1
|
Khukhodziinai JS, Das PK, Mukherjee J, Banerjee D, Ghosh PR, Das AK, Samanta I, Jas R, Mondal S, Patra AK. Effect of Dietary Benzoic Acid and Oregano Essential Oil as a Substitute for an Anti-Coccidial Agent on Growth Performance and Physiological and Immunological Responses in Broiler Chickens Challenged with Eimeria Species. Animals (Basel) 2024; 14:3008. [PMID: 39457937 PMCID: PMC11504159 DOI: 10.3390/ani14203008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
To overcome the antimicrobial residues in food, benzoic acid (BA) and oregano essential oil (OEO) are used in the broiler chicken industry. Independently, both exerted anticoccidial and antimicrobial actions and improved growth performance in broiler chickens. Their effect may be multiplied when they are used in combination. This present study was carried out to evaluate the efficacy of dietary BA and OEO alone or in combination as a substitute for a commercial coccidiostatic drug on growth performance and physiological and immunological responses in broiler chickens challenged with Eimeria species. A total of 252 unsexed 1-day-old broiler chicks were equally allotted to 36 pens, each pen containing seven chicks. The pens were randomly assigned to six treatments with six pens (replicates) for each treatment (n = 6)-(i) negative control, (ii) positive control, coccidia-challenged and non-treated, (iii) supplemented with salinomycin (an anti-coccidial drug) at 60 mg/kg of feed and coccidia-challenged, (iv) supplemented with BA at 500 mg/kg of feed and coccidia-challenged, (v) supplemented with OEOat 500 mg/kg of feed and coccidia-challenged (OEO), and (vi) supplemented with BA at 500 mg/kg of feed and OEO at 500 mg/kg of feed and coccidia-challenged (B&O). The liver enzymes and thyroxine and creatinine levels were not affected (p > 0.05) both in coccidia-challenged and supplemented chickens. The BA and OEO applied separately or in combination (B&O) significantly (p < 0.05) reduced gut pathogenic bacteria (Salmonella and Escherichia coli) and Eimeria spp., and concurrently enhanced (p > 0.05) the Lactobacillus population with better body weight gain, improved feed utilization, and superior hematological values. It also up-regulated (p > 0.05) the interferon-γ gene expression and down-regulated (p < 0.05) the interleukin-10 and Toll-like receptor-4 gene expression to protect the chickens from inflammatory reactions, which were not demonstrated in salinomycin-treated birds. The B&O supplementation increased (p < 0.05) the immune system by enhancing Eimeria-specific immunoglobulin Y titer and lymphocyte proliferation response. This study suggests that the combined application of OEO and BA can substitute for a commercial anti-coccidial agent (salinomycin) in controlling coccidiosis as well as improving growth performance, gut health, and immune responses in broiler chickens with a means of antimicrobial-resistant free food products.
Collapse
Affiliation(s)
- Joycy Seiba Khukhodziinai
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Pradip Kumar Das
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Joydip Mukherjee
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Dipak Banerjee
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Prabal Ranjan Ghosh
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Anil Kumar Das
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India; (J.S.K.); (J.M.); (D.B.); (P.R.G.); (A.K.D.)
| | - Indranil Samanta
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India;
| | - Ruma Jas
- Department of Veterinary Parasitology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Samiran Mondal
- Department of Veterinary Pathology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
| |
Collapse
|
2
|
Du P, Yang J, Xiang W, Chen Y, Wen X, Wang N, Xian S, Wang B. Traditional Chinese medicine formulation ChangQing compound has significant therapeutic effects on chickens infected with Eimeria tenella. Vet Parasitol 2024; 331:110293. [PMID: 39216333 DOI: 10.1016/j.vetpar.2024.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Coccidiosis poses a significant challenge to the poultry industry. However, the excessive and improper use of anticoccidial drugs and vaccines has led to resistance and food safety concerns. Consequently, traditional Chinese herbs have garnered attention as a potentially safer and more effective alternative. ChangQing compound derived from various Chinese herbal medicines is a promising anticoccidiosis agent, but its therapeutic effects have not been comprehensively evaluated. This study aimed to assess the therapeutic efficacy of ChangQing Compound against Eimeria tenella-induced coccidiosis in chickens on the basis of physiological indicators, cecum lesions, and changes in microbial diversity. The comparison with the positive control group revealed the average weight gain (AWG) and anticoccidial index (ACI) of the chicks were significantly higher, in contrast, the feed conversion ratio (FCR), cecal lesion score (CLS), and oocyst count per gram of cecal content (OPG) were significantly lower (P<0.05). Notably, AWG (138.87 g), OPG (0.57 × 106), ACI (177.92), and FCR (2.51) reflected the significant therapeutic effect of the 2.5 g/L ChangQing compound treatment (CQM). Histological sections showed that the cecal villus damage and intestinal wall swelling were minimal in the CQM, consistent with the CLS (0.73). Additionally, the 2.5 g/L ChangQing compound treatment effectively prevented the decrease of red blood cells, platelets, and hemoglobin, while promoting the release of anti-inflammatory factors interleukin-10 and interleukin-4, and inhibiting the pro-inflammatory factors interferon-γ and interleukin-17. The microbial community structure in the CQM was most similar to that of the negative control group. In summary, ChangQing compound had multiple positive effects (e.g., promoting weight gain, alleviating anemia, suppressing coccidial proliferation, reducing intestinal damage, modulating immunity, and maintaining intestinal microbiota homeostasis). The study results may be relevant to developing a novel strategy for the clinical management of coccidiosis.
Collapse
Affiliation(s)
- Peng Du
- College of Animal Science, Guizhou University, Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, Guizhou Province 550025, PR China
| | - Jiajia Yang
- College of Animal Science, Guizhou University, Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, Guizhou Province 550025, PR China
| | - Wanjiang Xiang
- College of Animal Science, Guizhou University, Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, Guizhou Province 550025, PR China
| | - Ying Chen
- College of Animal Science, Guizhou University, Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, Guizhou Province 550025, PR China
| | - Xin Wen
- College of Animal Science, Guizhou University, Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Naixiu Wang
- College of Animal Science, Guizhou University, Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Simei Xian
- College of Animal Science, Guizhou University, Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Bi Wang
- College of Animal Science, Guizhou University, Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou Province 550025, PR China.
| |
Collapse
|
3
|
Aruwa CE, Sabiu S. Interplay of poultry-microbiome interactions - influencing factors and microbes in poultry infections and metabolic disorders. Br Poult Sci 2024; 65:523-537. [PMID: 38920059 DOI: 10.1080/00071668.2024.2356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 06/27/2024]
Abstract
1. The poultry microbiome and its stability at every point in time, either free range or reared under different farming systems, is affected by several environmental and innate factors. The interaction of the poultry birds with their microbiome, as well as several inherent and extraneous factors contribute to the microbiome dynamics. A poor understanding of this could worsen poultry heath and result in disease/metabolic disorders.2. Many diseased states associated with poultry have been linked to dysbiosis state, where the microbiome experiences some perturbation. Dysbiosis itself is too often downplayed; however, it is considered a disease which could lead to more serious conditions in poultry. The management of interconnected factors by conventional and emerging technologies (sequencing, nanotechnology, robotics, 3D mini-guts) could prove to be indispensable in ensuring poultry health and welfare.3. Findings showed that high-throughput technological advancements enhanced scientific insights into emerging trends surrounding the poultry gut microbiome and ecosystem, the dysbiotic condition, and the dynamic roles of intrinsic and exogenous factors in determining poultry health. Yet, a combination of conventional, -omics based and other techniques further enhance characterisation of key poultry microbiome actors, their mechanisms of action, and roles in maintaining gut homoeostasis and health, in a bid to avert metabolic disorders and infections.4. In conclusion, there is an important interplay of innate, environmental, abiotic and biotic factors impacting on poultry gut microbiome homoeostasis, dysbiosis, and overall health. Associated infections and metabolic disorders can result from the interconnected nature of these factors. Emerging concepts (interkingdom or network signalling and neurotransmitter), and future technologies (mini-gut models, cobots) need to include these interactions to ensure accurate control and outcomes.
Collapse
Affiliation(s)
- C E Aruwa
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - S Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
4
|
Tang J, Wang Q, Yu H, Dong L, Tang M, Arif A, Zhang G, Zhang T, Xie K, Su S, Zhao Z, Dai G. A Comparison of the Cecal Microbiota between the Infection and Recovery Periods in Chickens with Different Susceptibilities to Eimeria tenella. Animals (Basel) 2024; 14:2709. [PMID: 39335298 PMCID: PMC11428751 DOI: 10.3390/ani14182709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
To investigate the effect of Eimeria tenella (E. tenella) infection on the cecal microbiota, resistant and susceptible families were screened out based on the coccidiosis resistance evaluation indexes after E. tenella infection. Subsequently, a comparative analysis of cecal microorganisms among control, resistant, and susceptible groups as well as between different periods following the E. tenella challenge was conducted using metagenomic sequencing technology. The results showed that the abundance of opportunistic pathogens, such as Pantoea, Sporomusa, and Pasteurella in the susceptible group and Helicobacter and Sutterella in the resistant group, was significantly higher on day 27 post-inoculation (PI) (the recovery period) than on day 5 PI (the infection period). Additionally, the abundance of Alistipes, Butyricicoccus, and Eubacterium in the susceptible group and Coprococcus, Roseburia, Butyricicoccus, and Lactobacillus in the resistant group showed a significant upward trend during the infection period compared with that in the recovery period. On day 5 PI, the abundance of Faecalibacterium and Lactobacillus was decreased in both the resistant and susceptible groups when compared with that in the control group and was greater in the resistant group than in the susceptible group, while Alistipes in the susceptible group had a relatively higher abundance than that in other groups. A total of 49 biomarker taxa were identified using the linear discriminant analysis (LDA) effect size (LEfSe) method. Of these, the relative abundance of Lactobacillus aviarius, Lactobacillus salivarius, Roseburia, and Ruminococcus gauvreauii was increased in the resistant group, while Bacteroides_sp__AGMB03916, Fusobacterium_mortiferum, Alistipes_sp__An31A, and Alistipes_sp__Marseille_P5061 were enriched in the susceptible group. On day 27 PI, LDA scores identified 43 biomarkers, among which the relative abundance of Elusimicrobium_sp__An273 and Desulfovibrio_sp__An276 was increased in the resistant group, while that of Bacteroides_sp__43_108, Chlamydiia, Chlamydiales, and Sutterella_sp__AM11 39 was augmented in the susceptible group. Our results indicated that E. tenella infection affects the structure of the cecal microbiota during both the challenge and recovery periods. These findings will enhance the understanding of the effects of changes in the cecal microbiota on chickens after coccidia infection and provide a reference for further research on the mechanisms underlying how the intestinal microbiota influence the growth and health of chickens.
Collapse
Affiliation(s)
- Jianqiang Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Liyue Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Meihui Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Areej Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Shijie Su
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Zhenhua Zhao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
5
|
Sun L, Liu Y, Xiao P, Zhang K, Bai S, Wang J, Zeng Q, Peng H, Mu Y, Xuan Y, Li S, Ding X. Probiotic Bacillus subtilis QST713 improved growth performance and enhanced the intestinal health of yellow-feather broilers challenged with coccidia and Clostridium perfringens. Poult Sci 2024; 103:104319. [PMID: 39353329 PMCID: PMC11472712 DOI: 10.1016/j.psj.2024.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
In this study, we investigated the effects of dietary supplementation with Bacillus subtilis (QST713) on the performance and intestinal health of yellow feather broilers under Coccidia and Clostridium perfringens (CP) challenge or CP alone. One-day-old yellow-feathered broiler roosters (n = 600) were randomly assigned to 5 groups (6 replicates with 20 roosters per replicate): the Con blank group, the CIC.p group (d24 Coccidia+d28-30 of CP challenge), the CIC.p + BS group (CIC.p +100 mg/kg B. subtilis), the C.p group (d 28-34 of CP challenge), and the C.p +BS group (C.p +100 mg/kg B. subtilis). The experiment lasted 80 d. The birds were evaluated for parameters such as average daily gain (ADG), average daily feed intake (ADFI), feed efficiency (F/G), intestinal lesion score, villus histomorphometry, intestinal tight junctions, inflammatory factors, and cecal microorganisms. The results revealed that 1) C.p. increased the F/G of broilers from 22 to 42 d (P < 0.05), whereas CIC.p. significantly decreased the 42 d and 80 d body weights (BW) and 22-42 d and 1-80 d ADG (P < 0.05) and significantly increased the 22 to 42 d and 1 to 80 d F/G (P < 0.05). The number of intestinal lesions significantly increased at 35 d and 42 d (P < 0.05). CIC.p significantly decreased the jejunum and ileum villus height (VH) and the ileum villus height/crypt depth (P < 0.05) at 35 d. The challenge significantly upregulated the expression of Claudin-1 and IL-4 mRNAs in the jejunum at 35 d and significantly downregulated the expression of IL-10 mRNA in the ileum at 35 d (P < 0.05); the number of unique OTUs in the challenge group decreased significantly after challenge treatment, and the relative abundances of Romboutsia at 35 d and Cladomyces and Lactobacillus at 42 d decreased significantly (P < 0.05). 2) Compared with the challenge groups, the addition of BS decreased the F/G of broilers from 22 to 42 d. Compared with the CIC group, the addition of BS significantly increased the F/G of broilers from 22 to 42 d. Compared with that in the CIC.p group, the addition of BS significantly increased the VH in the jejunum and ileum at 35 d (P < 0.05). Compared with the challenge groups, the BS groups presented significantly lower mRNA expression levels of Claudin-1 (P < 0.05) in the jejunum at 35 d. The Shannon and Chao indices suggested that BS increased the alpha diversity of cecum microorganisms in broilers. Dietary supplementation with B. subtilis can alleviate the damage to intestinal morphology and intestinal barrier function, as well as the altered cecal flora structure in broilers caused by Coccidia and C. perfringens infections.
