1
|
Ijaz A, Pols N, Abboud KY, Rutten VPMG, Broere F, Schols H, Veldhuizen EJA, Jansen CA. Citrus pectins impact the function of chicken macrophages. Int J Biol Macromol 2024; 286:138344. [PMID: 39638205 DOI: 10.1016/j.ijbiomac.2024.138344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The restrictions on excessive use of antimicrobials in the poultry industry have led to the search for alternative strategies including nutritional interventions to enhance gut health with the ultimate aim to prevent gut infections. Pectins as prebiotics have shown beneficial effects on gut health in humans and mice by improving the gut barrier function, altering the gut microbiota, and by modulating the gut immune response. However, little is known about immunomodulatory properties of pectins in chickens. The present in vitro study assessed the effect of three pectins (SPE6, SPE7, SPE8) differing in methyl esterification, on responsiveness of the chicken macrophage cell line HD11 cells and primary monocyte derived macrophage from the blood, through interaction with chicken TLRs. All three pectins increased gene expression of iNOS and IL10 in chicken macrophages. Differences in immunomodulatory activity between the three pectins were observed in other assays. The low methoxyl pectin (SPE8) interacted with TLR4 leading to the production of NO, but also to increased phagocytosis of E. coli, while high methoxyl pectins SPE6 and SPE7 did not activate TLR4. All three pectins were able to attenuate PAM3CSK4 induced activation of chicken macrophages as measured by decreased NO production and phagocytosis. Additional studies using ITC and flow cytometry suggest that the inhibiting properties of pectins (SPE6, SPE7) on macrophages are due to pectins occupying TLR2 and blocking PAM3CSK4 to activate chicken macrophages, whereas SPE8 actually binds to the TLR2 ligand and that way attenuates the PAM3CSK4 induced activation. Based on these immunomodulatory properties observed in this study, these pectins may in the future be suitable as feed additive for the treatment and prevention of inflammatory disorders in poultry.
Collapse
Affiliation(s)
- Adil Ijaz
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Noah Pols
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Kahlile Youssef Abboud
- Center for Healthy Eating and Food Innovation (HEFI)- Maastricht University, Campus Venlo, the Netherlands
| | - Victor P M G Rutten
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Femke Broere
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Henk Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Edwin J A Veldhuizen
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Christine A Jansen
- Cell Biology and Immunology group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Popov IV, Belkassem N, Schrijver R, Chebotareva IP, Chikindas ML, Ermakov AM, Venema K. Modulation of Poultry Cecal Microbiota by a Phytogenic Blend and High Concentrations of Casein in a Validated In Vitro Cecal Chicken Alimentary Tract Model. Vet Sci 2024; 11:377. [PMID: 39195831 PMCID: PMC11358970 DOI: 10.3390/vetsci11080377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Phytogenic blends (PBs) consist of various bioactive plant-derived compounds that are used as growth promoters for farm animals. Feed additives based on PBs have beneficial effects on farm animals' production performance, health, and overall well-being, as well as positive modulating effects on gut microbiota. In this study, we used a validated in vitro cecal chicken alimentary tract model (CALIMERO-2) to evaluate the effects of a PB (a mix of components found in rosemary, cinnamon, curcuma, oregano oil, and red pepper), alone or in combination with casein (control), on poultry cecal microbiota. Supplementation with the PB significantly increased the abundance of bacteria associated with energy metabolism (Monoglobus) and growth performance in poultry (Lachnospiraceae UCG-010). The PB also decreased the abundance of opportunistic pathogens (Escherichia-Shigella) and, most importantly, did not promote other opportunistic pathogens, which indicates the safety of this blend for poultry. In conclusion, the results of this study show promising perspectives on using PBs as feed additives for poultry, although further in vivo studies need to prove these data.
Collapse
Affiliation(s)
- Igor V. Popov
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Nouhaila Belkassem
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
| | - Ruud Schrijver
- Animal Health Concepts BV, 8141 GN Heino, The Netherlands
| | - Iuliia P. Chebotareva
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Michael L. Chikindas
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08901, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Alexey M. Ermakov
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
| |
Collapse
|
3
|
Gong CY, Liu G, Shi HP, Liu S, Gao XY, Zhang SJ, Liu H, Li R, Wan D. Assessment of Non-Phytate Phosphorus Requirements of Chinese Jing Tint 6 Layer Chicks from Hatch to Day 42. Animals (Basel) 2024; 14:2093. [PMID: 39061555 PMCID: PMC11273798 DOI: 10.3390/ani14142093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
We aimed to estimate the non-phytate phosphorus (NPP) requirements of Chinese Jing Tint 6 layer chicks. We randomly allocated 720 birds to five treatments with six cages of 24 birds each, feeding them a corn-soybean diet containing 0.36%, 0.41%, 0.46%, 0.51%, and 0.56% NNP. The results showed that the body weight gain (BWG), tibial length, and apparent total tract digestibility coefficients (ATTDC) of P were affected (p < 0.05) by dietary NPP level. A quadratic broken-line analysis (p < 0.05) of BWG indicated that the optimal NPP for birds aged 1-14 d was 0.411%. Similarly, 0.409% of NPP met tibial growth needs. However, 0.394% of NPP was optimal for P utilization according to the ATTDC criterion. For 15-42 d birds, 0.466% NPP, as estimated by the BWG criterion, was sufficient for optimal growth without decreasing P utilization. Using the factorial method, NPP requirements were calculated as 0.367% and 0.439%, based on the maintenance factors and BWG for 1-14 and 15-42 d birds, respectively, to maintain normal growth. Combining the non-linear model with the factorial method, this study recommends dietary NPP levels of 0.367% and 0.439% for 1-14 and 15-42 d birds, respectively, to optimize P utilization without affecting performance.
Collapse
Affiliation(s)
- Cheng-Yan Gong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.-Y.G.); (S.L.); (X.-Y.G.); (S.-J.Z.); (H.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China;
| | - Guang Liu
- Hubei Hongshan Laboratory, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Hong-Peng Shi
- University of Chinese Academy of Sciences, Beijing 101408, China;
| | - Shuan Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.-Y.G.); (S.L.); (X.-Y.G.); (S.-J.Z.); (H.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China;
| | - Xin-Yi Gao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.-Y.G.); (S.L.); (X.-Y.G.); (S.-J.Z.); (H.L.)
| | - Shou-Jun Zhang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.-Y.G.); (S.L.); (X.-Y.G.); (S.-J.Z.); (H.L.)
| | - Hao Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.-Y.G.); (S.L.); (X.-Y.G.); (S.-J.Z.); (H.L.)
| | - Rui Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.-Y.G.); (S.L.); (X.-Y.G.); (S.-J.Z.); (H.L.)
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (C.-Y.G.); (S.L.); (X.-Y.G.); (S.-J.Z.); (H.L.)
| |
Collapse
|
4
|
Kairmi SH, Abdelaziz K, Spahany H, Astill J, Trott D, Wang B, Wang A, Parkinson J, Sharif S. Intestinal microbiome profiles in broiler chickens raised without antibiotics exhibit altered microbiome dynamics relative to conventionally raised chickens. PLoS One 2024; 19:e0301110. [PMID: 38568936 PMCID: PMC10990180 DOI: 10.1371/journal.pone.0301110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
The present study was undertaken to profile and compare the cecal microbial communities in conventionally (CONV) grown and raised without antibiotics (RWA) broiler chickens. Three hundred chickens were collected from five CONV and five RWA chicken farms on days 10, 24, and 35 of age. Microbial genomic DNA was extracted from cecal contents, and the V4-V5 hypervariable regions of the 16S rRNA gene were amplified and sequenced. Analysis of 16S rRNA sequence data indicated significant differences in the cecal microbial diversity and composition between CONV and RWA chickens on days 10, 24, and 35 days of age. On days 10 and 24, CONV chickens had higher richness and diversity of the cecal microbiome relative to RWA chickens. However, on day 35, this pattern reversed such that RWA chickens had higher richness and diversity of the cecal microbiome than the CONV groups. On days 10 and 24, the microbiomes of both CONV and RWA chickens were dominated by members of the phylum Firmicutes. On day 35, while Firmicutes remained dominant in the RWA chickens, the microbiome of CONV chickens exhibited am abundance of Bacteroidetes. The cecal microbiome of CONV chickens was enriched with the genus Faecalibacterium, Pseudoflavonifractor, unclassified Clostridium_IV, Bacteroides, Alistipes, and Butyricimonas, whereas the cecal microbiome of RWA chickens was enriched with genus Anaerofilum, Butyricicoccu, Clostridium_XlVb and unclassified Lachnospiraceae. Overall, the cecal microbiome richness, diversity, and composition were greatly influenced by the management program applied in these farms. These findings provide a foundation for further research on tailoring feed formulation or developing a consortium to modify the gut microbiome composition of RWA chickens.
