1
|
Wu Y, Bashir MA, Shao C, Wang H, Zhu J, Huang Q. Astaxanthin targets IL-6 and alleviates the LPS-induced adverse inflammatory response of macrophages. Food Funct 2024; 15:4207-4222. [PMID: 38512055 DOI: 10.1039/d4fo00610k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Numerous natural compounds are recognized for their anti-inflammatory properties attributed to antioxidant effects and the modulation of key inflammatory factors. Among them, astaxanthin (AST), a potent carotenoid antioxidant, remains relatively underexplored regarding its anti-inflammatory mechanisms and specific molecular targets. In this study, human monocytic leukemia cell-derived macrophages (THP-1) were selected as experimental cells, and lipopolysaccharides (LPS) served as inflammatory stimuli. Upon LPS treatment, the oxidative stress was significantly increased, accompanied by remarkable cellular damage. Moreover, LPSs escalated the expression of inflammation-related molecules. Our results demonstrate that AST intervention could effectively alleviate LPS-induced oxidative stress, facilitate cellular repair, and significantly attenuate inflammation. Further exploration of the anti-inflammatory mechanism revealed AST could substantially inhibit NF-κB translocation and activation, and mitigate inflammatory factor production by hindering NF-κB through the antioxidant mechanism. We further confirmed that AST exhibited protective effects against cell damage and reduced the injury from inflammatory cytokines by activating p53 and inhibiting STAT3. In addition, utilizing network pharmacology and in silico calculations based on molecular docking, molecular dynamics simulation, we identified interleukin-6 (IL-6) as a prominent core target of AST anti-inflammation, which was further validated by the RNA interference experiment. This IL-6 binding capacity actually enabled AST to curb the positive feedback loop of inflammatory factors, averting the onset of possible inflammatory storms. Therefore, this study offers a new possibility for the application and development of astaxanthin as a popular dietary supplement of anti-inflammatory or immunomodulatory function.
Collapse
Affiliation(s)
- Yahui Wu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Mona A Bashir
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Changsheng Shao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Han Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Jianxia Zhu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- School of Nursing, Anhui Medical University, Hefei, Anhui 230032, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Elbahnaswy S, Elshopakey GE. Recent progress in practical applications of a potential carotenoid astaxanthin in aquaculture industry: a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:97-126. [PMID: 36607534 DOI: 10.1007/s10695-022-01167-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Astaxanthin is the main natural C40 carotenoid used worldwide in the aquaculture industry. It normally occurs in red yeast Phaffia rhodozyma and green alga Haematococcus pluvialis and a variety of aquatic sea creatures, such as trout, salmon, and shrimp. Numerous biological functions reported its antioxidant and anti-inflammatory activities since astaxanthin possesses the highest oxygen radical absorbance capacity (ORAC) and is considered to be over 500 more times effective than vitamin E and other carotenoids such as lutein and lycopene. Thus, synthetic and natural sources of astaxanthin have a commanding influence on industry trends, causing a wave in the world nutraceutical market of the encapsulated product. In vitro and in vivo studies have associated astaxanthin's unique molecular features with various health benefits, including immunomodulatory, photoprotective, and antioxidant properties, providing its chemotherapeutic potential for improving stress tolerance, disease resistance, growth performance, survival, and improved egg quality in farmed fish and crustaceans without exhibiting any cytotoxic effects. Moreover, the most evident effect is the pigmentation merit, where astaxanthin is supplemented in formulated diets to ameliorate the variegation of aquatic species and eventually product quality. Hence, carotenoid astaxanthin could be used as a curative supplement for farmed fish, since it is regarded as an ecologically friendly functional feed additive in the aquaculture industry. In this review, the currently available scientific literature regarding the most significant benefits of astaxanthin is discussed, with a particular focus on potential mechanisms of action responsible for its biological activities.
Collapse
Affiliation(s)
- Samia Elbahnaswy
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Januszewski J, Forma A, Zembala J, Flieger M, Tyczyńska M, Dring JC, Dudek I, Świątek K, Baj J. Nutritional Supplements for Skin Health-A Review of What Should Be Chosen and Why. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:68. [PMID: 38256329 PMCID: PMC10820017 DOI: 10.3390/medicina60010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Supplementation of micronutrients is considered to be crucial in the reinforcement of the skin's barrier. In this paper, 14 nutritional compounds commonly used in food or pharmaceutic industries were analyzed in terms of influencing skin conditions. The major objective of this paper was to provide a narrative review of the available literature regarding several chosen compounds that are currently widely recommended as supplements that aim to maintain proper and healthy skin conditions. We conducted a review of the literature from PubMed, Scopus, and Web of Science until September 2023 without any other restrictions regarding the year of the publication. Ultimately, we reviewed 238 articles, including them in this review. Each of the reviewed compounds, including vitamin A, vitamin C, vitamin D, vitamin E, curcumin, chlorella, Omega-3, biotin,Ppolypodium leucotomos, Simmondsia chinesis, gamma oryzanol, olive leaf extract, spirulina, and astaxanthin, was observed to present some possible effects with promising benefits for a skin condition, i.e., photoprotective radiation. Adding them to the diet or daily routine might have a positive influence on some skin inflammatory diseases such as atopic dermatitis or psoriasis. Further, UV radiation protection facilitated by some supplements and their impact on human cells might be helpful during chemotherapy or in preventing melanoma development. Further research is needed because of the lack of clear consensus regarding the doses of the described compounds that could provide desirable effects on the skin.
Collapse
Affiliation(s)
- Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Julita Zembala
- University Clinical Center, Medical University of Warsaw, Lindleya 4, 02-004 Warsaw, Poland;
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Magdalena Tyczyńska
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - James Curtis Dring
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Iga Dudek
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Kamila Świątek
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| |
Collapse
|
4
|
Nieman DC, Woo J, Sakaguchi CA, Omar AM, Tang Y, Davis K, Pecorelli A, Valacchi G, Zhang Q. Astaxanthin supplementation counters exercise-induced decreases in immune-related plasma proteins. Front Nutr 2023; 10:1143385. [PMID: 37025615 PMCID: PMC10070989 DOI: 10.3389/fnut.2023.1143385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
Objectives Astaxanthin is a dark red keto-carotenoid found in aquatic animals such as salmon and shrimp, and algae (Haematococcus pluvialis). Astaxanthin has a unique molecular structure that may facilitate anti-oxidative, immunomodulatory, and anti-inflammatory effects during physiological stress. The primary objective of this study was to examine the efficacy of 4-week ingestion of astaxanthin in moderating exercise-induced inflammation and immune dysfunction using a multi-omics approach. Methods This study employed a randomized, double blind, placebo controlled, crossover design with two 4-week supplementation periods and a 2-week washout period. Study participants were randomized to astaxanthin and placebo trials, with supplements ingested daily for 4 weeks prior to running 2.25 h at close to 70%VO2max (including 30 min of 10% downhill running). After the washout period, participants repeated all procedures using the counterbalanced supplement. The astaxanthin capsule contained 8 mg of algae astaxanthin. Six blood samples were collected before and after supplementation (overnight fasted state), immediately post-exercise, and at 1.5, 3, and 24 h-post-exercise. Plasma aliquots were assayed using untargeted proteomics, and targeted oxylipin and cytokine panels. Results The 2.25 h running bout induced significant muscle soreness, muscle damage, and inflammation. Astaxanthin supplementation had no effect on exercise-induced muscle soreness, muscle damage, and increases in six plasma cytokines and 42 oxylipins. Notably, astaxanthin supplementation countered exercise-induced decreases in 82 plasma proteins (during 24 h recovery). Biological process analysis revealed that most of these proteins were involved in immune-related functions such as defense responses, complement activation, and humoral immune system responses. Twenty plasma immunoglobulins were identified that differed significantly between the astaxanthin and placebo trials. Plasma levels of IgM decreased significantly post-exercise but recovered after the 24 h post-exercise recovery period in the astaxanthin but not the placebo trial. Discussion These data support that 4-week astaxanthin versus placebo supplementation did not counter exercise-induced increases in plasma cytokines and oxylipins but was linked to normalization of post-exercise plasma levels of numerous immune-related proteins including immunoglobulins within 24 h. Short-term astaxanthin supplementation (8 mg/day during a 4-week period) provided immune support for runners engaging in a vigorous 2.25 h running bout and uniquely countered decreases in plasma immunoglobulin levels.
