1
|
Wanlapakorn N, Sarawanangkoor N, Srimuan D, Thatsanathorn T, Thongmee T, Poovorawan Y. Antibody persistence to diphtheria toxoid, tetanus toxoid, Bordetella pertussis antigens, and Haemophilus influenzae type b following primary and first booster with pentavalent versus hexavalent vaccines. Hum Vaccin Immunother 2024; 20:2352909. [PMID: 38752802 DOI: 10.1080/21645515.2024.2352909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/05/2024] [Indexed: 07/18/2024] Open
Abstract
Thailand has incorporated the whole-cell (wP) pertussis vaccine into the expanded program on immunization since 1977 and has offered the acellular pertussis (aP) vaccine as an optional vaccine for infants since 2001. We followed healthy children from a clinical trial (ClinicalTrials.gov NCT02408926) in which children were randomly assigned to receive either pentavalent (DTwP-HB-Hib) or hexavalent (DTaP-IPV-HB-Hib) vaccines for their primary series (administered at 2, 4, and 6 months) and first booster vaccination (18 months). Both groups received Tdap-IPV as a second booster at the age of 4 y. Blood samples were collected for evaluation of antibody persistence to diphtheria toxoid (DT), tetanus toxoid (TT), and Bordetella pertussis (B. pertussis) between 2 and 6 y of age annually, and for the immunogenicity study of Tdap-IPV at 1 month after the second booster. Antibody persistence to Haemophilus influenzae type b (Hib) was followed until 3 y of age. A total of 105 hexavalent-vaccinated children and 91 pentavalent-vaccinated children completed this study. Both pentavalent and hexavalent groups demonstrated increased antibody levels against DT, TT, and B. pertussis antigens following the second booster with Tdap-IPV. All children achieved a seroprotective concentration for anti-DT and anti-TT IgG at 1 month post booster. The hexavalent group possessed significantly higher anti-pertactin IgG (adjusted p = .023), whereas the pentavalent group possessed significantly higher anti-pertussis toxin IgG (adjusted p < .001) after the second booster. Despite declining levels post-second booster, a greater number of children sustained protective levels of anti-DT and anti-TT IgG compared to those after the first booster.
Collapse
Affiliation(s)
- Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nasiri Sarawanangkoor
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Donchida Srimuan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thaksaporn Thatsanathorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
2
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Ende Z, Mishina M, Kauffman RC, Kumar A, Kumari R, Knight PR, Sambhara S. Human monoclonal antibody cloning and expression with overlap extension PCR and short DNA fragments. J Immunol Methods 2024; 534:113768. [PMID: 39447635 PMCID: PMC11585411 DOI: 10.1016/j.jim.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Monoclonal antibodies are powerful therapeutic, diagnostic, and research tools. Methods utilized to generate monoclonal antibodies are evolving rapidly. We created a transfectable linear antibody expression cassette from a 2-h high-fidelity overlapping PCR reaction from synthesized DNA fragments. We coupled heavy and light chains into a single linear sequence with a promoter, self-cleaving peptide, and poly(A) signal to increase the flexibility of swapping variable regions from any sequence available in silico. Transfection of the linear cassette tended to generate similar levels to the two-plasmid system and generated an average of 47 μg (14-98 μg) after 5 days in 2 ml cultures with 15 unique antibody sequences. The levels of antibodies produced were sufficient for most downstream applications in less than a week. The method presented here reduces the time, cost, and complexity of cloning steps.
Collapse
Affiliation(s)
- Zachary Ende
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, TN, USA
| | - Margarita Mishina
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Robert C Kauffman
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Amrita Kumar
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rashmi Kumari
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Paul R Knight
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
4
|
Lehmann C, Schommers P. The need for novel approaches to HIV-1 vaccine development. THE LANCET. INFECTIOUS DISEASES 2024; 24:1178-1179. [PMID: 39038476 DOI: 10.1016/s1473-3099(24)00398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Affiliation(s)
- Clara Lehmann
- Department I of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany.
| | - Philipp Schommers
- Department I of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50937, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
5
|
Jaishwal P, Jha K, Singh SP. Revisiting the dimensions of universal vaccine with special focus on COVID-19: Efficacy versus methods of designing. Int J Biol Macromol 2024; 277:134012. [PMID: 39048013 DOI: 10.1016/j.ijbiomac.2024.134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Even though the use of SARS-CoV-2 vaccines during the COVID-19 pandemic showed unprecedented success in a short time, it also exposed a flaw in the current vaccine design strategy to offer broad protection against emerging variants of concern. However, developing broad-spectrum vaccines is still a challenge for immunologists. The development of universal vaccines against emerging pathogens and their variants appears to be a practical solution to mitigate the economic and physical effects of the pandemic on society. Very few reports are available to explain the basic concept of universal vaccine design and development. This review provides an overview of the innate and adaptive immune responses generated against vaccination and essential insight into immune mechanisms helpful in designing universal vaccines targeting influenza viruses and coronaviruses. In addition, the characteristics, safety, and factors affecting the efficacy of universal vaccines have been discussed. Furthermore, several advancements in methods worthy of designing universal vaccines are described, including chimeric immunogens, heterologous prime-boost vaccines, reverse vaccinology, structure-based antigen design, pan-reactive antibody vaccines, conserved neutralizing epitope-based vaccines, mosaic nanoparticle-based vaccines, etc. In addition to the several advantages, significant potential constraints, such as defocusing the immune response and subdominance, are also discussed.
Collapse
Affiliation(s)
- Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | - Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | | |
Collapse
|
6
|
Gräf DD, Westphal L, Hallgreen CE. The life cycle of vaccines evaluated by the European Medicines Agency. Vaccine 2024; 42:126186. [PMID: 39121512 DOI: 10.1016/j.vaccine.2024.126186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 08/11/2024]
Abstract
BACKGROUND vaccines are complex products used in healthy populations. They should be carefully regulated, and benefits should clearly outweigh risks. OBJECTIVES To describe the evidence used to support benefit-risk evaluations of vaccines centrally assessed by the European Medicines Agency (EMA), and to identify if real-world data (RWD) was used throughout the vaccine life cycle. METHODS Cohort study of vaccines approved in the European Union. Inclusion criteria comprised having ATC code J07 and being centrally approved between 2012 and 2022. We collected data from regulatory documents, study protocols, and, when necessary, from scientific publications. Vaccines were followed from initial approval up to March 2023. RESULTS We included 31 vaccines addressing 17 therapeutic areas. More than 390 studies were used in the process of initial marketing authorisation (MA) and monitoring, and 174 studies were listed in initial risk management plans. We also identified 93 studies in the EU PAS register. At MA, all vaccines had at least one pivotal trial and 27 vaccines had at least one supportive study. Most pivotal trials were randomized, double-blinded and active-controlled, with immunogenicity endpoints as primary outcome. RWD was used for extension of indications and monitoring of at least 4 vaccines, and the undertaking of RWE studies was foreseen in the RMP of at least 17 vaccines. DISCUSSION Our study revealed an important reliance on randomized controlled trials with individual-level randomization, and a significant focus on immunogenicity endpoints. The use of RWD in vaccine assessments so far has been restricted to COVID-19, and despite its challenges and limitations, we believe that efforts to expand adoption of RWE in continuous benefit-risk assessments should be made. We further highlight the need to enhance data transparency and reporting standards since heterogeneity among regulatory documents made it difficult to identify all the studies considered in vaccine evaluations.
Collapse
Affiliation(s)
- Débora D Gräf
- Copenhagen Centre for Regulatory Science (CORS), Department of Pharmacy, University of Copenhagen, Denmark.
| | - Lukas Westphal
- Copenhagen Centre for Regulatory Science (CORS), Department of Pharmacy, University of Copenhagen, Denmark
| | - Christine E Hallgreen
- Copenhagen Centre for Regulatory Science (CORS), Department of Pharmacy, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Motaghi S, Pullenayegum E, Morgan RL, Loeb M. The role of influenza Hemagglutination-Inhibition antibody as a vaccine mediator in children. Vaccine 2024; 42:126122. [PMID: 39074996 DOI: 10.1016/j.vaccine.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/14/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Influenza vaccination may protect through the humoral immune response, cellular immune response, or possibly both. Immunity after vaccination can be mediated through antibodies that may be detected by the rise of serum hemagglutination inhibition (HAI) titers. Our objective was to investigate the proportion of protection against influenza mediated through antibodies by measuring the rise of HAI titer (indirect effect) compared to that induced through other immune mechanisms (direct effect) for influenza A and B. METHODS We analysed data from a cluster randomized trial conducted during the 2008-2009 season in which Canadian Hutterite children were vaccinated against influenza. We used inverse probability weighting to calculate the indirect and direct effect of vaccination against influenza A/H3N2 and influenza B/Brisbane using HAI titres and overall vaccine efficacy. RESULTS We included data on 617 children from 46 Hutterite colonies, aged between 3 and 15 years who were vaccinated with either inactivated trivalent influenza vaccine or hepatitis A vaccine. Vaccine efficacy was 63 % for influenza A (H3N2) and 28 % for influenza B. The hazard ratio for protection against influenza A/H3N2 due to an indirect effect of vaccination was 0.96 (95 % confidence interval (CI) of 0.00 to 2.89) while for the direct effect it was 0.38 (95 % CI of 0.00 to 5.47). The hazard ratio for influenza B indirect effect was 0.75 (95 % CI of 0.07 to 1) and for the direct effect 0.96 (95 % CI of 0.00 to 12.02). In contrast, repeating the analysis using microneutralization in a subgroup of 488 children revealed that the protective effect for vaccination for A/H3N2 was entirely mediated by antibodies but only for 13 % for influenza B. CONCLUSIONS Although vaccination provided higher protective effectiveness against influenza A than B, most of the influenza A vaccine efficacy likely occurred through antibodies other than what could be detected by HAI titres. In contrast, for influenza B, while the HAI titres appeared to mediate most of the vaccine effectiveness, this was not confirmed by microneutralization analysis.
Collapse
Affiliation(s)
- Shahrzad Motaghi
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.
| | - Eleanor Pullenayegum
- The Hospital for Sick Children, Toronto, Ontario, Canada; Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada; Dalla Lana School of Public Health, The University of Toronto, Toronto, Ontario, Canada.
| | - Rebecca L Morgan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada; School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Mark Loeb
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
8
|
Chang LA, Schotsaert M. Ally, adversary, or arbitrator? The context-dependent role of eosinophils in vaccination for respiratory viruses and subsequent breakthrough infections. J Leukoc Biol 2024; 116:224-243. [PMID: 38289826 PMCID: PMC11288382 DOI: 10.1093/jleuko/qiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Eosinophils are a critical type of immune cell and central players in type 2 immunity. Existing literature suggests that eosinophils also can play a role in host antiviral responses, typically type 1 immune events, against multiple respiratory viruses, both directly through release of antiviral mediators and indirectly through activation of other effector cell types. One way to prime host immune responses toward effective antiviral responses is through vaccination, where typically a type 1-skewed immunity is desirable in the context of intracellular pathogens like respiratory viruses. In the realm of breakthrough respiratory viral infection in vaccinated hosts, an event in which virus can still establish productive infection despite preexisting immunity, eosinophils are most prominently known for their link to vaccine-associated enhanced respiratory disease upon natural respiratory syncytial virus infection. This was observed in a pediatric cohort during the 1960s following vaccination with formalin-inactivated respiratory syncytial virus. More recent research has unveiled additional roles of the eosinophil in respiratory viral infection and breakthrough infection. The specific contribution of eosinophils to the quality of vaccine responses, vaccine efficacy, and antiviral responses to infection in vaccinated hosts remains largely unexplored, especially regarding their potential roles in protection. On the basis of current findings, we will speculate upon the suggested function of eosinophils and consider the many potential ways by which eosinophils may exert protective and pathological effects in breakthrough infections. We will also discuss how to balance vaccine efficacy with eosinophil-related risks, as well as the use of eosinophils and their products as potential biomarkers of vaccine efficacy or adverse events.
Collapse
Affiliation(s)
- Lauren A Chang
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1630, New York, NY 10029, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| |
Collapse
|
9
|
Fantoni G, Boccadifuoco G, Verdirosa F, Molesti E, Manenti A, Montomoli E. Current challenges and improvements in assessing the immunogenicity of bacterial vaccines. Front Microbiol 2024; 15:1404637. [PMID: 39044946 PMCID: PMC11263209 DOI: 10.3389/fmicb.2024.1404637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
The increase in antimicrobial-resistant bacterial strains has highlighted the need for a new vaccine strategy. The primary goal of a candidate vaccine is to prevent disease, by inducing a persistent immunologic memory, through the activation of pathogen-specific immune response. Antibody titer is the main parameter used to assess the immunogenicity of bacterial vaccine candidates and it is the most widely used as a correlate of protection. On the other hand, the antibody titer alone cannot provide complete information on all the activity mediated by antibodies which can only be assessed by functional assays, like the serum bactericidal assay and the opsonophagocytosis assay. However, due to the involvement of many biological factors, these assays are difficult to standardize. Some improvements have been achieved in recent years, but further optimizations are needed to minimize inter- and intra-laboratories variability and to allow the applicability of these functional assays for the vaccine immunogenicity assessment on a larger scale.