Collapse
Affiliation(s)
- Lu Sun
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Yangbin Liu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Pan Xiao
- Elanco (Shanghai) Animal Health Co Ltd, Shanghai 201400, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Huanwei Peng
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Yadong Mu
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Yue Xuan
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Shanshan Li
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China
| | - Xuemei Ding
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
6
|
Shamshirgaran MA, Golchin M. A comprehensive review of experimental models and induction protocols for avian necrotic enteritis over the past 2 decades. Front Vet Sci 2024; 11:1429637. [PMID: 39113718 PMCID: PMC11304537 DOI: 10.3389/fvets.2024.1429637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 08/10/2024] Open
Abstract
Necrotic enteritis (NE) is a severe gastrointestinal disease that poses a significant threat to the poultry industry. It leads to progressive damage to the small intestine, reduced performance, increased mortality rates, and substantial economic losses. With the removal of antimicrobial agents from chicken feed, there is an urgent need to find alternative approaches for NE control. Various approaches, including vaccination, prebiotics, probiotics, and plant-derived products, have been utilized to address NE in poultry management. To evaluate the efficacy of these preventive measures against NE, successful induction of NE is crucial to observe effects of these approaches in related studies. This study presents a comprehensive overview of the methods and approaches utilized for NE reproduction in related studies from 2004 to 2023. These considerations are the careful selection of a virulent Clostridium perfringens strain, preparation of challenge inoculum, choice of time and the route for challenge inoculum administration, and utilization of one or more predisposing factors to increase the rate of NE occurrence in birds under experiment. We also reviewed the different systems used for lesion scoring of NE-challenged birds. By gaining clarity on these fundamental parameters, researchers can make informed decisions regarding the selection of the most appropriate NE experimental design in their respective studies.
Collapse
|
7
|
Ajao AM, Liu G, Taylor J, Ball MEE, Mercier Y, Applegate TJ, Selvaraj R, Kyriazakis I, Kim WK, Olukosi OA. Phase-specific outcmes of arginine or branched-chain amino acids supplementation in low crude protein diets on performance, nutrient digestibility, and expression of tissue protein synthesis and degradation in broiler chickens infected with mixed Eimeria spp. Poult Sci 2024; 103:103811. [PMID: 38763061 PMCID: PMC11111822 DOI: 10.1016/j.psj.2024.103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024] Open
Abstract
A 35-d study investigated the impact of dietary supplementation with Arginine (Arg) or branched-chain amino acids (BCAA) of broilers receiving low-protein diets whilst infected with mixed Eimeria species. All birds were given the same starter (d0-10) and finisher (d28-35) diets. The 4 grower diets used were a positive control (PC) with adequate protein (18.5%), a low protein diet (NC;16.5% CP), or the NC supplemented with Arg or BCAA. Supplemental AA was added at 50% above the recommended levels. The treatments were in a 4 × 2 factorial arrangement, with 4 diets, with or without Eimeria inoculation on d14. Birds and feed were weighed after inoculation in phases: prepatent (d14-17), acute (d18-21), recovery (d22-28), and compensatory (d29-35). Ileal digesta, jejunum, and breast tissue were collected on d21, 28, and 35. There was no diet × Eimeria inoculation on growth performance at any phase. Infected birds weighed less and consumed less feed (P < 0.05) in all phases. In the prepatent and acute phases, birds on the Arg diets had higher weight gain (P < 0.05) and lower FCR, similar to PC, when compared to NC and BCAA-fed ones. Infection reduced AA digestibility on d21 and 28 (Met and Cys). However, birds that received supplemental AA had higher digestibility (P < 0.05) of their respective supplemented AA on d 21 only. Infected birds had lower (P < 0.05) BO + AT and higher PEPT1 expression on d21. There was a diet × Eimeria interaction (P = 0.004) on gene expression at d28; 4EBP1 genes were significantly downwardly expressed (P < 0.05) in birds fed Arg diet, irrespective of infection. Infected birds exhibited an upward expression (P < 0.05) of Eef2 on d21 and d28 but experienced a downward expression on d35. Supplemental Arg and BCAA had variable effects on growth performance, apparent ileal AA digestibility, and genes of protein synthesis and degradation, but the effect of Arg on promoting weight gain, irrespective of the Eimeria challenge, was more consistent.
Collapse
Affiliation(s)
- Adeleye M Ajao
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - James Taylor
- Agri-Food & Biosciences Institute (AFBI), Belfast, BT9 5PX, United Kingdom
| | - M Elizabeth E Ball
- Institute for Global Food Security, Queen's University, Belfast, BT9 5DL, United Kingdom
| | | | - Todd J Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Ramesh Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Ilias Kyriazakis
- Agri-Food & Biosciences Institute (AFBI), Belfast, BT9 5PX, United Kingdom; Institute for Global Food Security, Queen's University, Belfast, BT9 5DL, United Kingdom
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Oluyinka A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
8
|
Zhang M, Liu J, Yu Z, Chen Z, Yang J, Yin Y, Xu S. Supplementation with organic yeast-derived selenium provides immune protection against experimental necrotic enteritis in broiler chickens. Microb Pathog 2024; 192:106691. [PMID: 38759933 DOI: 10.1016/j.micpath.2024.106691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Necrotic enteritis (NE) is a potentially fatal poultry disease that causes enormous economic losses in the poultry industry worldwide. The study aimed to evaluate the effects of dietary organic yeast-derived selenium (Se) on immune protection against experimental necrotic enteritis (NE) in commercial broilers. Chickens were fed basal diets supplemented with different Se levels (0.25, 0.50, and 1.00 Se mg/kg). To induce NE, Clostridium perfringens (C. perfringens) was orally administered at 14 days of age post hatch. The results showed that birds fed 0.25 Se mg/kg exhibited significantly increased body weight gain compared with the non-supplemented/infected birds. There were no significant differences in gut lesions between the Se-supplemented groups and the non-supplemented group. The antibody levels against α-toxin and NetB toxin increased with the increase between 0.25 Se mg/kg and 0.50 Se mg/kg. In the jejunal scrapings and spleen, the Se-supplementation groups up-regulated the transcripts for pro-inflammatory cytokines IL-1β, IL-6, IL-8, iNOS, and LITAF and avian β-defensin 6, 8, and 13 (AvBD6, 8 and 13). In conclusion, supplementation with organic yeast-derived Se alleviates the negative consequences and provides beneficial protection against experimental NE.
Collapse
Affiliation(s)
- Meiyu Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jian Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zehai Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhiyuan Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiehua Yang
- Qingdao Vland Animal Health Group Co., Ltd., Qingdao, 266111, China
| | - Yanbo Yin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shouzhen Xu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
Li S, Zhang K, Bai S, Wang J, Zeng Q, Peng H, Lv H, Mu Y, Xuan Y, Li S, Ding X. Extract of Scutellaria baicalensis and Lonicerae flos improves growth performance, antioxidant capacity, and intestinal barrier of yellow-feather broiler chickens against Clostridium perfringens. Poult Sci 2024; 103:103718. [PMID: 38692178 PMCID: PMC11077025 DOI: 10.1016/j.psj.2024.103718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 03/31/2024] [Indexed: 05/03/2024] Open
Abstract
In this study, we aimed to investigate the effect of Scutellaria baicalensis and Lonicerae Flos (SL) extract on the growth performance and intestinal health of yellow-feather broilers following a Clostridium perfringens challenge. In total, 600 one-day-old yellow-feather broilers were divided into five treatments (6 replicate pens of 20 birds per treatment), including a control (Con) group fed a basal diet and the infected group (iCon) fed a basal diet and infected with Clostridium perfringens, the other 3 groups receiving different doses of SL (150, 300, and 450 mg/kg) and infected with Clostridium perfringens. The total experimental period was 80 d. When the birds were 24-days-old, a subclinical necrotizing enteritis model was induced by orally inoculating the birds with 11,000 oocysts of mixed Eimeria species on d 24, followed by C. perfringens (108 CFU/mL) from d 28 to 30. The birds were evaluated for parameters such as average weight gain (AWG), average daily feed intake (ADFI), mortality, feed conversion ration (FCR), intestinal lesion score, intestinal C. perfringens counts, and villus histomorphometry. Results indicated that C. perfringens infection led to reduced AWG and the levels of tight junction proteins, increased the FCR, ileum E. coli load, and intestinal permeability, causing damage to the intestinal mucosal barrier (P < 0.05). Compared with the infected group, supplementing 300 mg/kg of SL significantly increased AWG at 43 to 80 d, the ratio of villus height to crypt depth in the jejunum and ileum at 35 d, and the activity of superoxide dismutase (SOD) in serum. It also significantly reduced the FCR at 22 to 42 d, intestinal lesion score, and the amount of C. perfringens in the ileum (P < 0.05). Additionally, compared with the infected group, the addition of 300 mg/kg SL significantly increased mRNA levels of claudin-2, claudin-3, mucin-2, and toll-like receptor 2 (TLR-2) in the ileum of infected birds at 35 d of age. In conclusion, supplementation with SL extract could effectively mitigate the negative effects of C. perfringens challenge by improving intestinal barrier function and histomorphology, positively influencing the growth performance of challenged birds.
Collapse
Affiliation(s)
- Shi Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Huiyuan Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; Beijing Centre Biology Co. Ltd. Daxing District, Beijing 102218, China
| | - Yadong Mu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Yue Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Shanshan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
10
|
Tompkins YH, Choppa VSR, Kim WK. n-3 enriched Fish oil diet enhanced intestinal barrier integrity in broilers after Eimeria infection. Poult Sci 2024; 103:103660. [PMID: 38552568 PMCID: PMC11000185 DOI: 10.1016/j.psj.2024.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Coccidiosis caused by Eimeria spp. results in substantial economic losses in the poultry industry. The objective of this study was to investigate the effects of dietary supplementation with n-3 polyunsaturated fatty acids-enriched fish oil on growth performance, intestinal barrier integrity, and intestinal immune response of broilers challenged with Eimeria spp. A total of 576 fourteen-day-old broilers were randomly assigned in a completely randomized design with a 3 × 2 factorial arrangement, comprising 2 diets supplemented with either 5% fish oil or 5% soybean oil, and 3 Eimeria spp. infection levels: a nonchallenge control, a low dose of Eimeria challenge, and a high challenge dose. The results of the study revealed significant interactions between diet and Eimeria challenge to parameters of gut barrier integrity and feed intake. A significant interaction was observed in feed intake between 5 and 8 d postinfection (DPI), where the fish oil groups exhibited a higher amount of feed intake compared to the soybean oil diet groups after coccidiosis infection. The effects of the fish oil diet resulted in enhanced gut barrier integrity, as evidenced by a trend of decreased gastrointestinal leakage and a lower mean of small intestine lesion scores after Eimeria challenge. Additionally, significant interactions were noted between Eimeria spp. challenge and diet regarding jejunal crypt depth. The positive impact of the fish oil diet was particularly noticeable with the high Eimeria challenge dose. Overall, these findings underscore the relationship between the fish oil diet and Eimeria challenge on broiler chicken intestinal health. Dietary supplementation of fish oil has the potential to maintain small intestine barrier integrity with severe Eimeria infection conditions.
Collapse
Affiliation(s)
- Yuguo Hou Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Shahininejad H, Rahimi S, Karimi Torshizi MA, Arabkhazaeli F, Ayyari M, Behnamifar A, Abuali M, Grimes J. Comparing the effect of phytobiotic, coccidiostat, toltrazuril, and vaccine on the prevention and treatment of coccidiosis in broilers. Poult Sci 2024; 103:103596. [PMID: 38471232 PMCID: PMC11067760 DOI: 10.1016/j.psj.2024.103596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
This study compared 2 herbal anticoccidiosis drugs (water-soluble and feed-additive drugs) with monensin coccidiostat, toltrazuril (TTZ, anticoccidiosis drug), and Livacox Q (anticoccidiosis vaccine) in terms of their effects on the prevention and treatment of coccidiosis in broilers. In this study, 280 Ross 308 broiler chickens (a mix of both genders) were used in a completely randomized design with 7 treatments and 5 replications each including 8 chickens per replicate. On d 21 of rearing, all experimental groups, except for the negative control group (NC), were challenged with a mixed suspension of common strains of Eimeria, and the intended indices were assessed, including performance indices, number of oocysts per gram (OPG) of feces, intestinal injuries, and the total number of intestinal bacteria. In addition, the NC and the group receiving the monensin had greater body weight gain (BWG) (P < 0.05). At the end of week 6, the monensin group had the highest feed intake (FI), while the water soluble medicine treatment resulted in the lowest feed intake (P < 0.05). Regarding the lesion scores on day 28, the highest and lowest rates of jejunal injuries were observed in the positive control group (PC), the monensin and vaccine group respectively. The rate of oocysts excretion (oocysts per gram of feces = OPG) on different days was higher in the PC group, and the use of monensin could further reduce excretion compared to the other groups (P > 0.05). Based on a comparison of the population of lactic acid bacteria between the NC and both medicinal plant treated groups, the use of these products could increase the population of these types of bacteria. Moreover, the population of Escherichia coli was less considerable in the NC and herbal powder groups (P < 0.05). Overall, similar to commercial medicines, the herbal medicines used in this project can be effective in the prevention and treatment of coccidiosis and can improve profitability in broiler rearing centers by improving intestinal health.