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, Kannapolis, NC, United States
- *Correspondence: David C. Nieman,
| | - Jongmin Woo
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Camila A. Sakaguchi
- Human Performance Laboratory, Appalachian State University, Kannapolis, NC, United States
| | - Ashraf M. Omar
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Yang Tang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Kierstin Davis
- Human Performance Laboratory, Appalachian State University, Kannapolis, NC, United States
| | - Alessandra Pecorelli
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Giuseppe Valacchi
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| |
Collapse
|
5
|
Patil AD, Kasabe PJ, Dandge PB. Pharmaceutical and nutraceutical potential of natural bioactive pigment: astaxanthin. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:25. [PMID: 35794254 PMCID: PMC9259778 DOI: 10.1007/s13659-022-00347-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/09/2022] [Indexed: 05/31/2023]
Abstract
Astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione) is an orange-red, lipophilic keto-carotenoid pigment. It is majorly found in marine ecosystems particularly in aquatic animals such as salmon, shrimp, trout, krill, crayfish, and so on. It is also synthesized in microalgae Heamatococcus pluvialis, Chlorococcum, Chlorella zofingiensis, red yeast Phaffia rhodozyma and bacterium Paracoccus carotinifaciens. Some aquatic and terrestrial creatures regarded as a primary and secondary sources of the astaxanthin producing and accumulating it through their metabolic pathways. Astaxanthin is the powerful antioxidant, nutritional supplement as well as promising therapeutic compound, observed to have activities against different ravaging diseases and disorders. Researchers have reported remarkable bioactivities of astaxanthin against major non-communicable chronic diseases such as cardiovascular diseases, cancer, diabetes, neurodegenerative, and immune disorders. The current review discusses some structural aspects of astaxanthin. It further elaborates its multiple potencies such as antioxidant, anti-inflammatory, anti-proliferative, anti-cancer, anti-obese, anti-diabetic, anti-ageing, anti-TB, anti-viral, anti-COVID 19, neuro-protective, nephro-protective, and fertility-enhancing properties. These potencies make it a more precious entity in the preventions as well as treatments of prevalent systematic diseases and/or disorders. Also, the review is acknowledging and documenting its powerful bioactivities in relation with the pharmaceutical as well as nutraceutical applicability.
Collapse
Affiliation(s)
- Apurva D. Patil
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra India
| | - Pramod J. Kasabe
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra India
| | - Padma B. Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra India
| |
Collapse
|
6
|
Gürbüz M, Aktaç Ş. Understanding the role of vitamin A and its precursors in the immune system. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Oliveira CR, Polonini H, Marcucci MC, Vieira RP. Miodesin TM Positively Modulates the Immune Response in Endometrial and Vaginal Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030782. [PMID: 35164046 PMCID: PMC8837934 DOI: 10.3390/molecules27030782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022]
Abstract
Endometriosis presents high prevalence and its physiopathology involves hyperactivation of endometrial and vaginal cells, especially by bacteria. The disease has no cure and therapies aiming to inhibit its development are highly desirable. Therefore, this study investigated whether MiodesinTM (10 µg/mL = IC80; 200 µg/mL = IC50), a natural compound constituted by Uncaria tomentosa, Endopleura uchi, and astaxanthin, could exert anti-inflammatory and anti-proliferative effects against Lipopolysaccharides (LPS) stimulation in endometrial and Candida albicans vaginal cell lines. VK2 E6/E7 (vaginal) and KLE (epithelial) cell lines were stimulated with Candida albicans (1 × 107 to 5 × 107/mL) and LPS (1 μg/mL), respectively. MiodesinTM inhibited mRNA expression for Nuclear factor kappa B (NF-κB), ciclo-oxigenase 1 (COX-1), and phospholipase A2 (PLA2), beyond the C–C motif chemokine ligand 2 (CCL2), CCL3, and CCL5 in VK2 E6/E7 cells (p < 0.05). In addition, the inhibitory effects of both doses of MiodesinTM (10 µg/mL and 200 µg/mL) resulted in reduced secretion of interleukin-1β (IL-1β), IL-6, IL-8, tumor necrosis factor α (TNF-α) (24 h, 48 h, and 72 h) and CCL2, CCL3, and CLL5 (p < 0.05) by VK2 E6/E7 cells. In the same way, COX-1 MiodesinTM inhibited LPS-induced hyperactivation of KLE cells, as demonstrated by reduced secretion of IL-1β, IL-6, IL-8, TNF-α (24 h, 48 h, and 72 h) and CCL2, CCL3, and CLL5 (p < 0.05). Furthermore, MiodesinTM also inhibited mRNA expression and secretion of matrix metalloproteinase-2 (MMP-2), MMP-9, and vascular endothelial growth factor (VEGF), which are key regulators of invasion of endometrial cells. Thus, the study concludes that MiodesinTM presents beneficial effects in the context of endometriosis, positively affecting the inflammatory and proliferative response.
Collapse
Affiliation(s)
- Carlos Rocha Oliveira
- School of Medicine, Anhembi Morumbi University, Avenida Deputado Benedito Matarazzo 6070, Sao Jose dos Campos 12231-280, SP, Brazil
- Postgraduate Program in Biomedical Engineering, Department of Science and Technology, Federal University of Sao Paulo (UNIFESP), Rua Talim, 330, Vila Nair, Sao Jose dos Campos 12231-280, SP, Brazil
- Correspondence:
| | - Hudson Polonini
- Fagron BV, Fascinatio Boulevard 350, 3065 WB Rotterdam, The Netherlands; or
| | - Maria Cristina Marcucci
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Universidade Estadual Paulista-UNESP, Sao Jose dos Campos 12231-280, SP, Brazil;
| | - Rodolfo P. Vieira
- Post-graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of Sao Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil;
- Post-Graduation Program in Human Movement and Rehabilitation, Unievangelica, Avenida Universitária KM 3,5, Anapolis 75083-515, GO, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Rua Pedro Ernesto 240, Sao Jose dos Campos 12231-280, SP, Brazil
| |
Collapse
|
8
|
Ahmadi AR, Ayazi-Nasrabadi R. Astaxanthin protective barrier and its ability to improve the health in patients with COVID-19. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:434-441. [PMID: 34557270 PMCID: PMC8421583 DOI: 10.18502/ijm.v13i4.6965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation acts like a double-edged sword and can be harmful if not appropriately controlled. COVID-19 is created through a novel species of coronavirus SARS-CoV-2 (2019-nCoV). Elevated levels of inflammatory factors such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), etc. lead to Acute Respiratory Distress Syndrome (ARDS) and severe complications of infection in the lungs of coronavirus-infected patients. Astaxanthin is a natural and potent carotenoid with powerful antioxidant activity as well as an anti-inflammatory agent that supports good health. The effects of astaxanthin on the regulation of cyclooxygenase-2 (COX-2) pathways and the reduction and suppression of cytokines and other inflammatory agents such as IL-6 and TNF-α have already been identified. Therefore, these unique features can make this natural compound an excellent option to minimize inflammation and its consequences.