Collapse
Affiliation(s)
- Giulia Fantoni
- VisMederi S.r.l., Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | | | | | | | - Emanuele Montomoli
- VisMederi S.r.l., Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
10
|
Zhu F, Zheng W, Gong Y, Zhang J, Yu Y, Zhang J, Liu M, Guan F, Lei J. Trichinella spiralis Infection Inhibits the Efficacy of RBD Protein of SARS-CoV-2 Vaccination via Regulating Humoral and Cellular Immunity. Vaccines (Basel) 2024; 12:729. [PMID: 39066367 PMCID: PMC11281533 DOI: 10.3390/vaccines12070729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Vaccines are the most effective and feasible way to control pathogen infection. Helminths have been reported to jeopardize the protective immunity mounted by several vaccines. However, there are no experimental data about the effect of helminth infection on the effectiveness of COVID-19 vaccines. Here, a mouse model of trichinosis, a common zoonotic disease worldwide, was used to investigate effects of Trichinella spiralis infection on the RBD protein vaccine of SARS-CoV-2 and the related immunological mechanism, as well as the impact of albendazole (ALB) deworming on the inhibitory effect of the parasite on the vaccination. The results indicated that both the enteric and muscular stages of T. spiralis infection inhibited the vaccine efficacy, evidenced by decreased levels of IgG, IgM, sIgA, and reduced serum neutralizing antibodies, along with suppressed splenic germinal center (GC) B cells in the vaccinated mice. Pre-exposure to trichinosis promoted Th2 and/or Treg immune responses in the immunized mice. Furthermore, ALB treatment could partially reverse the inhibitory effect of T. spiralis infection on the efficiency of the vaccination, accompanied by a restored proportion of splenic GC B cells. Therefore, given the widespread prevalence of helminth infections worldwide, deworming therapy needs to be considered when implementing COVID-19 vaccination strategies.
Collapse
Affiliation(s)
- Feifan Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Wenwen Zheng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Yiyan Gong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Jinyuan Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Yihan Yu
- Department of Pulmonary Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan 430015, China; (Y.Y.); (J.Z.); (M.L.)
| | - Jixian Zhang
- Department of Pulmonary Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan 430015, China; (Y.Y.); (J.Z.); (M.L.)
| | - Mengjun Liu
- Department of Pulmonary Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan 430015, China; (Y.Y.); (J.Z.); (M.L.)
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| |
Collapse
|
11
|
Gray-Gaillard SL, Solis SM, Chen HM, Monteiro C, Ciabattoni G, Samanovic MI, Cornelius AR, Williams T, Geesey E, Rodriguez M, Ortigoza MB, Ivanova EN, Koralov SB, Mulligan MJ, Herati RS. SARS-CoV-2 inflammation durably imprints memory CD4 T cells. Sci Immunol 2024; 9:eadj8526. [PMID: 38905326 DOI: 10.1126/sciimmunol.adj8526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
Memory CD4 T cells are critical to human immunity, yet it is unclear whether viral inflammation during memory formation has long-term consequences. Here, we compared transcriptional and epigenetic landscapes of Spike (S)-specific memory CD4 T cells in 24 individuals whose first exposure to S was via SARS-CoV-2 infection or mRNA vaccination. Nearly 2 years after memory formation, S-specific CD4 T cells established by infection remained enriched for transcripts related to cytotoxicity and for interferon-stimulated genes, likely because of a chromatin accessibility landscape altered by inflammation. Moreover, S-specific CD4 T cells primed by infection had reduced proliferative capacity in vitro relative to vaccine-primed cells. Furthermore, the transcriptional state of S-specific memory CD4 T cells was minimally altered by booster immunization and/or breakthrough infection. Thus, infection-associated inflammation durably imprints CD4 T cell memory, which affects the function of these cells and may have consequences for long-term immunity.
Collapse
Affiliation(s)
- Sophie L Gray-Gaillard
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Sabrina M Solis
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Han M Chen
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Clarice Monteiro
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Grace Ciabattoni
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Marie I Samanovic
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber R Cornelius
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Tijaana Williams
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Emilie Geesey
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Miguel Rodriguez
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Mila Brum Ortigoza
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ellie N Ivanova
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Mark J Mulligan
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Ramin Sedaghat Herati
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Shannon CP, Lee AH, Tebbutt SJ, Singh A. A Commentary on Multi-omics Data Integration in Systems Vaccinology. J Mol Biol 2024; 436:168522. [PMID: 38458605 DOI: 10.1016/j.jmb.2024.168522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Affiliation(s)
| | - Amy Hy Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Scott J Tebbutt
- PROOF Centre of Excellence, Vancouver, Canada; Department of Medicine, The University of British Columbia, Vancouver, Canada; Centre for Heart Lung Innovation, Vancouver, Canada
| | - Amrit Singh
- Centre for Heart Lung Innovation, Vancouver, Canada; Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
13
|
deCamp AC, Corcoran MM, Fulp WJ, Willis JR, Cottrell CA, Bader DLV, Kalyuzhniy O, Leggat DJ, Cohen KW, Hyrien O, Menis S, Finak G, Ballweber-Fleming L, Srikanth A, Plyler JR, Rahaman F, Lombardo A, Philiponis V, Whaley RE, Seese A, Brand J, Ruppel AM, Hoyland W, Mahoney CR, Cagigi A, Taylor A, Brown DM, Ambrozak DR, Sincomb T, Mullen TM, Maenza J, Kolokythas O, Khati N, Bethony J, Roederer M, Diemert D, Koup RA, Laufer DS, McElrath JM, McDermott AB, Karlsson Hedestam GB, Schief WR. Human immunoglobulin gene allelic variation impacts germline-targeting vaccine priming. NPJ Vaccines 2024; 9:58. [PMID: 38467663 PMCID: PMC11384754 DOI: 10.1038/s41541-024-00811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024] Open
Abstract
Vaccine priming immunogens that activate germline precursors for broadly neutralizing antibodies (bnAbs) have promise for development of precision vaccines against major human pathogens. In a clinical trial of the eOD-GT8 60mer germline-targeting immunogen, higher frequencies of vaccine-induced VRC01-class bnAb-precursor B cells were observed in the high dose compared to the low dose group. Through immunoglobulin heavy chain variable (IGHV) genotyping, statistical modeling, quantification of IGHV1-2 allele usage and B cell frequencies in the naive repertoire for each trial participant, and antibody affinity analyses, we found that the difference between dose groups in VRC01-class response frequency was best explained by IGHV1-2 genotype rather than dose and was most likely due to differences in IGHV1-2 B cell frequencies for different genotypes. The results demonstrate the need to define population-level immunoglobulin allelic variations when designing germline-targeting immunogens and evaluating them in clinical trials.
Collapse
Grants
- UM1 AI144462 NIAID NIH HHS
- UM1 AI069481 NIAID NIH HHS
- UM1 AI068618 NIAID NIH HHS
- UM1 AI068635 NIAID NIH HHS
- U19 AI128914 NIAID NIH HHS
- P01 AI094419 NIAID NIH HHS
- Funding: This work was supported by the Bill and Melinda Gates Foundation Collaboration for AIDS Vaccine Discovery (CCVIMC INV-007371 to R.A.K., A.B.M., and M.J.M.; VISC INV-008017 and INV-032929 to A.C.D.; VxPDC INV-008352 and INV-007375 to IAVI; and NAC INV-007522 and INV-008813 to W.R.S.), IAVI (including IAVI 167627819 to M.J.M. and other support to W.R.S.), the IAVI Neutralizing Antibody Center (NAC) to W.R.S., National Institute of Allergy and Infectious Diseases (NIAID) P01 AI094419 (HIVRAD Optimizing HIV immunogen-BCR interactions for vaccine development") (to W.R.S.), UM1 Al100663 (Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery) and UM1 AI144462 (Scripps Consortium for HIV/AIDS Vaccine Development) (to W.R.S. and M.J.M.); and UM1AI069481 (Seattle-Lausanne CTU), U19AI128914 (HIPC), and UM1AI068618 (HVTN LC) to M.J.M.; by the Ragon Institute of MGH, MIT, and Harvard (to W.R.S.) and by the Swedish Research Council (grant #2017-00968) to GKH.
Collapse
Affiliation(s)
- Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| | - Martin M Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - William J Fulp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jordan R Willis
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christopher A Cottrell
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Daniel L V Bader
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Oleksandr Kalyuzhniy
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - David J Leggat
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristen W Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Sergey Menis
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lamar Ballweber-Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Abhinaya Srikanth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason R Plyler
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farhad Rahaman
- IAVI, 125 Broad Street, 9th floor, New York, NY, 10004, USA
| | | | | | - Rachael E Whaley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Aaron Seese
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexis M Ruppel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wesley Hoyland
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Celia R Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alison Taylor
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David M Brown
- The Foundation for the National Institutes of Health, North Bethesda, MD, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Troy Sincomb
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tina-Marie Mullen
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Orpheus Kolokythas
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Nadia Khati
- Department of Radiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Jeffrey Bethony
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Diemert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dagna S Laufer
- IAVI, 125 Broad Street, 9th floor, New York, NY, 10004, USA
| | - Juliana M McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - William R Schief
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
- Moderna Inc., Cambridge, MA, 02139, USA.
| |
Collapse
|
14
|
Sutton HJ, Gao X, Kelly HG, Parker BJ, Lofgren M, Dacon C, Chatterjee D, Seder RA, Tan J, Idris AH, Neeman T, Cockburn IA. Lack of affinity signature for germinal center cells that have initiated plasma cell differentiation. Immunity 2024; 57:245-255.e5. [PMID: 38228150 PMCID: PMC10922795 DOI: 10.1016/j.immuni.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Long-lived plasma cells (PCs) secrete antibodies that can provide sustained immunity against infection. High-affinity cells are proposed to preferentially select into this compartment, potentiating the immune response. We used single-cell RNA-seq to track the germinal center (GC) development of Ighg2A10 B cells, specific for the Plasmodium falciparum circumsporozoite protein (PfCSP). Following immunization with Plasmodium sporozoites, we identified 3 populations of cells in the GC light zone (LZ). One LZ population expressed a gene signature associated with the initiation of PC differentiation and readily formed PCs in vitro. The estimated affinity of these pre-PC B cells was indistinguishable from that of LZ cells that remained in the GC. This remained true when high- or low-avidity recombinant PfCSP proteins were used as immunogens. These findings suggest that the initiation of PC development occurs via an affinity-independent process.
Collapse
Affiliation(s)
- Henry J Sutton
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Xin Gao
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Hannah G Kelly
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Brian J Parker
- Biological Data Science Institute, The Australian National University, Canberra, ACT 2601, Australia; School of Computing, ANU College of Engineering, Computing & Cybernetics, The Australian National University, Canberra, ACT 2601, Australia
| | - Mariah Lofgren
- Malaria Unit, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cherrelle Dacon
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Deepyan Chatterjee
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Robert A Seder
- Malaria Unit, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Azza H Idris
- Malaria Unit, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Teresa Neeman
- Biological Data Science Institute, The Australian National University, Canberra, ACT 2601, Australia
| | - Ian A Cockburn
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
15
|
Honko AN, Hunegnaw R, Moliva JI, Ploquin A, Dulan CNM, Murray T, Carr D, Foulds KE, Geisbert JB, Geisbert TW, Johnson JC, Wollen-Roberts SE, Trefry JC, Stanley DA, Sullivan NJ. A Single-shot ChAd3 Vaccine Provides Protection from Intramuscular and Aerosol Sudan Virus Exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579118. [PMID: 38410448 PMCID: PMC10896339 DOI: 10.1101/2024.02.07.579118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Infection with Sudan virus (SUDV) is characterized by an aggressive disease course with case fatality rates between 40-100% and no approved vaccines or therapeutics. SUDV causes sporadic outbreaks in sub-Saharan Africa, including a recent outbreak in Uganda which has resulted in over 100 confirmed cases in one month. Prior vaccine and therapeutic efforts have historically prioritized Ebola virus (EBOV), leading to a significant gap in available treatments. Two vaccines, Erbevo ® and Zabdeno ® /Mvabea ® , are licensed for use against EBOV but are ineffective against SUDV. Recombinant adenovirus vector vaccines have been shown to be safe and effective against filoviruses, but efficacy depends on having low seroprevalence to the vector in the target human population. For this reason, and because of an excellent safety and immunogenicity profile, ChAd3 was selected as a superior vaccine vector. Here, a ChAd3 vaccine expressing the SUDV glycoprotein (GP) was evaluated for immunogenicity and efficacy in nonhuman primates. We demonstrate that a single dose of ChAd3-SUDV confers acute and durable protection against lethal SUDV challenge with a strong correlation between the SUDV GP-specific antibody titers and survival outcome. Additionally, we show that a bivalent ChAd3 vaccine encoding the GP from both EBOV and SUDV protects against both parenteral and aerosol lethal SUDV challenge. Our data indicate that the ChAd3-SUDV vaccine is a suitable candidate for a prophylactic vaccination strategy in regions at high risk of filovirus outbreaks. One Sentence Summary: A single-dose of ChAd3 vaccine protected macaques from lethal challenge with Sudan virus (SUDV) by parenteral and aerosol routes of exposure.