Collapse
Affiliation(s)
- Seyed Hossien Kairmi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Khaled Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States of America
- Clemson University School of Health Research (CUSHR), Clemson, South Carolina, United States of America
| | - Heidi Spahany
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - David Trott
- Wallenstein Feed & Supply Ltd, Wallenstein, Ontario, Canada
| | - Blake Wang
- Wallenstein Feed & Supply Ltd, Wallenstein, Ontario, Canada
| | - Alice Wang
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry & Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Madej JP, Graczyk S, Bobrek K, Bajzert J, Gaweł A. Impact of early posthatch feeding on the immune system and selected hematological, biochemical, and hormonal parameters in broiler chickens. Poult Sci 2024; 103:103366. [PMID: 38183879 PMCID: PMC10809208 DOI: 10.1016/j.psj.2023.103366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024] Open
Abstract
Under commercial conditions, chicks hatch within a 24 to 48 h window, a period known as the hatching window. Subsequently, they undergo various treatments before finally being transported to the broiler farm. These procedures may delay the chicks' access to food and water, sometimes receiving them as late as 72 h after hatching. Previous studies have indicated that fasting during this initial period is detrimental, leading to impaired body growth, compromised immune system response, and hindered muscle development. The objective of this study was to assess the impact of early posthatch feeding on immune system organs and selected hematological, biochemical, and hormonal parameters. The experiment utilized Ross 308 broiler eggs incubated under typical commercial hatchery conditions. The experimental group's eggs were hatched in HatchCare hatchers (HC) with immediate access to feed and water, while the control group's eggs were hatched under standard conditions (ST). Thirty chickens from each group were assessed on the 1st (D1), 7th (D7), 21st (D21), and 35th (D35) day after hatching. On D1, the HC group exhibited lower hemoglobin, hematocrit, and total serum protein values, suggesting that early access to water prevents initial dehydration in newborn chicks. Conversely, the ST group showed a stress reaction on D1 due to feed deprivation, leading to an almost 2-fold higher serum corticosterone concentration compared to the HC group. However, this increase did not result in a significant change in the heterophil/lymphocyte ratio. Furthermore, the HC group displayed an increase in triglyceride concentration and a decrease in HDL concentration on D1. On D7, the HC group exhibited an increased relative weight of the bursa and a higher CD4+ cell number in the cecal tonsil (CT), indicating a more rapid development of these organs resulting from early stimulation of the gastrointestinal tract. However, early feeding did not influence the numbers of Bu-1+, CD4+, and CD8+ cells or the germinal center (GC) areas in the spleen. In conclusion, early feeding contributes to the welfare of newborn chicks by reducing dehydration and stress levels and stimulating the development of gut-associated lymphoid tissue.
Collapse
Affiliation(s)
- Jan P Madej
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Stanisław Graczyk
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Kamila Bobrek
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, Wrocław 50-366, Poland
| | - Joanna Bajzert
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Andrzej Gaweł
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, Wrocław 50-366, Poland.
| |
Collapse
|
6
|
Zhang J, Geng S, Zhu Y, Li L, Zhao L, Ma Q, Huang S. Effects of dietary methionine supplementation on the growth performance, immune responses, antioxidant capacity, and subsequent development of layer chicks. Poult Sci 2024; 103:103382. [PMID: 38176373 PMCID: PMC10792981 DOI: 10.1016/j.psj.2023.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Deficiencies or excesses of dietary amino acids, and especially of methionine (Met), in laying hens can lead to abnormal protein anabolism and oxidative stress, which affect methylation and cause cellular dysfunction. This study investigated the effects of dietary methionine (Met) levels on growth performance, metabolism, immune response, antioxidant capacity, and the subsequent development of laying hens. A total of 384 healthy 1-day-old Hyline Grey chicks of similar body weight were randomly allocated to be fed diets containing 0.31%, 0.38%, 0.43% (control group), or 0.54% Met for 6 wk, with 6 replicates of 16 chicks in each. The growth performance of the chicks was then followed until 20 wk old. The results showed dietary supplementation with 0.43% or 0.54% Met significantly increased their mean daily body weight gain, final weight, and Met intake. However, the feed:gain (F/G) decreased linearly with increasing Met supplementation, from 0.31 to 0.54% Met. Met supplementation increased the serum albumin, IgM, and total glutathione concentrations of 14-day-old chicks. In contrast, the serum alkaline phosphatase activity and hydroxyl radical concentration tended to decrease with increasing Met supplementation. In addition, the highest serum concentrations of IL-10, T-SOD, and GSH-PX were in the 0.54% Met-fed group. At 42 d of age, the serum ALB, IL-10, T-SOD, GSH-PX, T-AOC, and T-GSH were correlated with dietary Met levels. Finally, Met supplementation reduced the serum concentrations of ALP, IL-1β, IgA, IgG, hydrogen peroxide, and hydroxyl radicals. Thus, the inclusion of 0.43% or 0.54% Met in the diet helps chicks achieve superior performance during the brooding period and subsequently. In conclusion, Met doses of 0.43 to 0.54% could enhance the growth performance, protein utilization efficiency, antioxidant capacity, and immune responses of layer chicks, and to promote more desirable subsequent development during the brooding period.
Collapse
Affiliation(s)
- Jiatu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing 101206, China
| | - Shunju Geng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yahao Zhu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lan Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing 101206, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing 101206, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing 101206, China.
| |
Collapse
|
7
|
Gómez-Verduzco G, Arce-Menocal J, López-Coello C, Avila-González E, Márquez-Mota CC, Polo J, Rangel L. Feeding spray-dried plasma to broilers early in life improved their intestinal development, immunity and performance irrespective of mycotoxins in feed. Front Vet Sci 2024; 10:1321351. [PMID: 38283370 PMCID: PMC10812105 DOI: 10.3389/fvets.2023.1321351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Fungi that produce mycotoxins can grow on certain food products, such as grains and feed, and can cause a variety of health issues if consumed by animals, including chickens. The use of spray-dried plasma (SDP) is one strategy for combating the health problems caused by mycotoxins. Materials and methods In the present study, Ross 308 chickens (n = 960) were divided into four treatment groups. T1 group was given a control diet (corn-soybean meal), T2 group was given a control diet +2% SDP, T3 group was given a control diet +2% SDP + mixture mycotoxins and T4 group was givena control diet + mycotoxin mixture. Results The presence of SDP resulted in weight gain and decreased feed efficiency, whereas mycotoxins resulted in weight loss and increased feed efficiency. SDP increased the thymus' relative weight. The presence of mycotoxins increased the heterophile/lymphocyte ratio. The presence of mycotoxins reduced the production of IL-2 and macrophage inflammatory protein-3 Alpha (MIP-3a), whereas the presence of SDP increased the production of macrophage colony-stimulating Factor (M-CSF). SDP resulted in higher IgA concentrations in the intestinal and tracheal washes than mycotoxin. Finally, adding SDP to broiler diets boosts weight gain, feed efficiency, and immune system development. Discussion Our results provide information supporting that SDP is a promising tool for improving poultry immunity and performance.
Collapse
Affiliation(s)
- Gabriela Gómez-Verduzco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Arce-Menocal
- Departamento de Producción avícola, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Carlos López-Coello
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ernesto Avila-González
- Centro de Enseñanza, Investigación y Extensión en Producción Avícola CEIEPAv, Tláhuac, Mexico
| | - Claudia C. Márquez-Mota
- Departamento de Nutrición Animal y Bioquímica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | | |
Collapse
|
8
|
Sharma S, Kulkarni RR, Sharif S, Hassan H, Alizadeh M, Pratt S, Abdelaziz K. In ovo feeding of probiotic lactobacilli differentially alters expression of genes involved in the development and immunological maturation of bursa of Fabricius in pre-hatched chicks. Poult Sci 2024; 103:103237. [PMID: 38011819 PMCID: PMC10801656 DOI: 10.1016/j.psj.2023.103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Compelling evidence indicates that immunological maturation of the gut-associated lymphoid tissues, including the bursa of Fabricius, is dependent upon antigenic stimulation post-hatch. In view of these data, the present study investigated the impact of exposing the immune system of chick embryos to antigenic stimuli, via in ovo delivery of poultry-specific lactobacilli, on the expression of genes associated with early bursal development and maturation. Broiler line embryonated eggs were inoculated with 106 and 107 colony-forming units (CFUs) of an individual or a mixture of Lactobacillus species, including L. crispatus (C25), L. animalis (P38), L. acidophilus (P42), and L. reuteri (P43), at embryonic day 18 (ED18). The bursa of Fabricius was collected from pre-hatched chicks (ED20) to measure the expression levels of various immune system genes. The results revealed that L. acidophilus and the mixture of Lactobacillus species at the dose of 106 CFU consistently elicited higher expression of genes responsible for B cell development, differentiation, and survival (B cell activating factor (BAFF), BAFF-receptor (BAFF-R)), and antibody production (interleukin (IL)-10) and diversification (TGF-β). Similar expression patterns were also noted in T helper (Th) cell-associated cytokine genes, including Th1-type cytokines (interferon (IFN)-γ and IL-12p40), Th2-type cytokines (IL-4 and IL-13) and Th17 cytokine (IL-17). Overall, these results suggest that the supplementation of poultry-specific lactobacilli to chick embryos might be beneficial for accelerating the development and immunological maturation of the bursa of Fabricius. However, further studies are required to determine if the changes in gene expression are associated with the developmental trajectory and phenotypes of bursal cells.