Collapse
Affiliation(s)
- Hesam Shahininejad
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14117-13116 Iran
| | - Shaban Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14117-13116 Iran
| | | | - Fatemeh Arabkhazaeli
- Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, 14199-63114 Iran
| | - Mahdi Ayyari
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14117-13116 Iran
| | - Alireza Behnamifar
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14117-13116 Iran
| | - Morteza Abuali
- Department of Pharmacognosy, Institute of Medicinal Plants-ACECR, Karaj, Alborz, 1419815477 Iran
| | - Jesse Grimes
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7608 USA.
| |
Collapse
|
12
|
Goo D, Ko H, Sharma MK, Choppa VSR, Paneru D, Shi H, Kim WK. Comparison of necrotic enteritis effects on growth performance and intestinal health in two different meat-type chicken strains Athens Canadian Random Bred and Cobb 500. Poult Sci 2024; 103:103599. [PMID: 38479098 PMCID: PMC10950882 DOI: 10.1016/j.psj.2024.103599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/24/2024] Open
Abstract
Chickens have undergone genetic improvements in the past few decades to maximize growth efficiency. However, necrotic enteritis (NE), an enteric disease primarily caused by C. perfringens, remains a significant problem in poultry production. A study investigated the differences in intestinal health between the nonselected meat-type chicken Athens Canadian Random Bred (ACRB) and the modern meat-type Cobb 500 broilers (Cobb) when challenged with experimental NE. The study utilized a 2 × 3 factorial arrangement, consisting of two main effects of chicken strain and NE challenge model (nonchallenged control, NC; NE challenge with 2,500/12,500 Eimeria maxima oocysts + 1 × 109C. perfringens, NE2.5/NE12.5). A total of 432 fourteen-day-old male ACRB and Cobb were used until 22 d (8 d postinoculation with E. maxima on d 14, dpi), and the chickens were euthanized on 6 and 8 dpi for the analysis. All data were statistically analyzed using a two-way ANOVA, and Student's t-test or Tukey's HSD test was applied when P < 0.05. The NE12.5 group showed significant decreases in growth performance and relative growth performance from d 14 to 20, regardless of chicken strain (P < 0.01). The ACRB group exhibited significant decreases in relative body weight and relative body weight gain compared to the Cobb group from d 14 to 22 (P < 0.01). On 6 and 8 dpi, both NE challenge groups showed significant decreases in intestinal villus height to crypt depth ratio, jejunal goblet cell count, and jejunal MUC2 and LEAP2 expression (P < 0.01). Additionally, the NE12.5 group had significantly higher intestinal NE lesion score, intestinal permeability, fecal E. maxima oocyst count, intestinal C. perfringens count, and jejunal IFNγ and CCL4 expression compared to the NC group (P < 0.05). In conclusion, NE negatively impacts growth performance and intestinal health in broilers, parameters regardless of the strain.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Milan Kumar Sharma
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
13
|
Shi H, Lopes T, Tompkins YH, Liu G, Choi J, Sharma MK, Kim WK. Effects of phytase supplementation on broilers fed with calcium and phosphorus-reduced diets, challenged with Eimeria maxima and Eimeria acervulina: influence on growth performance, body composition, bone health, and intestinal integrity. Poult Sci 2024; 103:103511. [PMID: 38340661 PMCID: PMC10869301 DOI: 10.1016/j.psj.2024.103511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
An experiment was conducted to evaluate the effects of phytase in calcium (Ca) and available phosphorous (avP)-reduced diet on growth performance, body composition, bone health, and intestinal integrity of broilers challenged with Eimeria maxima and Eimeria acervulina. A total of 672 14-day-old male broilers were allocated to a 2 × 4 factorial arrangement with 6 replicates per treatment and 14 birds per replicate. Two factors were Eimeria challenge and 4 dietary treatments: 1) a positive control (PC; 0.84% Ca and 0.42% avP); 2) a negative control (NC; 0.74% Ca and 0.27% avP); 3) NC + 500 FTU/Kg of phytase (NC + 500PHY); and 4) NC + 1,500 FTU/Kg of phytase (NC + 1500PHY). On d 14, birds in the Eimeria-challenged groups received a solution containing 15,000 sporulated oocysts of E. maxima and 75,000 sporulated oocysts of E. acervulina via oral gavage. At 5 d postinoculation (DPI), the challenged birds showed a higher (P < 0.01) FITC-d level than the unchallenged birds. While the permeability of the NC group did not differ from the PC group, the phytase supplementation groups (NC + 500PHY and NC + 1500PHY) showed lower (P < 0.05) serum FITC-d levels compared to the NC group. Interaction effects (P < 0.05) of Eimeria challenge and dietary treatments on feed intake (FI), mucin-2 (MUC2) gene expression, bone ash concentration, and mineral apposition rate (MAR) were observed. On 0 to 6 and 0 to 9 DPI, Eimeria challenge decreased (P < 0.01) body weight (BW), body weight gain (BWG), FI, bone mineral density (BMD), bone mineral content (BMC), bone area, fat free bone weight (FFBW), bone ash weight, bone ash percentage and bone ash concentration; and it showed a higher FCR (P < 0.01) compared to the unchallenged group. The reduction Ca and avP in the diet (NC) did not exert adverse effects on all parameters in birds, and supplementing phytase at levels of 500 or 1,500 FTU/Kg improved body composition, bone mineralization, and intestinal permeability, with the higher dose of 1,500 FTU/Kg showing more pronounced enhancements. There was an observed increase in FI (P < 0.01) when phytase was supplemented at 1,500 FTU/Kg during 0 to 6 DPI. In conclusion, results from the current study suggest that dietary nutrients, such as Ca and avP, can be moderately reduced with the supplementation of phytase, particularly in birds infected with Eimeria spp., which has the potential to save feed cost without compromising growth performance, bone health, and intestinal integrity of broilers.
Collapse
Affiliation(s)
- Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Taina Lopes
- Department of Poultry Science, Auburn University, Auburn, AL, 36849, USA
| | - Yuguo Hou Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Janghan Choi
- US National Poultry Research Center, United States Department of Agriculture Agricultural Research Service, Athens, GA, 30605, USA
| | - Milan Kumar Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
Majeed S, Hamad SK, Shah BR, Bielke L, Nazmi A. Natural intraepithelial lymphocyte populations rise during necrotic enteritis in chickens. Front Immunol 2024; 15:1354701. [PMID: 38455042 PMCID: PMC10917894 DOI: 10.3389/fimmu.2024.1354701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Intraepithelial lymphocytes (IEL) reside in the epithelium at the interface between the contents of the intestinal lumen and the sterile environment of the lamina propria. Because of this strategic location, IEL play a crucial role in various immunological processes, ranging from pathogen control to tissue stability. In mice and humans, IEL exhibit high diversity, categorized into induced IEL (conventional CD4 and CD8αβ T cells) and natural IEL (TCRαβCD8αα, TCRγδ, and TCRneg IEL). In chickens, however, the subpopulations of IEL and their functions in enteric diseases remain unclear. Thus, we conducted this study to investigate the role of IEL populations during necrotic enteritis (NE) in chickens. At 14 days of age, sixty-three Specific-pathogen-free (SPF) birds were randomly assigned to three treatments: Control (sham challenge), Eimeria maxima challenge (EM), and Eimeria maxima + Clostridium Perfringens (C. Perfringens) co-challenge (EM/CP). The EM and EM/CP birds were infected with Eimeria maxima at day 14 of age, and EM/CP birds were additionally orally inoculated with C. perfringens at days 18 and 19 of age. Birds were weighed at days 18, 20, and 26 of age to assess body weight gain (BWG). At 20 days of age (1 day-post C. perfringens infection; dpi), and 26 days of age (7 dpi), 7 birds per treatment were euthanized, and jejunum was harvested for gross lesion scores, IEL isolation, and gene expression. The EM/CP birds exhibited subclinical NE disease, lower BWG and shorter colon length. The Most changes in the IEL populations were observed at 1 dpi. The EM/CP group showed substantial increases in the total number of natural IEL subsets, including TCRαβ+CD4-CD8-, TCRαβ+CD8αα+, TCRγδ+, TCRneg and innate CD8α (iCD8α) cells by at least two-fold. However, by 7 dpi, only the number of TCRαβ+CD4-CD8- and TCRαβ+CD8αα+ IEL maintained their increase in the EM/CP group. The EM/CP group had significantly higher expression of proinflammatory cytokines (IL-1β and IFN-γ) and Osteopontin (OPN) in the jejunum at 1 dpi. These findings suggest that natural IEL with innate and innate-like functions might play a critical role in the host response during subclinical NE, potentially conferring protection against C. perfringens infection.
Collapse
Affiliation(s)
- Shuja Majeed
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Shaimaa K. Hamad
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Bikas R. Shah
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Lisa Bielke
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Ali Nazmi
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Food For Health Discovery Theme, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Jespersen JC, de Paula Dorigam JC, Whelan R, Dilger AC, Oelschlager ML, Sommer KM, Gorenz BE, White RR, Dilger RN. Defining optimal dietary starch, oil, and amino acid inclusion levels for broilers experiencing a coccidiosis challenge. Poult Sci 2024; 103:103335. [PMID: 38176364 PMCID: PMC10806127 DOI: 10.1016/j.psj.2023.103335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Alternative methods to alleviate coccidiosis in broilers are of interest to producers, including dietary strategies to minimize disruptions in growth rate and efficiency when faced with health challenges. Our objective was to determine optimal combinations of dietary starch, amino acids (AA), and oil to benefit productivity of broilers experiencing Eimeria-induced immune activation. Two trials were conducted using 1,536 male Ross 308 broiler chicks in floor pens randomly assigned to 1 of 17 experimental treatments. All birds received common starter (d 0-10) and finisher (d 24-35) diets, and only differed based on their assigned experimental grower diet (d 10-24). Trial 1 experimental grower diets ranged from 2,700 to 3,300 kcal/kg AME. Trial 2 included 10 experimental grower diets following a simplex lattice design consisting of 3 basal lots formulated to have the highest starch (45.4%), oil (10.2%), or AA density (120, 1.33% digestible Lys) and mixed in 4 equally spaced levels for each component (0, 0.33, 0.67, 1). These mixtures enabled varying densities of AA (80-120% of recommendation), starch:oil (4:1-20:1), and AME (2,940-3,450 kcal/kg). Bird and feeder weights were collected on d 0, 10, 24, and 35, and birds were exposed to an Eimeria challenge on d 11 or 12. In trial 2, excreta samples were collected for AME determination and carcasses were processed on d 36. Data were analyzed using ANOVA, t test, or regression. In Trial 1, BW gain and feed conversion were improved (P < 0.05) by increasing dietary AME. In Trial 2, birds receiving diets containing AA at 93 to 107% of recommendations and higher oil exhibited improved (P < 0.05) performance, but increased starch at the expense of oil reduced performance (P < 0.05). Relative breast and fat pad weights were not influenced by diet in Trial 2. We determined that broilers mildly challenged with Eimeria would exhibit highest BW gain when receiving diets containing 35.8% starch, 8.9% oil, and 101.3% of AA recommendations, which can be utilized by producers to maintain productivity under health-challenged conditions.
Collapse
Affiliation(s)
- J C Jespersen
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | - R Whelan
- Evonik Operations GmbH, Nutrition & Care, Hanau-Wolfgang, Germany
| | - A C Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - M L Oelschlager
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - K M Sommer
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - B E Gorenz
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - R R White
- Department of Animal and Poultry Sciences, Virginia Tech, Backsburg, VA, USA
| | - R N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
16
|
Alagbe EO, Schulze H, Adeola O. Dietary Spirulina effects in Eimeria-challenged broiler chickens: growth performance, nutrient digestibility, intestinal morphology, serum biomarkers, and gene expression. J Anim Sci 2024; 102:skae186. [PMID: 38995102 PMCID: PMC11306789 DOI: 10.1093/jas/skae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024] Open
Abstract
This study investigated the growth performance, nutrient utilization, and intestinal health responses of Eimeria-challenged broiler chickens to dietary Spirulina (Arthrospira platensis). On day 1, birds were assigned to 2 diets supplemented with Spirulina (0 or 5 g/kg) in a randomized complete block design. The birds within each diet were divided into 2 Eimeria-challenge groups (challenge or no-challenge) and that resulted in a 2 × 2 factorial arrangement with 2 levels each of Spirulina and challenge on day 14. On day 15, the birds in the challenge or no-challenge groups were orally gavaged with a solution containing Eimeria oocysts or 1% PBS, respectively. Samples were collected on days 21 and 26 (6- and 11-d post-infection; dpi). Data collected from days 1 to 26 were analyzed using the MIXED procedure of SAS. Birds that were fed Spirulina-supplemented diets had increased (P < 0.05) BW gain, gain-to-feed ratio, and total tract retention nitrogen from days 14 to 21. The ileal villus perimeter and area, serum catalase, HMOX1 and SOD1 jejunal abundance were all increased (P < 0.05) in birds fed Spirulina-supplemented diets on day 21 (6 dpi). However, there was no effect on bone ash or oocyst count. From days 21 to 26, there was a tendency (P = 0.059) for a Spirulina × Challenge interaction on the BW gain of birds. Moreover, dietary Spirulina addition increased (P < 0.05) serum catalase, total antioxidant capacity, ileal villus perimeter, tibia bone ash, and the relative mRNA expression of HMOX1, SOD1, claudin 1, and TNFα in the jejunal mucosa of birds on day 26 (11 dpi). On both 6 and 11 dpi, the Eimeria challenge negatively (P < 0.05) impacted growth performance, gut morphology, and the relative mRNA expression of genes. Overall, assessing the impact of Spirulina in broilers revealed its positive antioxidant, immune-modulating, and health benefits. However, its dietary addition did not completely reverse the Eimeria-induced effects in these birds. Ultimately, this study outlines the positive properties of dietary Spirulina beyond its use in the diet of healthy broiler chickens.
Collapse
Affiliation(s)
| | - Hagen Schulze
- Livalta, an AB Agri Company, Peterborough, United Kingdom
| | - Olayiwola Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
17
|
Bortoluzzi C, Bittencourt LC, Perez-Calvo E, Belote BL, Soares I, Santin E, Sorbara JOB, Caron LF. A microbial muramidase improves growth performance and reduces inflammatory cell infiltration in the intestine of broilers chickens under Eimeria and Clostridium perfringens challenge. Poult Sci 2024; 103:103226. [PMID: 37995420 PMCID: PMC10701120 DOI: 10.1016/j.psj.2023.103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
The objective of the present studies was to evaluate muramidase (MUR) supplementation in broilers under Eimeria and/or Clostridium perfringens challenge. For this, 2 experiments were conducted. Experiment 1. A total of 256 one-day old male Cobb 500 chicks were placed in battery cages in a completely randomized design, with 5 treatment groups, 7 replicate cages per treatment and 8 birds per cage. The treatments were: nonchallenged control (NC), challenged control (CC), CC + MUR at 25,000 or 35,000 LSU(F)/kg, and CC + Enramycin at 10 ppm (positive control-PC). Challenge consisted of 15× the recommended dose of coccidiosis vaccine at placement, and Clostridium perfringens (108 CFU/bird) inoculation at 10, 11, and 12 d. Macro and microscopic evaluation, immunohistochemistry, and gene expression were evaluated at 7, 14, 21, and 28 d of age. Experiment 2. A total of 1,120 one-day old male Cobb 500 chicks were placed in floor pens with fresh litter in a completely randomized design, with 4 treatment groups, 8 replicate pens per treatment, and 35 birds per pen. The treatments were: Control, supplementation of MUR at 25,000 or 45,000 LSU(F)/kg, and a positive control (basal diet plus Enramycin). At 10, 11, and 12 d of the experiment all the birds were inoculated by oral gavage with a fresh broth culture of a field isolate Clostridium perfringens (0.5 mL containing 106 CFU/bird). It was observed that in Experiment 1 MUR supplementation reduced the infiltration of macrophages and CD8+ lymphocytes in the liver and ileum of infected birds, downregulated IL-8 and upregulated IL-10 expression. In Experiment 2, MUR linearly improved the growth performance of the birds, increased breast meat yield, and improved absorption capacity. MUR supplementation elicited an anti-inflammatory response in birds undergoing a NE challenge model that may explain the improved growth performance of supplemented birds.