Collapse
|
16
|
Huete-Carrasco J, Lynch RI, Ward RW, Lavelle EC. Rational design of polymer-based particulate vaccine adjuvants. Eur J Immunol 2024; 54:e2350512. [PMID: 37994660 DOI: 10.1002/eji.202350512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Vaccination is considered one of the major milestones in modern medicine, facilitating the control and eradication of life-threatening infectious diseases. Vaccine adjuvants are a key component of many vaccines, serving to steer antigen-specific immune responses and increase their magnitude. Despite major advances in the field of adjuvant research over recent decades, our understanding of their mechanism of action remains incomplete. This hinders our capacity to further improve these adjuvant technologies, so addressing how adjuvants induce and control the induction of innate and adaptive immunity is a priority. Investigating how adjuvant physicochemical properties, such as size and charge, exert immunomodulatory effects can provide valuable insights and serve as the foundation for the rational design of vaccine adjuvants. Most clinically applied adjuvants are particulate in nature and polymeric particulate adjuvants present advantages due to stability, biocompatibility profiles, and flexibility in terms of formulation. These properties can impact on antigen release kinetics and biodistribution, cellular uptake and targeting, and drainage to the lymphatics, consequently dictating the induction of innate, cellular, and humoral adaptive immunity. A current focus is to apply rational design principles to the development of adjuvants capable of eliciting robust cellular immune responses including CD8+ cytotoxic T-cell and Th1-biased CD4+ T-cell responses, which are required for vaccines against intracellular pathogens and cancer. This review highlights recent advances in our understanding of how particulate adjuvants, especially polymer-based particulates, modulate immune responses and how this can be used as a guide for improved adjuvant design.
Collapse
Affiliation(s)
- Jorge Huete-Carrasco
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Roisin I Lynch
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Ross W Ward
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Langley JM, Gantt S, Halperin SA, Ward B, McNeil S, Ye L, Cai Y, Smith B, Anderson DE, Mitoma FD. An enveloped virus-like particle alum-adjuvanted cytomegalovirus vaccine is safe and immunogenic: A first-in-humans Canadian Immunization Research Network (CIRN) study. Vaccine 2024; 42:713-722. [PMID: 38142214 DOI: 10.1016/j.vaccine.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/06/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION Cytomegalovirus (CMV) is the most common cause of congenital infection and affected children often have permanent neurodevelopmental sequelae, including hearing loss and intellectual disability. Vaccines to prevent transmission of CMV during pregnancy are a public health priority. This first-in-humans dose-ranging, randomized, placebo-controlled, observer-blinded study evaluated the safety and immunogenicity of an enveloped virus-like particle (eVLP) vaccine expressing a modified form of the CMV glycoprotein B (gB). METHODS Healthy CMV-seronegative 18 to 40-year-olds at 3 Canadian study sites were randomized to one of 4 dose formulations (0.5 µg, 1 µg, or 2 µg gB content with alum) or 1 µg gB without alum, or placebo, given intramuscularly on days 0, 56 and 168. Outcome measures were solicited and unsolicited adverse events (AE), severe AE, gB and AD-2 epitope binding antibody titers and avidity, and neutralizing antibody (nAb) titers to CMV measured in fibroblast and epithelial cell infection assays. RESULTS Among 125 participants, the most common solicited local and general AEs were pain and headache, respectively. A dose-dependent increase in gB binding, avidity and nAb titers was observed after doses 2 and 3, with the highest titers in the alum-adjuvanted 2.0 µg dose recipients after the third dose; in the latter 24 % had responses to the broadly neutralizing AD-2 epitope. Neutralizing activity to CMV infection of fibroblasts was seen in 100 % of 2.0 µg alum-adjuvanted dose recipients, and to epithelial cell infection in 31 %. Epithelial cell nAb titers were positively correlated with higher geometric mean CMV gB binding titers. CONCLUSIONS An eVLP CMV vaccine was immunogenic in healthy CMV-seronegative adults and no safety signals were seen. Alum adjuvantation increased immunogenicity as did higher antigen content and a three dose schedule. This phase 1 trial supports further development of this eVLP CMV vaccine candidate.
Collapse
Affiliation(s)
- Joanne M Langley
- Canadian Center for Vaccinology, (Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority), Canada; Departments of Pediatrics, Dalhousie University, Nova Scotia, Canada; Community Health and Epidemiology, Dalhousie University, Nova Scotia, Canada.
| | - Soren Gantt
- CHU Sainte-Justine Research Centre and the Departments of Microbiology and Pediatrics, University of Montreal (formerly at the Vaccine Evaluation Center, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver BC at the time of the study), Canada
| | - Scott A Halperin
- Canadian Center for Vaccinology, (Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority), Canada; Departments of Pediatrics, Dalhousie University, Nova Scotia, Canada; Microbiology and Immunology, Dalhousie University, Nova Scotia, Canada
| | - Brian Ward
- McGill University Health Centre Vaccine Study Centre, Montreal, PQ, Canada
| | - Shelly McNeil
- Canadian Center for Vaccinology, (Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority), Canada; Departments of Pediatrics, Dalhousie University, Nova Scotia, Canada; Community Health and Epidemiology, Dalhousie University, Nova Scotia, Canada; Department of Medicine, Dalhousie University, Nova Scotia, Canada
| | - Lingyun Ye
- Canadian Center for Vaccinology, (Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority), Canada
| | - Yun Cai
- Canadian Center for Vaccinology, (Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority), Canada
| | - Bruce Smith
- Canadian Center for Vaccinology, (Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority), Canada
| | | | | |
Collapse
|
18
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
19
|
Donnell D, Kansiime S, Glidden DV, Luedtke A, Gilbert PB, Gao F, Janes H. Study design approaches for future active-controlled HIV prevention trials. STATISTICAL COMMUNICATIONS IN INFECTIOUS DISEASES 2024; 15:20230002. [PMID: 38250627 PMCID: PMC10798828 DOI: 10.1515/scid-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
Objectives Vigorous discussions are ongoing about future efficacy trial designs of candidate human immunodeficiency virus (HIV) prevention interventions. The study design challenges of HIV prevention interventions are considerable given rapid evolution of the prevention landscape and evidence of multiple modalities of highly effective products; future trials will likely be 'active-controlled', i.e., not include a placebo arm. Thus, novel design approaches are needed to accurately assess new interventions against these highly effective active controls. Methods To discuss active control design challenges and identify solutions, an initial virtual workshop series was hosted and supported by the International AIDS Enterprise (October 2020-March 2021). Subsequent symposia discussions continue to advance these efforts. As the non-inferiority design is an important conceptual reference design for guiding active control trials, we adopt several of its principles in our proposed design approaches. Results We discuss six potential study design approaches for formally evaluating absolute prevention efficacy given data from an active-controlled HIV prevention trial including using data from: 1) a registrational cohort, 2) recency assays, 3) an external trial placebo arm, 4) a biomarker of HIV incidence/exposure, 5) an anti-retroviral drug concentration as a mediator of prevention efficacy, and 6) immune biomarkers as a mediator of prevention efficacy. Conclusions Our understanding of these proposed novel approaches to future trial designs remains incomplete and there are many future statistical research needs. Yet, each of these approaches, within the context of an active-controlled trial, have the potential to yield reliable evidence of efficacy for future biomedical interventions.
Collapse
Affiliation(s)
- Deborah Donnell
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Sheila Kansiime
- Medical Research Council/Uganda Virus Research Council and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Medical Research Council International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - David V Glidden
- University of California San Francisco, San Francisco, CA, USA
| | | | - Peter B Gilbert
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Fei Gao
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Holly Janes
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Bolton JS, MacGill RS, Locke E, Regules JA, Bergmann-Leitner ES. Novel antibody competition binding assay identifies distinct serological profiles associated with protection. Front Immunol 2023; 14:1303446. [PMID: 38152401 PMCID: PMC10752609 DOI: 10.3389/fimmu.2023.1303446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Pre-erythrocytic malaria vaccines hold the promise of inducing sterile protection thereby preventing the morbidity and mortality associated with Plasmodium infection. The main surface antigen of P. falciparum sporozoites, i.e., the circumsporozoite protein (CSP), has been extensively explored as a target of such vaccines with significant success in recent years. Systematic adjuvant selection, refinements of the immunization regimen, and physical properties of the antigen may all contribute to the potential of increasing the efficacy of CSP-based vaccines. Protection appears to be dependent in large part on CSP antibodies. However due to a knowledge gap related to the exact correlates of immunity, there is a critical need to improve our ability to down select candidates preclinically before entering clinical trials including with controlled human malaria infections (CHMI). Methods We developed a novel multiplex competition assay based on well-characterized monoclonal antibodies (mAbs) that target crucial epitopes across the CSP molecule. This new tool assesses both, quality and epitope-specific concentrations of vaccine-induced antibodies by measuring their equivalency with a panel of well-characterized, CSP-epitope-specific mAbs. Results Applying this method to RTS,S-immune sera from a CHMI trial demonstrated a quantitative epitope-specificity profile of antibody responses that can differentiate between protected vs. nonprotected individuals. Aligning vaccine efficacy with quantitation of the epitope fine specificity results of this equivalency assay reveals the importance of epitope specificity. Discussion The newly developed serological equivalence assay will inform future vaccine design and possibly even adjuvant selection. This methodology can be adapted to other antigens and disease models, when a panel of relevant mAbs exists, and could offer a unique tool for comparing and down-selecting vaccine formulations.
Collapse
Affiliation(s)
- Jessica S. Bolton
- Biologics Research & Development, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Randall S. MacGill
- Center for Vaccine Innovation and Access, PATH, Washington, DC, United States
| | - Emily Locke
- Center for Vaccine Innovation and Access, PATH, Washington, DC, United States
| | - Jason A. Regules
- Biologics Research & Development, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Elke S. Bergmann-Leitner
- Biologics Research & Development, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| |
Collapse
|
21
|
Bottero D, Rudi E, Martin Aispuro P, Zurita E, Gaillard E, Gonzalez Lopez Ledesma MM, Malito J, Stuible M, Ambrosis N, Durocher Y, Gamarnik AV, Wigdorovitz A, Hozbor D. Heterologous booster with a novel formulation containing glycosylated trimeric S protein is effective against Omicron. Front Immunol 2023; 14:1271209. [PMID: 38022542 PMCID: PMC10667599 DOI: 10.3389/fimmu.2023.1271209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, we evaluated the efficacy of a heterologous three-dose vaccination schedule against the Omicron BA.1 SARS-CoV-2 variant infection using a mouse intranasal challenge model. The vaccination schedules tested in this study consisted of a primary series of 2 doses covered by two commercial vaccines: an mRNA-based vaccine (mRNA1273) or a non-replicative vector-based vaccine (AZD1222/ChAdOx1, hereafter referred to as AZD1222). These were followed by a heterologous booster dose using one of the two vaccine candidates previously designed by us: one containing the glycosylated and trimeric spike protein (S) from the ancestral virus (SW-Vac 2µg), and the other from the Delta variant of SARS-CoV-2 (SD-Vac 2µg), both formulated with Alhydrogel as an adjuvant. For comparison purposes, homologous three-dose schedules of the commercial vaccines were used. The mRNA-based vaccine, whether used in heterologous or homologous schedules, demonstrated the best performance, significantly increasing both humoral and cellular immune responses. In contrast, for the schedules that included the AZD1222 vaccine as the primary series, the heterologous schemes showed superior immunological outcomes compared to the homologous 3-dose AZD1222 regimen. For these schemes no differences were observed in the immune response obtained when SW-Vac 2µg or SD-Vac 2µg were used as a booster dose. Neutralizing antibody levels against Omicron BA.1 were low, especially for the schedules using AZD1222. However, a robust Th1 profile, known to be crucial for protection, was observed, particularly for the heterologous schemes that included AZD1222. All the tested schedules were capable of inducing populations of CD4 T effector, memory, and follicular helper T lymphocytes. It is important to highlight that all the evaluated schedules demonstrated a satisfactory safety profile and induced multiple immunological markers of protection. Although the levels of these markers were different among the tested schedules, they appear to complement each other in conferring protection against intranasal challenge with Omicron BA.1 in K18-hACE2 mice. In summary, the results highlight the potential of using the S protein (either ancestral Wuhan or Delta variant)-based vaccine formulation as heterologous boosters in the management of COVID-19, particularly for certain commercial vaccines currently in use.