Collapse
Affiliation(s)
- Ali-Reza Ahmadi
- Department of Biomedical Sciences, Women Research Center, Alzahra University, Tehran, Iran
| | - Roya Ayazi-Nasrabadi
- Department of Biomedical Sciences, Women Research Center, Alzahra University, Tehran, Iran
| |
Collapse
|
9
|
Assessment of Response to Moderate and High Dose Supplementation of Astaxanthin in Laying Hens. Animals (Basel) 2021; 11:ani11041138. [PMID: 33923372 PMCID: PMC8071492 DOI: 10.3390/ani11041138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary With the increasing use of carotenoids, especially astaxanthin as a feed additive in the poultry industry, the concern about the health status of the laying hen and efficacy to improve egg quality in the case of overdosing was raised. Thus, we aimed to evaluate the effects of either moderate or high dose dietary supplementation of astaxanthin on eggs and laying hens’ health status. The results revealed that, at moderate dose increment, astaxanthin is well deposited in egg yolk, efficiently improves egg yolk color, and contributes to ameliorate the general health status of laying hens. Besides, the high dose supplementation presented positive effects on the coloration and enrichment of egg yolk and the health status of laying hens with no significant difference with the moderate doses to some extents. We concluded that it would be beneficial to add astaxanthin to laying hens feed at a moderate dose rather than high dose. Abstract In this study, we evaluated the impact of moderate and high dose dietary supplementation of astaxanthin on production performance, quality of eggs, and health status of laying hens. The experiment involved 480 laying hens, divided into four groups of eight replicates. The different groups named A1, A2, A3, and A4 were allocated the same diet supplemented with Haematococcus pluvialis powder to provide 0, 21.3, 42.6, and 213.4 mg of astaxanthin per kilogram of feed, respectively. One-way ANOVA and linear and quadratic regression analysis were used to assess the differences between the groups. The results showed that the production performance of laying hens and the physical quality of eggs did not significantly differ between the groups (p > 0.05). Astaxanthin distribution in tissues was typical per bird, whereas the egg yolk coloration and astaxanthin concentration increased with the supplementation dose (p < 0.001). However, there was a decrease in concentration and coloration efficacy of astaxanthin at high dose supplementation (213.4 mg/kg) compared to moderate doses (21.3 and 42.6 mg/kg). Blood biochemical tests showed some discrepancies that were not ascribed to the effect of diets, and the increase in liver weight in the A4 group compared to others was equated with an adaptation of laying hens to the high dose supplementation. Astaxanthin improved superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and diminished malondialdehyde (MDA) content in both liver and serum; meanwhile, the activities of SOD and GSH-Px in serum were similar between the moderate doses and high dose supplementation. Additionally, astaxanthin alleviated interleukin 2, 4, and 6 (IL-2, IL-4, and IL-6, respectively) in serum, showing the best effect in A3 and A4 groups. Besides, immunoglobulin G and M (IgG and IgM), as well as tumor necrosis factor-alpha and beta (TNF-α and TNF-β), were not much affected. It was concluded that although astaxanthin has no obvious adverse effect on the performance and health status of laying hens, it may not be valuable for egg fortification and health status improvement of laying hens at high dose supplementation. The high dose astaxanthin supplementation up to 213.4 mg/kg in the diet might be avoided.
Collapse
|
10
|
Kanwugu ON, Glukhareva TV, Danilova IG, Kovaleva EG. Natural antioxidants in diabetes treatment and management: prospects of astaxanthin. Crit Rev Food Sci Nutr 2021; 62:5005-5028. [PMID: 33591215 DOI: 10.1080/10408398.2021.1881434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetes remains a major health emergency in our entire world, affecting hundreds of millions of people worldwide. In conjunction with its much-dreaded complications (e.g., nephropathy, neuropathy, retinopathy, cardiovascular diseases, etc.) it substantially reduces the quality of life, increases mortality as well as economic burden among patients. Over the years, oxidative stress and inflammation have been highlighted as key players in the development and progression of diabetes and its associated complications. Much research has been devoted, as such, to the role of antioxidants in diabetes. Astaxanthin is a powerful antioxidant found mostly in marine organisms. Over the past years, several studies have demonstrated that astaxanthin could be useful in the treatment and management of diabetes. It has been shown to protect β-cells, neurons as well as several organs including the eyes, kidney, liver, etc. against oxidative injuries experienced during diabetes. Furthermore, it improves glucose and lipid metabolism along with cardiovascular health. Its beneficial effects are exerted through multiple actions on cellular functions. Considering these and the fact that foods and natural products with biological and pharmacological activities are of much interest in the 21st-century food and drug industry, astaxanthin has a bright prospect in the management of diabetes and its complications.
Collapse
Affiliation(s)
- Osman N Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia
| | - Tatiana V Glukhareva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia.,Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Irina G Danilova
- Institute of Immunology and Physiology, Ural Branch of the Russia Academy of Science, Yekaterinburg, Russia
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
11
|
Liu N, Zeng L, Zhang YM, Pan W, Lai H. Astaxanthin alleviates pathological brain aging through the upregulation of hippocampal synaptic proteins. Neural Regen Res 2021; 16:1062-1067. [PMID: 33269751 PMCID: PMC8224122 DOI: 10.4103/1673-5374.300460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress is currently considered to be the main cause of brain aging. Astaxanthin can improve oxidative stress under multiple pathological conditions. It is therefore hypothesized that astaxanthin might have therapeutic effects on brain aging. To validate this hypothesis and investigate the underlying mechanisms, a mouse model of brain aging was established by injecting amyloid beta (Aβ)25–35 (5 μM, 3 μL/injection, six injections given every other day) into the right lateral ventricle. After 3 days of Aβ25–35 injections, the mouse models were intragastrically administered astaxanthin (0.1 mL/d, 10 mg/kg) for 30 successive days. Astaxanthin greatly reduced the latency to find the platform in the Morris water maze, increased the number of crossings of the target platform, and increased the expression of brain-derived neurotrophic factor, synaptophysin, sirtuin 1, and peroxisome proliferator-activated receptor-γ coactivator 1α. Intraperitoneal injection of the sirtuin 1 inhibitor nicotinamide (500 μM/d) for 7 successive days after astaxanthin intervention inhibited these phenomena. These findings suggest that astaxanthin can regulate the expression of synaptic proteins in mouse hippocampus through the sirtuin 1/peroxisome proliferator-activated receptor-γ coactivator 1α signaling pathway, which leads to improvements in the learning, cognitive, and memory abilities of mice. The study was approved by the Animal Ethics Committee, China Medical University, China (approval No. CMU2019294) on January 15, 2019.