Collapse
Affiliation(s)
- Shreeya Sharma
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Hosni Hassan
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Scott Pratt
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA
| | - Khaled Abdelaziz
- Department of Animal and Veterinary Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
9
|
Medeot DB, Nilson A, Miazzo RD, Grosso V, Ferrari W, Jofré E, Soltermann A, Peralta MF. Stevia as a natural additive on gut health and cecal microbiota in broilers. Vet Anim Sci 2023; 22:100322. [PMID: 38045012 PMCID: PMC10692954 DOI: 10.1016/j.vas.2023.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Stevia mash (SM), leaves of Stevia rebaudiana Bertoni plant, is an additive used in poultry that enhances growth and health. Objective: to determine the effect of 1 % SM on productive parameters, gut health, and the cecal microbiome in broilers between the first 15 and 21 days old. One hundred sixty male, 1-day-old broilers (48.5 ± 2.5 g) were divided into Control (C) without SM and Treated (T) with 1 % SM on diet, during 15/21 days. Each subgroup had eight broilers/five repetitions/treatment. At day 15 or 21, all broilers were dissected, Fabricius Bursa and Gut removed and processed for histomorphometry, followed by Villi Height/Crypt Deep (VH/CD) ratio. Conversion Index (CI) was determined. The V3-V4 region of 16S rRNA gene was amplified from DNA obtained from pooled cecal contents and sequenced on Illumina Miseq PE 2 × 250 platform. Sequence processing and taxonomic assignments were performed using the SHAMAN pipeline. Both T groups have better VH/CD Ratios than C groups (p ≤ 0.05). In guts, increased plasmatic and goblet cells number and thicker mucus layer were found in T15 and T21. All groups received SM showed early immunological maturity in Fabricius Bursa. IC was similar between all treatments. Faecalibacterium, Ruminococcus torques group, and Bacteroides were the major genera modulated by SM addition. At 15 and 21 days old, SM exerts a impact on diversity and evenness of the cecal microbiome. Conclusion: SM (1 %) produced early immunologic maturity on Fabricius Bursa, increased intestinal functionality, and modified the microbiota, increasing beneficial microbial genera and microbial diversity.
Collapse
Affiliation(s)
- Daniela B. Medeot
- Laboratorio de Biología Molecular de las Interacciones Planta-Bacteria-Instituto de Biotecnología Ambiental y de Salud (INBIAS)- Universidad Nacional de Rio Cuarto (UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNRC: ruta 36 Km 601-5800-Rio Cuarto, Córdoba, Argentina
| | - Armando Nilson
- Unidad de Investigación Aviar, Producción Avícola, Facultad de Agronomía y Veterinaria-UNRC, Argentina
| | - Raul D. Miazzo
- Unidad de Investigación Aviar, Producción Avícola, Facultad de Agronomía y Veterinaria-UNRC, Argentina
| | - Viviana Grosso
- Laboratorio de Vinculación Tecnológica, Facultad de Ciencias Exactas, Físico-Químicas y Naturales-UNRC, Argentina
| | - Walter Ferrari
- Laboratorio de Biología Molecular de las Interacciones Planta-Bacteria-Instituto de Biotecnología Ambiental y de Salud (INBIAS)- Universidad Nacional de Rio Cuarto (UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNRC: ruta 36 Km 601-5800-Rio Cuarto, Córdoba, Argentina
| | - Edgardo Jofré
- Laboratorio de Biología Molecular de las Interacciones Planta-Bacteria-Instituto de Biotecnología Ambiental y de Salud (INBIAS)- Universidad Nacional de Rio Cuarto (UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNRC: ruta 36 Km 601-5800-Rio Cuarto, Córdoba, Argentina
| | - Arnaldo Soltermann
- Laboratorio de Vinculación Tecnológica, Facultad de Ciencias Exactas, Físico-Químicas y Naturales-UNRC, Argentina
| | - María Fernanda Peralta
- Unidad de Investigación Aviar, Producción Avícola, Facultad de Agronomía y Veterinaria-UNRC, Argentina
| |
Collapse
|
10
|
Popov IV, Einhardt Manzke N, Sost MM, Verhoeven J, Verbruggen S, Chebotareva IP, Ermakov AM, Venema K. Modulation of Swine Gut Microbiota by Phytogenic Blends and High Concentrations of Casein in a Validated Swine Large Intestinal In Vitro Model. Vet Sci 2023; 10:677. [PMID: 38133228 PMCID: PMC10748322 DOI: 10.3390/vetsci10120677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Phytogenic feed additives are gaining popularity in livestock as a replacement for antibiotic growth promotors. Some phytogenic blends (PB) positively affect the production performance, inhibit pathogens within the gut microbiota, and improve the overall health of farm animals. In this study, a swine large intestine in vitro model was used to evaluate the effect of two PBs, alone or in combination with casein, on swine gut microbiota. As a result, the combination of casein with PB1 had the most beneficial effects on swine gut microbiota, as it increased the relative abundance of some commensal bacteria and two genera (Lactobacillus and Oscillospiraceae UCG-002), which are associated with greater production performance in pigs. At the same time, supplementation with PBs did not lead to an increase in opportunistic pathogens, indicating their safety for pigs. Both PBs showed fewer changes in swine gut microbiota compared to interventions with added casein. In contrast, casein supplementation significantly increased beta diversity and the relative abundance of commensal as well as potentially beneficial bacteria. In conclusion, the combination of casein with PBs, in particular PB1, had the most beneficial effects among the studied supplements in vitro, with respect to microbiota modulation and metabolite production, although this data should be proven in further in vivo studies.
Collapse
Affiliation(s)
- Igor V. Popov
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia (A.M.E.)
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340 Sochi, Russia
| | | | - Mônica Maurer Sost
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
| | - Jessica Verhoeven
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
| | - Sanne Verbruggen
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
| | - Iuliia P. Chebotareva
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia (A.M.E.)
- Division of Nanobiomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340 Sochi, Russia
| | - Alexey M. Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia (A.M.E.)
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
| |
Collapse
|
11
|
Abdelghani E, Fathi MA, Li Z, Dai P, Li Y, Li C. In ovo injection of soy isoflavones on hatching performance and intestinal development of newly hatched chicks. J Anim Physiol Anim Nutr (Berl) 2023; 107:1381-1391. [PMID: 37391896 DOI: 10.1111/jpn.13850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/02/2023]
Abstract
This study aimed to evaluate the effects of in ovo injection of soy isoflavones (ISF) on hatchability, body weight, antioxidant status and intestinal development of newly hatched broiler chicks. One hundred and eighty fertile eggs were divided as follows: the control group, 3 mg/egg ISF (low dose) and 6 mg/egg ISF (high dose) on the 18th day of incubation. The results demonstrated that in ovo inclusion of 6 mg of ISF significantly increased hatchability and hatch weight. Both doses of ISF inclusion elevated the serum glutathione peroxidase and slightly decreased malondialdehyde compared to the control group. The high dose of ISF brings higher villus height and a higher villus/crypt ratio in chicks. Moreover, the mRNA levels of tumour necrosis factor- α and interferon-gamma in the spleen were significantly decreased. The ISF treatments showed an improvement in intestinal enzyme expression levels of sucrose isomaltase and mucin 2 as well as tight junction protein (TJ) mRNA expression of claudin-1 at high doses of ISF (p < 0.05) when compared with the other groups. Furthermore, the mRNA level of IGF-1 was increased in the high doses of ISF compared to the control. Overall, these findings indicate that in ovo administration of ISF on the 18th day of incubation enhances hatchability, antioxidant status and intestinal morphometrics in hatched chicks and modulates the expression of proinflammatory cytokines, TJs and insulin-like growth factor. In addition, the sustainability of antioxidants and other positive effects of ISF may increase chick viability and growth performance.