Collapse
Affiliation(s)
- Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Erika Rudi
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Pablo Martin Aispuro
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Eugenia Zurita
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Maria M. Gonzalez Lopez Ledesma
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan Malito
- INCUINTA Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), HURLINGHAM, Instituto Nacional de Tecnología Agropecuaria (INTA) Castelar, Buenos Aires, Argentina
| | - Matthew Stuible
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - Nicolas Ambrosis
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - Andrea V. Gamarnik
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Wigdorovitz
- INCUINTA Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), HURLINGHAM, Instituto Nacional de Tecnología Agropecuaria (INTA) Castelar, Buenos Aires, Argentina
| | - Daniela Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| |
Collapse
|
22
|
Cardona RSB, Weckx LY, de Moraes-Pinto MI, Ramos BCF, Dos Santos ARA, Spina FG, de Araújo BC, Clemens R, Clemens SAC. Pertussis antibodies and vaccination coverage among healthcare professionals in Brazil is inadequate: A cross-sectional serological study. Vaccine 2023; 41:5769-5774. [PMID: 37573201 DOI: 10.1016/j.vaccine.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
INTRODUCTION Worldwide, tetanus-diphtheria-acellular pertussis (Tdap) vaccination coverage of healthcare professionals (HCPs) is below 40%, but this data is not available for Brazil. We hypothesize that a high number of HCPs are not immune to pertussis in Brazil. Main objective was to determine the seroprevalence of anti-pertussis toxin (anti-PT IgG) among HCPs. Secondary objectives were to evaluate Tdap vaccination coverage, to assess predictive factors associated with anti-PT IgG, and to estimate the decay of anti-PT IgG and time to Tdap vaccination. METHODS Observational cross-sectional serological study in 352 HCPs who worked at São Paulo Hospital - Federal University of São Paulo (UNIFESP) in 2020, approved by UNIFESP Ethics Committee. Data collected included sociodemographics, knowledge about Tdap, and vaccination status. Anti-PT IgG were quantified by ELISA: <10 IU/mL seronegative and ≥ 10-1000 IU/mL seropositive. Titers ≥ 10-50 IU/mL were classified low positivity, indicating no recent B. pertussis infection or Tdap vaccination; >50 IU/mL high positivity, indicating recent B. pertussis infection or Tdap vaccination, and > 100 IU/mL as acute B. pertussis infection or Tdap vaccination in the previous year. Comparisons were done by Chi-square test, multivariable logistic regression, and Pearsońs correlation, at 5% p-level. RESULTS 331/352 HCPs were not aware the Brazilian National Immunization Program recommends Tdap for all HCPs and pregnant women. 68/339 HCPs received Tdap (mean 3.1 ± 2.0 years). 55/352 were seronegative for pertussis, all unvaccinated. 56/271 with no history of Tdap vaccination had high positivity. The probability of anti-PT IgG > 50 IU/mL was 11.5 times higher in Tdap vaccinated HCPs than in non-vaccinated (p < 0.001). There was a weak but significant correlation between anti-PT IgG and interval of Tdap vaccination (r = 0.404; p = 0.001). Anti-PT IgG dropped 5 IU/mL/year (p = 0.001). CONCLUSION Better education of HCPs on needs and benefits of Tdap vaccination is critical. Goals must be to improve HCPs vaccination coverage.
Collapse
Affiliation(s)
| | - Lily Yin Weckx
- Federal University of São Paulo, Rua Borges Lagoa 770, Vila Clementino, São Paulo - SP, 04038-001 São Paulo, Brazil
| | - Maria Isabel de Moraes-Pinto
- Federal University of São Paulo, Rua Borges Lagoa 770, Vila Clementino, São Paulo - SP, 04038-001 São Paulo, Brazil
| | | | | | - Fernanda Garcia Spina
- Federal University of São Paulo, Rua Borges Lagoa 770, Vila Clementino, São Paulo - SP, 04038-001 São Paulo, Brazil
| | - Beatriz Collaço de Araújo
- Federal University of São Paulo, Rua Borges Lagoa 770, Vila Clementino, São Paulo - SP, 04038-001 São Paulo, Brazil
| | - Ralf Clemens
- International Vaccine Institute, 1 Gwanak-ro, Nakseongdae-dong, Gwanak-gu, Seoul, South Korea
| | | |
Collapse
|
23
|
Goffin E, Du X, Hemmi S, Machiels B, Gillet L. A Single Oral Immunization with a Replication-Competent Adenovirus-Vectored Vaccine Protects Mice from Influenza Respiratory Infection. J Virol 2023; 97:e0013523. [PMID: 37338377 PMCID: PMC10373536 DOI: 10.1128/jvi.00135-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
The development of effective and flexible vaccine platforms is a major public health challenge, especially in the context of influenza vaccines that have to be renewed every year. Adenoviruses (AdVs) are easy to produce and have a good safety and efficacy profile when administered orally, as demonstrated by the long-term use of oral AdV-4 and -7 vaccines in the U.S. military. These viruses therefore appear to be the ideal backbone for the development of oral replicating vector vaccines. However, research into these vaccines is limited by the ineffectiveness of human AdV replication in laboratory animals. The use of mouse AdV type 1 (MAV-1) in its natural host allows infection to be studied under replicating conditions. Here, we orally vaccinated mice with a MAV-1 vector expressing influenza hemagglutinin (HA) to assess the protection conferred against an intranasal challenge of influenza. We showed that a single oral immunization with this vaccine generates influenza-specific and -neutralizing antibodies and completely protects mice against clinical signs and viral replication, similar to traditional inactivated vaccines. IMPORTANCE Given the constant threat of pandemics and the need for annual vaccination against influenza and possibly emerging agents such as SARS-CoV-2, new types of vaccines that are easier to administer and therefore more widely accepted are a critical public health need. Here, using a relevant animal model, we have shown that replicative oral AdV vaccine vectors can help make vaccination against major respiratory diseases more available, better accepted, and therefore more effective. These results could be of major importance in the coming years in the fight against seasonal or emerging respiratory diseases such as COVID-19.
Collapse
Affiliation(s)
- Emeline Goffin
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège, Belgium
| | - Xiang Du
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège, Belgium
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Bénédicte Machiels
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège, Belgium
| | - Laurent Gillet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège, Belgium
| |
Collapse
|
24
|
Avumegah MS, Mattiuzzo G, Särnefält A, Page M, Makar K, Lathey J, Kim J, Yimer SA, Craig D, Knezevic I, Bernasconi V, Kristiansen PA, Kromann I. Availability and use of Standards in vaccine development. NPJ Vaccines 2023; 8:95. [PMID: 37391580 PMCID: PMC10313826 DOI: 10.1038/s41541-023-00692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/30/2023] [Indexed: 07/02/2023] Open
Abstract
Reference materials are critical in assay development for calibrating and assessing their suitability. The devasting nature of the COVID-19 pandemic and subsequent proliferation of vaccine platforms and technologies has meant that there is even a greater need for standards for immunoassay development, which are critical to assess and compare vaccines' responses. Equally important are the standards needed to control the vaccine manufacturing processes. Standardized vaccine characterization assays throughout process development are essential for a successful Chemistry, Manufacturing and Controls (CMC) strategy. In this perspective paper, we advocate for reference material incorporation into assays and their calibration to International Standards from preclinical vaccine development through control testing and provide insight into why this is necessary. We also provide information on the availability of WHO international antibody standards for CEPI-priority pathogens.
Collapse
Affiliation(s)
| | - Giada Mattiuzzo
- Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, UK
| | - Anna Särnefält
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Mark Page
- Medicines and Healthcare products Regulatory Agency (MHRA), Potters Bar, UK
| | - Karen Makar
- Bill & Melinda Gates Foundation (BMGF), Seattle, USA
| | - Janet Lathey
- National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, USA
| | - June Kim
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | | | - Danielle Craig
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | | | | | | | - Ingrid Kromann
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| |
Collapse
|
25
|
Gray-Gaillard SL, Solis S, Chen HM, Monteiro C, Ciabattoni G, Samanovic MI, Cornelius AR, Williams T, Geesey E, Rodriguez M, Ortigoza MB, Ivanova EN, Koralov SB, Mulligan MJ, Herati RS. Inflammation durably imprints memory CD4+ T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.11.15.516351. [PMID: 36415470 PMCID: PMC9681040 DOI: 10.1101/2022.11.15.516351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Adaptive immune responses are induced by vaccination and infection, yet little is known about how CD4+ T cell memory differs when primed in these two contexts. Notably, viral infection is generally associated with higher levels of systemic inflammation than is vaccination. To assess whether the inflammatory milieu at the time of CD4+ T cell priming has long-term effects on memory, we compared Spike-specific memory CD4+ T cells in 22 individuals around the time of the participants' third SARS-CoV-2 mRNA vaccination, with stratification by whether the participants' first exposure to Spike was via virus or mRNA vaccine. Multimodal single-cell profiling of Spike-specific CD4+ T cells revealed 755 differentially expressed genes that distinguished infection- and vaccine-primed memory CD4+ T cells. Spike-specific CD4+ T cells from infection-primed individuals had strong enrichment for cytotoxicity and interferon signaling genes, whereas Spike-specific CD4+ T cells from vaccine-primed individuals were enriched for proliferative pathways by gene set enrichment analysis. Moreover, Spike-specific memory CD4+ T cells established by infection had distinct epigenetic landscapes driven by enrichment of IRF-family transcription factors, relative to T cells established by mRNA vaccination. This transcriptional imprint was minimally altered following subsequent mRNA vaccination or breakthrough infection, reflecting the strong bias induced by the inflammatory environment during initial memory differentiation. Together, these data suggest that the inflammatory context during CD4+ T cell priming is durably imprinted in the memory state at transcriptional and epigenetic levels, which has implications for personalization of vaccination based on prior infection history.
Collapse
Affiliation(s)
| | - Sabrina Solis
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Han M. Chen
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Clarice Monteiro
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Grace Ciabattoni
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| | - Marie I. Samanovic
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Amber R. Cornelius
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Tijaana Williams
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Emilie Geesey
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Miguel Rodriguez
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Mila Brum Ortigoza
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Ellie N. Ivanova
- Department of Pathology, New York University School of Medicine; New York, NY, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine; New York, NY, USA
| | - Mark J. Mulligan
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| | - Ramin Sedaghat Herati
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| |
Collapse
|
26
|
Boero E, Vezzani G, Micoli F, Pizza M, Rossi O. Functional assays to evaluate antibody-mediated responses against Shigella: a review. Front Cell Infect Microbiol 2023; 13:1171213. [PMID: 37260708 PMCID: PMC10227456 DOI: 10.3389/fcimb.2023.1171213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
Shigella is a major global pathogen and the etiological agent of shigellosis, a diarrheal disease that primarily affects low- and middle-income countries. Shigellosis is characterized by a complex, multistep pathogenesis during which bacteria use multiple invasion proteins to manipulate and invade the intestinal epithelium. Antibodies, especially against the O-antigen and some invasion proteins, play a protective role as titres against specific antigens inversely correlate with disease severity; however, the context of antibody action during pathogenesis remains to be elucidated, especially with Shigella being mostly an intracellular pathogen. In the absence of a correlate of protection, functional assays rebuilding salient moments of Shigella pathogenesis can improve our understanding of the role of protective antibodies in blocking infection and disease. In vitro assays are important tools to build correlates of protection. Only recently animal models to recapitulate human pathogenesis, often not in full, have been established. This review aims to discuss in vitro assays to evaluate the functionality of anti-Shigella antibodies in polyclonal sera in light of the multistep and multifaced Shigella infection process. Indeed, measurement of antibody level alone may limit the evaluation of full vaccine potential. Serum bactericidal assay (SBA), and other functional assays such as opsonophagocytic killing assays (OPKA), and adhesion/invasion inhibition assays (AIA), are instead physiologically relevant and may provide important information regarding the role played by these effector mechanisms in protective immunity. Ultimately, the review aims at providing scientists in the field with new points of view regarding the significance of functional assays of choice which may be more representative of immune-mediated protection mechanisms.
Collapse
Affiliation(s)
- Elena Boero
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| | - Mariagrazia Pizza
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., Siena, Italy
| |
Collapse
|
27
|
Krishnan N, Peng FX, Mohapatra A, Fang RH, Zhang L. Genetically engineered cellular nanoparticles for biomedical applications. Biomaterials 2023; 296:122065. [PMID: 36841215 PMCID: PMC10542936 DOI: 10.1016/j.biomaterials.2023.122065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
In recent years, nanoparticles derived from cellular membranes have been increasingly explored for the prevention and treatment of human disease. With their flexible design and ability to interface effectively with the surrounding environment, these biomimetic nanoparticles can outperform their traditional synthetic counterparts. As their popularity has increased, researchers have developed novel ways to modify the nanoparticle surface to introduce new or enhanced capabilities. Moving beyond naturally occurring materials derived from wild-type cells, genetic manipulation has proven to be a robust and flexible method by which nanoformulations with augmented functionalities can be generated. In this review, an overview of genetic engineering approaches to express novel surface proteins is provided, followed by a discussion on the various biomedical applications of genetically modified cellular nanoparticles.
