/Advax successfully induced neutralising antibodies against the pandemic strain, but also induced cross-neutralising antibodies in a subset of subjects against an H1N1 strain (A/Puerto Rico/8/34) derived from the 1918 Spanish flu, highlighting the possibility to use Advax to induce more broadly cross-protective antibody responses. Interestingly, the rHA from H1N1/2009pdm exhibited variants in the receptor binding domain that had a major impact on receptor binding and hemagglutination ability. We used an in silico structural modeling approach to better understand the unusual behavior of the novel hemagglutinin, thereby demonstrating the power of computational modeling approaches for rapid characterization of new pandemic viruses. While challenges remain in ensuring ultrafast vaccine access for the entire population in response to future pandemics, the adjuvanted recombinant Panblok-H1/Advax vaccine proved its utility during a real-life pandemic situation.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- a Vaxine Pty Ltd, Flinders Medical Centre , Adelaide , Australia.,b Department of Endocrinology , Flinders University , Adelaide , Australia
| | - Harinda Rajapaksha
- a Vaxine Pty Ltd, Flinders Medical Centre , Adelaide , Australia.,b Department of Endocrinology , Flinders University , Adelaide , Australia
| | - Dimitar Sajkov
- c Australian Respiratory and Sleep Medicine Institute , Adelaide , Australia
| | - David Gordon
- d Microbiology and Infectious Diseases Department , Flinders Medical Centre , Adelaide , Australia
| | | | - Nikolai Petrovsky
- a Vaxine Pty Ltd, Flinders Medical Centre , Adelaide , Australia.,b Department of Endocrinology , Flinders University , Adelaide , Australia
| |
Collapse
|