Collapse
|
18
|
Felici M, Tugnoli B, De Hoest-Thompson C, Piva A, Grilli E, Marugan-Hernandez V. Thyme, Oregano, and Garlic Essential Oils and Their Main Active Compounds Influence Eimeria tenella Intracellular Development. Animals (Basel) 2023; 14:77. [PMID: 38200808 PMCID: PMC10778106 DOI: 10.3390/ani14010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Coccidiosis poses a significant challenge in poultry production and is typically managed with ionophores and chemical anticoccidials. However, the emergence of drug resistance and limitations on their use have encouraged the exploration of alternative solutions, including botanical compounds and improvements in in vitro screening methods. Prior research focused only on the impact of these alternatives on Eimeria invasion, with intracellular development in cell cultures receiving limited attention. This study assessed the impact of thyme (Thymus vulgaris), oregano (Origanum vulgare), and garlic (Allium sativum) essential oils, as well as their bioactive compounds, on the initial phase of schizogony in Madin-Darby bovine kidney cells, comparing their effectiveness to two commercially used anticoccidial drugs. Using image analysis and quantitative PCR, the study confirmed the efficacy of commercial anticoccidials in reducing invasion and schizont formation, and it found that essential oils were equally effective. Notably, thymol and carvacrol exhibited mild inhibition of intracellular replication of the parasite but significantly reduced schizont numbers, implying a potential reduction in pathogenicity. In conclusion, this research highlights the promise of essential oils and their bioactive components as viable alternatives to traditional anticoccidial drugs for mitigating coccidiosis in poultry, particularly by disrupting the intracellular development of the parasites.
Collapse
Affiliation(s)
- Martina Felici
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.P.); (E.G.)
| | | | - Callum De Hoest-Thompson
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield AL9 7TA, UK; (C.D.H.-T.); (V.M.-H.)
| | - Andrea Piva
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.P.); (E.G.)
- Vetagro S.p.A., Via Porro 2, 42124 Reggio Emilia, Italy;
| | - Ester Grilli
- DIMEVET, Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.P.); (E.G.)
- Vetagro Inc., 17 East Monroe Street Suite #179, Chicago, IL 60603, USA
| | - Virginia Marugan-Hernandez
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield AL9 7TA, UK; (C.D.H.-T.); (V.M.-H.)
| |
Collapse
|
19
|
Omotoso AO, Reyer H, Oster M, Ponsuksili S, Wimmers K. Jejunal microbiota of broilers fed varying levels of mineral phosphorus. Poult Sci 2023; 102:103096. [PMID: 37797492 PMCID: PMC10562922 DOI: 10.1016/j.psj.2023.103096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
Efforts to achieve sustainable phosphorus (P) inputs in broiler farming which meet the physiological demand of animals include nutritional intervention strategies that have the potential to modulate and utilize endogenous and microbiota-associated capacities. A temporal P conditioning strategy in broiler nutrition is promising as it induces endocrinal and transcriptional responses to maintain mineral homeostasis. In this context, the current study aims to evaluate the composition of the jejunal microbiota as a functional entity located at the main absorption site involved in nutrient metabolism. Starting from a medium or high P supply in the first weeks of life of broilers, a depletion strategy was applied at growth intervals from d 17 to 24 and d 25 to 37 to investigate the consequences on the composition of the jejunal microbiota. The results on fecal mineral P, calcium (Ca), and phytate contents showed that the diets applied to the depleted and non-depleted cohorts were effective. Microbial diversity in jejunum was represented by alpha diversity indices which appeared unaffected between dietary groups. However, chickens assigned to the dietary P depletion groups showed significantly higher abundances of Facklamia, Lachnospiraceae, and Ruminococcaceae compared to non-depleted control groups. Based on current knowledge of microbial function, these microorganisms make only a minor contribution to the birds' adaptive mechanism in the jejunum following P depletion. Microbial taxa such as Brevibacterium, Brachybacterium, and genera of the Staphylococcaceae family proliferated in a P-enriched environment and might be considered biomarkers for excessive P supply in commercial broiler chickens.
Collapse
Affiliation(s)
- Adewunmi O Omotoso
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, Justus-von-Liebig-Weg 6b, University of Rostock, 18059 Rostock, Germany.
| |
Collapse
|
20
|
Heidarpanah S, Thibodeau A, Parreira VR, Quessy S, Segura M, Gottschalk M, Gaudreau A, Juette T, Gaucher ML. Evaluation of the Immunoprotective Capacity of Five Vaccine Candidate Proteins against Avian Necrotic Enteritis and Impact on the Caecal Microbiota of Vaccinated Birds. Animals (Basel) 2023; 13:3323. [PMID: 37958078 PMCID: PMC10650611 DOI: 10.3390/ani13213323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Avian necrotic enteritis is an enteric disease of broiler chickens caused by certain pathogenic strains of Clostridium perfringens in combination with predisposing factors. A vaccine offering complete protection against the disease has not yet been commercialized. In a previous study, we produced five recombinant proteins predicted to be surface-exposed and unique to necrotic enteritis-causing C. perfringens and the immunogenicity of these potential vaccine candidates was assessed in broiler chickens. In the current work, the relative contribution of the antibodies raised by these putative antigens to protect broiler chickens was evaluated using an experimental necrotic enteritis induction model. Additionally, the link between the immune response elicited and the gut microbiota profiles in immunized birds subjected to infection with virulent C. perfringens was studied. The ELISA results showed that the IgY antibody titers in vaccinated birds on days 21 and 33 were significantly higher than those on days 7 and 14 and those in birds receiving the adjuvant alone, while the relative contribution of the specific immunity attributed to these antibodies could not be precisely determined using this experimental necrotic enteritis induction model. In addition, 16S rRNA gene amplicon sequencing showed that immunization of birds with recombinant proteins had a low impact on the chicken caecal microbiota.
Collapse
Affiliation(s)
- Sara Heidarpanah
- Chaire de Recherche en Salubrité des Viandes (CRSV), Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.H.); (A.T.); (S.Q.)
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (M.G.); (A.G.)
| | - Alexandre Thibodeau
- Chaire de Recherche en Salubrité des Viandes (CRSV), Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.H.); (A.T.); (S.Q.)
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (M.G.); (A.G.)
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Valeria R. Parreira
- Canadian Research Institute for Food Safety (CRIFS), Food Science Department, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Sylvain Quessy
- Chaire de Recherche en Salubrité des Viandes (CRSV), Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.H.); (A.T.); (S.Q.)
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (M.G.); (A.G.)
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (M.G.); (A.G.)
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Annie Gaudreau
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (M.G.); (A.G.)
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Tristan Juette
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Marie-Lou Gaucher
- Chaire de Recherche en Salubrité des Viandes (CRSV), Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.H.); (A.T.); (S.Q.)
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (M.G.); (A.G.)
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
21
|
Freitas LFVBD, Dorigam JCDP, Reis MDP, Nogueira BRF, Lizana RR, Sakomura NK. Responses of broilers challenged by Eimeria maxima fed with different levels of dietary balanced protein. Res Vet Sci 2023; 163:104984. [PMID: 37597504 DOI: 10.1016/j.rvsc.2023.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
This study aimed to evaluate the effects of different dietary balanced protein (BP) levels on the gut health, amino acid apparent ileal digestibility (AID), footpad dermatitis lesions, and litter quality in broiler chicks infected with Eimeria maxima. A total of 2400 male 14-day-old Cobb500 broilers were randomly allotted into 10 treatments with six replications containing 40 birds each in a factorial design of 5 × 2. The treatments consisted of five levels of BP (6.66%, 13.32%, 19.98%, 26.64%, and 33.3%), and broilers unchallenged (NCH) or challenged (CH). Broilers in the CH group received 1 mL of Eimeria maxima inoculum (7 × 103 sporulated oocysts/mL). Oocyst count in excreta, visual intestinal modifications score, morphology, and morphometrics of the ileum were used to determine gut health status. Additionally, amino acids and CP AID, litter quality, and footpad dermatitis were evaluated. An ANOVA and Kruskal-Wallis tests followed by post-hoc tests were performed. The oocyst count in the CH group increased with an increase in dieatary BP (P = 0.08). The incidence of intestinal modifications was higher in the CH group (P < 0.05) and increased with increasing dietary BP (P < 0.05). Morphometrics were impaired by the challenge (P < 0.05), and by the two highest BP levels (P < 0.05). Amino acids AID (methionine, methionine + cystine, arginine, and serine) were reduced by E. maxima challenge. An increase in dietary BP resulted in poor litter quality and high prevalence of of footpad dermatitis (P < 0.05). The E. maxima challenge and increased BP decreased gut health, litter quality, and cause a high incidence of footpad dermatitis.
Collapse
Affiliation(s)
- Luís Filipe Villas Boas de Freitas
- Animal Science Departament, UNESP- Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de acesso Professor Paulo Donato Castellene, s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | | | - Matheus de Paula Reis
- Animal Science Departament, UNESP- Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de acesso Professor Paulo Donato Castellene, s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Bernardo Rocha Franco Nogueira
- Animal Science Departament, UNESP- Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de acesso Professor Paulo Donato Castellene, s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Rony Riveiros Lizana
- Animal Science Departament, UNESP- Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de acesso Professor Paulo Donato Castellene, s/n, 14884-900, Jaboticabal, São Paulo, Brazil
| | - Nilva Kazue Sakomura
- Animal Science Departament, UNESP- Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Via de acesso Professor Paulo Donato Castellene, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
22
|
Goo D, Choi J, Ko H, Choppa VSR, Liu G, Lillehoj HS, Kim WK. Effects of Eimeria maxima infection doses on growth performance and gut health in dual-infection model of necrotic enteritis in broiler chickens. Front Physiol 2023; 14:1269398. [PMID: 37799512 PMCID: PMC10547889 DOI: 10.3389/fphys.2023.1269398] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
The objective of this study was to investigate the effects of the different doses of Eimeria maxima (EM) oocysts on growth performance and intestinal health in broiler chickens challenged with a dual infection model of necrotic enteritis (NE) using EM and NetB+ Clostridium perfringens (CP). A total of 432 fourteen-d-old male Cobb 500 broiler chickens were divided into 6 groups with 6 replicates each. The six different groups were as follows: Control, non-challenged; T0+, challenged with CP at 1 × 109 colony forming unit; T5K+, T0+ + 5,000 EM oocysts; T10K+, T0+ + 10,000 EM oocysts; T20K+; T0+ + 20,000 EM oocysts; and T40K+; T0+ + 40,000 EM oocysts. The challenge groups were orally inoculated with EM strain 41A on d 14, followed by NetB+ CP strain Del-1 on 4 days post inoculation (dpi). Increasing EM oocysts decreased d 21 body weight, body weight gain, feed intake (linear and quadratic, p < 0.001), and feed efficiency (linear, p < 0.001) from 0 to 7 dpi. Increasing EM oocysts increased jejunal NE lesion score and intestinal permeability on 5, 6, and 7 dpi (linear, p < 0.05). On 7 dpi, increasing the infection doses of EM oocysts increased jejunal CP colony counts (linear, p < 0.05) and increased fecal EM oocyst output (linear and quadratic, p < 0.001). Furthermore, increasing the infection doses of EM oocysts decreased the villus height to crypt depth ratios and the goblet cell counts (linear, p < 0.05) on 6 dpi. Increasing EM oocysts downregulated the expression of MUC2, B0AT, B0,+AT, PepT1, GLUT2, AvBD3 and 9, LEAP2, and TLR4, while upregulating CLDN1, CATHL3, IL-1β, IFN-γ, TNFSF15, TNF-α, IL-10, and Gam56 and 82 on 6 dpi (linear, p < 0.05). Additionally, increasing EM oocysts decreased Pielou's evenness and Shannon's entropy (linear, p < 0.01). In conclusion, increasing the infection doses of EM significantly aggravated the severity of NE and exerted negative impact on intestinal health from 5 to 7 dpi.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Hyun Soon Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
23
|
Calvigioni M, Panattoni A, Biagini F, Donati L, Mazzantini D, Massimino M, Daddi C, Celandroni F, Vozzi G, Ghelardi E. Development of an In Vitro Model of the Gut Microbiota Enriched in Mucus-Adhering Bacteria. Microbiol Spectr 2023; 11:e0033623. [PMID: 37289064 PMCID: PMC10433972 DOI: 10.1128/spectrum.00336-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
Culturing the gut microbiota in in vitro models that mimic the intestinal environment is increasingly becoming a promising alternative approach to study microbial dynamics and the effect of perturbations on the gut community. Since the mucus-associated microbial populations in the human intestine differ in composition and functions from their luminal counterpart, we attempted to reproduce in vitro the microbial consortia adhering to mucus using an already established three-dimensional model of the human gut microbiota. Electrospun gelatin structures supplemented or not with mucins were inoculated with fecal samples and compared for their ability to support microbial adhesion and growth over time, as well as to shape the composition of the colonizing communities. Both scaffolds allowed the establishment of long-term stable biofilms with comparable total bacterial loads and biodiversity. However, mucin-coated structures harbored microbial consortia especially enriched in Akkermansia, Lactobacillus, and Faecalibacterium, being therefore able to select for microorganisms commonly considered mucosa-associated in vivo. IMPORTANCE These findings highlight the importance of mucins in shaping intestinal microbial communities, even those in artificial gut microbiota systems. We propose our in vitro model based on mucin-coated electrospun gelatin structures as a valid device for studies evaluating the effects of exogenous factors (nutrients, probiotics, infectious agents, and drugs) on mucus-adhering microbial communities.
Collapse
Affiliation(s)
- Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Adelaide Panattoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Biagini
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center “Enrico Piaggio”, University of Pisa, Pisa, Italy
| | - Leonardo Donati
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mariacristina Massimino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Costanza Daddi
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center “Enrico Piaggio”, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanni Vozzi
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Center “Enrico Piaggio”, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Research Center “Nutraceuticals and Food for Health – Nutrafood”, University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Kulkarni RR, Gaghan C, Mohammed J, Sharif S, Taha-Abdelaziz K. Cellular Immune Responses in Lymphoid Tissues of Broiler Chickens Experimentally Infected with Necrotic Enteritis-Producing Clostridium perfringens Strains. Avian Dis 2023; 67:186-196. [PMID: 37556298 DOI: 10.1637/aviandiseases-d-23-00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/05/2023] [Indexed: 08/11/2023]
Abstract
Host cellular responses against Clostridium perfringens (CP), the causative agent of necrotic enteritis (NE) in chickens, are poorly understood. In the present study, we first tested the NE-producing ability of seven netB+ CP strains (CP5, CP18, CP26, CP64, CP67, CP68, and NCNE-1), using an experimental infection model of broiler chickens. Evaluation of intestinal gross lesions showed that all the strains, except CP5, were able to produce NE, while CP26 and CP64 strains produced relatively more severe lesions when compared with other groups. Next, cellular responses in the cecal tonsil (CT), bursa of Fabricius, and spleen were evaluated in chickens infected with strains representing variation in the level of virulence, namely, avirulent CP5, virulent CP18, and a relatively more virulent CP26 strain. Immunophenotyping analysis showed that CT or splenic macrophage frequencies were significantly higher in CP18- and CP26-infected chickens compared with uninfected controls, while the frequencies of γδ T-cells and B-cells in the CT of CP26-infected chickens were significantly higher than those in the uninfected, CP5- or CP18-infected groups. The T-cell analysis showed that chickens infected with CP18 and CP26 had a significantly higher number of splenic CD4+ and CD8+ T-cells expressing CD44 and CD28 activation molecules, while CP26-infected chickens also had significantly increased CT frequency of these activated CD4+ and CD8+ T-cells when compared with uninfected or CP5-infected groups. Collectively, our findings suggested that cellular responses, including activation of T-cells, are selectively induced against virulent CP strains and that the NE-producing characteristics of this pathogen may influence the outcome of immunity to NE.