Collapse
Affiliation(s)
- Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Fei-Xing Peng
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Animesh Mohapatra
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
28
|
Hill JA, Martens MJ, Young JAH, Bhavsar K, Kou J, Chen M, Lee LW, Baluch A, Dhodapkar MV, Nakamura R, Peyton K, Shahid Z, Armistead P, Westervelt P, McCarty J, McGuirk J, Hamadani M, DeWolf S, Hosszu K, Sharon E, Spahn A, Toor AA, Waldvogel S, Greenberger LM, Auletta JJ, Horowitz MM, Riches ML, Perales MA. SARS-CoV-2 vaccination in the first year after allogeneic hematopoietic cell transplant: a prospective, multicentre, observational study. EClinicalMedicine 2023; 59:101983. [PMID: 37128256 PMCID: PMC10133891 DOI: 10.1016/j.eclinm.2023.101983] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Background The optimal timing for SARS-CoV-2 vaccines within the first year after allogeneic hematopoietic cell transplant (HCT) is poorly understood. Methods We conducted a prospective, multicentre, observational study of allogeneic HCT recipients who initiated SARS-CoV-2 vaccinations within 12 months of HCT. Participants were enrolled at 22 academic cancer centers across the United States. Participants of any age who were planning to receive a first post-HCT SARS-CoV-2 vaccine within 12 months of HCT were eligible. We obtained blood prior to and after each vaccine dose for up to four vaccine doses, with an end-of-study sample seven to nine months after enrollment. We tested for SARS-CoV-2 spike protein (anti-S) IgG; nucleocapsid protein (anti-N) IgG; neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains; and SARS-CoV-2-specific T-cell receptors (TCRs). The primary outcome was a comparison of anti-S IgG titers at the post-V2 time point in participants initiating vaccinations <4 months versus 4-12 months after HCT using a propensity-adjusted analysis. We also evaluated factors associated with high-level anti-S IgG titers (≥2403 U/mL) in logistic regression models. Findings Between April 22, 2021 and November 17, 2021, 175 allogeneic HCT recipients were enrolled in the study, of whom all but one received mRNA SARS-CoV-2 vaccines. SARS-CoV-2 anti-S IgG titers, neutralizing antibody titers, and TCR breadth and depth did not significantly differ at all tested time points following the second vaccination among those initiating vaccinations <4 months versus 4-12 months after HCT. Anti-S IgG ≥2403 U/mL correlated with neutralizing antibody levels similar to those observed in a prior study of non-immunocompromised individuals, and 57% of participants achieved anti-S IgG ≥2403 U/mL at the end-of-study time point. In models adjusted for SARS-CoV-2 infection pre-enrollment, SARS-CoV-2 vaccination pre-HCT, CD19+ B-cell count, CD4+ T-cell count, and age (as applicable to the model), vaccine initiation timing was not associated with high-level anti-S IgG titers at the post-V2, post-V3, or end-of-study time points. Notably, prior graft-versus-host-disease (GVHD) or use of immunosuppressive medications were not associated with high-level anti-S IgG titers. Grade ≥3 vaccine-associated adverse events were infrequent. Interpretation These data support starting mRNA SARS-CoV-2 vaccination three months after HCT, irrespective of concurrent GVHD or use of immunosuppressive medications. This is one of the largest prospective analyses of vaccination for any pathogen within the first year after allogeneic HCT and supports current guidelines for SARS-CoV-2 vaccination starting three months post-HCT. Additionally, there are few studies of mRNA vaccine formulations for other pathogens in HCT recipients, and these data provide encouraging proof-of-concept for the utility of early vaccination targeting additional pathogens with mRNA vaccine platforms. Funding National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.
Collapse
Affiliation(s)
- Joshua A. Hill
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael J. Martens
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Kavita Bhavsar
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianqun Kou
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Min Chen
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lik Wee Lee
- Adaptive Biotechnologies Corp, Seattle, WA, USA
| | - Aliyah Baluch
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | - Zainab Shahid
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Armistead
- University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Peter Westervelt
- Barnes-Jewish Hospital, Washington University, St. Louis, MO, USA
| | - John McCarty
- Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Susan DeWolf
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kinga Hosszu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elad Sharon
- National Cancer Institute, Bethesda, MD, USA
| | - Ashley Spahn
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Amir A. Toor
- Virginia Commonwealth University, Richmond, VA, USA
| | - Stephanie Waldvogel
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | | | - Jeffery J. Auletta
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Mary M. Horowitz
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marcie L. Riches
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Miguel-Angel Perales
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weil Cornell Medical College, New York, NY, USA
| |
Collapse
|
29
|
Moore KA, Leighton T, Ostrowsky JT, Anderson CJ, Danila RN, Ulrich AK, Lackritz EM, Mehr AJ, Baric RS, Baylor NW, Gellin BG, Gordon JL, Krammer F, Perlman S, Rees HV, Saville M, Weller CL, Osterholm MT. A research and development (R&D) roadmap for broadly protective coronavirus vaccines: A pandemic preparedness strategy. Vaccine 2023; 41:2101-2112. [PMID: 36870874 PMCID: PMC9941884 DOI: 10.1016/j.vaccine.2023.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Broadly protective coronavirus vaccines are an important tool for protecting against future SARS-CoV-2 variants and could play a critical role in mitigating the impact of future outbreaks or pandemics caused by novel coronaviruses. The Coronavirus Vaccines Research and Development (R&D) Roadmap (CVR) is aimed at promoting the development of such vaccines. The CVR, funded by the Bill & Melinda Gates Foundation and The Rockefeller Foundation, was generated through a collaborative and iterative process, which was led by the Center for Infectious Disease Research and Policy (CIDRAP) at the University of Minnesota and involved 50 international subject matter experts and recognized leaders in the field. This report summarizes the major issues and areas of research outlined in the CVR and identifies high-priority milestones. The CVR covers a 6-year timeframe and is organized into five topic areas: virology, immunology, vaccinology, animal and human infection models, and policy and finance. Included in each topic area are key barriers, gaps, strategic goals, milestones, and additional R&D priorities. The roadmap includes 20 goals and 86 R&D milestones, 26 of which are ranked as high priority. By identifying key issues, and milestones for addressing them, the CVR provides a framework to guide funding and research campaigns that promote the development of broadly protective coronavirus vaccines.
Collapse
Affiliation(s)
- Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA; Center for Infectious Disease Research and Policy, C315 Mayo Memorial Building, MMC 263, 420 Delaware Street, SE, Minneapolis, Minnesota 55455, USA.
| | - Tabitha Leighton
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cory J Anderson
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Angela K Ulrich
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eve M Lackritz
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ralph S Baric
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | - Jennifer L Gordon
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Florian Krammer
- Department of Microbiology, Department of Pathology, Molecular and Cell-Based Medicine, and Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | | | - Helen V Rees
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Melanie Saville
- Coalition for Epidemic Preparedness Innovations, London, United Kingdom
| | | | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
30
|
deCamp AC, Corcoran MM, Fulp WJ, Willis JR, Cottrell CA, Bader DLV, Kalyuzhniy O, Leggat DJ, Cohen KW, Hyrien O, Menis S, Finak G, Ballweber-Fleming L, Srikanth A, Plyler JR, Rahaman F, Lombardo A, Philiponis V, Whaley RE, Seese A, Brand J, Ruppel AM, Hoyland W, Mahoney CR, Cagigi A, Taylor A, Brown DM, Ambrozak DR, Sincomb T, Mullen TM, Maenza J, Kolokythas O, Khati N, Bethony J, Roederer M, Diemert D, Koup RA, Laufer DS, McElrath JM, McDermott AB, Hedestam GBK, Schief WR. Human immunoglobulin gene allelic variation impacts germline-targeting vaccine priming. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.10.23287126. [PMID: 36993183 PMCID: PMC10055468 DOI: 10.1101/2023.03.10.23287126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Vaccine priming immunogens that activate germline precursors for broadly neutralizing antibodies (bnAbs) have promise for development of precision vaccines against major human pathogens. In a clinical trial of the eOD-GT8 60mer germline-targeting immunogen, higher frequencies of vaccine-induced VRC01-class bnAb-precursor B cells were observed in the high dose compared to the low dose group. Through immunoglobulin heavy chain variable (IGHV) genotyping, statistical modeling, quantification of IGHV1-2 allele usage and B cell frequencies in the naive repertoire for each trial participant, and antibody affinity analyses, we found that the difference between dose groups in VRC01-class response frequency was best explained by IGHV1-2 genotype rather than dose and was most likely due to differences in IGHV1-2 B cell frequencies for different genotypes. The results demonstrate the need to define population-level immunoglobulin allelic variations when designing germline-targeting immunogens and evaluating them in clinical trials. One-Sentence Summary Human genetic variation can modulate the strength of vaccine-induced broadly neutralizing antibody precursor B cell responses.
Collapse
|
31
|
Kick AR, Grete AF, Crisci E, Almond GW, Käser T. Testable Candidate Immune Correlates of Protection for Porcine Reproductive and Respiratory Syndrome Virus Vaccination. Vaccines (Basel) 2023; 11:vaccines11030594. [PMID: 36992179 DOI: 10.3390/vaccines11030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an on-going problem for the worldwide pig industry. Commercial and experimental vaccinations often demonstrate reduced pathology and improved growth performance; however, specific immune correlates of protection (CoP) for PRRSV vaccination have not been quantified or even definitively postulated: proposing CoP for evaluation during vaccination and challenge studies will benefit our collective efforts towards achieving protective immunity. Applying the breadth of work on human diseases and CoP to PRRSV research, we advocate four hypotheses for peer review and evaluation as appropriate testable CoP: (i) effective class-switching to systemic IgG and mucosal IgA neutralizing antibodies is required for protective immunity; (ii) vaccination should induce virus-specific peripheral blood CD4+ T-cell proliferation and IFN-γ production with central memory and effector memory phenotypes; cytotoxic T-lymphocytes (CTL) proliferation and IFN-γ production with a CCR7- phenotype that should migrate to the lung; (iii) nursery, finishing, and adult pigs will have different CoP; (iv) neutralizing antibodies provide protection and are rather strain specific; T cells confer disease prevention/reduction and possess greater heterologous recognition. We believe proposing these four CoP for PRRSV can direct future vaccine design and improve vaccine candidate evaluation.
Collapse
Affiliation(s)
- Andrew R Kick
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Alicyn F Grete
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Glen W Almond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
32
|
Haynes BF, Wiehe K, Borrow P, Saunders KO, Korber B, Wagh K, McMichael AJ, Kelsoe G, Hahn BH, Alt F, Shaw GM. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat Rev Immunol 2023; 23:142-158. [PMID: 35962033 PMCID: PMC9372928 DOI: 10.1038/s41577-022-00753-w] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 01/07/2023]
Abstract
After nearly four decades of research, a safe and effective HIV-1 vaccine remains elusive. There are many reasons why the development of a potent and durable HIV-1 vaccine is challenging, including the extraordinary genetic diversity of HIV-1 and its complex mechanisms of immune evasion. HIV-1 envelope glycoproteins are poorly recognized by the immune system, which means that potent broadly neutralizing antibodies (bnAbs) are only infrequently induced in the setting of HIV-1 infection or through vaccination. Thus, the biology of HIV-1-host interactions necessitates novel strategies for vaccine development to be designed to activate and expand rare bnAb-producing B cell lineages and to select for the acquisition of critical improbable bnAb mutations. Here we discuss strategies for the induction of potent and broad HIV-1 bnAbs and outline the steps that may be necessary for ultimate success.
Collapse
Affiliation(s)
- Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Department of Immunology, Duke University of School of Medicine, Durham, NC, USA.
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Bette Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Kshitij Wagh
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University of School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Cohen D, Ashkenazi S, Schneerson R, Farzam N, Bialik A, Meron-Sudai S, Asato V, Goren S, Baran TZ, Muhsen K, Gilbert PB, MacLennan CA. Threshold protective levels of serum IgG to Shigella lipopolysaccharide: re-analysis of Shigella vaccine trials data. Clin Microbiol Infect 2023; 29:366-371. [PMID: 36243351 PMCID: PMC9993342 DOI: 10.1016/j.cmi.2022.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Establishing a correlate of protection is essential for the development and licensure of Shigella vaccines. We examined potential threshold levels of serum IgG to Shigella lipopolysaccharide (LPS) that could predict protection against shigellosis. METHODS We performed new analyses of serologic and vaccine efficacy (VE) data from two randomized vaccine-controlled trials of the Shigella sonnei-Pseudomonas aeruginosa recombinant exoprotein A (rEPA) conjugate conducted in young adults and children aged 1-4 years in Israel. Adults received either S. sonnei-rEPA (n = 183) or control vaccines (n = 277). Children received the S. sonnei-rEPA conjugate (n = 1384) or S. flexneri 2a-rEPA conjugate (n = 1315). VE against culture-proven shigellosis was determined. Sera were tested for IgG anti-S. sonnei LPS antibodies. We assessed the association of various levels of IgG anti-S. sonnei LPS antibodies with S. sonnei shigellosis risk using logistic regression models and the reverse cumulative distribution of IgG levels. RESULTS Among adults, four vaccinees and 23 controls developed S. sonnei shigellosis; the VE was 74% (95% CI, 28-100%). A threshold of ≥1:1600 IgG anti-S. sonnei LPS titre was associated with a reduced risk of S. sonnei shigellosis and a predicted VE of 73.6% (95% CI, 65-80%). The IgG anti-S. sonnei LPS correlated with serum bactericidal titres. In children, a population-based level of 4.5 ELISA Units (EU) corresponding to 1:1072 titre, predicted VE of 63%, versus 71% observed VE in children aged 3-4 years. The predicted VE in children aged 2-4 years was 49%, consistent with the 52% observed VE. CONCLUSION Serum IgG anti-S. sonnei LPS threshold levels can predict the degree of VE and can be used for the evaluation of new vaccine candidates.