Collapse
Affiliation(s)
- Ezaldeen Abdelghani
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Mohamed A Fathi
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Poultry Breeding Department, Animal Production Research Institute, Agricultural Research Centre, Dokki, Giza, Egypt
| | - Zhaojian Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Pengyuan Dai
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yansen Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Chunmei Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
12
|
Ciszewski A, Jarosz Ł, Marek A, Michalak K, Grądzki Z, Kaczmarek B, Rysiak A. Effect of combined in ovo administration of zinc glycine chelate (Zn-Gly) and a multistrain probiotic on the modulation of cellular and humoral immune responses in broiler chickens. Poult Sci 2023; 102:102823. [PMID: 37406438 PMCID: PMC10466233 DOI: 10.1016/j.psj.2023.102823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
The aim of the study was to determine the effect of in ovo administration of zinc glycine chelate (Zn-Gly), and a multistrain probiotic on the hatchability and selected parameters of the cellular and humoral immune response of chickens. The study was conducted on 1,400 fertilized eggs from commercial broiler breeders (Ross x Ross 708). Material for the study consisted of peripheral blood and spleens of chicks taken 12 h and 7 d after hatching. The results showed that both combined and single in ovo administration of the multistrain probiotic and zinc glycine chelate significantly reduced hatchability of chicks. The flow cytometry study showed that the highest percentage of CD4+ T cells, CD4+CD25+, and high expression of KUL01 in the serum were obtained in the group supplemented with probiotic and Zn-Gly both 12 h and 7 d after hatching. In birds supplemented with probiotic and zinc chelate, a high percentage of TCRγδ+ cells was found in serum and spleen 12 h after hatching and in serum after 7 d. The percentage of Bu-1A+ lymphocytes in serum and spleen 12 h and 7 d after hatching was the highest in the group supplemented with probiotic and Zn-Gly. The highest expression of CD79A was observed in the group supplemented only with zinc chelate. There were no significant differences in the percentage of CD4+ cells in the spleens of birds in the groups receiving the multistrain probiotic at 12 h after hatching, and after 7 d, the percentage of CD4+ T cells was lower in the experimental groups than in the control group. The percentage of CD8+ cells in the serum of birds after hatching was lower in the group supplemented with multistrain probiotic and Zn-Gly than in the control group, but reached the highest value on d 7 after hatching. The obtained results confirm the strong effect of the combined administration of a multistrain probiotic and Zn-Gly chelate on lymphocyte proliferation and stimulation of cellular immune mechanisms in birds.
Collapse
Affiliation(s)
- Artur Ciszewski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland
| | - Łukasz Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland
| | - Agnieszka Marek
- Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-950, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland.
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland
| | - Beata Kaczmarek
- Department and Clinic of Animal Internal Diseases, Sub-Department of Internal Diseases of Farm Animals and Horses, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin 20-612, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Maria Curie-Skłodowska University, Lublin 20-033, Poland
| |
Collapse
|
13
|
Marcato F, Rebel JMJ, Kar SK, Wouters IM, Schokker D, Bossers A, Harders F, van Riel JW, Wolthuis-Fillerup M, de Jong IC. Host genotype affects endotoxin release in excreta of broilers at slaughter age. Front Genet 2023; 14:1202135. [PMID: 37359374 PMCID: PMC10285083 DOI: 10.3389/fgene.2023.1202135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Host genotype, early post-hatch feeding, and pre- and probiotics are factors known to modulate the gut microbiome. However, there is a knowledge gap on the effect of both chicken genotype and these dietary strategies and their interplay on fecal microbiome composition and diversity, which, in turn, can affect the release of endotoxins in the excreta of broilers. Endotoxins are a major concern as they can be harmful to both animal and human health. The main goal of the current study was to investigate whether it was possible to modulate the fecal microbiome, thereby reducing endotoxin concentrations in the excreta of broiler chickens. An experiment was carried out with a 2 × 2 × 2 factorial arrangement including the following three factors: 1) genetic strain (fast-growing Ross 308 vs. slower growing Hubbard JA757); 2) no vs. combined use of probiotics and prebiotics in the diet and drinking water; and 3) early feeding at the hatchery vs. non-early feeding. A total of 624 Ross 308 and 624 Hubbard JA757 day-old male broiler chickens were included until d 37 and d 51 of age, respectively. Broilers (N = 26 chicks/pen) were housed in a total of 48 pens, and there were six replicate pens/treatment groups. Pooled cloacal swabs (N = 10 chickens/pen) for microbiome and endotoxin analyses were collected at a target body weight (BW) of 200 g, 1 kg, and 2.5 kg. Endotoxin concentration significantly increased with age (p = 0.01). At a target BW of 2.5 kg, Ross 308 chickens produced a considerably higher amount of endotoxins (Δ = 552.5 EU/mL) than the Hubbard JA757 chickens (p < 0.01). A significant difference in the Shannon index was observed for the interaction between the use of prebiotics and probiotics, and host genotype (p = 0.02), where Ross 308 chickens with pre-/probiotics had lower diversity than Hubbard JA757 chickens with pre-/probiotics. Early feeding did not affect both the fecal microbiome and endotoxin release. Overall, the results suggest that the chicken genetic strain may be an important factor to take into account regarding fecal endotoxin release, although this needs to be further investigated under commercial conditions.
Collapse
Affiliation(s)
- F. Marcato
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - J. M. J. Rebel
- Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - S. K. Kar
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - I. M. Wouters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - D. Schokker
- Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - A. Bossers
- Wageningen Bioveterinary Research, Lelystad, Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - F. Harders
- Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - J. W. van Riel
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - M. Wolthuis-Fillerup
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - I. C. de Jong
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
14
|
Liu J, Wu D, Leng Y, Li Y, Li N. Dietary supplementation with selenium polysaccharide from selenium-enriched Phellinus linteus improves antioxidant capacity, immunity and production performance of laying hens. J Trace Elem Med Biol 2023; 77:127140. [PMID: 36812786 DOI: 10.1016/j.jtemb.2023.127140] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Selenium (Se) plays a beneficial role in the physiological function of humans and animals. Selenium polysaccharide, improving enzyme activity and regulating immunity, is the extraction from selenium-rich plants or mushrooms. This study aimed to evaluate the effect of selenium polysaccharide from selenium-enriched Phellinus linteus on the antioxidative ability, immunity, serum biochemistry, and production performance of laying hens. METHODS Three hundred sixty adult laying hens were randomly assigned to 4 groups. The four groups were divided as follows: CK (control group), PS group (4.2 g/kg polysaccharide), Se group (0.5 Se mg/kg), and PSSe group (4.2 g/kg with 0.5 Se mg/kg, Selenium polysaccharide). RESULTS After the 8 weeks, the hens were sampled and the antioxidant ability(total antioxidant (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), malondialdehyde (MDA), and Nitric Oxide (NO)), immunity(Interleukin-2(IL-2), Immunoglobulin M(IgM), Immunoglobulin A(IgA), Immunoglobulin G(IgG) and interferon-gamma (IFN-γ) and secretory Immunoglobulin A(sIgA)), serum biochemistry(total protein, triglycerides, total cholesterol, glucose, glutamic-pyruvictransaminase (ALT), and aspartate transaminase (AST)) and production performance were assessed. Compared with the control group, T-AOC, SOD, CAT, GSH, IL-2, IgM, IgA, sIgA, IgG, IFN-γ, total protein, average laying rate, average egg weight, and final body were significantly increased in the PS, Se, and PSSe groups, however, the MDA and NO, triglyceride, cholesterol, glucose, AST, ALT, average daily feed consumption, and feed conversion ratio were significantly decreased in the PS, Se, and PSSe groups. The PSSe group in the immune index, antioxidant ability and serum biochemistry was improved the highest. CONCLUSION The result suggested that selenium polysaccharide from selenium-enriched Phellinus linteus can enhance the antioxidant ability and immunity, change serum biochemistry, providing a new method for improving the production performance of laying hens.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Sciences, Changchun Sci-Tech University, Changchun 130600 China
| | - Dan Wu
- Health Monitoring and Inspection Center of Jilin Province, Changchun 130062 China
| | - Yang Leng
- Bureau of Agriculture and Rural Affairs of Wangqing County, Yanbian 133200 China
| | - Yun Li
- College of Life Sciences, Changchun Sci-Tech University, Changchun 130600 China.
| | - Nan Li
- Changchun Academy of Agricultural Science, Changchun 130062 China.
| |
Collapse
|
15
|
Addition of a protected complex of biofactors and antioxidants to breeder hen diets confers transgenerational protection against Salmonella enterica serovar Enteritidis in progeny chicks. Poult Sci 2023; 102:102531. [PMID: 36805406 PMCID: PMC9958073 DOI: 10.1016/j.psj.2023.102531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Addition of vitamins and antioxidants has been long associated with increased immunity and are commonly used in the poultry industry; however, less is known regarding their use in broiler breeder hens. The objective of this study was to determine if feeding a complex of protected biofactors and antioxidants composed of vitamins and fermentation extracts to broiler breeder hens conferred resistance against Salmonella enterica serovar Enteritidis (S. Enteritidis) in the progeny chicks. Three-day-old chicks from control- and supplement-fed hens were challenged with S. Enteritidis and necropsied 4- and 11-days postchallenge (dpc) to determine if there were differences in invasion and colonization. Serum and jejunum were evaluated for various cytokine and chemokine production. Fewer (P = 0.002) chicks from supplement-fed hens had detectable S. Enteritidis in the ceca (32.6%) compared to chicks from control-fed hens (64%). By 11 dpc, significantly (P < 0.001) fewer chicks from supplement-fed hens were positive for S. Enteritidis (liver [36%]; ceca [16%]) compared to chicks from the control hens (liver [76%]; ceca [76%]). The recoverable S. Enteritidis in the cecal content was also lower (P = 0.01) at 11 dpc. In additional to the differences in invasion and colonization, cytokine and chemokine production were distinct between the 2 groups of chicks. Chicks from supplement-fed hens had increased production of IL-16, IL-6, MIP-3α, and RANTES in the jejunum while IL-16 and MIP-1β were higher in the serum of chicks from the control-fed hens. By 11 dpc, production of IFN-γ was decreased in the jejunum of chicks from supplement-fed hens. Collectively, these data demonstrate adding a protected complex of biofactors and antioxidants to the diet of broiler breeder hens offers a measure of transgenerational protection to the progeny against S. Enteritidis infection and reduces colonization that is mediated, in part, by a robust and distinct cytokine and chemokine response locally at the intestine and systemically in the blood.