Collapse
Affiliation(s)
- Ning Liu
- 1Department of Human Anatomy, College of Basic Medicine, China Medical University, Shenyang; Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Liang Zeng
- Department of Human Anatomy, College of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Yi-Ming Zhang
- Department of Human Anatomy, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Wang Pan
- Department of Neurobiology of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Hong Lai
- Department of Human Anatomy, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
12
|
Pereira CPM, Souza ACR, Vasconcelos AR, Prado PS, Name JJ. Antioxidant and anti‑inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review). Int J Mol Med 2021; 47:37-48. [PMID: 33155666 PMCID: PMC7723678 DOI: 10.3892/ijmm.2020.4783] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular diseases are the most common cause of mortality worldwide. Oxidative stress and inflammation are pathophysiological processes involved in the development of cardiovascular diseases; thus, anti‑inflammatory and antioxidant agents that modulate redox balance have become research targets so as to evaluate their molecular mechanisms of action and therapeutic properties. Astaxanthin, a carotenoid of the xanthophyll group, has potent antioxidant properties due to its molecular structure and its arrangement in the plasma membrane, factors that favor the neutralization of reactive oxygen and nitrogen species. This carotenoid also has prominent anti‑inflammatory activity, possibly interrelated with its antioxidant effect, and is also involved in the modulation of lipid and glucose metabolism. Considering the potential beneficial effects of astaxanthin on cardiovascular health evidenced by preclinical and clinical studies, the aim of the present review was to describe the molecular and cellular mechanisms associated with the antioxidant and anti‑inflammatory properties of this carotenoid in cardiovascular diseases, particularly atherosclerosis. The beneficial properties and safety profile of astaxanthin indicate that this compound may be used for preventing progression or as an adjuvant in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - José João Name
- Kilyos Assessoria, Cursos e Palestras, São Paulo, SP 01311-100
| |
Collapse
|
13
|
Catanzaro E, Bishayee A, Fimognari C. On a Beam of Light: Photoprotective Activities of the Marine Carotenoids Astaxanthin and Fucoxanthin in Suppression of Inflammation and Cancer. Mar Drugs 2020; 18:E544. [PMID: 33143013 PMCID: PMC7692561 DOI: 10.3390/md18110544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Every day, we come into contact with ultraviolet radiation (UVR). If under medical supervision, small amounts of UVR could be beneficial, the detrimental and hazardous effects of UVR exposure dictate an unbalance towards the risks on the risk-benefit ratio. Acute and chronic effects of ultraviolet-A and ultraviolet-B involve mainly the skin, the immune system, and the eyes. Photodamage is an umbrella term that includes general phototoxicity, photoaging, and cancer caused by UVR. All these phenomena are mediated by direct or indirect oxidative stress and inflammation and are strictly connected one to the other. Astaxanthin (ASX) and fucoxanthin (FX) are peculiar marine carotenoids characterized by outstanding antioxidant properties. In particular, ASX showed exceptional efficacy in counteracting all categories of photodamages, in vitro and in vivo, thanks to both antioxidant potential and activation of alternative pathways. Less evidence has been produced about FX, but it still represents an interesting promise to prevent the detrimental effect of UVR. Altogether, these results highlight the importance of digging into the marine ecosystem to look for new compounds that could be beneficial for human health and confirm that the marine environment is as much as full of active compounds as the terrestrial one, it just needs to be more explored.
Collapse
Affiliation(s)
- Elena Catanzaro
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
14
|
Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100789] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astaxanthin shows many biological activities. It has acquired a high economic potential and its current market is dominated by its synthetic form. However, due to the increase of the health and environmental concerns from consumers, natural forms are now preferred for human consumption. Haematococcus pluvialis is artificially cultured at an industrial scale to produce astaxanthin used as a dietary supplement. However, due to the high cost of its cultivation and its relatively low biomass and pigment productivities, the astaxanthin extracted from this microalga remains expensive and this has probably the consequence of slowing down its economic development in the lower added-value market such as food ingredient. In this review, we first aim to provide an overview of the chemical and biochemical properties of astaxanthin, as well as of its natural sources. We discuss its bioavailability, metabolism, and biological activities. We present a state-of-the-art of the biology and physiology of H. pluvialis, and highlight novel insights into the biotechnological processes which allow optimizing the biomass and astaxanthin productivities. We are trying to identify some lines of research that would improve the industrial sustainability and economic viability of this bio-production and to broaden the commercial potential of astaxanthin produced from H. pluvialis.
Collapse
|
15
|
Oil and pigments from shrimp processing by-products: Extraction, composition, bioactivities and its application- A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Yao J, Kim HS, Kim JY, Choi YE, Park J. Mechanical stress induced astaxanthin accumulation of H. pluvialis on a chip. LAB ON A CHIP 2020; 20:647-654. [PMID: 31930234 DOI: 10.1039/c9lc01030k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microalgae have been envisioned as a source of food, feed, health nutraceuticals, and cosmetics. Among various microalgae, Haematococcus pluvialis (H. pluvialis) is known to be the richest feedstock of natural astaxanthin. Astaxanthin is a highly effective antioxidation material and is being widely used in aquaculture, nutraceuticals, pharmacology, and feed industries. Here, we present a microfluidic chip consisting of a micropillar array and six sets of culture chambers, which enables sorting of motile flagellated vegetative stage H. pluvialis (15-20 μm) from cyst stage H. pluvialis as well as culture of the selected cells under a mechanically stressed microenvironment. The micropillar array successfully sorted only the motile early vegetative stage cells (avg. size = 19.8 ± 1.6 μm), where these sorted cells were uniformly loaded inside each culture chamber (229 ± 39 cells per chamber). The mechanical stress level applied to the cells was controlled by designing the culture chambers with different heights (5-70 μm). Raman analysis results revealed that the mechanical stress indeed induced the accumulation of astaxanthin in H. pluvialis. Also, the most effective chamber height enhancing the astaxanthin accumulation (i.e., 15 μm) was successfully screened using the developed chip. Approximately 9 times more astaxanthin accumulation was detected after 7 days of culture compared to the no mechanical stress condition. The results clearly demonstrate the capability of the developed chip to investigate bioactive metabolite accumulation of microalgae induced by mechanical stress, where the amount was quantitatively analyzed in a label-free manner. We believe that the developed chip has great potential for studying the effects of mechanical stress on not only H. pluvialis but also various microalgal species in general.
Collapse
Affiliation(s)
- Junyi Yao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Hyun Soo Kim
- Korea Institute of Machinery and Materials, Daegu Research Center for Medical Devices and Rehabilitation, Daegu 42994, South Korea
| | - Jee Young Kim
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Korea.