Collapse
Affiliation(s)
- Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Shai Ashkenazi
- Adelson School of Medicine, Ariel University, Ariel, Israel; Schneider Children's Medical Center, Petach Tikva, Israel
| | - Rachel Schneerson
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nahid Farzam
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Ramat Gan, Tel Aviv, Israel
| | - Anya Bialik
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shiri Meron-Sudai
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Valeria Asato
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sophy Goren
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tomer Ziv Baran
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Calman A MacLennan
- Bill and Melinda Gates Foundation, London, United Kingdom; Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Pedenko B, Sulbaran G, Guilligay D, Effantin G, Weissenhorn W. SARS-CoV-2 S Glycoprotein Stabilization Strategies. Viruses 2023; 15:v15020558. [PMID: 36851772 PMCID: PMC9960574 DOI: 10.3390/v15020558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The SARS-CoV-2 pandemic has again shown that structural biology plays an important role in understanding biological mechanisms and exploiting structural data for therapeutic interventions. Notably, previous work on SARS-related glycoproteins has paved the way for the rapid structural determination of the SARS-CoV-2 S glycoprotein, which is the main target for neutralizing antibodies. Therefore, all vaccine approaches aimed to employ S as an immunogen to induce neutralizing antibodies. Like all enveloped virus glycoproteins, SARS-CoV-2 S native prefusion trimers are in a metastable conformation, which primes the glycoprotein for the entry process via membrane fusion. S-mediated entry is associated with major conformational changes in S, which can expose many off-target epitopes that deviate vaccination approaches from the major aim of inducing neutralizing antibodies, which mainly target the native prefusion trimer conformation. Here, we review the viral glycoprotein stabilization methods developed prior to SARS-CoV-2, and applied to SARS-CoV-2 S, in order to stabilize S in the prefusion conformation. The importance of structure-based approaches is highlighted by the benefits of employing stabilized S trimers versus non-stabilized S in vaccines with respect to their protective efficacy.
Collapse
|
35
|
Validation of a SARS-CoV-2 Surrogate Virus Neutralization Test in Recovered and Vaccinated Healthcare Workers. Viruses 2023; 15:v15020426. [PMID: 36851641 PMCID: PMC9958856 DOI: 10.3390/v15020426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/03/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Vaccination against COVID-19 is the main public health approach to fight against the pandemic. The Spike (S) glycoprotein of SARS-CoV-2 is the principal target of the neutralizing humoral response. We evaluated the analytical and clinical performances of a surrogate virus neutralization test (sVNT) compared to conventional neutralization tests (cVNTs) and anti-S eCLIA assays in recovered and/or vaccinated healthcare workers. Our results indicate that sVNTs displayed high specificity and no cross-reactivity. Both eCLIA and sVNT immunoassays were good at identifying cVNT serum dilutions ≥1:16. The optimal thresholds when identifying cVNT titers ≥1:16, were 74.5 U/mL and 49.4 IU/mL for anti-S eCLIA and sVNT, respectively. Our data show that neutralizing antibody titers (Nab) differ from one individual to another and may diminish over time. Specific assays such as sVNTs could offer a reliable complementary tool to routine anti-S serological assays.
Collapse
|
36
|
Plotkin SA. Recent updates on correlates of vaccine-induced protection. Front Immunol 2023; 13:1081107. [PMID: 36776392 PMCID: PMC9912984 DOI: 10.3389/fimmu.2022.1081107] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/02/2022] [Indexed: 02/14/2023] Open
Abstract
Correlates of protection are key for vaccine development against any pathogen. In this paper we summarize recent information about correlates for vaccines against dengue, Ebola, influenza, pneumococcal, respiratory syncytial virus, rotavirus, shigella, tuberculosis and Zika virus.
Collapse
Affiliation(s)
- Stanley A. Plotkin
- University of Pennsylvania, Philadelphia, PA, United States,Consultant, Doylestown, PA, United States,*Correspondence: Stanley A. Plotkin,
| |
Collapse
|
37
|
Siangphoe U, Baden LR, El Sahly HM, Essink B, Ali K, Berman G, Tomassini JE, Deng W, Pajon R, McPhee R, Dixit A, Das R, Miller JM, Zhou H. Associations of Immunogenicity and Reactogenicity After Severe Acute Respiratory Syndrome Coronavirus 2 mRNA-1273 Vaccine in the COVE and TeenCOVE Trials. Clin Infect Dis 2023; 76:271-280. [PMID: 36130187 PMCID: PMC10202429 DOI: 10.1093/cid/ciac780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/09/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The reactogenicity and immunogenicity of coronavirus disease 2019 (COVID-19) vaccines are well studied. Little is known regarding the relationship between immunogenicity and reactogenicity of COVID-19 vaccines. METHODS This study assessed the association between immunogenicity and reactogenicity after 2 mRNA-1273 (100 µg) injections in 1671 total adolescent and adult participants (≥12 years) from the primary immunogenicity sets of the blinded periods of the Coronavirus Efficacy (COVE) and TeenCOVE trials. Associations between immunogenicity through day 57 and solicited adverse reactions (ARs) after the first and second injections of mRNA-1273 were evaluated among participants with and without solicited ARs using linear mixed-effects models. RESULTS mRNA-1273 reactogenicity in this combined analysis set was similar to that reported for these trials. The vaccine elicited high neutralizing antibody (nAb) geometric mean titers (GMTs) in evaluable participants. GMTs at day 57 were significantly higher in participants who experienced solicited systemic ARs after the second injection (1227.2 [1164.4-1293.5]) than those who did not (980.1 [886.8-1083.2], P = .001) and were associated with fever, chills, headache, fatigue, myalgia, and arthralgia. Significant associations with local ARs were not found. CONCLUSIONS These data show an association of systemic ARs with increased nAb titers following a second mRNA-1273 injection. While these data indicate systemic ARs are associated with increased antibody titers, high nAb titers were observed in participants after both injections, consistent with the immunogenicity and efficacy in these trials. These results add to the body of evidence regarding the relationship of immunogenicity and reactogenicity and can contribute toward the design of future mRNA vaccines.
Collapse
Affiliation(s)
- Uma Siangphoe
- Infectious Disease Development, Moderna, Cambridge, Massachusetts, USA
| | - Lindsey R Baden
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hana M El Sahly
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Kashif Ali
- Kool Kids Pediatrics, DM Clinical Research, Houston, Texas, USA
| | - Gary Berman
- The Clinical Research Institute, Minneapolis, Minnesota, USA
| | | | - Weiping Deng
- Infectious Disease Development, Moderna, Cambridge, Massachusetts, USA
| | - Rolando Pajon
- Infectious Disease Development, Moderna, Cambridge, Massachusetts, USA
| | - Roderick McPhee
- Infectious Disease Development, Moderna, Cambridge, Massachusetts, USA
| | - Avika Dixit
- Infectious Disease Development, Moderna, Cambridge, Massachusetts, USA
| | - Rituparna Das
- Infectious Disease Development, Moderna, Cambridge, Massachusetts, USA
| | | | - Honghong Zhou
- Infectious Disease Development, Moderna, Cambridge, Massachusetts, USA
| | | |
Collapse
|
38
|
Morens DM, Taubenberger JK, Fauci AS. Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell Host Microbe 2023; 31:146-157. [PMID: 36634620 PMCID: PMC9832587 DOI: 10.1016/j.chom.2022.11.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023]
Abstract
Viruses that replicate in the human respiratory mucosa without infecting systemically, including influenza A, SARS-CoV-2, endemic coronaviruses, RSV, and many other "common cold" viruses, cause significant mortality and morbidity and are important public health concerns. Because these viruses generally do not elicit complete and durable protective immunity by themselves, they have not to date been effectively controlled by licensed or experimental vaccines. In this review, we examine challenges that have impeded development of effective mucosal respiratory vaccines, emphasizing that all of these viruses replicate extremely rapidly in the surface epithelium and are quickly transmitted to other hosts, within a narrow window of time before adaptive immune responses are fully marshaled. We discuss possible approaches to developing next-generation vaccines against these viruses, in consideration of several variables such as vaccine antigen configuration, dose and adjuventation, route and timing of vaccination, vaccine boosting, adjunctive therapies, and options for public health vaccination polices.
Collapse
Affiliation(s)
- David M. Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding author
| | - Anthony S. Fauci
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Novak A, Hindriks E, Hoek A, Veraart C, Broens EM, Ludwig I, Rutten V, Sloots A, Broere F. Cellular and humoral immune responsiveness to inactivated Leptospira interrogans in dogs vaccinated with a tetravalent Leptospira vaccine. Vaccine 2023; 41:119-129. [PMID: 36411135 DOI: 10.1016/j.vaccine.2022.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Vaccination is commonly used to protect dogs against leptospirosis, however, memory immune responses induced by canine Leptospira vaccines have not been studied. In the present study, antibody and T cell mediated responses were assessed in dogs before and 2 weeks after annual revaccination with a commercial tetravalent Leptospira vaccine containing serogroups Canicola and Australis. Vaccination significantly increased average log2 IgG titers from 6.50 to 8.41 in year 1, from 5.99 to 7.32 in year 2, from 5.32 to 8.32 in year 3 and from 5.32 to 7.82 in year 4. The CXCL-10 levels, induced by in vitro stimulation of PBMC with Canicola and Australis, respectively, significantly increased from 1039.05 pg/ml and 1037.38 pg/ml before vaccination to 2547.73 pg/ml and 2730.38 pg/ml after vaccination. IFN-γ levels increased from 85.60 pg/ml and 178.13 pg/ml before vaccination to 538.62 pg/ml and 210.97 pg/ml after vaccination. The percentage of proliferating CD4+ T cells in response to respective Leptospira strains significantly increased from 1.43 % and 1.25 % before vaccination to 24.11 % and 14.64 % after vaccination. Similar responses were also found in the CD8+ T cell subset. Vaccination also significantly enhanced the percentages of central memory CD4+ T cells from 12 % to 26.97 % and 27.65 %, central memory CD8+ T cells from 3 % to 9.47 % and 7.55 %, and effector CD8+ T cells from 3 % to 7.6 % and 6.42 %, as defined by the expression of CD45RA and CD62L, following stimulation with Canicola and Australis, respectively. Lastly, enhanced expression of the activation marker CD25 on T cells after vaccination was found. Together, our results show that next to IgG responses, also T cell responses are induced in dogs upon annual revaccination with a tetravalent Leptospira vaccine, potentially contributing to protection.
Collapse
Affiliation(s)
- Andreja Novak
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands; Intravacc, Bilthoven, the Netherlands
| | - Esther Hindriks
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Aad Hoek
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Claire Veraart
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Els M Broens
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Irene Ludwig
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Victor Rutten
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | | | - Femke Broere
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands; Division Internal Medicine of Companion Animals, Department Clinical Science, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| |
Collapse
|
40
|
Single cell multi-omic reference atlases of non-human primate immune tissues reveals CD102 as a biomarker for long-lived plasma cells. Commun Biol 2022; 5:1399. [PMID: 36543997 PMCID: PMC9770566 DOI: 10.1038/s42003-022-04216-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022] Open
Abstract
In response to infection or immunization, antibodies are produced that provide protection against re-exposure with the same pathogen. These antibodies can persist at high titers for decades and are maintained by bone marrow-resident long-lived plasma cells (LLPC). However, the durability of antibody responses to immunization varies amongst vaccines. It is unknown what factors contribute to the differential longevity of serum antibody responses and whether heterogeneity in LLPC contributes to this phenomenon. While LLPC differentiation has been studied extensively in mice, little is known about this population in humans or non-human primates (NHP). Here, we use multi-omic single-cell profiling to identify and characterize the LLPC compartment in NHP. We identify LLPC biomarkers including the marker CD102 and show that CD102 in combination with CD31 identifies LLPC in NHP bone marrow. Additionally, we find that CD102 is expressed by LLPC in mouse and humans. These results further our understanding of the LLPC compartment in NHP, identify biomarkers of LLPC, and provide tissue-specific single cell references for future studies.
Collapse
|
41
|
Hunegnaw R, Honko AN, Wang L, Carr D, Murray T, Shi W, Nguyen L, Storm N, Dulan CNM, Foulds KE, Agans KN, Cross RW, Geisbert JB, Cheng C, Ploquin A, Stanley DA, Geisbert TW, Nabel GJ, Sullivan NJ. A single-shot ChAd3-MARV vaccine confers rapid and durable protection against Marburg virus in nonhuman primates. Sci Transl Med 2022; 14:eabq6364. [PMID: 36516269 DOI: 10.1126/scitranslmed.abq6364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Marburg virus (MARV) causes a severe hemorrhagic fever disease in primates with mortality rates in humans of up to 90%. MARV has been identified as a category A bioterrorism agent by the Centers for Disease Control and Prevention (CDC) and priority pathogen A by the National Institute of Allergy and Infectious Diseases (NIAID), needing urgent research and development of countermeasures because of the high public health risk it poses. The recent cases of MARV in West Africa underscore the substantial outbreak potential of this virus. The potential for cross-border spread, as had occurred during the 2014-2016 Ebola virus outbreak, illustrates the critical need for MARV vaccines. To support regulatory approval of the chimpanzee adenovirus 3 (ChAd3)-MARV vaccine that has completed phase 1 trials, we showed that the nonreplicating ChAd3 vector, which has a demonstrated safety profile in humans, protected against a uniformly lethal challenge with MARV/Ang. Protective immunity was achieved within 7 days of vaccination and was maintained through 1 year after vaccination. Antigen-specific antibodies were an immune correlate of protection in the acute challenge model, and their concentration was predictive of protection. These results demonstrate that a single-shot ChAd3-MARV vaccine generated a protective immune response that was both rapid and durable with an immune correlate of protection that will support advanced clinical development.