Collapse
Affiliation(s)
- Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC27607,
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC27607
| | - Javid Mohammed
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC27607
- Department of Immunology Duke University School of Medicine Durham NC 27710
| | - Shayan Sharif
- Department of Pathobiolo Ontario Veterinar Colle e Universit of Guelph Guelph Ontario Canada N1G 2W1
| | | |
Collapse
|
25
|
Sharma MK, Regmi P, Applegate T, Chai L, Kim WK. Osteoimmunology: A Link between Gastrointestinal Diseases and Skeletal Health in Chickens. Animals (Basel) 2023; 13:1816. [PMID: 37889704 PMCID: PMC10251908 DOI: 10.3390/ani13111816] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 09/29/2023] Open
Abstract
Bone serves as a multifunctional organ in avian species, giving structural integrity to the body, aiding locomotion and flight, regulating mineral homeostasis, and supplementing calcium for eggshell formation. Furthermore, immune cells originate and reside in the bone marrow, sharing a milieu with bone cells, indicating a potential interaction in functions. In avian species, the prevalence of gastrointestinal diseases can alter the growth and the immune response, which costs a great fortune to the poultry industry. Previous studies have shown that coccidiosis and necrotic enteritis can dramatically reduce bone quality as well. However, possible mechanisms on how bone quality is influenced by these disease conditions have not yet been completely understood, other than the reduced feed intake. On the other hand, several mediators of the immune response, such as chemokines and cytokines, play a vital role in the differentiation and activation of osteoclasts responsible for bone resorption and osteoblasts for bone formation. In the case of Eimeria spp./Clostridium perfringens coinfection, these mediators are upregulated. One possible mechanism for accelerated bone loss after gastrointestinal illnesses might be immune-mediated osteoclastogenesis via cytokines-RANKL-mediated pathways. This review article thus focuses on osteoimmunological pathways and the interaction between host immune responses and bone biology in gastrointestinal diseases like coccidiosis and necrotic enteritis affecting skeletal health.
Collapse
Affiliation(s)
| | | | | | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (M.K.S.); (P.R.); (T.A.); (L.C.)
| |
Collapse
|
26
|
Taha S, Nguyen-Ho-Bao T, Berberich LM, Gawlowska S, Daugschies A, Rentería-Solís Z. Interplay between Eimeria acervulina and Cryptosporidium parvum during In Vitro Infection of a Chicken Macrophage Cell Line (HD11). Life (Basel) 2023; 13:1267. [PMID: 37374050 DOI: 10.3390/life13061267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Eimeria acervulina is a frequent intestinal pathogen of chickens, causing economic impact on the poultry industry. Cryptosporidium parvum is a neglected parasite in chickens. However, because of its zoonotic potential, poultry cryptosporidiosis may pose a risk to public health. Little is known about the parasite-host interactions during coinfection with both parasites. In this study, we investigated the possible interactions during in vitro coinfection of E. acervulina and C. parvum in a chicken macrophage cell line (HD11). METHODS HD11 cells were inoculated with E. acervulina and C. parvum sporozoites and incubated 2, 6, 12, 24, and 48 h post infection (hpi). Mono-infections for each parasite were also investigated. Real-time PCR was used to quantify parasite replication. Additionally, macrophage mRNA expression levels of IFN-γ, TNF-α, iNOS, and IL-10 were measured. RESULTS For both parasites, multiplication was, in most groups, lower in the coinfection group (COIG) compared with mono-infections. However, at 6 hpi, the number of C. parvum copies was higher in co-infections. Intracellular replication started to decrease from 12 hpi onward, and it was almost undetectable by 48 hpi in all groups. Infections resulted in low expression of all cytokines, except at 48 hpi. CONCLUSIONS Infection of avian macrophages with both E. acervulina and C. parvum seemed to hinder intracellular replication for both parasites in comparison to mono-infection. A clear reduction in intracellular parasites from 12 hpi onward details the important role potentially played by macrophages in host control of these parasites.
Collapse
Affiliation(s)
- Shahinaz Taha
- Institute of Parasitology, Centre for Infection Medicine, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany
- Deparment of Preventive Medicine and Veterinary Public Health, Faculty of Veterinary Medicine, University of Khartoum, P.O. Box 32, Shambat 13314, Khartoum North, Sudan
| | - Tran Nguyen-Ho-Bao
- Institute of Parasitology, Centre for Infection Medicine, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho 900000, Vietnam
| | - Lisa Maxi Berberich
- Institute of Parasitology, Centre for Infection Medicine, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany
| | - Sandra Gawlowska
- Institute of Parasitology, Centre for Infection Medicine, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Centre for Infection Medicine, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany
- Albrecht-Daniel-Thaer Institute, Rudolf-Breitscheid-Str. 38, 04463 Größpösna, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Centre for Infection Medicine, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany
- Albrecht-Daniel-Thaer Institute, Rudolf-Breitscheid-Str. 38, 04463 Größpösna, Germany
| |
Collapse
|
27
|
Kulkarni RR, Gaghan C, Gorrell K, Fletcher OJ. Mucosal and systemic lymphoid immune responses against Clostridium perfringens strains with variable virulence in the production of necrotic enteritis in broiler chickens. Avian Pathol 2023; 52:108-118. [PMID: 36453684 DOI: 10.1080/03079457.2022.2154195] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Necrotic enteritis (NE), caused by Clostridium perfringens, is an economically important disease of chickens. Although NE pathogenesis is moderately well studied, the host immune responses against C. perfringens are poorly understood. The present study used an experimental NE model to characterize lymphoid immune responses in the caecal tonsils (CT), bursa of Fabricius, Harderian gland (HG) and spleen tissues of broiler chickens infected with four netB+ C. perfringens strains (CP1, CP5, CP18, and CP26), of which CP18 and CP26 strains also carried the tpeL gene. The gross and histopathological lesions in chickens revealed CP5 to be avirulent, while CP1, CP18, and CP26 strains were virulent with CP26 being "very virulent". Gene expression analysis showed that, while the virulent strains induced a significantly upregulated expression of pro-inflammatory IL-1β gene in CT, the CP26-infected birds had significantly higher CT transcription of IFNγ and IL-6 pro-inflammatory genes compared to CP5-infected or uninfected chickens. Furthermore, CP26 infection also led to significantly increased bursal and HG expression of the anti-inflammatory/regulatory genes, IL-10 or TGFβ, compared to control, CP5 and CP1 groups. Additionally, the splenic pro- and anti-inflammatory transcriptional changes were observed only in the CP26-infected chickens. An antibody-mediated response, as characterized by increased IL-4 and/or IL-13 transcription and elevated IgM levels in birds infected with virulent strains, particularly in the CP26-infected group compared to uninfected controls, was also evident. Collectively, our findings suggest that lymphoid immune responses during NE in chickens are spatially regulated such that the inflammatory responses against C. perfringens depend on the virulence of the strain.
Collapse
Affiliation(s)
- Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Kaitlin Gorrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Oscar J Fletcher
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
28
|
Criollo V, Gaghan C, John F, Orozco E, Thachil A, Crespo R, Kulkarni RR. Immune Response Evaluation in Commercial Turkeys Affected with Clostridial Dermatitis. Avian Dis 2023; 67:80-88. [PMID: 37140115 DOI: 10.1637/aviandiseases-d-22-00089] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
Clostridial dermatitis (CD), caused by Clostridium septicum and Clostridium perfringens, is an economically important emerging disease of turkeys characterized by sudden deaths and necrotic dermatitis. Immune responses in CD-affected commercial turkeys are poorly understood. In the present study, C. septicum was isolated from CD-affected commercial turkeys during a recent outbreak, and the tissues (skin, muscle, and spleen) were collected and analyzed for immune gene expression, along with samples from clinically healthy birds. The results showed that CD-affected turkeys had significantly higher levels of IL-1β, IL-6, IFNγ, and iNOS transcripts in the skin, muscle, and spleen tissues compared to healthy birds. Affected turkeys also had a significantly elevated transcription of toll-like receptor (TLR21) gene in the skin and spleen tissues, suggesting a role for this receptor in the immune recognition. The expression of IL-4 and IL-13 genes in the spleen and muscle was also significantly higher in the affected birds. Additional birds from the same affected and healthy farms examined for serology revealed that the CD-affected turkeys had significantly higher levels of serum IgM and IgY antibodies. Furthermore, in vitro stimulation of MQ-NCSU macrophages with C. septicum led to a significant transcriptional upregulation of IL-1β and IFNγ genes, while the IL-10 gene expression was downregulated. The surface expression of MHC-II protein and cellular production of nitric oxide were also significantly increased in the C. septicum-stimulated macrophages, indicating cellular activation. Collectively, our findings suggest that the host responses in CD-affected turkeys involve a robust inflammatory response as well as a response mediated by IL4/IL-13 cytokines that may aid in antibody-mediated immunity.
Collapse
Affiliation(s)
- Valeria Criollo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606
| | - Feba John
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606
| | - Eric Orozco
- Butterball LLC, P.O. Box 10009, Goldsboro, NC 27532
| | - Anil Thachil
- Bacteriology & Mycology Division, Rollins Animal Disease Diagnostic Laboratory, 4400 Reedy Creek Road, Raleigh, NC 27607
| | - Rocio Crespo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606
| |
Collapse
|
29
|
Wang B, Du P, Huang S, He D, Chen J, Wen X, Yang J, Xian S, Cheng Z. Comparison of the caecal microbial community structure and physiological indicators of healthy and infection Eimeria tenella chickens during peak of oocyst shedding. Avian Pathol 2023; 52:51-61. [PMID: 36200987 DOI: 10.1080/03079457.2022.2133681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Eimeria tenella (E. tenella), an important intestinal parasite of chicken caeca, causes coccidiosis and brings large economic losses to the poultry industry annually. Gut microorganismal alterations directly affect the health of the body. To understand how E. tenella affects its host, we analysed the changes in caecal microbial diversity and the physiological and morphological changes during the peak of oocyst shedding. Infected and healthy chickens differed significantly in caecal pathology and blood indicators. At the genus level, the abundances of Faecalibacterium, Clostridium, Lachnoclostridium, Gemmiger, Flavonifractor, Pseudoflavonifractor and Oscillibacter were significantly decreased in the infected samples, whereas Escherichia, Nocardia and Chlamydia were significantly increased. Functional gene pathways related to replication, recombination and repair, and transcription were significantly decreased, and functional genes related to metabolism were highly significantly reduced in the infected samples. Furthermore, in the infected samples, E. tenella reduced the haemoglobin levels and red blood cell counts, greatly reduced the beneficial bacteria and increased the potentially pathogenic bacteria. This study provides a research basis for further understanding the pathogenic mechanisms of E. tenella and provides insight for potential new drug development.RESEARCH HIGHLIGHTS First simultaneous description of caecal microbiota and physiological indicators during E. tenella infection.Metagenomics used to explore functional properties of chicken caecal microbiota during E. tenella infection.Caecal microbial compositions and functional genes altered significantly after infection.Blood indicators and caecal morphology were significantly altered in the infected group.
Collapse
Affiliation(s)
- Bi Wang
- College of Animal Science, Guizhou University, Guiyang, People's Republic of China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Peng Du
- College of Animal Science, Guizhou University, Guiyang, People's Republic of China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, People's Republic of China
| | - Shihui Huang
- College of Animal Science, Guizhou University, Guiyang, People's Republic of China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Dan He
- College of Animal Science, Guizhou University, Guiyang, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Jiaqi Chen
- College of Animal Science, Guizhou University, Guiyang, People's Republic of China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Xin Wen
- College of Animal Science, Guizhou University, Guiyang, People's Republic of China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Jian Yang
- College of Animal Science, Guizhou University, Guiyang, People's Republic of China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Simei Xian
- College of Animal Science, Guizhou University, Guiyang, People's Republic of China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang, People's Republic of China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
30
|
Al-Sayed SE, Abdel-Latif M, Abdel-Haleem HM, El-Shahawy G, Abdel-Tawab H. Protective efficacy of Eglin C from Hirudo medicinalis against Eimeria papillata-induced coccidiosis. Vet Parasitol 2023; 314:109869. [PMID: 36586192 DOI: 10.1016/j.vetpar.2022.109869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
The current study aimed to find a new therapeutic agent from Hirudo medicinalis for murine coccidiosis. Ion-exchange chromatography was performed to separate different fractions of HEA (hirudo extract antigens). Eight different fractions were experimentally tested against murine eimeriosis induced by Eimeria papillate. The oocysts output was counted to determine the most effective fractions. For the five most effective fraction groups, jejunal histological examination and goblet cells count as well as mRNA expression of MUC2 gene using RT-PCR were performed. The data indicated that these fractions significantly decreased the oocysts output and the number of parasite developmental stages, while the goblet cell numbers and the expression of MUC2 were increased. Effective fractions were subjected to SDS-PAGE and proteomic analysis for detection of their bioactive macromolecules. The fractions reveled only a protein at 8 kDa while the results of spectroscopy and bioinformatics identified the protein as Eglin C. The pooled fractions containing Eglin C were tested in vitro to determine its stimulation for the intestinal lymphocyte proliferation and IFN-γ together with IL-6 release in the supernatant. The results showed that higher Eglin C concentrations reduced the stimulation index of lymphocyte proliferation as well as the stimulation index of IFN-γ and IL-6 production. In conclusion, Eglin C protein can be used as a target for therapeutic treatment or as an anti-inflammatory agent for coccidiosis infection.