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Korea.
| | - Jaewon Park
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
17
|
Fleischmann C, Horowitz M, Yanovich R, Raz H, Heled Y. Asthaxanthin Improves Aerobic Exercise Recovery Without Affecting Heat Tolerance in Humans. Front Sports Act Living 2019; 1:17. [PMID: 33344941 PMCID: PMC7739736 DOI: 10.3389/fspor.2019.00017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/16/2019] [Indexed: 12/01/2022] Open
Abstract
Objectives: To examine the supplementation effects of the xanthophyll carotenoid Astaxanthin on physical performance and exertional heat strain in humans. Design: A randomized double blind placebo controlled trial. Methods: Twenty two male participants (Age: 23.14 ± 3.5 y, height: 175 ± 6 cm, body mass: 69.6 ± 8.7 kg, % body fat: 16.8 ± 3.8) received placebo (PLA, n = 10) or Astaxanthin (ATX, n = 12) 12 mg/day Per os (P.O), for 30 days, and were tested pre and post-supplementation with a maximal oxygen uptake (VO2 Max) test and the heat tolerance test (HTT) (2 h walk at 40°C, 40% relative humidity (RH), 5 kph, 2% incline). NIH database registration no. NCT02088242. Gas exchange, Heart rate (HR), Relative perceived exertion (RPE), and blood lactate were measured during the VO2 Max test. Heart rate (HR), rectal (Trec), and skin (Tskin) temperatures, RPE, and sweat rate (SR) were monitored in the HTT. Serum heat shock protein 72 (HSP72), Creatine phospho-kinase (CPK), C-reactive protein (CRP), and lipid profile were measured before and after the test. Results: The rise in blood lactate caused by the VO2 Max test was significantly diminished in the ATX group (9.4 ± 3.1 and 13.0 ± 3.1 mmole*l−1 in the ATX and PLA groups, respectively P < 0.02), as was the change in oxygen uptake during recovery (−2.02 ± 0.64 and 0.83 ± 0.79% of VO2 Max in the ATX and PLA group, respectively, p = 0.001). No significant differences were observed in the anaerobic threshold or VO2 Max. In the HTT, no significant physiological or biochemical differences were observed (HR <120 bpm, Trec rose by ~1°C to <38°C, no difference in SR). Conclusions: Astaxanthin supplementation improved exercise recovery. No benefit was observed for ATX over PLA in response to heat stress. Further examination of Astaxanthin in higher exertional heat strain is required.
Collapse
Affiliation(s)
- Chen Fleischmann
- Institute of Military Physiology, IDF Medical Corps, Tel-Hashomer, Israel.,Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel.,Laboratory of Environmental Physiology, Dentistry Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Horowitz
- Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel
| | - Ran Yanovich
- Institute of Military Physiology, IDF Medical Corps, Tel-Hashomer, Israel.,Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel.,The Academic College at Wingate, Wingate Institute, Netanya, Israel
| | - Hany Raz
- The Faculty of Agriculture, Food and Environment, Hebrew University, Rechovot, Israel
| | - Yuval Heled
- Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
18
|
Research progress on extraction, biological activities and delivery systems of natural astaxanthin. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Kumar S, Singh SV. Inhibition of NF-κB signaling pathway by astaxanthin supplementation for prevention of heat stress-induced inflammatory changes and apoptosis in Karan Fries heifers. Trop Anim Health Prod 2019; 51:1125-1134. [PMID: 30612290 DOI: 10.1007/s11250-018-01793-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/20/2018] [Indexed: 01/07/2023]
Abstract
Present study was conducted on 12 Karan Fries (Holstein Friesian X Tharparkar) heifers (10-12 months) to assess the effect of astaxanthin supplementation on heat stress amelioration and inhibition of NF-κB signaling pathway for prevention of heat stress-induced inflammatory changes and apoptosis in the cell during the summer season. The heifers were randomly and equally divided into two groups, i.e., control (fed as per ICAR 2013) and treatment groups (additionally supplemented astaxanthin at a dose rate of 0.25 mg/kg BW/day/animal). Temperature humidity index used to assess the levels of summer stress during the experimental period. Blood samples were collected at the fortnightly interval for quantification of plasma cortisol and IL-12 from both the groups of the heifers and from collected blood samples, RNA was isolated and transcribed into cDNA for real time PCR, for genes expression of NF-κB, IL-2, caspase-3, and Bcl-2. Plasma cortisol, IL-12 levels, and expression pattern of NF-κB, IL-2, and caspase-3 were significantly (P ≤ 0.05) lower in treatment group of Karan Fries heifers than control group, whereas, Bcl-2 was higher (P ≤ 0.05) in astaxanthin supplemented group. The temperature humidity index had a positive correlation (P ≤ 0.05) with plasma cortisol and IL-12 and expression pattern of NF-κB, IL-2, and caspase-3. However, it was negatively correlated with Bcl-2. The supplementation of astaxanthin can ameliorate the impact of summer stress through NF-κB downregulation, might be due to the quenching of free radicals, which regulates the expression of pro-inflammatory mediators and apoptotic genes.
Collapse
Affiliation(s)
- Sunil Kumar
- Animal Physiology Division, ICAR, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India.
| | - S V Singh
- Animal Physiology Division, ICAR, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| |
Collapse
|
20
|
Ramos-Vega A, Rosales-Mendoza S, Bañuelos-Hernández B, Angulo C. Prospects on the Use of Schizochytrium sp. to Develop Oral Vaccines. Front Microbiol 2018; 9:2506. [PMID: 30410471 PMCID: PMC6209683 DOI: 10.3389/fmicb.2018.02506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Although oral subunit vaccines are highly relevant in the fight against widespread diseases, their high cost, safety and proper immunogenicity are attributes that have yet to be addressed in many cases and thus these limitations should be considered in the development of new oral vaccines. Prominent examples of new platforms proposed to address these limitations are plant cells and microalgae. Schizochytrium sp. constitutes an attractive expression host for vaccine production because of its high biosynthetic capacity, fast growth in low cost culture media, and the availability of processes for industrial scale production. In addition, whole Schizochytrium sp. cells may serve as delivery vectors; especially for oral vaccines since Schizochytrium sp. is safe for oral consumption, produces immunomodulatory compounds, and may provide bioencapsulation to the antigen, thus increasing its bioavailability. Remarkably, Schizochytrium sp. was recently used for the production of a highly immunoprotective influenza vaccine. Moreover, an efficient method for transient expression of antigens based on viral vectors and Schizochytrium sp. as host has been recently developed. In this review, the potential of Schizochytrium sp. in vaccinology is placed in perspective, with emphasis on its use as an attractive oral vaccination vehicle.