Collapse
|
16
|
Son J, Lee WD, Kim H, Hong EC, Kim HJ, Yun YS, Kang HK. A comparative study on feeding timing and additive types of broilers in a high-temperature environment. J Anim Sci 2023; 101:skad290. [PMID: 37703424 PMCID: PMC10541855 DOI: 10.1093/jas/skad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023] Open
Abstract
Antioxidants such as vitamin C (VC) and green tea extract (GTE) have been reported to have various antioxidant functions and are used as one of the nutritional approaches to alleviate heat stress (HS) in chickens. However, studies on the feeding timing that can produce optimal effects have not been reported. In this study, the stress-relieving effect of VC and GTE addition timing was investigated in high-temperature broiler chickens. A total of 880 1-d-old male chickens were used, and the treatments were as follows: no feed additives provided, CON; VC 250 mg/kg added from 1 d, VC1; GTE 600 mg/kg added from 1 d, GTE1; VC 250 mg/kg added from 22 d, VC22; GTE 600 mg/kg added from 22 d, GTE22. The HS environment was provided for 2 wk from the 22 d and was set at 33 ± 1 °C, 55 ± 10% for 24 h. Feed and water were provided ad libitum. Broiler production was similar in all treatments. In chicken meat quality, the addition of VC and GTE had an effect on meat color and pH (P < 0.05). In particular, GTE had a positive effect on the antioxidant capacity and quality preservation of breast meat (P < 0.05). In blood characteristics, GTE1 significantly lowered the level of total cholesterol, and VC1 affected AST and IgM (P < 0.05). Interestingly, the VC1 group had a positive effect on the maintenance and development of intestinal morphology, a lower rectal temperature, and showed to relieve stress. In conclusion, the addition of VC and GTE has been shown to alleviate the high-temperature stress of broilers, and in the case of VC in particular, feeding from 1 d appeared to alleviate stress more effectively. This study suggests that it is important to determine the appropriate timing of addition of functional substances in order to effectively reduce various stresses that occur in livestock rearing.
Collapse
Affiliation(s)
- Jiseon Son
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Woo-Do Lee
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Hyunsoo Kim
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Eui-Chul Hong
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Hee-Jin Kim
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Yeon-Seo Yun
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| | - Hwan-Ku Kang
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea
| |
Collapse
|
17
|
Taha-Abdelaziz K, Singh M, Sharif S, Sharma S, Kulkarni RR, Alizadeh M, Yitbarek A, Helmy YA. Intervention Strategies to Control Campylobacter at Different Stages of the Food Chain. Microorganisms 2023; 11:113. [PMID: 36677405 PMCID: PMC9866650 DOI: 10.3390/microorganisms11010113] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Campylobacter is one of the most common bacterial pathogens of food safety concern. Campylobacter jejuni infects chickens by 2-3 weeks of age and colonized chickens carry a high C. jejuni load in their gut without developing clinical disease. Contamination of meat products by gut contents is difficult to prevent because of the high numbers of C. jejuni in the gut, and the large percentage of birds infected. Therefore, effective intervention strategies to limit human infections of C. jejuni should prioritize the control of pathogen transmission along the food supply chain. To this end, there have been ongoing efforts to develop innovative ways to control foodborne pathogens in poultry to meet the growing customers' demand for poultry meat that is free of foodborne pathogens. In this review, we discuss various approaches that are being undertaken to reduce Campylobacter load in live chickens (pre-harvest) and in carcasses (post-harvest). We also provide some insights into optimization of these approaches, which could potentially help improve the pre- and post-harvest practices for better control of Campylobacter.
Collapse
Affiliation(s)
- Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mankerat Singh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shreeya Sharma
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexander Yitbarek
- Department of Animal Science, McGill University, Montreal, QC H9X 3V9, Canada
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
18
|
Delay of Feed Post-Hatch Causes Changes in Expression of Immune-Related Genes and Their Correlation with Components of Gut Microbiota, but Does Not Affect Protein Expression. Animals (Basel) 2022; 12:ani12101316. [PMID: 35625162 PMCID: PMC9138158 DOI: 10.3390/ani12101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/07/2022] Open
Abstract
Simple Summary Newly hatched chicks do not have access to feed until between 48 and 72 h post-hatch based on standard practices in the poultry industry. How these practices affect the chicken’s immune system in not well understood. In this study, we investigated the effect of a delay in access to feed for 48 h in newly hatched chicks on the expression of various immune-related genes in the ileum and analyzed the correlation between these genes and the components of the ileal microbiota. The results suggest that several immune-related genes were affected by delayed access to feed and the age of the birds; however, these changes were transient, occurring mostly within 48 h of the return of birds to feed. In the correlation analysis between gene expression and components of the ileal microbiota, an increased number of significant correlations between immune-related genes and the genera Clostridium, Enterococcus, and the species Clostridium perfringens suggests a perturbation of the immune response and ileal microbiota in response to lack of feed immediately post-hatch. These results point out the complexity of the interplay between microbiota and the immune response and will help further explain the negative effects of delay in access to feed on production parameters in chickens. Abstract Because the delay of feed post-hatch (PH) has been associated with negative growth parameters, the aim of the current study was to determine the effect of delayed access to feed in broiler chicks on the expression of immune-related genes and select proteins. In addition, an analysis of the correlation between gene expression and components of the gut microbiota was carried out. Ross 708 eggs were incubated and hatched, and hatchlings were divided into FED and NONFED groups. The NONFED birds did not have access to feed until 48 h PH, while FED birds were given feed immediately PH. The ileum from both groups (n = 6 per group) was sampled at embryonic day 19 (e19) and day 0 (wet chicks), and 4, 24, 48, 72, 96, 144, 192, 240, 288, and 336 h PH. Quantitative PCR (qPCR) was carried out to measure the expression of avian interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-18, transforming growth factor (TGF-β), toll-like receptor (TLR)2, TLR4, interferon (IFN)-β, IFN-γ, and avian β-defensins (AvBD) I, 2, 3, 5, 6, 7, 8, 9, and 10. Protein expression of IL-10, IL-1β, IL-8, and IL-18 were measured using ELISAs. A correlation analysis was carried out to determine whether any significant association existed between immune gene expression and components of the ileal luminal and mucosal microbiota. Expression of several immune-related genes (TGF-β, TLR4, IFN-γ, IL-1β, IL-4, IL-6, and AvBDs 8 and 9) were significantly affected by the interaction between feed status and age. The effects were transient and occurred between 48 and 96 h PH. The rest of the genes and four proteins were significantly affected by age, with a decrease in expression noted over time. Correlation analysis indicated that stronger correlations exist among gene expression and microbiota in NONFED birds. The data presented here indicates that delay in feed PH can affect genes encoding components of the immune system. Additionally, the correlation analysis between immune gene expression and microbiota components indicates that a delay in feed has a significant effect on the interaction between the immune system and the microbiota.
Collapse
|
19
|
Alizadeh M, Astill J, Alqazlan N, Shojadoost B, Taha-Abdelaziz K, Bavananthasivam J, Doost JS, Sedeghiisfahani N, Sharif S. In ovo co-administration of vitamins (A and D) and probiotic lactobacilli modulates immune responses in broiler chickens. Poult Sci 2022; 101:101717. [PMID: 35172231 PMCID: PMC8851267 DOI: 10.1016/j.psj.2022.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022] Open
Abstract
There is evidence that probiotic lactobacilli, in addition to essential vitamins, such as vitamin A and D, have immunomodulatory properties that enhance immune response of neonatal chickens against infections. The present study evaluated the effects of in ovo administration of retinoic acid (RA), 25-Hydroxyvitamin D3 (VitD), and a lactobacilli cocktail on cytokine gene expression, antibody responses and spleen cell subsets in chickens. RA (90 µmol/egg) and VitD (0.6 μg/egg) were administered in ovo, either alone or in combination with lactobacilli (107 CFU/egg), at embryonic d 18. On d 5 and 10 posthatch, gene expression and cellular composition were analyzed in the bursa of Fabricius and spleen. Birds were immunized on d 14 and 21 posthatch with 2 T-dependent antigens, sheep red blood cells (SRBC) and keyhole limpet hemocyanin (KLH), to assess their antibody responses. Sera were collected from the immunized chickens on d 14, 21, 28, and 35 posthatch. The results demonstrated that lactobacilli treatment increased the number of monocyte/macrophages (KUL01+) and CD3+CD4+ T cells in the spleen, and enhanced serum anti-KLH IgM and IgY on d 14 postprimary immunization (P < 0.05). RA significantly increased serum IgY and IgM titers to KLH and enhanced the expression of interferon (IFN)-α, interleukin (IL)-1β, IL-6, IL-8, IL-12, IL-13, and transforming growth factor-β (TGF-β) in the bursa of Fabricius (P < 0.05). The percentage of CD3+CD8+ T cells, and monocyte/macrophages (KUL01+) was elevated in the spleen as well (P < 0.05). These findings reveal that prehatch administration of RA improves immunocompetency of neonatal chickens by increasing the production of cytokines that regulate innate immunity and through enhancing antibody-mediated response against T-dependent antigens.