Collapse
Affiliation(s)
- Shrouk E Al-Sayed
- Division of Parasitology, Zoology Department, Faculty of Science, Beni-Suef University, Egypt.
| | - Mahmoud Abdel-Latif
- Division of Immunity, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Heba M Abdel-Haleem
- Division of Parasitology, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Gamal El-Shahawy
- Division of Parasitology, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Heba Abdel-Tawab
- Division of Parasitology, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| |
Collapse
|
31
|
Murshed M, Al-Quraishy S, Alghamdi J, Aljawdah HMA, Mares MM. The Anticoccidial Effect of Alcoholic Vitis vinifera Leaf Extracts on Eimeria papillate Oocysts Isolated in Mice In Vitro and In Vivo. Vet Sci 2023; 10:vetsci10020097. [PMID: 36851401 PMCID: PMC9966314 DOI: 10.3390/vetsci10020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Eimeria spp. causes eimeriosis in the guts of numerous domestic mammals and poultry, and the employment of medication and the effects of certain aspects of synthetic anticoccidials in the treatment of eimeriosis have given rise to the appearance of resistant parasites that require the search for alternate remedies. Natural products, which are safe and have no negative impact on the environment, may be utilized in the therapy of an enormous range of parasitic infections. This research aimed to assess the effectiveness of VVLE on the oocyst sporulation of an E. papillate infection in the mouse jejunum. In addition, obtaining the ideal concentration will interrupt the parasite's life cycle and limit infection. In vitro: Collected unsporulated oocysts (1 × 103) of E. papillata were given six different concentrations (w/v) of Vitis vinifera leaf extract (10, 25, 50, 100, 150, and 200 mg/mL) and toltrazuril (25 mg/mL), three replicates per group, whereas the control group received 2.5% potassium dichromate solution. In vivo: The mice were separated into six groups; the first and second groups did not receive infection, whilst the third, fourth, fifth, and sixth groups were each given 1 × 103 sporulated oocysts of E. papillate in the experiment. In addition, an oral dosage of 100 and 200 mg/kg VVLE were given to the fourth and fifth groups, while the sixth group was given toltrazuril at 25 mg/kg. On the fifth day, unpopulated oocysts were collected from each mouse separately. The incubation period and treatments had considerable impacts on the rate of sporulation. The infrared spectroscopy of V. vinifera extract revealed many expected active classes of chemical compounds. Further, the infection of mice with E. papillata caused an oocyst output of nearly 2 × 104 oocysts/g of faeces. VVLE significantly decreased the oocyst output to nearly 88%. In addition, we detected an inhibitory effect on the sporulation (%) and harm (%) of E. papillata oocysts in a dosage-dependent modality compared with the control group. Furthermore, they destroyed the oocyst morphology in terms of the shape, size, and quantity of sporocysts. The results indicate that grape vines have powerful activity as anticoccidials.
Collapse
|
32
|
Zhang H, Li M, Zhang K, Ding X, Bai S, Zeng Q, Chu L, Hou D, Xuan Y, Yin H, Wang J. Effect of benzoic acid, Enterococcus faecium, and essential oil complex on intestinal microbiota of laying hens under coccidia and Clostridium perfringens challenge. Poult Sci 2023; 102:102490. [PMID: 36736140 PMCID: PMC9898449 DOI: 10.1016/j.psj.2023.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The objective of this study was to investigate whether dietary supplementation with benzoic acid, Enterococcus faecium, and essential oil complex (BEC) could help laying hens recover from coccidia and Clostridium perfringens type A challenge. A total of 60 (35-wk-old) Lohmann-laying hens were randomly assigned to 3 experimental groups (10 replicates with 2 hens per replicate): I) control group (CON), II) challenge group (CC), and III) BEC group (2,000 mg/kg BEC). The total experimental period was 8 wk. The results shown that the challenge layers had lower egg-laying rate and average daily feed intake (ADFI) (P < 0.05), and addition of BEC after challenge increased egg-laying rate (P < 0.05). The content of propionic acid (PA) and butyric acid (BA) in short-chain fatty acid (SCFA) was significantly decreased by challenge (P < 0.05). CC and BEC groups had lower villus height to crypt depth ratio (V/C) and higher pathological scores in duodenum (P < 0.05), whereas the BEC group had lower pathological scores in jejunum when compared with the CC group (P < 0.05). The challenge increased the concentration of proinflammatory cytokines (IL-1β and IL-6) (P < 0.05). An increase in the abundance of Bacteroidoes (genus), Bacteroidaceae (family), Bacteroidoes sp. Marseille P3166 (species), Bacteroidoes caecicola (species) was observed in the CC group, whereas the BEC group had higher abundance of Bacteroides caecigallinarum (species). The genera Faecalibacterium and Asterolplasma were positively correlated with egg-laying rate (r = 0.57, 0.60; P < 0.01); and the genera Bacteroides and Romboutsia were negatively correlated with egg-laying rate (r = -0.58, -0.74; P < 0.01). The genera Bacteroides, Lactobacillus, and Rombutzia were positively correlated with jejunal mucosa proinflammatory factor IL-1β level (r = 0.61, 0.60, 0.59; P < 0.01), which were negatively correlated with genera Rikenbacteriaceae RC9, Faecalibacterium, and Olsenlla (r = -0.56, -0.57, -0.61; P < 0.01). There genera UCG.005 was positively correlated with proinflammatory factor IL-6 level in jejunal mucosa (r = 0.58; P < 0.01), which was negatively correlated with Rikenbacteriaceae RC9 (r = -0.62; P < 0.01). The experiment results revealed that the addition of BEC to the diet restored the production performance of the laying hens. In addition, supplementation of 2,000 mg/kg BEC modulated gut health by reducing gut damage scores and modulating microbial composition, thereby promoting recovery of laying hens after coccidia and Clostridium perfringens challenge.
Collapse
Affiliation(s)
- Hongye Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyu Li
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Licui Chu
- DSM (China), Co. Ltd., Shanghai, China
| | - Danxi Hou
- DSM (China), Co. Ltd., Shanghai, China
| | - Yue Xuan
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Huadong Yin
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China,Corresponding author:
| |
Collapse
|
33
|
Santiani F, Silva ROS, Oliveira Júnior CAD, Withoeft JA, Cristo TG, Costa LS, Gaspar T, Casagrande RA. Characterization of coccidiosis and evaluation of suggestive cases of subclinical necrotic enteritis in broilers. PESQUISA VETERINÁRIA BRASILEIRA 2023. [DOI: 10.1590/1678-5150-pvb-7090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ABSTRACT: This study performed the characterization of coccidiosis in broilers and evaluated the occurrence of suggestive cases of necrotic enteritis (NE), seeking if there is an association between the diseases in Brazilian flocks. Two hundred and fifty-six birds from 32 flocks were evaluated. Macroscopic and histopathological lesions were graduated for coccidiosis and NE. Intestinal content was investigated by polymerase chain reaction (PCR) for seven species of Eimeria and by selective anaerobic culture for Clostridium perfringens and identification of the NetB gene. Flocks positive for coccidiosis represented 93.8%. Macroscopic lesions of coccidiosis were Grade 1 for E. acervulina (27%); E. tenella (9.7%) and E. maxima (8.9%). Histopathological evaluation showed Grade 1 in duodenum (38.2%); jejunum (21.4%); cecum (9.3%) and ileum (5%). PCR demonstrated positivity for E. tenella (21.9%), E. maxima (18.8%), and E. acervulina (3.1%). Suggestive macroscopic lesions of necrotic enteritis ranged from Grade 1 (16%), 2 (23%) and 3 (10,9%). Histopathology indicated the absence of necrosis, showing only hemorrhage in the mucosa and submucosa, with the presence of Eimeria spp. Clostridium perfringens type A netB+ was not isolated, demonstrating that macroscopic lesions found mostly in the jejunum did not characterize NE, based on histopathology and negativity of the NetB gene. The study suggests that, due to the high occurrence of coccidiosis, many macroscopic findings suggestive of NE are, in fact, attributed to atypical lesions caused by the reproduction of Eimeria spp.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Taís Gaspar
- Universidade do Estado de Santa Catarina, Brazil
| | | |
Collapse
|
34
|
Fries-Craft K, Lamont SJ, Bobeck EA. Implementing real-time immunometabolic assays and immune cell profiling to evaluate systemic immune response variations to Eimeria challenge in three novel layer genetic lines. Front Vet Sci 2023; 10:1179198. [PMID: 37143494 PMCID: PMC10153671 DOI: 10.3389/fvets.2023.1179198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Evaluating differences in immune responses to Eimeria spp. between poultry genetic lines could be valuable for understanding favorable traits to address coccidiosis, a costly poultry disease. The objective was to compare peripheral blood mononuclear cell (PBMC) immunometabolism and composition during Eimeria challenge in three distinct and highly inbred genetic lines; Leghorn Ghs6, Leghorn Ghs13, and Fayoumi M5.1. Methods At hatch, 180 chicks (60/ line) were placed in wire-floor cages (10 chicks/cage) and fed a commercial diet. Baseline PBMC were isolated on d21 (10 chicks/line) and 25 chicks/line were inoculated with 10X Merck CocciVac®-B52 (Kenilworth, NJ), creating 6 genetic line × Eimeria groups total. Chicks were euthanized on 1, 3, 7, and 10d post-inoculation (pi; 5 chicks/ line × Eimeria group) for PBMC isolation with body weight and feed intake recorded throughout. Immunometabolic assays to determine PBMC ATP production profiles and glycolytic activity were implemented along with flow cytometric immune cell profiling. Genetic line × Eimeria challenge, and line´challenge fixed effects were analyzed using the MIXED procedure (SAS 9.4; P ≤ 0.05). Results and Discussion Before inoculation, M5.1 chicks had 14.4-25.4% greater average daily gain (ADG) with 19.0-63.6% increased monocyte/macrophage+, Bu-1+ B cell, and CD3+ T cell populations compared to both Ghs lines (P < 0.0001) but similar immunometabolic phenotype. The Eimeria main effect reduced ADG by 61.3% from 3-7dpi (P = 0.009) except in M5.1 chicks, where no ADG difference due to challenge was found. At 3dpi, Eimeria-challenged M5.1 chicks had 28.9 and 33.2% reduced PBMC CD3+ T cells and CD3+CD8α+ cytotoxic T cells than unchallenged chicks, suggesting early and preferential recruitment from systemic circulation to tissues local to Eimeria challenge (i.e., intestine; P ≤ 0.01). Both Ghs lines displayed 46.4-49.8% T cell reductions at 10dpi with 16.5-58.9% recruitment favoring underlying CD3+CD4+ helper T cells. Immunometabolic responses in Eimeria-challenged Ghs6 and Ghs13 chicks were characterized by a 24.0-31.8% greater proportion of ATP from glycolysis compared to unchallenged counterparts at 10dpi (P = 0.04). These results suggest that variable T cell subtype recruitment timelines in addition to altered systemic immunometabolic requirements may work synergistically to determine favorable immune responses to Eimeria challenge.
Collapse
|
35
|
Kandeel M, Morsy MA, Abd El-Lateef HM, Marzok M, El-Beltagi HS, Al Khodair KM, Albokhadaim I, Venugopala KN, Al-Rasheed M, Ismail MM. A century of "anticoccidial drugs": bibliometric analysis. Front Vet Sci 2023; 10:1157683. [PMID: 37205230 PMCID: PMC10185802 DOI: 10.3389/fvets.2023.1157683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Publications are an important measure of scientific and technological progress. The quantitative examination of the number of publications in a certain research topic is known as bibliometrics. Bibliographic studies are widely used to analyse the condition of research, future potential, and current growth patterns in a certain topic. It can serve as a basis for making decisions and implementing strategies to achieve long-term development goals. To our knowledge, no research has been conducted in these domains; so, this work aims to employ bibliometric analysis to provide comprehensive data on publications related to anticoccidial drugs. As a result, the current study uses bibliometric analysis to track the evolution of anticoccidial drugs and its consequences in the academic and public worlds via a survey of relevant scientific and popular publications. The Dimensions database was used to retrieve the bibliographical statistics, which were then cleaned and analyzed. The data was also loaded into the VOS viewer, which generated a network visualization of the authors with the most joint articles. The investigation discovered three stages of publications and citations since the first article on anticoccidial drugs in 1949. The first stage, which ran from 1920 to 1968, was characterized by a scarcity of research articles on anticoccidial drugs. From 1969 to 2000, the second stage was marked by a stable and marginally increased number of articles. The scientific field was characterized by an increasing trend in the number of publications and their citations from 2002 to 2021. The study gave a complete list of the top anticoccidial drugs funding agents, countries, research institutes, most cited publications, and important co-authorship and partnerships. The outcomes of the study will help veterinary practitioners and researchers understand the trends and best sources of knowledge in the field of anticoccidial medications.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- *Correspondence: Mahmoud Kandeel,
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed Marzok
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Surgery, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Khalid M. Al Khodair
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ibrahim Albokhadaim
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Mohammed Al-Rasheed
- College of Veterinary Medicine, Avian Research Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud M. Ismail
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
36
|
Keerqin C, McGlashan K, Van TTH, Chinivasagam HN, Moore RJ, Choct M, Wu SB. A lytic bacteriophage isolate reduced Clostridium perfringens induced lesions in necrotic enteritis challenged broilers. Front Vet Sci 2022; 9:1058115. [PMID: 36619945 PMCID: PMC9815439 DOI: 10.3389/fvets.2022.1058115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background Bacteriophages are viral predators of bacteria and are common in nature. Their host-specific infections against specific bacteria make them an attractive natural agent to control bacterial pathogens. Interest in the potential of bacteriophages as antibacterial agents in the production animal industries has increased. Methods A total of 18 bacteriophages were isolated from Australian commercial poultry environments, from which three highly active phages were chosen for enrichment. Sequencing libraries were prepared using a Nextera XT kit (Illumina) and sequenced on an Illumina MiSeq instrument using 2 × 300 bp paired-end chemistry. The sequence data were then assembled and aligned with a2 bacteriophage as the reference. An animal trial was performed by oral gavaging Clostridium perfringens netB containing strain EHE-NE18 to the Ross 308 broiler chickens prior inoculation with Eimeria species. The chickens were raised following the management guide for Ross 308 from d 0 to d 21 and fed with starter and grower diets met the specific breed nutrient requirements. Body weight gain and feed intake were measured on d 9 and d 21 and FCR adjusted with mortality was calculated. Results The isolated bacteriophages only had only 96.7% similarity to the most closely related, previously characterized, Clostridium bacteriophage indicated that they might represent a novel strain of bacteriophage. A "cocktail" containing the three bacteriophages was capable of lysing four known disease-inducing C. perfringens strains in vitro. Oral administration of the bacteriophages cocktail to broilers challenged with necrotic enteritis markedly alleviated intestinal necrotic lesions in the duodenum and jejunum on day 16 post-hatch. The phage treatment significantly reduced the lesion scores of birds challenged with NE (P < 0.01), and the lesion scores between birds treated with the bacteriophages and the unchallenged birds were not statistically different (P > 0.05). However, no effect on the growth performance was observed during the recorded period of days 9-21. Conclusion These findings suggest that bacteriophage treatment is a promising approach to protect intestinal health from C. perfringens induced necrotic enteritis. Further research will be required on the dosing, route of administration, and large scale validation studies to further advance this approach to pathogen control.