Collapse
Affiliation(s)
- Abel Ramos-Vega
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Carlos Angulo
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| |
Collapse
|
21
|
Fakhri S, Abbaszadeh F, Dargahi L, Jorjani M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol Res 2018; 136:1-20. [DOI: 10.1016/j.phrs.2018.08.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
|
22
|
Davinelli S, Nielsen ME, Scapagnini G. Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review. Nutrients 2018; 10:nu10040522. [PMID: 29690549 PMCID: PMC5946307 DOI: 10.3390/nu10040522] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/10/2018] [Accepted: 04/19/2018] [Indexed: 12/19/2022] Open
Abstract
Astaxanthin, a xanthophyll carotenoid, is a secondary metabolite naturally synthesized by a number of bacteria, microalgae, and yeasts. The commercial production of this pigment has traditionally been performed by chemical synthesis, but the microalga Haematococcus pluvialis appears to be the most promising source for its industrial biological production. Due to its collective diverse functions in skin biology, there is mounting evidence that astaxanthin possesses various health benefits and important nutraceutical applications in the field of dermatology. Although still debated, a range of potential mechanisms through which astaxanthin might exert its benefits on skin homeostasis have been proposed, including photoprotective, antioxidant, and anti-inflammatory effects. This review summarizes the available data on the functional role of astaxanthin in skin physiology, outlines potential mechanisms involved in the response to astaxanthin, and highlights the potential clinical implications associated with its consumption.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy.
| | | | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy.
| |
Collapse
|
23
|
Cheng CH, Guo ZX, Ye CX, Wang AL. Effect of dietary astaxanthin on the growth performance, non-specific immunity, and antioxidant capacity of pufferfish (Takifugu obscurus) under high temperature stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:209-218. [PMID: 28936571 DOI: 10.1007/s10695-017-0425-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
The present study was conducted to investigate the effects of astaxanthin on growth performance, biochemical parameters, ROS production, and immune-related gene expressions of the pufferfish (Takifugu obscurus) under high temperature stress. The experimental basal diets supplemented with astaxanthin at the rates of 0 (control), 20, 40, 80, 160, and 320 mg kg-1 were fed to fish for 8 weeks. The results showed that the fish fed diet with 80, 160, and 320 mg kg-1 astaxanthin significantly improved weight gain and specific growth rate. Furthermore, fish fed the moderate dietary astaxanthin increased plasma alkaline phosphatase activities, and decrease plasma aspartate aminotransferase and alanine aminotransferase activities. After the feeding trial, the fish were exposed to high temperature stress for 48 h. The results shown that astaxanthin could suppress ROS production induced by high temperature stress. Meanwhile, compared with the control group, the astaxanthin groups increased SOD, CAT, and HSP70 mRNA levels under high temperature stress. These results showed that the basal diet supplemented with 80-320 mg kg-1 astaxanthin could enhance growth, nonspecific immune responses, and antioxidant defense system and improve resistance against high temperature stress in pufferfish.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, People's Republic of China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center (SCS-REPIC), Guangzhou, People's Republic of China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, People's Republic of China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center (SCS-REPIC), Guangzhou, People's Republic of China.
| | - Chao-Xia Ye
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center (SCS-REPIC), Guangzhou, People's Republic of China
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - An-Li Wang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center (SCS-REPIC), Guangzhou, People's Republic of China.
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
24
|
Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 2017; 174:1290-1324. [PMID: 27638711 PMCID: PMC5429337 DOI: 10.1111/bph.13625] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/21/2016] [Accepted: 08/31/2016] [Indexed: 01/06/2023] Open
Abstract
Carotenoids and retinoids have several similar biological activities such as antioxidant properties, the inhibition of malignant tumour growth and the induction of apoptosis. Supplementation with carotenoids can affect cell growth and modulate gene expression and immune responses. Epidemiological studies have shown a correlation between a high carotenoid intake in the diet with a reduced risk of breast, cervical, ovarian, colorectal cancers, and cardiovascular and eye diseases. Cancer chemoprevention by dietary carotenoids involves several mechanisms, including effects on gap junctional intercellular communication, growth factor signalling, cell cycle progression, differentiation-related proteins, retinoid-like receptors, antioxidant response element, nuclear receptors, AP-1 transcriptional complex, the Wnt/β-catenin pathway and inflammatory cytokines. Moreover, carotenoids can stimulate the proliferation of B- and T-lymphocytes, the activity of macrophages and cytotoxic T-cells, effector T-cell function and the production of cytokines. Recently, the beneficial effects of carotenoid-rich vegetables and fruits in health and in decreasing the risk of certain diseases has been attributed to the major carotenoids, β-carotene, lycopene, lutein, zeaxanthin, crocin (/crocetin) and curcumin, due to their antioxidant effects. It is thought that carotenoids act in a time- and dose-dependent manner. In this review, we briefly describe the biological and immunological activities of the main carotenoids used for the treatment of various diseases and their possible mechanisms of action. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | | | - Sepideh Shahbazi
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | - Azam Bolhassani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| |
Collapse
|
25
|
Liu F, Shi HZ, Guo QS, Yu YB, Wang AM, Lv F, Shen WB. Effects of astaxanthin and emodin on the growth, stress resistance and disease resistance of yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2016; 51:125-135. [PMID: 26899124 DOI: 10.1016/j.fsi.2016.02.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Yellow catfish (Pelteobagrus fulvidraco) has become a commercially important fish species in China and eastern Asia. High-density aquaculture has led to congestion and excessive stress and contributed to bacterial infection outbreaks that have caused high mortality. We investigated the effects of dietary supplementation with astaxanthin and emodin alone and in combination on the growth and stress resistance of yellow catfish. After 60 days of feeding, each group of fish (control, astaxanthin, emodin, and astaxanthin plus emodin (combination) groups) was exposed to acute crowding stress for 24 h, and a subsample of fish from the four groups was challenged with the bacterial septicemia pathogen Proteus mirabilis after the end of the crowding stress experiment. Compared with the control, the astaxanthin and emodin groups showed increases in serum total protein (TP), hepatic superoxide dismutase (SOD) activity and hepatic heat shock proteins 70 (HSP70) mRNA levels at 12 and 24 h after the initiation of crowding stress. The combination group exhibited increases in alanine aminotransferase (ALT) activity, aspartate aminotransferase (AST) activity, serum TP, hepatic SOD activity and hepatic HSP70 mRNA levels within 24 h after the initiation of crowding stress. However, decreases relative to the control were observed in the serum cortisol and glucose contents in the three treatment groups at 12 and 24 h after the initiation of crowding stress, in ALT and AST activity in the astaxanthin and emodin group at 24 h after the initiation of crowding stress, and in the serum lysozyme activity, serum alkaline phosphatase (ALP) activity, and hepatic catalase (CAT) and malondialdehyde (MDA) activity in the combination group at 24 h after the initiation of crowding stress. Additionally, the cumulative mortality after P. mirabilis infection was lower in all three treatment groups (57.00%-70.33%) than in the control (77.67%). Dietary supplementation with astaxanthin and emodin decreased the specific growth rate (SGR) and weight gain (WG) of healthy yellow catfish, although significant differences in mortality were not observed. These results indicate that dietary supplementation with 80 mg/kg astaxanthin and 150 mg/kg emodin can improve the anti-oxidative capabilities, hepatic HSP70 levels, and resistance to acute crowding stress of yellow catfish. Finally, an appropriate strategy for enhance yellow catfish stress resistance and disease resistance is proposed.