Collapse
Affiliation(s)
- Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Artemis Technologies Inc., Guelph, Ontario, Canada
| | - Nadiyah Alqazlan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Khaled Taha-Abdelaziz
- Animal and Veterinary Sciences Department, Clemson University, Clemson, SC, 29634, USA
| | | | - Janan Shoja Doost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Negin Sedeghiisfahani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
20
|
Andrieux C, Petit A, Collin A, Houssier M, Métayer-Coustard S, Panserat S, Pitel F, Coustham V. Early Phenotype Programming in Birds by Temperature and Nutrition: A Mini-Review. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.755842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early development is a critical period during which environmental influences can have a significant impact on the health, welfare, robustness and performance of livestock. In oviparous vertebrates, such as birds, embryonic development takes place entirely in the egg. This allows the effects of environmental cues to be studied directly on the developing embryo. Interestingly, beneficial effects have been identified in several studies, leading to innovative procedures to improve the phenotype of the animals in the long term. In this review, we discuss the effects of early temperature and dietary programming strategies that both show promising results, as well as their potential transgenerational effects. The timing, duration and intensity of these procedures are critical to ensure that they produce beneficial effects without affecting animal survival or final product quality. For example, cyclic increases in egg incubation temperature have been shown to improve temperature tolerance and promote muscular growth in chickens or fatty liver production in mule ducks. In ovo feeding has also been successfully used to enhance digestive tract maturation, optimize chick development and growth, and thus obtain higher quality chicks. In addition, changes in the nutritional availability of methyl donors, for example, was shown to influence offspring phenotype. The molecular mechanisms behind early phenotype programming are still under investigation and are probably epigenetic in nature as shown by recent work in chickens.
Collapse
|
21
|
Shehata AM, Paswan VK, Attia YA, Abdel-Moneim AME, Abougabal MS, Sharaf M, Elmazoudy R, Alghafari WT, Osman MA, Farag MR, Alagawany M. Managing Gut Microbiota through In Ovo Nutrition Influences Early-Life Programming in Broiler Chickens. Animals (Basel) 2021; 11:3491. [PMID: 34944266 PMCID: PMC8698130 DOI: 10.3390/ani11123491] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
The chicken gut is the habitat to trillions of microorganisms that affect physiological functions and immune status through metabolic activities and host interaction. Gut microbiota research previously focused on inflammation; however, it is now clear that these microbial communities play an essential role in maintaining normal homeostatic conditions by regulating the immune system. In addition, the microbiota helps reduce and prevent pathogen colonization of the gut via the mechanism of competitive exclusion and the synthesis of bactericidal molecules. Under commercial conditions, newly hatched chicks have access to feed after 36-72 h of hatching due to the hatch window and routine hatchery practices. This delay adversely affects the potential inoculation of the healthy microbiota and impairs the development and maturation of muscle, the immune system, and the gastrointestinal tract (GIT). Modulating the gut microbiota has been proposed as a potential strategy for improving host health and productivity and avoiding undesirable effects on gut health and the immune system. Using early-life programming via in ovo stimulation with probiotics and prebiotics, it may be possible to avoid selected metabolic disorders, poor immunity, and pathogen resistance, which the broiler industry now faces due to commercial hatching and selection pressures imposed by an increasingly demanding market.
Collapse
Affiliation(s)
- Abdelrazeq M. Shehata
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India;
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
| | - Vinod K. Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Youssef A. Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdel-Moneim Eid Abdel-Moneim
- Nuclear Research Center, Biological Applications Department, Egyptian Atomic Energy Authority, Abu-Zaabal 13759, Egypt;
| | - Mohammed Sh. Abougabal
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Reda Elmazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (R.E.); (M.A.O.)
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Wejdan T. Alghafari
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed A. Osman
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (R.E.); (M.A.O.)
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
22
|
He S, Zheng G, Zhou D, Huang L, Dong J, Cheng Z. High-frequency and activation of CD4 +CD25 + T cells maintain persistent immunotolerance induced by congenital ALV-J infection. Vet Res 2021; 52:119. [PMID: 34526112 PMCID: PMC8442411 DOI: 10.1186/s13567-021-00989-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Congenital avian leukosis virus subgroup J (ALV-J) infection can induce persistent immunotolerance in chicken, however, the underlying mechanism remains unclear. Here, we demonstrate that congenital ALV-J infection induces the production of high-frequency and activated CD4+CD25+ Tregs that maintain persistent immunotolerance. A model of congenital infection by ALV-J was established in fertilized eggs, and hatched chicks showed persistent immunotolerance characterized by persistent viremia, immune organ dysplasia, severe imbalance of the ratio of CD4+/CD8+ T cells in blood and immune organs, and significant decrease in CD3+ T cells and Bu-1+ B cells in the spleen. Concurrently, the mRNA levels of IL-2, IL-10, and IFN-γ showed significant fluctuations in immune organs. Moreover, the frequency of CD4+CD25+ Tregs in blood and immune organs significantly increased, and the frequency of CD4+CD25+ Tregs was positively correlated with changes in ALV-J load in immune organs. Interestingly, CD4+CD25+ Tregs increased in the marginal zone of splenic nodules in ALV-J-infected chickens and dispersed to the germinal center. In addition, the proliferation and activation of B cells in splenic nodules was inhibited, and the number of IgM+ and IgG+ cells in the marginal zone significantly decreased. We further found that the mRNA levels of TGF- β and CTLA-4 in CD4+CD25+ Tregs of ALV-J-infected chickens significantly increased. Together, high-frequency and activated CD4+CD25+ Tregs inhibited B cells functions by expressing the inhibitory cytokine TGF-β and inhibitory surface receptor CTLA-4, thereby maintaining persistent immunotolerance in congenital ALV-J-infected chickens.
Collapse
Affiliation(s)
- Shuhai He
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an, 271018, Shandong, China.,College of Husbandry and Veterinary, Xinyang Agriculture and Forestry University, No 1, North Ring Road, Xinyang, 464000, Henan, China
| | - Gaoying Zheng
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an, 271018, Shandong, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an, 271018, Shandong, China
| | - Li Huang
- College of Husbandry and Veterinary, Xinyang Agriculture and Forestry University, No 1, North Ring Road, Xinyang, 464000, Henan, China
| | - Jianguo Dong
- College of Husbandry and Veterinary, Xinyang Agriculture and Forestry University, No 1, North Ring Road, Xinyang, 464000, Henan, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an, 271018, Shandong, China.
| |
Collapse
|
23
|
Meijerink N, de Oliveira JE, van Haarlem DA, Hosotani G, Lamot DM, Stegeman JA, Rutten VPMG, Jansen CA. Glucose Oligosaccharide and Long-Chain Glucomannan Feed Additives Induce Enhanced Activation of Intraepithelial NK Cells and Relative Abundance of Commensal Lactic Acid Bacteria in Broiler Chickens. Vet Sci 2021; 8:110. [PMID: 34204778 PMCID: PMC8231533 DOI: 10.3390/vetsci8060110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Restrictions on the use of antibiotics in the poultry industry stimulate the development of alternative nutritional solutions to maintain or improve poultry health. This requires more insight in the modulatory effects of feed additives on the immune system and microbiota composition. Compounds known to influence the innate immune system and microbiota composition were selected and screened in vitro, in ovo, and in vivo. Among all compounds, 57 enhanced NK cell activation, 56 increased phagocytosis, and 22 increased NO production of the macrophage cell line HD11 in vitro. Based on these results, availability and regulatory status, six compounds were selected for further analysis. None of these compounds showed negative effects on growth, hatchability, and feed conversion in in ovo and in vivo studies. Based on the most interesting numerical results and highest future potential feasibility, two compounds were analyzed further. Administration of glucose oligosaccharide and long-chain glucomannan in vivo both enhanced activation of intraepithelial NK cells and led to increased relative abundance of lactic acid bacteria (LAB) amongst ileum and ceca microbiota after seven days of supplementation. Positive correlations between NK cell subsets and activation, and relative abundance of LAB suggest the involvement of microbiota in the modulation of the function of intraepithelial NK cells. This study identifies glucose oligosaccharide and long-chain glucomannan supplementation as effective nutritional strategies to modulate the intestinal microbiota composition and strengthen the intraepithelial innate immune system.