Collapse
Affiliation(s)
- Chake Keerqin
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Katherine McGlashan
- EcoSciences Precinct, Department of Agriculture and Fisheries, Dutton Park, QLD, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Helene N. Chinivasagam
- EcoSciences Precinct, Department of Agriculture and Fisheries, Dutton Park, QLD, Australia
| | - Robert J. Moore
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Mingan Choct
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia,*Correspondence: Shu-Biao Wu ✉
| |
Collapse
|
37
|
Feng X, Li T, Zhu H, Liu L, Bi S, Chen X, Zhang H. Effects of challenge with Clostridium perfringens, Eimeria and both on ileal microbiota of yellow feather broilers. Front Microbiol 2022; 13:1063578. [PMID: 36532499 PMCID: PMC9754095 DOI: 10.3389/fmicb.2022.1063578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/17/2022] [Indexed: 10/07/2023] Open
Abstract
In the poultry industry worldwide, Clostridium perfringens has been causing major economic loss as it can cause necrotic enteritis (NE). The coccidial infection has been considered as the most important predisposing factor of NE caused by C. perfringens. In this study, we aimed to advance our knowledge on ileal microbiota of yellow feather broilers under C. perfringens and/or Eimeria challenge. Total of 80 healthy day old yellow feather broilers were randomly assigned to four groups including: Control, C. perfringens challenge group (C. Per), Eimeria challenge group (Cocc), and C. perfringens plus Eimeria challenge group (Comb). On day 14, the Cocc and Comb group broilers were orally gavaged 1 ml PBS solution containing 25,000 oocysts of Eimeria brunetti and 25,000 oocysts of Eimeria maxima. Starting on day 17, the C. Per and Comb group broilers were orally gavaged 10 mL of C. perfringens per bird (4 × 107 CFU/mL, ATCC® 13124™ Strain) every day for 6 days. 16S rRNA gene sequencing was performed on extracted DNA of ileal digesta samples. The results showed that C. perfringens alone did not affect the alpha diversity of ileal microbiome in yellow feather broilers but co-infection with Eimeria significantly decreased the diversity of ileal microbiota. C. perfringens and Eimeria challenge also decreased the relative abundance of beneficial bacteria including Bacteroidetes at the phylum level and Faecalibacterium at the genus level. At the species level, the relative abundance of Candidatus Arthromitus was significantly decreased in the Eimeria challenged groups. This microbial shift information of ileal microbiota under C. Perfringens and Eimeria challenge provide important reference data for the development of therapeutic approaches to necrotic enteritis in yellow-feather broiler chickens.
Collapse
Affiliation(s)
- Xin Feng
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Tonghao Li
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Hui Zhu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Lidan Liu
- Foshan Zhengdian Biology Technology Co., Ltd., Foshan, China
| | - Shengqun Bi
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Xiaolin Chen
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Huihua Zhang
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| |
Collapse
|
38
|
In vitro: Anti-coccidia activity of Calotropis procera leaf extract on Eimeria papillata oocysts sporulation and sporozoite. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Abstract
Natural products play an important role as environmentally friendly agents that can be used against parasitic diseases. Many Eimeria species cause eimeriosis in poultry. The negative effects of synthetic anti-coccidiosis medications necessitate the quest for alternative treatments derived from medicinal plants in the treatment of eimeriosis. The study was conducted to evaluate the effects of Calotropis procera leaf extract (CPLE) (Madar) on the sporulation of Eimeria oocysts and sporozoites that affect mammalian jejunum and to obtain the best concentration for sporulation inhibition and infection prevention. Extracts were tested in vitro to prevent oocyst sporulation, wall deformity, and anti-sporozoite activity with Eimeria papillata. The plant-chemical compounds analysis of CPLE some active compounds were shown as well as CPLE in vitro effects at various concentrations (200, 100, 50, 25,12.5, and 6.25 mg/mL), while potassium dichromate solution 2.5% and Toltrazuril 25 mg/mL were administered as the control groups. C. procera leaf extract showed the highest inhibitory percentage on E. papillata oocyst at 200 mg/mL of extract, approximately 91%. In addition, CPLE showed the sporozoite highest viability inhibitory percentage on E. papillata at 200 mg/mL of extract, approximately 88%, and the lowest efficacy was 5% at 6.25 mg/mL. Also, we noticed the deformation and destruction of the oocyst wall based on the concentration rate. Sporulation inhibition rate is significantly affected by incubation time and treatment concentration ratio. The results showed that Madar has an effective, inhibitory potential, and protective effect on coccidian oocyst sporulation and sporozoites of E. papillata.
Collapse
|
39
|
Marcano V, Gamble T, Maschek K, Stabler L, Fletcher O, Davis J, Troan BV, Villegas AM, Tsai YY, Barbieri NL, Franca M. Necrotizing Hepatitis Associated with Clostridium perfringens in Broiler Chicks. Avian Dis 2022; 66:337-344. [PMID: 36254367 DOI: 10.1637/aviandiseases-d-22-00033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
In this retrospective study we describe unusual cases of clostridial hepatitis associated with high mortality in young broiler chicks. Eleven cases of necrotizing hepatitis in broiler chicks from four companies were submitted to the Poultry Diagnostic and Research Center or the Georgia Poultry Laboratory Network between 2017 and 2020. In most flocks, increased 3-day mortality was followed by an elevated 7-day mortality. Gross lesions included green to dark brown discoloration of the liver, congested lungs, serosanguineous fluid in the caudoventral aspect of the abdomen, and emphysema in the yolk sacs. In birds older than a week of age, disease with neurologic signs became evident and consisted of tremors, stargazing, and incoordination. Histopathologic evaluation revealed multifocal to coalescing fibrinoheterophilic and necrotizing hepatitis associated with gram-positive, long, rod-shaped bacteria. Formalin-fixed liver samples from six cases out of eight cases tested were positive for Clostridium perfringens by immunohistochemistry. Liver samples from two cases were culture positive for Clostridium spp., and C. perfringens was isolated from one sample. Toxinotyping by PCR performed in seven samples revealed the presence of the genes that code for alpha toxin phospholipase C (cpa or plc) and necrotic enteritis toxin B-like (netB) in six samples and as well as C. perfringens large cytotoxin (tpeL) in one sample. Broiler breeders are the suspected source of the infection, and testing revealed C. perfringens in hatchery samples and among broiler breeder flocks. Antimicrobial therapy was coupled with enhanced sanitation at the farm and hatchery in that company, markedly decreasing the mortality and clinical signs. This is the first comprehensive evaluation of clostridial necrotizing hepatitis in newly hatched chicks, and the second ever reported in the literature.
Collapse
Affiliation(s)
- Valerie Marcano
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens GA 30602, ,
| | | | | | - Lisa Stabler
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens GA 30602
| | - Oscar Fletcher
- College of Veterinary Medicine, North Carolina State University, Population Health and Pathobiology, Raleigh, NC 27607
| | - James Davis
- Department of Diagnostics, Georgia Poultry Laboratory Network, Gainesville, GA 30507
| | - Brigid V Troan
- College of Veterinary Medicine, North Carolina State University, Population Health and Pathobiology, Raleigh, NC 27607
| | - Ana M Villegas
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens GA 30602.,Poultry Science Department, The University of Georgia, Athens, GA 30602
| | - Yu-Yang Tsai
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens GA 30602
| | - Nicolle L Barbieri
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens GA 30602
| | - Monique Franca
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens GA 30602
| |
Collapse
|
40
|
Orso C, Cony B, Silva J, Furtado J, Mann M, Frazzon J, Frazzon A, Andretta I, Ribeiro A. Effect of live Eimeria vaccination or salinomycin on growth and immune status in broiler chickens receiving in-feed inclusion of gelatin and vitamin E. Poult Sci 2022; 101:102206. [DOI: 10.1016/j.psj.2022.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 10/07/2022] Open
|
41
|
Fathima S, Hakeem WGA, Shanmugasundaram R, Selvaraj RK. Necrotic Enteritis in Broiler Chickens: A Review on the Pathogen, Pathogenesis, and Prevention. Microorganisms 2022; 10:1958. [PMID: 36296234 PMCID: PMC9610872 DOI: 10.3390/microorganisms10101958] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Clostridium perfringens type A and C are the primary etiological agents associated with necrotic enteritis (NE) in poultry. The predisposing factors implicated in the incidence of NE changes the physical properties of the gut, immunological status of birds, and disrupt the gut microbial homeostasis, causing an over-proliferation of C. perfringens. The principal virulence factors contributing to the pathogenesis of NE are the α-toxin, β-toxin, and NetB toxin. The immune response to NE in poultry is mediated by the Th1 pathway or cytotoxic T-lymphocytes. C. perfringens type A and C are also pathogenic in humans, and hence are of public health significance. C. perfringens intoxications are the third most common bacterial foodborne disease after Salmonella and Campylobacter. The restrictions on the use of antibiotics led to an increased incidence of NE in poultry. Hence, it is essential to develop alternative strategies to keep the prevalence of NE under check. The control strategies rely principally on the positive modulation of host immune response, nutritional manipulation, and pathogen reduction. Current knowledge on the etiology, pathogenesis, predisposing factors, immune response, effect on the gut microbial homeostasis, and preventative strategies of NE in this post-antibiotic era is addressed in this review.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | | | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
42
|
Elnaggar A, Mahmoud H, Saber S. Quality control procedure for Coccidial vaccines versus different routes of immunization. Vet World 2022; 15:2342-2347. [PMID: 36341065 PMCID: PMC9631379 DOI: 10.14202/vetworld.2022.2342-2347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Coccidiosis is an enteric infection caused by a protozoon (Eimeriatenella). Coccidiosis is known to have a negative impact on the economy. Coccidiosis is controlled using anticoccidial drugs, antibiotics, and vaccines. Various coccidial vaccines differ in application technique, attenuation method, and the species used. Coccidial vaccines can be spray or gel-based (Form). This study aimed to compare the effect of application and approaches between spray and gel vaccines for coccidiosis. Materials and Methods: Specific pathogen-free chicks were vaccinated with different vaccines. Fecal samples were taken on 21 days post-vaccination for vaccine take, and then a challenge test was done on day 21. Results: Post-vaccination oocyst counts in gel vaccinated groups were more than the spray vaccinated ones as it recorded (1400 and 2200) oocyst/g, but the gel vaccines resulted in lower post vaccinal titer which was (10000 and 12500) oocyst/g. Results of quantitative real-time polymerase chain reaction test post-vaccination were (23.72, 20.29) cycle threshold (CT) for spray vaccines and (18.75, 17.62) CT for gel vaccinated group. By challenging all the experimental groups, the microscopic and macroscopic lesion of gel vaccines resulted in score 1, while spray vaccines groups recorded score 2 and the control non-vaccinated challenged chickens showed score 4. The non-vaccinated/non-challenged group recorded a score of zero. Conclusion: These results can help poultry producers to decide which delivery system will provide the best results for their production system. The gel vaccines showed a better protection rate and lower shedding, which means more protection of birds and public health.
Collapse
Affiliation(s)
- Arwa Elnaggar
- Department of Parasitology, Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center (ARC), Cairo, Egypt
| | - Hala Mahmoud
- Department of Inactivated Viral Poultry vaccines, Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center, Cairo, Egypt
| | - Sahar Saber
- Department of Live Attenuated Viral Poultry Vaccines, Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center, Cairo, Egypt
| |
Collapse
|
43
|
Evaluation of a Novel Precision Biotic on Enterohepatic Health Markers and Growth Performance of Broiler Chickens under Enteric Challenge. Animals (Basel) 2022; 12:ani12192502. [PMID: 36230242 PMCID: PMC9559253 DOI: 10.3390/ani12192502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Precision biotics (PB) are nutritional products that influence targeted metabolic pathways of the microbiome to control the profile of metabolites produced in the gut by the bacteria, such as short chain fatty acids (SCFA) and nitrogen-related metabolites. The objective of the studies presented herein was to evaluate the effect of feeding PB to broiler chickens on the response against enteric stress. It was observed that the PB improved the intestinal health of experimentally challenged chickens, and the growth performance of chickens undergoing a natural enteric challenge under commercial-like conditions. The beneficial action of this PB on the microbiome pathways may explain the enhanced markers of intestinal health, such as intestinal histology, expression of nutrient transporter, inflammation, and cell cycling-related genes. Abstract This study evaluated the supplementation of a precision biotic (PB) on the enterohepatic health markers and growth performance of broiler chickens undergoing an enteric challenge. In the first study, three treatments were used: Unchallenged Control (UC); Challenged Control (CC; dietary challenge and 10× dose of coccidia vaccine); and a challenged group supplemented with PB (1.3 kg/ton). In the second study, three treatments were used: control diet, diet supplemented with Avilamycin (10 ppm), and a diet supplemented with PB (0.9 kg/ton). All the birds were exposed to natural challenge composed by dietary formulation and reused litter from a coccidiosis positive flock. In Trial 1, PB decreased ileal histological damage, increased villi length, and the expression of SLC5A8 in ileal tissue versus CC; it reduced ileal expression of IL-1β compared to both UC and CC treatments. PB increased the expression of cell cycling gene markers CCNA2 and CDK2 in the ileum compared to CC. In Trial 2, PB improved the growth performance, intestinal lesion scores and intestinal morphology of broiler chickens. These results indicate that birds supplemented with PB are more resilient to enteric challenges, probably by its action in modulating microbiome metabolic pathways related to nitrogen metabolism and protein utilization.