Collapse
Affiliation(s)
- Ruth Hunegnaw
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anna N Honko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Derick Carr
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Tamar Murray
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lam Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nadia Storm
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Caitlyn N M Dulan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Daphne A Stanley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Montesinos-Guevara C, Buitrago-Garcia D, Felix ML, Guerra CV, Hidalgo R, Martinez-Zapata MJ, Simancas-Racines D. Vaccines for the common cold. Cochrane Database Syst Rev 2022; 12:CD002190. [PMID: 36515550 PMCID: PMC9749450 DOI: 10.1002/14651858.cd002190.pub6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The common cold is a spontaneously remitting infection of the upper respiratory tract, characterised by a runny nose, nasal congestion, sneezing, cough, malaise, sore throat, and fever (usually < 37.8 ºC). Whilst the common cold is generally not harmful, it is a cause of economic burden due to school and work absenteeism. In the United States, economic loss due to the common cold is estimated at more than USD 40 billion per year, including an estimate of 70 million workdays missed by employees, 189 million school days missed by children, and 126 million workdays missed by parents caring for children with a cold. Additionally, data from Europe show that the total cost per episode may be up to EUR 1102. There is also a large expenditure due to inappropriate antimicrobial prescription. Vaccine development for the common cold has been difficult due to antigenic variability of the common cold viruses; even bacteria can act as infective agents. Uncertainty remains regarding the efficacy and safety of interventions for preventing the common cold in healthy people, thus we performed an update of this Cochrane Review, which was first published in 2011 and updated in 2013 and 2017. OBJECTIVES To assess the clinical effectiveness and safety of vaccines for preventing the common cold in healthy people. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (April 2022), MEDLINE (1948 to April 2022), Embase (1974 to April 2022), CINAHL (1981 to April 2022), and LILACS (1982 to April 2022). We also searched three trials registers for ongoing studies, and four websites for additional trials (April 2022). We did not impose any language or date restrictions. SELECTION CRITERIA Randomised controlled trials (RCTs) of any virus vaccine compared with placebo to prevent the common cold in healthy people. DATA COLLECTION AND ANALYSIS We used Cochrane's Screen4Me workflow to assess the initial search results. Four review authors independently performed title and abstract screening to identify potentially relevant studies. We retrieved the full-text articles for those studies deemed potentially relevant, and the review authors independently screened the full-text reports for inclusion in the review, recording reasons for exclusion of the excluded studies. Any disagreements were resolved by discussion or by consulting a third review author when needed. Two review authors independently collected data on a data extraction form, resolving any disagreements by consensus or by involving a third review author. We double-checked data transferred into Review Manager 5 software. Three review authors independently assessed risk of bias using RoB 1 tool as outlined in the Cochrane Handbook for Systematic Reviews of Interventions. We carried out statistical analysis using Review Manager 5. We did not conduct a meta-analysis, and we did not assess publication bias. We used GRADEpro GDT software to assess the certainty of the evidence and to create a summary of findings table. MAIN RESULTS: We did not identify any new RCTs for inclusion in this update. This review includes one RCT conducted in 1965 with an overall high risk of bias. The RCT included 2307 healthy young men in a military facility, all of whom were included in the analyses, and compared the effect of three adenovirus vaccines (live, inactivated type 4, and inactivated type 4 and 7) against a placebo (injection of physiological saline or gelatin capsule). There were 13 (1.14%) events in 1139 participants in the vaccine group, and 14 (1.19%) events in 1168 participants in the placebo group. Overall, we do not know if there is a difference between the adenovirus vaccine and placebo in reducing the incidence of the common cold (risk ratio 0.95, 95% confidence interval 0.45 to 2.02; very low-certainty evidence). Furthermore, no difference in adverse events when comparing live vaccine preparation with placebo was reported. We downgraded the certainty of the evidence to very low due to unclear risk of bias, indirectness because the population of this study was only young men, and imprecision because confidence intervals were wide and the number of events was low. The included study did not assess vaccine-related or all-cause mortality. AUTHORS' CONCLUSIONS: This Cochrane Review was based on one study with very low-certainty evidence, which showed that there may be no difference between the adenovirus vaccine and placebo in reducing the incidence of the common cold. We identified a need for well-designed, adequately powered RCTs to investigate vaccines for the common cold in healthy people. Future trials on interventions for preventing the common cold should assess a variety of virus vaccines for this condition, and should measure such outcomes as common cold incidence, vaccine safety, and mortality (all-cause and related to the vaccine).
Collapse
Affiliation(s)
- Camila Montesinos-Guevara
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Diana Buitrago-Garcia
- Institute of Social and Preventive Medicine (ISPM), Graduate School of Health Sciences, University of Bern, Bern, Switzerland
| | - Maria L Felix
- Departamento de Neonatología, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Claudia V Guerra
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Ricardo Hidalgo
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Maria José Martinez-Zapata
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Daniel Simancas-Racines
- Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
43
|
Satir A, Ersoy A, Demirci H, Ozturk M. Influenza and pneumococcal vaccination and COVID-19 in kidney transplant patients. Transpl Immunol 2022; 75:101693. [PMID: 35963562 PMCID: PMC9365519 DOI: 10.1016/j.trim.2022.101693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND This study aims to investigate the effect of recent influenza and pneumococcal vaccines' administration on the development of COVID-19 infection in kidney transplant recipients during the pandemic. METHODS The effect of influenza and pneumococcal vaccines on the clinical course of the disease in COVID-positive (COVID group, n: 105) and COVID-negative (control group, n: 127) recipients has been examined. The control group included patients with negative rRT-PCR test results. At the time of the study, no patient was vaccinated with COVID-19 vaccine. The patients' influenza and/or pneumococcal vaccination rates in 2019 and 2020 were determined. In 2019 and 2020, 32 and 33 people in the COVID-positive group and 61 and 54 people in the COVID-negative group had received influenza and/or pneumococcal vaccines, respectively. The median study follow-up times of the COVID-negative and COVID-positive groups were 13.04 and 8.31 months, respectively. RESULTS Compared with the COVID-negative group, the patients in the COVID-positive group were younger and had a longer post-transplant time. In addition, the rate of transplantation from a living donor and the rate of COVID positivity in family members were also higher. The influenza vaccination rates in the COVID negative group were significantly higher than the COVID-positive group in 2020 (23.8% vs 37%, p = 0.031). Multivariate logistic regression analysis revealed that the presence of COVID-19 in family members and lack of pneumococcal vaccination in 2020 increased the risk of being positive for COVID-19. There was no significant difference in the hospitalization rates, the need for dialysis and intensive care, the hospital stay, and the graft dysfunction in the COVID-positive patients with and without influenza and pneumococcal vaccines. CONCLUSION The observations made throughout this study suggest that influenza and pneumococcal vaccination in transplant patients may reduce the risk of COVID-19 disease and provide additional benefits during the pandemic period.
Collapse
Affiliation(s)
- Atilla Satir
- Department of Urology, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa, Turkey
| | - Alparslan Ersoy
- Division of Nephrology, Department of Internal Medicine, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Hakan Demirci
- Department of Family Medicine, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa, Turkey.
| | - Murat Ozturk
- Department of Urology, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa, Turkey
| |
Collapse
|
44
|
El Sahly HM, Baden LR, Essink B, Montefiori D, McDermont A, Rupp R, Lewis M, Swaminathan S, Griffin C, Fragoso V, Miller VE, Girard B, Paila YD, Deng W, Tomassini JE, Paris R, Schödel F, Das R, August A, Leav B, Miller JM, Zhou H, Pajon R. Humoral Immunogenicity of the mRNA-1273 Vaccine in the Phase 3 Coronavirus Efficacy (COVE) Trial. J Infect Dis 2022; 226:1731-1742. [PMID: 35535503 PMCID: PMC9213865 DOI: 10.1093/infdis/jiac188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Messenger RNA (mRNA)-1273 vaccine demonstrated 93.2% efficacy against coronavirus disease 2019 (COVID-19) in the Coronavirus Efficacy (COVE) trial. The humoral immunogenicity results are now reported. METHODS Participants received 2 mRNA-1273 (100 µg) or placebo injections, 28 days apart. Immune responses were evaluated in a prespecified, randomly selected per-protocol immunogenicity population (n = 272 placebo; n = 1185 mRNA-1273). Serum binding antibodies (bAbs) and neutralizing antibodies (nAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-spike protein were assessed at days 1, 29, and 57 by baseline SARS-CoV-2-negative (n = 1197) and SARS-CoV-2-positive (n = 260) status, age, and sex. RESULTS SARS-CoV-2-negative vaccinees had bAb geometric mean AU/mL levels of 35 753 at day 29 that increased to 316 448 at day 57 and nAb inhibitory dilution 50% titers of 55 at day 29 that rose to 1081 at day 57. In SARS-CoV-2-positive vacinees, the first mRNA-1273 injection elicited bAb and nAb levels that were 11-fold (410 049) and 27-fold (1479) higher than in SARS-CoV-2-negative vaccinees, respectively, and were comparable to levels after 2 injections in uninfected participants. Findings were generally consistent by age and sex. CONCLUSIONS mRNA-1273 elicited robust serologic immune responses across age, sex, and SARS-CoV-2 status, consistent with its high COVID-19 efficacy. Higher immune responses in those previously infected support a booster-type effect. Clinical Trials Registration. NCT04470427.
Collapse
Affiliation(s)
- Hana M El Sahly
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Lindsey R Baden
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - David Montefiori
- Immune Assay Team, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Adrian McDermont
- Vaccine Research Center, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Richard Rupp
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael Lewis
- Department of Pathology, Veterans Affairs Greater Los Angeles Healthcare, Los Angeles, California, USA
| | - Shobha Swaminathan
- Department of Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey, USA
| | - Carl Griffin
- Lynn Health Science Institute, Oklahoma City, Oklahoma, USA
| | - Veronica Fragoso
- Texas Center for Drug Development, DM Clinical Research, Houston, Texas, USA
| | - Vicki E Miller
- Texas Center for Drug Development, DM Clinical Research, Tomball, Texas, USA
| | - Bethany Girard
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Yamuna D Paila
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Weiping Deng
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Joanne E Tomassini
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Robert Paris
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Florian Schödel
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Rituparna Das
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Allison August
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Brett Leav
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Jacqueline M Miller
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Honghong Zhou
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Rolando Pajon
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
45
|
Garcia-Dominguez D, Henry C, Ma L, Jani H, Amato NJ, Manning T, Freyn A, Davis H, Hsiao CJ, Li M, Koch H, Elbashir S, DiPiazza A, Carfi A, Edwards D, Bahl K. Altering the mRNA-1273 dosing interval impacts the kinetics, quality, and magnitude of immune responses in mice. Front Immunol 2022; 13:948335. [PMID: 36426367 PMCID: PMC9679967 DOI: 10.3389/fimmu.2022.948335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/13/2022] [Indexed: 12/17/2024] Open
Abstract
For a vaccine to achieve durable immunity and optimal efficacy, many require a multi-dose primary vaccination schedule that acts to first "prime" naive immune systems and then "boost" initial immune responses by repeated immunizations (ie, prime-boost regimens). In the context of the global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 2-dose primary vaccination regimens were often selected with short intervals between doses to provide rapid protection while still inducing robust immunity. However, emerging post-authorization evidence has suggested that longer intervals between doses 1 and 2 for SARS-CoV-2 vaccines may positively impact robustness and durability of immune responses. Here, the dosing interval for mRNA-1273, a messenger RNA based SARS-CoV-2 vaccine administered on a 2-dose primary schedule with 4 weeks between doses, was evaluated in mice by varying the dose interval between 1 and 8 weeks and examining immune responses through 24 weeks after dose 2. A dosing interval of 6 to 8 weeks generated the highest level of antigen-specific serum immunoglobulin G binding antibody titers. Differences in binding antibody titers between mRNA-1273 1 µg and 10 µg decreased over time for dosing intervals of ≥4 weeks, suggesting a potential dose-sparing effect. Longer intervals (≥4 weeks) also increased antibody-dependent cellular cytotoxicity activity and numbers of antibody-secreting cells (including long-lived plasma cells) after the second dose. An interval of 6 to 8 weeks elicited the strongest CD8+ T-cell responses, while an interval of 3 weeks elicited the strongest CD4+ T-cell response. Overall, these results suggest that in a non-pandemic setting, a longer interval (≥6 weeks) between the doses of the primary series for mRNA-1273 may induce more durable immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kapil Bahl
- Moderna, Inc., Cambridge, MA, United States
| |
Collapse
|
46
|
Liu Q, Zhou W, Jiang W, Jia X. Observational study of antibody levels after second and third SARS-CoV-2 vaccinations in medical workers. J Clin Lab Anal 2022; 36:e24731. [PMID: 36250228 PMCID: PMC9701844 DOI: 10.1002/jcla.24731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Countries around the world are actively promoting vaccination against COVID-19. We observed the changes in serum neutralizing antibody titers in medical workers vaccinated with inactivated COVID-19 vaccine, in order to explore the necessity of a third dose of vaccination. METHODS A total of 62 medical workers in our hospital were observed. Novel coronavirus neutralizing antibody titers in serum were detected by ELISA (enzyme-linked immunoassay). Neutralizing antibody tests followed in four batches according to the different time periods after three vaccinations. Sixty-two observers participated in the first batch of testing for neutralizing antibody, and 18 of them participated in all four batches. Fasting venous blood was taken from all the participants in the morning to detect serum neutralizing antibody titers. RESULTS Sixty-two medical workers were divided into age groups of 21-30, 31-40, and >40 years, and the antibody titer in the oldest group was significantly lower than that in youngest group (p = 0.0137). There was a gradual decrease in antibody titers over time at around 1, 3, and 6 months after the second dose of vaccine (p < 0.0001). The antibody positive rate also decreased gradually (p = 0.0003). The neutralizing antibody titer around 1 month after the third dose was significantly increased (p < 0.0001). Unexpectedly, three participants with negative neutralizing antibody after the first and second dose produced neutralizing antibody with a measurable titer after the third dose. CONCLUSIONS The neutralizing antibody titer in serum increased significantly after the third dose of vaccine. A third immunization even produced neutralizing antibody in previously negative individuals.