Collapse
Affiliation(s)
- Fei Liu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China; Biology Post-doctoral Mobile Stations, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hong-Zhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qiao-Sheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Ye-Bing Yu
- Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Ai-Ming Wang
- Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Fu Lv
- Key Laboratory for Aquaculture and Ecology of Coastal Pool of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Wen-Biao Shen
- Biology Post-doctoral Mobile Stations, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
26
|
Park JS, Mathison BD, Zawlocki BM, Chew BP. Bixin uptake and antioxidative effect and role in immunoregulation in domestic cats. J Anim Sci 2016; 94:125-34. [PMID: 26812319 DOI: 10.2527/jas.2015-9478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bixin, a carotenoid found in the seed of the Annatto plant, , is a potent antioxidant. Carotenoids are readily absorbed from the diet; therefore, the purpose of this study was to examine uptake of bixin by plasma, lipoproteins, and leukocytes after dietary supplementation in domestic cats and to assess effects on immune response. Female domestic short hair cats (3 yr old; 4.79 ± 0.13 kg BW) were fed a single dose of 0, 1, 5, or 10 mg bixin, and blood was taken at 0, 1, 2, 4 and 8 h after administration ( = 6/treatment) to determine acute absorption rate. Then, bixin was fed daily for 14 d to examine steady-state plasma concentrations and subcellular distribution. Following these preliminary experiments, cats ( = 8/treatment) were fed diets containing 0, 1, 5, or 10 mg bixin/d for 16 wk and blood was collected on wk 0, 6, 12, and 16 for analysis of leukocyte subpopulations, cell-mediated responsiveness, and inflammatory and oxidative biomarkers. Maximal uptake in plasma occurred 1 h after a single oral dose of bixin, with a maximal concentration of 0.119 μ and elimination half-life of 1.8 to 2.2 h. Daily feeding of bixin showed a steady-state plasma concentration of 0.110 μ at the greatest doses. Bixin was primarily associated with the high-density lipoprotein fraction of blood lipoproteins and was primarily distributed in mitochondrial fractions (58-59%) of but also in microsomal and nuclear fractions (37-44%). Leukocyte subpopulations in blood were variably affected by dietary bixin, with an increase ( < 0.05) in total T cells but a concurrent decrease ( < 0.05) in CD18+ and B cell subpopulations. However, plasma IgG increased ( < 0.05) in the 10-mg treatment group by wk 6. Lymphoproliferation was stimulated ( < 0.05) in the 5-mg bixin treatment group by wk 16, and delayed-type hypersensitivity response increased after nonspecific antigenic challenge. Conversely, when a specific challenge of vaccine was assessed on wk 12 and 16, responsiveness decreased ( < 0.05) in the 10-mg bixin treatment group. Bixin supplementation surprisingly caused an increase ( < 0.05) in α-acid glycoprotein but had no effect on natural killer cell activity, other subpopulations of leukocytes, or 8-oxo-2›-deoxyguanosine, a DNA damage biomarker. This experiment demonstrated dose-dependent uptake of bixin in plasma and blood lipoproteins and distribution in leukocyte subcellular components and an impacted immune response through cell-mediated and humoral actions.
Collapse
|
27
|
Zhou X, Zhang F, Hu X, Chen J, Wen X, Sun Y, Liu Y, Tang R, Zheng K, Song Y. Inhibition of inflammation by astaxanthin alleviates cognition deficits in diabetic mice. Physiol Behav 2015; 151:412-20. [DOI: 10.1016/j.physbeh.2015.08.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 08/03/2015] [Accepted: 08/08/2015] [Indexed: 11/24/2022]
|
28
|
Effect of Astaxanthin Supplementation on Salivary IgA, Oxidative Stress, and Inflammation in Young Soccer Players. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:783761. [PMID: 26167194 PMCID: PMC4488551 DOI: 10.1155/2015/783761] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/08/2015] [Indexed: 01/24/2023]
Abstract
The physiologic stress induced by physical activity is reflected in immune system perturbations, oxidative stress, muscle injury, and inflammation. We investigated the effect of astaxanthin (Asx) supplementation on salivary IgA (sIgA) and oxidative stress status in plasma, along with changes in biochemical parameters and total/differential white cell counts. Forty trained male soccer players were randomly assigned to Asx and placebo groups. Asx group was supplemented with 4 mg of Asx. Saliva and blood samples were collected at the baseline and after 90 days of supplementation in preexercise conditions. We observed a rise of sIgA levels at rest after 90 days of Asx supplementation, which was accompanied with a decrease in prooxidant-antioxidant balance. The plasma muscle enzymes levels were reduced significantly by Asx supplementation and by regular training. The increase in neutrophil count and hs-CRP level was found only in placebo group, indicating a significant blunting of the systemic inflammatory response in the subjects taking Asx. This study indicates that Asx supplementation improves sIgA response and attenuates muscle damage, thus preventing inflammation induced by rigorous physical training. Our findings also point that Asx could show significant physiologic modulation in individuals with mucosal immunity impairment or under conditions of increased oxidative stress and inflammation.
Collapse
|
29
|
Sun W, Lin H, Zhai Y, Cao L, Leng K, Xing L. Separation, Purification, and Identification of (3S,3′S)-trans-Astaxanthin fromHaematococcus pluvialis. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2014.976873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Jagruthi C, Yogeshwari G, Anbazahan SM, Mari LSS, Arockiaraj J, Mariappan P, Sudhakar GRL, Balasundaram C, Harikrishnan R. Effect of dietary astaxanthin against Aeromonas hydrophila infection in common carp, Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2014; 41:674-680. [PMID: 25462460 DOI: 10.1016/j.fsi.2014.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
The effect of astaxanthin at 0, 25, 50, and 100 mg kg(-1) incorporated in basal feed on immune response and disease resistance in Cyprinus carpio against Aeromonas hydrophila was investigated. When fed with 25 mg kg(-1) diet, the cumulative mortality was 35% whereas it was 10% and 20% with 50 and 100 mg kg(-1) diets. With all enriched diets the growth rate increased significantly from week 1 to 4 when compared with control. However, the specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER) did not vary significantly from that of the control except with 50 mg kg(-1) diet. When fed with 50 and 100 mg kg(-1) diets the red blood cells, white blood cells, hemoglobin, and hematocrit values significantly increased. However, the serum total protein, albumin, and globulin contents significantly increased only when fed with 50 and 100 mg kg(-1) diets. The phagocytic ratio also significantly raised with 50 and 100 mg kg(-1) diets on week 2 and 4 whereas the phagocytic index significantly increased with all groups only on fourth week. The respiratory burst activity significantly increased in 25 mg kg(-1) diet group on first week whereas in 50 and 100 mg kg(-1) diet groups the activity increased on weeks 2 and 4; a similar trend was observed in the anti-protease activity only on weeks 2 and 4. The serum lysozyme activity and bactericidal activity registered a significant increase with all enriched diets. This study suggests that supplementation of astaxanthin at 50 and 100 mg kg(-1) with the basal diet significantly promotes the growth restores hematology and modulates the immune system in C. carpio against A. hydrophila.