Collapse
Affiliation(s)
- Nathalie Meijerink
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| | | | - Daphne A. van Haarlem
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| | - Guilherme Hosotani
- Cargill R&D Center Europe, B-1800 Vilvoorde, Belgium; (J.E.d.O.); (G.H.)
| | - David M. Lamot
- Cargill Animal Nutrition and Health Innovation Center, 5334 LD Velddriel, The Netherlands;
| | - J. Arjan Stegeman
- Department Population Health Sciences, Division Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Victor P. M. G. Rutten
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Christine A. Jansen
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| |
Collapse
|
24
|
Hofmann T, Schmucker S, Grashorn M, Stefanski V. Short- and long-term consequences of stocking density during rearing on the immune system and welfare of laying hens. Poult Sci 2021; 100:101243. [PMID: 34175797 PMCID: PMC8253997 DOI: 10.1016/j.psj.2021.101243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 11/22/2022] Open
Abstract
Already during early life, chickens need to cope with chronic stressors that can impair their health and welfare, with stocking density being one of the most influential factors. Nevertheless, there is a gap in research on the influence of stocking density on laying hens during rearing and in the subsequent laying period. This study therefore investigated how stocking density during rearing affects the immune system and welfare of pullets, and whether effects are persistent later in life. Pullets were reared at either low (13 birds/m2) or high (23 birds/m2) stocking densities but in identical group sizes from wk 7 to 17. Afterward, hens were kept at the same stocking density (2.4 birds/m2) until wk 28. Blood and tissue samples (spleen and cecal tonsils) were collected at the end of the rearing period and in the laying period. The parameters evaluated encompassed number and distribution of leukocytes and lymphocyte subsets in blood and lymphatic tissue, lymphocyte functionality, plasma corticosterone concentrations as well as behavior and physical appearance of hens. At the end of rearing, pullets kept under high stocking density had lower numbers of T lymphocytes, especially γδ T cells in blood, spleen, and cecal tonsils and displayed a higher heterophil to lymphocyte ratio. These effects are mostly persistent during the laying period, although stocking density was identical at this time. Furthermore, birds from the high stocking density group showed less active behavior, more pecking behavior and worse physical appearance throughout both examination periods. In conclusion, stocking density during rearing affects pullets' immune system and behavior not only in the rearing, but also subsequently in the laying period, indicating a strong correlation between health and welfare during rearing and the laying period.
Collapse
Affiliation(s)
- Tanja Hofmann
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany.
| | - Sonja Schmucker
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Michael Grashorn
- Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Volker Stefanski
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| |
Collapse
|
25
|
Alizadeh M, Bavananthasivam J, Shojadoost B, Astill J, Taha-Abdelaziz K, Alqazlan N, Boodhoo N, Shoja Doost J, Sharif S. In Ovo and Oral Administration of Probiotic Lactobacilli Modulate Cell- and Antibody-Mediated Immune Responses in Newly Hatched Chicks. Front Immunol 2021; 12:664387. [PMID: 33912191 PMCID: PMC8072127 DOI: 10.3389/fimmu.2021.664387] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
There is some evidence that lactobacilli can strengthen the immune system of chickens. This study evaluated the effects of in ovo and oral administration of a lactobacilli cocktail on cytokine gene expression, antibody-mediated immune responses, and spleen cellularity in chickens. Lactobacilli were administered either in ovo at embryonic day 18, orally at days 1, 7, 14, 21, and 28 post-hatches, or a combination of both in ovo and post-hatch inoculation. On day 5 and 10 post-hatch, spleen and bursa of Fabricius were collected for gene expression and cell composition analysis. On days 14 and 21 post-hatch, birds were immunized with sheep red blood cells (SRBC) and keyhole limpet hemocyanin (KLH), and sera were collected on days 7, 14, and 21 post-primary immunization. Birds that received lactobacilli (107 CFU) via in ovo followed by weekly oral administration showed a greater immune response by enhancing antibody responses, increasing the percentage of CD4+ and CD4+CD25+ T cells in the spleen and upregulating the expression of interferon (IFN)-α, IFN-β, interleukin (IL)-8, IL-13, and IL-18 in the spleen and expression of IFN-γ, IL-2, IL-6, IL-8, IL-12, and IL-18 in the bursa. These findings suggest that pre-and post-hatch administration of lactobacilli can modulate the immune response in newly hatched chickens.
Collapse
Affiliation(s)
- Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jegarubee Bavananthasivam
- Department of Pathology and Molecular Medicine & McMaster Immunology Research Centre, M. G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Quality Control Department, Artemis Technologies Inc., Guelph, ON, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Nadiyah Alqazlan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Janan Shoja Doost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
26
|
Fouad AM, El-Senousey HK, Ruan D, Wang S, Xia W, Zheng C. Tryptophan in poultry nutrition: Impacts and mechanisms of action. J Anim Physiol Anim Nutr (Berl) 2021; 105:1146-1153. [PMID: 33655568 DOI: 10.1111/jpn.13515] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 01/09/2023]
Abstract
Many studies have shown that productivity, immune system, antioxidant status, and meat and egg quality can be optimized by dietary supplementation with amino acids that are not usually added to poultry diets. Understanding the effects of these amino acids may encourage feed manufacturers and poultry producers to include them as additives. One of these amino acids is tryptophan (Trp). The importance of Trp is directly related to its role in protein anabolism and indirectly related to its metabolites such as serotonin and melatonin. Thus, Trp could affect the secretion of hormones, development of immune organs, meat and egg production, and meat and egg quality in poultry raised under controlled or stressed conditions. Therefore, this review discusses the main roles of Trp in poultry production and its mode (s) of action in order to help poultry producers decide whether they need to add Trp to poultry diets. Further areas of research are also identified to address information gaps.
Collapse
Affiliation(s)
- Ahmed Mohamed Fouad
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - HebatAllah Kasem El-Senousey
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Dong Ruan
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuang Wang
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weiguang Xia
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chuntian Zheng
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
27
|
Martínez Y, Tobar LA, Lagos HM, Parrado CA, Urquía AM, Valdivié M. Phytobiotic Effect of Anacardium occidentale L. Leaves Powder on Performance, Carcass Traits, and Intestinal Characteristics in Broilers. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2020-1362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Y Martínez
- Escuela Agrícola Panamericana Zamorano, Honduras
| | - LA Tobar
- Escuela Agrícola Panamericana Zamorano, Honduras
| | - HM Lagos
- Escuela Agrícola Panamericana Zamorano, Honduras
| | - CA Parrado
- Escuela Agrícola Panamericana Zamorano, Honduras
| | - AM Urquía
- Escuela Agrícola Panamericana Zamorano, Honduras
| | - M Valdivié
- Centro Nacional para la Producción de Animales de Laboratorio, Cuba
| |
Collapse
|
28
|
Meijerink N, van Haarlem DA, Velkers FC, Stegeman AJ, Rutten VPMG, Jansen CA. Analysis of chicken intestinal natural killer cells, a major IEL subset during embryonic and early life. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103857. [PMID: 32891731 DOI: 10.1016/j.dci.2020.103857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Restrictions on antimicrobials demand alternative strategies to improve broiler health, such as supplying feed additives which stimulate innate immune cells like natural killer (NK) cells. The main objective of this study was to characterize intestinal NK cells in broiler chickens during embryonic and early life and compare these to NK cells in spleen, blood and bone marrow. Also T-cell subsets were determined. The majority of intestinal NK cells expressed IL-2Rα rather than 20E5 and 5C7, and showed low level of activation. Within intestinal NK cells the activation marker CD107 was mostly expressed on IL-2Rα+ cells while in spleen and blood 20E5+ NK cells primarily expressed CD107. High percentages of intestinal CD8αα+, CD8αβ+ and from 2 weeks onward also gamma delta T cells were found. Taken together, we observed several intestinal NK subsets in broiler chickens. Differences in NK subsets were mostly observed between organs, rather than differences over time. Targeting these intestinal NK subsets may be a strategy to improve immune-mediated resistance in broiler chickens.