Collapse
Affiliation(s)
- Qing Liu
- Department of Clinical Laboratory Medicine CenterShenzhen Hospital, Southern Medical UniversityShenzhenChina
| | - Wenyan Zhou
- Precision Medicine CenterShenzhen Hospital, Southern Medical UniversityShenzhenChina
| | - Wencan Jiang
- Department of Clinical DiagnosisLaboratory of Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xingwang Jia
- Department of Clinical LaboratoryCapital Medical University Electric Power Teaching Hospital/State Gird Beijing Electric Power HospitalBeijingChina
| |
Collapse
|
47
|
Britto C, Alter G. The next frontier in vaccine design: blending immune correlates of protection into rational vaccine design. Curr Opin Immunol 2022; 78:102234. [PMID: 35973352 PMCID: PMC9612370 DOI: 10.1016/j.coi.2022.102234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 07/13/2022] [Indexed: 02/02/2023]
Abstract
Despite the extraordinary speed and success in SARS-Cov-2 vaccine development, the emergence of variants of concern perplexed the vaccine development community. Neutralizing antibodies waned antibodies waned and were evaded by viral variants, despite the preservation of protection against severe disease and death across vaccinated populations. Similar to other vaccine design efforts, the lack of mechanistic correlates of immunity against Coronavirus Disease 2019, raised questions related to the need for vaccine redesign and boosting. Hence, our limited understanding of mechanistic correlates of immunity - across pathogens - remains a major obstacle in vaccine development. The identification and incorporation of mechanistic correlates of immunity are key to the accelerated design of highly impactful globally relevant vaccines. Systems-biology tools can be applied strategically to define a complete understanding of mechanistic correlates of immunity. Embedding immunological dissection and target immune profile identification, beyond canonical antibody binding and neutralization, may accelerate the design and success of durable protective vaccines.
Collapse
Affiliation(s)
- Carl Britto
- Department of Pediatrics, Boston Children's Hospital, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
48
|
Huang Y, Zhang Y, Seaton KE, De Rosa S, Heptinstall J, Carpp LN, Randhawa AK, McKinnon LR, McLaren P, Viegas E, Gray GE, Churchyard G, Buchbinder SP, Edupuganti S, Bekker LG, Keefer MC, Hosseinipour MC, Goepfert PA, Cohen KW, Williamson BD, McElrath MJ, Tomaras GD, Thakar J, Kobie JJ. Baseline host determinants of robust human HIV-1 vaccine-induced immune responses: A meta-analysis of 26 vaccine regimens. EBioMedicine 2022; 84:104271. [PMID: 36179551 PMCID: PMC9520208 DOI: 10.1016/j.ebiom.2022.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The identification of baseline host determinants that associate with robust HIV-1 vaccine-induced immune responses could aid HIV-1 vaccine development. We aimed to assess both the collective and relative performance of baseline characteristics in classifying individual participants in nine different Phase 1-2 HIV-1 vaccine clinical trials (26 vaccine regimens, conducted in Africa and in the Americas) as High HIV-1 vaccine responders. METHODS This was a meta-analysis of individual participant data, with studies chosen based on participant-level (vs. study-level summary) data availability within the HIV-1 Vaccine Trials Network. We assessed the performance of 25 baseline characteristics (demographics, safety haematological measurements, vital signs, assay background measurements) and estimated the relative importance of each characteristic in classifying 831 participants as High (defined as within the top 25th percentile among positive responders or above the assay upper limit of quantification) versus Non-High responders. Immune response outcomes included HIV-1-specific serum IgG binding antibodies and Env-specific CD4+ T-cell responses assessed two weeks post-last dose, all measured at central HVTN laboratories. Three variable importance approaches based on SuperLearner ensemble machine learning were considered. FINDINGS Overall, 30.1%, 50.5%, 36.2%, and 13.9% of participants were categorized as High responders for gp120 IgG, gp140 IgG, gp41 IgG, and Env-specific CD4+ T-cell vaccine-induced responses, respectively. When including all baseline characteristics, moderate performance was achieved for the classification of High responder status for the binding antibody responses, with cross-validated areas under the ROC curve (CV-AUC) of 0.72 (95% CI: 0.68, 0.76) for gp120 IgG, 0.73 (0.69, 0.76) for gp140 IgG, and 0.67 (95% CI: 0.63, 0.72) for gp41 IgG. In contrast, the collection of all baseline characteristics yielded little improvement over chance for predicting High Env-specific CD4+ T-cell responses [CV-AUC: 0.53 (0.48, 0.58)]. While estimated variable importance patterns differed across the three approaches, female sex assigned at birth, lower height, and higher total white blood cell count emerged as significant predictors of High responder status across multiple immune response outcomes using Approach 1. Of these three baseline variables, total white blood cell count ranked highly across all three approaches for predicting vaccine-induced gp41 and gp140 High responder status. INTERPRETATION The identified features should be studied further in pursuit of intervention strategies to improve vaccine responses and may be adjusted for in analyses of immune response data to enhance statistical power. FUNDING National Institute of Allergy and Infectious Diseases (UM1AI068635 to YH, UM1AI068614 to GDT, UM1AI068618 to MJM, and UM1 AI069511 to MCK), the Duke CFAR P30 AI064518 to GDT, and National Institute of Dental and Craniofacial Research (R01DE027245 to JJK). This work was also supported by the Bill and Melinda Gates Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding sources.
Collapse
Affiliation(s)
- Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States of America; Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States of America; Department of Global Health, University of Washington, Seattle, WA, United States of America.
| | - Yuanyuan Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States of America
| | - Kelly E Seaton
- Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
| | - Stephen De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States of America
| | - Jack Heptinstall
- Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States of America
| | - April Kaur Randhawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States of America
| | - Lyle R McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MN, Canada; JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MN, Canada; Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
| | - Paul McLaren
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MN, Canada; JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MN, Canada
| | - Edna Viegas
- Instituto Nacional de Saúde, Maputo, Mozambique
| | - Glenda E Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; South African Medical Research Council, Cape Town, South Africa
| | - Gavin Churchyard
- Aurum Institute, Johannesburg, South Africa; School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| | - Susan P Buchbinder
- Bridge HIV, San Francisco Department of Public Health, San Francisco, CA, United States of America; Department of Medicine and Department of Epidemiology, University of California, San Francisco, CA, United States of America
| | - Srilatha Edupuganti
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Michael C Keefer
- Department of Medicine, Infectious Diseases Division, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Mina C Hosseinipour
- University of North Carolina Project, Lilongwe, Malawi; Department of Medicine, Institution for Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Paul A Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Kristen W Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States of America
| | - Brian D Williamson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States of America; Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States of America
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States of America
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
| | - Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - James J Kobie
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
49
|
Prochetto E, Borgna E, Jiménez-Cortegana C, Sánchez-Margalet V, Cabrera G. Myeloid-derived suppressor cells and vaccination against pathogens. Front Cell Infect Microbiol 2022; 12:1003781. [PMID: 36250061 PMCID: PMC9557202 DOI: 10.3389/fcimb.2022.1003781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
It is widely accepted that the immune system includes molecular and cellular components that play a role in regulating and suppressing the effector immune response in almost any process in which the immune system is involved. Myeloid-derived suppressor cells (MDSCs) are described as a heterogeneous population of myeloid origin, immature state, with a strong capacity to suppress T cells and other immune populations. Although the initial characterization of these cells was strongly associated with pathological conditions such as cancer and then with chronic and acute infections, extensive evidence supports that MDSCs are also involved in physiological/non-pathological settings, including pregnancy, neonatal period, aging, and vaccination. Vaccination is one of the greatest public health achievements and has reduced mortality and morbidity caused by many pathogens. The primary goal of prophylactic vaccination is to induce protection against a potential pathogen by mimicking, at least in a part, the events that take place during its natural interaction with the host. This strategy allows the immune system to prepare humoral and cellular effector components to cope with the real infection. This approach has been successful in developing vaccines against many pathogens. However, when the infectious agents can evade and subvert the host immune system, inducing cells with regulatory/suppressive capacity, the development of vaccines may not be straightforward. Notably, there is a long list of complex pathogens that can expand MDSCs, for which a vaccine is still not available. Moreover, vaccination against numerous bacteria, viruses, parasites, and fungi has also been shown to cause MDSC expansion. Increases are not due to a particular adjuvant or immunization route; indeed, numerous adjuvants and immunization routes have been reported to cause an accumulation of this immunosuppressive population. Most of the reports describe that, according to their suppressive nature, MDSCs may limit vaccine efficacy. Taking into account the accumulated evidence supporting the involvement of MDSCs in vaccination, this review aims to compile the studies that highlight the role of MDSCs during the assessment of vaccines against pathogens.
Collapse
Affiliation(s)
- Estefanía Prochetto
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe capital, Argentina
| | - Eliana Borgna
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe capital, Argentina
| | - Carlos Jiménez-Cortegana
- Clinical Laboratory, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Clinical Laboratory, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Gabriel Cabrera
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe capital, Argentina
- *Correspondence: Gabriel Cabrera,
| |
Collapse
|
50
|
Alòs F, Cánovas Zaldúa Y, Feijóo Rodríguez MV, Del Val Garcia JL, Sánchez-Callejas A, Colomer MÀ. Does Influenza Vaccination Reduce the Risk of Contracting COVID-19? J Clin Med 2022; 11:5297. [PMID: 36142944 PMCID: PMC9504696 DOI: 10.3390/jcm11185297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The concurrent timing of the COVID-19 pandemic and the seasonal occurrence of influenza, makes it especially important to analyze the possible effect of the influenza vaccine on the risk of contracting COVID-19, or in reducing the complications caused by both diseases, especially in vulnerable populations. There is very little scientific information on the possible protective role of the influenza vaccine against the risk of contracting COVID-19, particularly in groups at high-risk of influenza complications. Reducing the risk of contracting COVID-19 in high-risk patients (those with a higher risk of infection, complications, and death) is essential to improve public well-being and to reduce hospital pressure and the collapse of primary health centers. Apart from overlapping in time, COVID-19 and flu share common aspects of transmission, so that measures to protect against flu might be effective in reducing the risk of contracting COVID-19. In this study, we conclude that the risk of contracting COVID-19 is reduced if patients are vaccinated against flu, but the reduction is small (0.22%) and therefore not clinically important. When this reduction is analysed based on the risk factor suffered by the patient, statistically significant differences have been obtained for patients with cardiovascular problems, diabetics, chronic lung and chronic kidney disease; in all four cases the reduction in the risk of contagion does not reach 1%. It is worth highlighting the behaviour that is completely different from the rest of the data for institutionalized patients. The data for these patients does not suggest a reduction in the risk of contagion for patients vaccinated against the flu, but rather the opposite, a significant increase of 6%. Socioeconomic conditions, as measured by the MEDEA deprivation index, explain increases in the risk of contracting COVID-19, and awareness campaigns should be increased to boost vaccination programs.
Collapse
Affiliation(s)
- Francesc Alòs
- Primary Healthcare Center, CAP Passeig de Sant Joan, Gerència Territorial de Barcelona, Institut Català de la Salut, 08010 Barcelona, Spain
- Unitat de Suport a la Recerca Barcelona, Foundation Primary Care Research Institute Jordi Gol i Gurina (IDIAPJGol), 08025 Barcelona, Spain
| | - Yoseba Cánovas Zaldúa
- Primary Healthcare Center, CAP Passeig de Sant Joan, Gerència Territorial de Barcelona, Institut Català de la Salut, 08010 Barcelona, Spain
| | - María Victoria Feijóo Rodríguez
- BASIQ Unitat d’Avaluació, Sistemes d’Informació i Qualitat, Àmbit Barcelona Ciutat, Institut Català de la Salut, 08029 Barcelona, Spain
| | - Jose Luis Del Val Garcia
- Unitat de Suport a la Recerca Barcelona, Foundation Primary Care Research Institute Jordi Gol i Gurina (IDIAPJGol), 08025 Barcelona, Spain
- BASIQ Unitat d’Avaluació, Sistemes d’Informació i Qualitat, Àmbit Barcelona Ciutat, Institut Català de la Salut, 08029 Barcelona, Spain
| | - Andrea Sánchez-Callejas
- BASIQ Unitat d’Avaluació, Sistemes d’Informació i Qualitat, Àmbit Barcelona Ciutat, Institut Català de la Salut, 08029 Barcelona, Spain
| | - Mª Àngels Colomer
- Department of Mathematics ETSEA, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|