Collapse
Affiliation(s)
- Chandrasekar Jagruthi
- Department of Biotechnology, Bharath College of Science and Management, Thanjavur 613 005, Tamil Nadu, India
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
White AG, Wolsic CL, Campbell KL, Lavergne SN. Canine progenitor epidermal keratinocytes express various inflammatory markers, including interleukin-8 and CD40, which are affected by certain antibiotics. Vet Dermatol 2014; 25:493-502, e81-2. [DOI: 10.1111/vde.12164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Amelia G. White
- Veterinary Clinical Medicine; College of Veterinary Medicine; University of Illinois; 1008 W Hazelwood Drive Urbana IL 61802 USA
| | - Cassandra L. Wolsic
- Comparative Biosciences; College of Veterinary Medicine; University of Illinois; 2001 South Lincoln Avenue Urbana IL 61802 USA
| | - Karen L. Campbell
- Veterinary Clinical Medicine; College of Veterinary Medicine; University of Illinois; 1008 W Hazelwood Drive Urbana IL 61802 USA
| | - Sidonie N. Lavergne
- Comparative Biosciences; College of Veterinary Medicine; University of Illinois; 2001 South Lincoln Avenue Urbana IL 61802 USA
| |
Collapse
|
32
|
Tani C, Maoka T, Tani M, Moritomo Y, Okada T, Kitahara G, Katamoto H. Accumulation of xanthophylls from the phaffia yeast (Xanthophyllomyces dendrorhrous) in calves. J Oleo Sci 2014; 63:943-51. [PMID: 25099913 DOI: 10.5650/jos.ess14076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An investigation into the absorption and accumulation of carotenoids from phaffia yeast in two to three-week-old calves was carried out. Carotenoid contents of the control cattle (n=1) were 615.0 ng/g in the liver, 263.7 ng/g in the duodenum, 218.0 ng/g in the pancreas, 170.0 ng/g in the blood, 140.3 ng/g in the jejunum, 115.0 ng/g in the spleen. Among the accumulated carotenoids, β-carotene was presented as a major component (86.0 to 94.3%) along with lutein (5.7 to 14.0%) as a minor component. On the other hand, carotenoid contents in phaffia yeast-supplemented (5 g/day for one month) calves (n=3) were 4 to 10 times higher than those of the control calf. Carotenoid contents of phaffia yeast-supplemented calves were 2570.1±782 ng/g in the liver, 1806.6±1064 ng/g in the pancreas, 1648.4±630.2 ng/g in the spleen, and 1255.9±300.2 ng/g in the blood. In addition to β-carotene, keto-carotenoids from phaffia yeast, echinenone, (3R)-3-hydroxyechinenone, and (3R,3'R)-astaxanthin, were accumulated in all organs of phaffia yeast-supplemented calves. β-Carotene and (3R)-3-hydroxyechinenone were present as major carotenoids followed by echinenone. However, (3R,3'R)-astaxanthin, which was the major carotenoid in phaffia yeast, was found to be a minor carotenoid in calves. This indicated that calves well absorbed fewer polar xanthophylls, echinenone and (3R)-3-hydroxyechinenone compared to the polar xanthophyll, astaxanthin.
Collapse
Affiliation(s)
- Chikako Tani
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | | | | | | | | | | | | |
Collapse
|
33
|
Ambati RR, Phang SM, Ravi S, Aswathanarayana RG. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review. Mar Drugs 2014; 12:128-52. [PMID: 24402174 PMCID: PMC3917265 DOI: 10.3390/md12010128] [Citation(s) in RCA: 973] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 12/14/2022] Open
Abstract
There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3'-dihydroxy-β, β'-carotene-4,4'-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications.
Collapse
Affiliation(s)
- Ranga Rao Ambati
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Siew Moi Phang
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Sarada Ravi
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | | |
Collapse
|
34
|
López-Saiz CM, Suárez-Jiménez GM, Plascencia-Jatomea M, Burgos-Hernández A. Shrimp lipids: a source of cancer chemopreventive compounds. Mar Drugs 2013; 11:3926-50. [PMID: 24135910 PMCID: PMC3826143 DOI: 10.3390/md11103926] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/22/2013] [Accepted: 09/27/2013] [Indexed: 01/02/2023] Open
Abstract
Shrimp is one of the most popular seafoods worldwide, and its lipids have been studied for biological activity in both, muscle and exoskeleton. Free fatty acids, triglycerides, carotenoids, and other lipids integrate this fraction, and some of these compounds have been reported with cancer chemopreventive activities. Carotenoids and polyunsaturated fatty acids have been extensively studied for chemopreventive properties, in both in vivo and in vitro studies. Their mechanisms of action depend on the lipid chemical structure and include antioxidant, anti-proliferative, anti-mutagenic, and anti-inflammatory activities, among others. The purpose of this review is to lay groundwork for future research about the properties of the lipid fraction of shrimp.
Collapse
Affiliation(s)
- Carmen-María López-Saiz
- Department of Research and Food Science Graduate Program, University of Sonora, Apartado Postal 1658, Hermosillo, Sonora 83000, Mexico.
| | | | | | | |
Collapse
|
35
|
Đorđić M, Matić IZ, Filipović-Lješković I, Džodić R, Šašić M, Erić-Nikolić A, Vuletić A, Kolundžija B, Damjanović A, Grozdanić N, Nikolić S, Pralica J, Dobrosavljević D, Rašković S, Andrejević S, Juranić Z. Immunity to melanin and to tyrosinase in melanoma patients, and in people with vitiligo. Altern Ther Health Med 2012; 12:109. [PMID: 22834951 PMCID: PMC3457868 DOI: 10.1186/1472-6882-12-109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 07/11/2012] [Indexed: 11/22/2022]
Abstract
Background The aim of this study was to determine the presence and the intensity of humoral immunity to melanoma-associated antigens: tyrosinase and melanin, in patients with melanoma, in persons with vitiligo and in control healthy people. Methods The study involved 63 patients with melanoma and 19 persons with vitiligo. Control group consisted up to 41 healthy volunteers. Mushroom tyrosinase and synthetic melanin were used as the antigens. Results ELISA test showed significantly (p < 0.0000004 and p < 0.04) lower levels of IgM anti-tyrosinase autoantibodies, in melanoma and vitiligo patients respectively, compared to controls. Although there was no significant difference between the levels of IgA anti-melanin autoantibodies in melanoma or vitiligo patients in comparison with controls, the enhanced concentrations of anti-melanin IgA autoantibodies were preferentially found in melanoma patients with metastatic disease. Significantly high percentage in the Fc alphaRI (CD89) positive cells was determined in melanoma patients (p < 0.002 and p < 0.008) in comparison to that found in healthy people or in patients with vitiligo, in the already mentioned order, pointing that IgA dependent cellular cytotoxicity is not important for the immune action against melanoma, even more that it is included in some immune suppression. Levels of IgG autoantibodies to mentioned antigens in melanoma patients although low were not significantly lower from controls. These findings analyzed together with the statistically significant low percentage of FcgammaRIII, (CD16) positive immunocompetent cells (p < 0.0007 and p < 0.003), which was found in patients with melanoma compared with healthy or vitiligo people respectively, and statistically significant low percentage of (CD16 + CD56+) natural killer (NK) cells (p < 0.005) found in melanoma patients in comparison to healthy controls pointed to the low probability for anti-melanoma IgG mediated, antibody mediated cellular cytotoxicity, (ADCC) and NK cytotoxicity. Moreover the ratio of the percentages of granulocytes and percentage of lymphocytes was statistically higher in patients with melanoma in relation to healthy people as well as to people with vitiligo (p < 0.0007 and p < 0.05 respectively). Conclusion Autoantibodies to tyrosinase and to melanin which are found even in healthy people, point that consummation of edible mushrooms that carry the antigen tyrosinase and melanin, could influence the humoral anti-melanoma immune response. Levels of different immunoglobulin classes of anti-melanin and anti-tyrosinase antibodies varied depending on the presence and the stage of studied diseases. Besides, the statistically enhanced ratio of the percentages of granulocytes and percentage of lymphocytes, together with statistically decreased percentage of NK cells is found in analyzed melanoma patients.
Collapse
|