Collapse
|
44
|
Ren Z, Yan J, Whelan R, Liao X, Bütz DE, Arendt MK, Cook ME, Yang X, Crenshaw TD. Dietary supplementation of sulfur amino acids improves intestinal immunity to Eimeria in broilers treated with anti-interleukin-10 antibody. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 10:382-389. [PMID: 35949200 PMCID: PMC9356037 DOI: 10.1016/j.aninu.2022.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/10/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022]
Abstract
Oral antibody to interleukin-10 (anti-IL-10) enhances the intestinal immune defense against Eimeria. The sulfur amino acids methionine and cysteine (M+C) play essential roles in inducing and maintaining protective immune responses during intestinal infections. Hence, increased dietary M+C may support the anti-IL-10-induced intestinal immunity to Eimeria. Broilers (n = 640) were arranged in a 2 × 2 × 2 factorial design with 2 levels of each of the 3 main factors: dietary standardized ileal digestible (SID) M+C levels (0.6% or 0.8%), dietary anti-IL-10 supplementation (with or without), and coccidiosis challenge (control or challenge). Briefly, the broilers were supplied with either 0.6% or 0.8% SID M+C, each with or without anti-IL-10 (300 μg/kg), from d 10 to 21. On d 14, broilers from each diet were gavaged with either PBS or Eimeria. The resulting Eimeria infection induced fecal oocyst shedding and intestinal lesions. Broilers fed 0.8% SID M+C (main effects, P ≤ 0.05) had decreased feed-to-gain ratio, increased duodenum and cecum luminal anti-Eimeria IgA titers, and decreased fecal oocyst counts, when compared to 0.6% SID M+C. The supplementation of anti-IL-10 (main effects, P ≤ 0.05) increased cecum luminal total IgA concentration and decreased cecum lesions. Interactions (P ≤ 0.05) were detected for growth performance and cecum luminal IFN-γ. Briefly, the highest body weight gain and feed intake were reached in PBS-gavaged broilers fed 0.8% SID M+C with no anti-IL-10 and in Eimeria-challenged broilers fed 0.8% SID M+C with anti-IL-10. In Eimeria-infected broilers, anti-IL-10 increased intestinal luminal IFN-γ and body weight gain only at 0.8% SID M+C. Collectively, anti-IL-10 increased intestinal luminal IFN-γ levels, decreased cecum lesions and restored growth only when fed with adequate amounts of sulfur amino acids. Our findings underscore the importance of providing sufficient essential nutrients to support the anti-IL-10 induced immunity against coccidiosis.
Collapse
Affiliation(s)
- Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Jiakun Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rose Whelan
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | - Xujie Liao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Daniel E. Bütz
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Maria K. Arendt
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Mark E. Cook
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Thomas D. Crenshaw
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
45
|
Evaluation of Predisposing Factors of Necrotic Enteritis in Experimentally Challenged Broiler Chickens. Animals (Basel) 2022; 12:ani12151880. [PMID: 35892530 PMCID: PMC9331785 DOI: 10.3390/ani12151880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary The ban of antibiotic growth promoters in animal feed increased the number of cases of necrotic enteritis (NE) in broilers, greatly affecting the poultry industry. The induction of experimental NE faces challenges, as it is a multifactorial disease and the pathogenesis is not fully understood, hampering the development of in vivo studies for disease control and prevention strategies. The literature reports several protocols using different factors to assist in NE induction. This study assessed predisposing factors, such as immunosuppression, infection or both, by Eimeria spp. in broilers (n = 99) fed a wheat-based diet and challenged with three different strains of Clostridium perfringens (CP). Under microscopy, Eimeria spp. had a negative effect on intestinal morphometry and favored the increase of intraepithelial lymphocytes. However, the macroscopic analysis did not show which factor was more effective in potentiating the lesions, suggesting a synergistic effect between the strain of CP used and the predisposing factors. Therefore, each experimental protocol should first be evaluated for the association of the CP strain with the predisposing factors. Abstract Clostridium perfringens is the etiological agent of NE, a disease that greatly affects the poultry industry. Experiments on the induction of NE are difficult to carry out, as it is a multifactorial disease, and thus different predisposing factors have been used. This study evaluated the effect of the Gumboro disease vaccine virus vaccine (IBDV-vac) associated or not with infection by Eimeria spp. in broilers, as a predisposing factor for NE. Broilers (n = 99) were divided into groups (11) challenged with IBDV-vac, Eimeria spp. CP type G (CP13, CP14 and CP03) or both. The macroscopic evaluation revealed that the highest average (3.45) of injury occurred for the CP13 + IBDV-vac group. The microscopic analysis showed that Eimeria spp. increased the population of intraepithelial lymphocytes and reduced the villus/crypt ratio in duodenum and jejunum when associated with CP13 or CP14. There was a synergistic effect between the CP strain used and the predisposing factors; nevertheless, it was not clear which was the most effective predisposing factor to potentiate the lesions, suggesting that the association of the strain with the factors should first be evaluated for each experimental protocol.
Collapse
|
46
|
He W, Goes EC, Wakaruk J, Barreda DR, Korver DR. A Poultry Subclinical Necrotic Enteritis Disease Model Based on Natural Clostridium perfringens Uptake. Front Physiol 2022; 13:788592. [PMID: 35795645 PMCID: PMC9251903 DOI: 10.3389/fphys.2022.788592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Necrotic enteritis (NE) in poultry is an opportunistic infection caused by Clostridium perfringens. Well-known as a multifactorial disease, NE development is under the influence of a wide range of environmental risk factors that promote the proliferation of pathogenic C. perfringens at the expense of nonpathogenic strains. Current in vivo NE challenge models typically incorporate pre-exposure to disease risk factors, in combination with exogenous C. perfringens inoculation. Our goal was to enhance current models using a natural uptake of C. perfringens from the barn environment to produce a subclinical infection. We incorporated access to litter, coccidial exposure (either 10× or 15× of the manufacturer-recommended Coccivac B52 Eimeria vaccine challenge; provided unspecified doses of E. acervulina, E. mivati, E. tenella, and two strains of E. maxima), feed composition, and feed withdrawal stress, and achieved the commonly observed NE infection peak at 3 weeks post-hatch. NE severity was evaluated based on gut lesion pathology, clinical signs, and mortality rate. Under cage-reared conditions, 15× coccidial vaccine-challenged birds showed overall NE lesion prevalence that was 8-fold higher than 10× coccidial vaccine-challenged birds. NE-associated mortality was observed only in a floor-reared flock after a 15× coccidial vaccine challenge.
Collapse
Affiliation(s)
- Wanwei He
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Emanuele C. Goes
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Wakaruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Daniel R. Barreda, ; Douglas R. Korver,
| | - Douglas R. Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Daniel R. Barreda, ; Douglas R. Korver,
| |
Collapse
|
47
|
Choi J, Tompkins YH, Teng PY, Gogal RM, Kim WK. Effects of Tannic Acid Supplementation on Growth Performance, Oocyst Shedding, and Gut Health of in Broilers Infected with Eimeria Maxima. Animals (Basel) 2022; 12:ani12111378. [PMID: 35681844 PMCID: PMC9179276 DOI: 10.3390/ani12111378] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to evaluate effects of tannic acid (TA) on growth performance, fecal moisture content, oocyst shedding, gut permeability, lesion score, intestinal morphology, apparent ileal digestibility, and the antioxidant and immune system of broilers infected with Eimeria maxima. A total of 420 one-day-old broilers were distributed to five treatments with seven replicates of 12 birds. The five treatments were the (1) sham-challenged control (SCC; birds fed a control diet and administrated with PBS); (2) challenged control (CC; birds fed a control diet and inoculated with E. maxima); (3) tannic acid 0.5 (TA0.5; CC + 500 mg/kg TA); (4) tannic acid 2.75 (TA2.75; CC + 2750 mg/kg TA); and (5) tannic acid 5 (TA5; CC + 5000 mg/kg TA). The TA2.75 group had significantly lower gut permeability compared to the CC group at 5 days post-infection (dpi). Supplementation of TA linearly reduced oocyst shedding of E. maxima at 7 to 9 dpi (p < 0.05). At 13 dpi, the TA2.75 group had significantly greater apparent ileal digestibility (AID) of dry matter (DM) and organic matter (OM) compared to the CC group. At 13 dpi, supplementation of TA linearly increased jejunal villus height (VH). Thus, this study showed that supplementation of TA at levels of 500 to 2750 mg/kg has the potential to be an anti-coccidial agent against E. maxima in broilers.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Yuguo Huo Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Robert M. Gogal
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
- Correspondence: ; Tel.: +1-706-542-1346
| |
Collapse
|
48
|
Zhang H, Ding X, Bai S, Zeng Q, Zhang K, Mao X, Chu L, Hou D, Xuan Y, Wang J. Alleviating effect of dietary supplementation of benzoic acid, Enterococcus faecium and essential oil complex on coccidia and Clostridium perfringens challenge in laying hens. Poult Sci 2022; 101:101720. [PMID: 35231770 PMCID: PMC8886132 DOI: 10.1016/j.psj.2022.101720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
The purpose of this experiment is to explore the effects of dietary supplementation of benzoic acid, Enterococcus faecium, and essential oil complex (BEC) on coccidia and Clostridium perfringens challenge in laying hens. A total of 80 Lohmann gray laying hens (35 wk old) were allocated to 4 treatments in a 2 × 2 factorial arrangement with the main effects of Clostridium perfringens type A (CP) and coccidia challenge (with or without challenge) and 2 BEC levels (0 and 1,000 mg/kg). The total experimental period was 6 wk. The results showed that: the challenge group significantly decreased the laying rate and average daily feed intake (ADFI) of laying hens (PChallenge < 0.01). The BEC + challenge group significantly increased the laying rate and decreased the feed conversion ratio (FCR) of laying hens (PBEC < 0.05). The challenge significantly decreased the thickness, strength, and relative weight of eggshell (PChallenge < 0.05). The BCE + challenge group significantly increased the relative weight and strength of the eggshell (PBEC < 0.05). The challenge significantly increased the crypt depth of the duodenum, jejunum and ileum, and decreased the villus-to-crypt ratio (V/C) (PChallenge < 0.01). The BEC + challenge group decreased the crypt depth of the duodenum and jejunum, and increased the V/C of the duodenum (PBEC < 0.01). The pathological scores of duodenum and jejunum of the challenge group were significantly higher than other groups (PChallenge < 0.01), while the BEC + challenge group had lower pathological scores of jejunum (PBEC < 0.01). The challenge significantly decreased the mRNA expression of Occludin, Mucin-2, Zonula occluden-1 (ZO-1) (Pchallenge < 0.05); whereas the BEC group significantly increased the expression of Occludin, Mucin-2, and Claudin-1 mRNA (PBEC < 0.05). The challenge significantly increased the level of interleukin 1β (IL-1β) in the jejunum (PChallenge < 0.05). Taken together, adding BEC to the diet can improved production performance and egg quality of layers, by protecting intestinal health against Clostridium perfringens type A (CP) and coccidia challenge.
Collapse
|
49
|
Park I, Oh S, Nam H, Celi P, Lillehoj HS. Antimicrobial activity of sophorolipids against Eimeria maxima and Clostridium perfringens, and their effect on growth performance and gut health in necrotic enteritis. Poult Sci 2022; 101:101731. [PMID: 35176703 PMCID: PMC8851262 DOI: 10.1016/j.psj.2022.101731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
The in vitro antimicrobial activity of sophorolipids (SLs) against Eimeria maxima and Clostridium perfringens, and the in vivo effects of SLs on growth performance and gut health in necrotic enteritis (NE)-afflicted broiler chickens were studied. To test the direct killing effects of SLs on enteric pathogens, 2.5 × 105 freshly prepared sporozoites of each Eimeria acervulina, E. maxima, and E. tenella were placed in each well of a 96-well plate, and the vegetative stage of Clostridium perfringens was prepared at 1 × 109 cfu/well. Four different SLs (C18:1 lactonic diacetyled SL [SL1], C18:1 deacetyled SL [SL2], C18:1 monoacetyled SL [SL3], and C18:1 diacetyled SL [SL4]), and 2 anticoccidial chemical controls, decoquinate and monensin, were evaluated at 3 dose levels (125 µg/mL, 250 µg/mL, and 500 µg/mL). Samples were incubated at 41°C for 3 h, and microbial survival ratios were measured by using a cell counter to quantify the number of live microbes stained by fluorescent dye. A total of 336 (0-day-old) male commercial broiler chickens were used to assess the effects of SLs in vivo. Chickens were randomly allocated to 6 treatment groups (7 chickens per cage, 8 cages per treatment) as follows: a control group which received a basal diet (CON), a negative control group (NC) which received a basal diet and NE challenge, and 4 SL treatment groups with NE (NC+SL1, NC+SL2, NC+SL3, and NC+SL4). The inclusion rates of SLs in each group were 200 mg/kg of feed. NE-induced chickens were orally infected with E. maxima (10,000 oocysts/chicken) on d 14, followed by C. perfringens (1 × 109 cfu/chicken) on d 19. Disease parameters measured included gut lesion scores, intestinal cytokine production, and level of tight junction protein expression. Data were analyzed using a Mixed Model (PROC MIXED) in SAS. In vitro (Experiment 1), all SLs dose-dependently decreased (P < 0.001) the viability of the three species of Eimeria sporozoites and C. perfringens. In vivo (Experiment 2), dietary SLs increased (P < 0.001) body weight and average daily gain of broiler chickens infected with NE. Dietary SL1 and SL4s increased (P < 0.05) feed conversion ratio compared to NC. Furthermore, SL1 and SL4 decreased (P < 0.05) gut lesion scores in combination with increased expression of IL1β, IL8, TNFSF15, and IL10 genes (P < 0.05) in NE-afflicted chickens. Overall, dietary SLs promoted growth performance, intestinal immune responses, and intestinal barrier integrity of NE-afflicted, young broiler chickens.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Sungtaek Oh
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Pietro Celi
- DSM Nutritional Products, Animal Nutrition and Health, Columbia, MD 21045, USA; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.
| |
Collapse
|
50
|
Abd El-Hack ME, El-Saadony MT, Elbestawy AR, El-Shall NA, Saad AM, Salem HM, El-Tahan AM, Khafaga AF, Taha AE, AbuQamar SF, El-Tarabily KA. Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives – a comprehensive review. Poult Sci 2022; 101:101590. [PMID: 34953377 PMCID: PMC8715378 DOI: 10.1016/j.psj.2021.101590] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
In line with the substantial increase in the broiler industry worldwide, Clostridium perfringens-induced necrotic enteritis (NE) became a continuous challenge leading to high economic losses, especially after banning antimicrobial growth promoters in feeds by many countries. The disease is distributed worldwide in either clinical or subclinical form, causing a reduction in body weight or body weight gain and the feed conversion ratio, impairing the European Broiler Index or European Production Efficiency Factor. There are several predisposing factors in the development of NE. Clinical signs varied from inapparent signs in case of subclinical infection (clostridiosis) to obvious enteric signs (morbidity), followed by an increase in mortality level (clostridiosis or clinical infection). Clinical and laboratory diagnoses are based on case history, clinical signs, gross and histopathological lesions, pathogenic agent identification, serological testing, and molecular identification. Drinking water treatment is the most common route for the administration of several antibiotics, such as penicillin, bacitracin, and lincomycin. Strict hygienic management practices in the farm, careful selection of feed ingredients for ration formulation, and use of alternative antibiotic feed additives are all important in maintaining broiler efficiency and help increase the profitability of broiler production. The current review highlights NE caused by C. perfringens and explains the advances in the understanding of C. perfringens virulence factors involved in the pathogenesis of NE with special emphasis on the use of available antibiotic alternatives such as herbal extracts and essential oils as well as vaccines for the control and prevention of NE in broiler chickens.
Collapse
|