Collapse
Affiliation(s)
- Nathalie Meijerink
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Yalelaan 1, 3584, CL, the Netherlands.
| | - Daphne A van Haarlem
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Yalelaan 1, 3584, CL, the Netherlands.
| | - Francisca C Velkers
- Department Population Health Sciences, Division Farm Animal Health, Yalelaan 7, 3584, CL, the Netherlands; Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Arjan J Stegeman
- Department Population Health Sciences, Division Farm Animal Health, Yalelaan 7, 3584, CL, the Netherlands; Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Victor P M G Rutten
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Yalelaan 1, 3584, CL, the Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.
| | - Christine A Jansen
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Yalelaan 1, 3584, CL, the Netherlands.
| |
Collapse
|
29
|
Hollemans MS, Reilingh GDV, de Vries S, Parmentier HK, Lammers A. Effects of Early Nutrition and Sanitary Conditions on Oral Tolerance and Antibody Responses in Broiler Chickens. Vet Sci 2020; 7:vetsci7040148. [PMID: 33019533 PMCID: PMC7711661 DOI: 10.3390/vetsci7040148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/16/2023] Open
Abstract
Greater antigenic exposure might accelerate activation and maturation of the humoral immune system. After hatch, commercial broiler chickens can have early (EN) or delayed (DN) access to nutrition, up to 72 h after hatch. The immune system of EN versus DN broilers is likely more exposed to antigens after hatch. This might contribute to activation and maturation of the immune system, but might also influence the development of oral tolerance, thereby altering later life antibody responses. We studied antibody (IgM, IgY, IgA) responses between 21 and 42 d of age in fast-growing EN and DN broilers, kept under low (LSC) or high sanitary conditions (HSC). In a first experiment (n = 51 broilers), we tested whether early oral exposure to bovine serum albumin (BSA) affected later life antibody responses towards BSA and a novel antigen-rabbit γ-globulin (RGG), under HSC. In a second experiment, a total of 480 EN and DN broilers were housed under either LSC or HSC, and we studied antibody responses against both BSA and RGG (n = 48 broilers per treatment) and growth performance. Broilers kept under LSC versus HSC, had higher antibody levels and their growth performance was severely depressed. Interactions between feeding strategy (EN versus DN) and sanitary conditions, or main effects of feeding strategy, on natural and specific antibody levels, and growth performance were not observed. Levels of IgA were elevated in EN versus DN broilers, in experiment I and in batch 2 of experiment II, but not in the other batches of experiment II. We concluded that EN versus DN contributes minimally to the regulation of antibody responses, irrespective of antigenic pressure in the rearing environment.
Collapse
Affiliation(s)
- Maarten S. Hollemans
- Coppens Diervoeding B.V., P.O. Box 79, NL-5700AB Helmond, The Netherlands
- Adaptation Physiology Group, Wageningen University & Research, P.O. Box 338, NL-6700AH Wageningen, The Netherlands; (G.d.V.R.); (H.K.P.); (A.L.)
- Animal Nutrition Group, Wageningen University & Research, P.O. Box 338, NL-6700AH Wageningen, The Netherlands;
- Correspondence:
| | - Ger de Vries Reilingh
- Adaptation Physiology Group, Wageningen University & Research, P.O. Box 338, NL-6700AH Wageningen, The Netherlands; (G.d.V.R.); (H.K.P.); (A.L.)
| | - Sonja de Vries
- Animal Nutrition Group, Wageningen University & Research, P.O. Box 338, NL-6700AH Wageningen, The Netherlands;
| | - Henk K. Parmentier
- Adaptation Physiology Group, Wageningen University & Research, P.O. Box 338, NL-6700AH Wageningen, The Netherlands; (G.d.V.R.); (H.K.P.); (A.L.)
| | - Aart Lammers
- Adaptation Physiology Group, Wageningen University & Research, P.O. Box 338, NL-6700AH Wageningen, The Netherlands; (G.d.V.R.); (H.K.P.); (A.L.)
| |
Collapse
|
30
|
Supplemental dietary selenium enhances immune responses conferred by a vaccine against low pathogenicity avian influenza virus. Vet Immunol Immunopathol 2020; 227:110089. [PMID: 32615272 DOI: 10.1016/j.vetimm.2020.110089] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/29/2022]
Abstract
Selenium is a trace mineral that has antioxidant activities and can influence the immune system. However, antiviral effects of selenium have not been well studies in chickens. Chickens were therefore fed diets supplemented with two levels of two different sources of selenium (organic: selenium enriched yeast; SEY or inorganic: sodium selenite; SS). Chickens in the control groups did not receive supplemental dietary selenium. At 14 and 21 days of age, chickens were vaccinated with an inactivated low pathogenicity avian influenza virus (AIV, subtype H9N2) vaccine and blood samples were collected to determine the level of antibodies using hemagglutination inhibition (HI) and ELISA. At 30 days of age, chickens were also challenged with the same virus and swab samples were collected to assess the amount of virus shedding. Antibody levels, as measured by HI, increased significantly in the chickens that received higher levels of SEY at 16 days post vaccination. ELISA titers for IgM and IgY were higher in selenium supplemented chickens. Comparing to challenged control, virus shedding was lower in organic as well as inorganic selenium treated groups. Therefore, it may be concluded that supplemental dietary selenium could enhance vaccine conferred immunity thereby impacting protection against viral challenge in chickens.
Collapse
|
31
|
Liebing J, Völker I, Curland N, Wohlsein P, Baumgärtner W, Braune S, Runge M, Moss A, Rautenschlein S, Jung A, Ryll M, Raue K, Strube C, Schulz J, Heffels-Redmann U, Fischer L, Gethöffer F, Voigt U, Lierz M, Siebert U. Health status of free-ranging ring-necked pheasant chicks (Phasianus colchicus) in North-Western Germany. PLoS One 2020; 15:e0234044. [PMID: 32544211 PMCID: PMC7297342 DOI: 10.1371/journal.pone.0234044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/17/2020] [Indexed: 01/28/2023] Open
Abstract
Being a typical ground-breeding bird of the agricultural landscape in Germany, the pheasant has experienced a strong and persistent population decline with a hitherto unexplained cause. Contributing factors to the ongoing negative trend, such as the effects of pesticides, diseases, predation, increase in traffic and reduced fallow periods, are currently being controversially discussed. In the present study, 62 free-ranging pheasant chicks were caught within a two-year period in three federal states of Germany; Lower Saxony, North Rhine-Westphalia and Schleswig-Holstein. The pheasant chicks were divided into three age groups to detect differences in their development and physical constitution. In addition, pathomorphological, parasitological, virological, bacteriological and toxicological investigations were performed. The younger chicks were emaciated, while the older chicks were of moderate to good nutritional status. However, the latter age group was limited to a maximum of three chicks per hen, while the youngest age class comprised up to ten chicks. The majority of chicks suffered from dermatitis of the periocular and caudal region of the head (57-94%) of unknown origin. In addition, intestinal enteritis (100%), pneumonia (26%), hepatitis (24%), perineuritis (6%), tracheitis (24%), muscle degeneration (1%) and myositis (1%) were found. In 78% of the cases, various Mycoplasma spp. were isolated. Mycoplasma gallisepticum (MG) was not detected using an MG-specific PCR. Parasitic infections included Philopteridae (55%), Coccidia (48%), Heterakis/Ascaridia spp. (8%) and Syngamus trachea (13%). A total of 8% of the chicks were Avian metapneumovirus (AMPV) positive using RT-PCR, 16% positive for infectious bronchitis virus (IBV) using RT-PCR, and 2% positive for haemorrhagic enteritis virus (HEV) using PCR. All samples tested for avian encephalomyelitis virus (AEV), infectious bursal disease virus (IBDV) or infectious laryngotracheitis virus (ILTV) were negative. The pool samples of the ten chicks were negative for all acid, alkaline-free and derivative substances, while two out of three samples tested were positive for the herbicide glyphosate. Pheasant chick deaths may often have been triggered by poor nutritional status, probably in association with inflammatory changes in various tissues and organs as well as bacterial and parasitic pathogens. Theses impacts may have played a major role in the decline in pheasant populations.
Collapse
Affiliation(s)
- J. Liebing
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - I. Völker
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - N. Curland
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - P. Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - W. Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - S. Braune
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Hannover, Germany
| | - M. Runge
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Hannover, Germany
| | - A. Moss
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Oldenburg, Oldenburg, Germany
| | - S. Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - A. Jung
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - M. Ryll
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - K. Raue
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - C. Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - J. Schulz
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Hannover, Germany
| | - U. Heffels-Redmann
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Giessen, Germany
| | - L. Fischer
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Giessen, Germany
| | - F. Gethöffer
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - U. Voigt
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - M. Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University Giessen, Giessen, Germany
| | - U. Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
32
|
Manure-borne pathogens as an important source of water contamination: An update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. Int J Hyg Environ Health 2020; 227:113524. [DOI: 10.1016/j.ijheh.2020.113524] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/15/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
|
33
|
Taha-Abdelaziz K, Astill J, Shojadoost B, Borrelli S, A Monteiro M, Sharif S. Campylobacter-derived ligands induce cytokine and chemokine expression in chicken macrophages and cecal tonsil mononuclear cells. Vet Microbiol 2020; 246:108732. [PMID: 32605752 DOI: 10.1016/j.vetmic.2020.108732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/11/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Campylobacter jejuni colonizes the chicken gut at a high density without causing disease. However, consumption of poultry products contaminated with this bacterium causes gastroenteritis in humans. Therefore, it is critically important to reduce the Campylobacter burden in poultry products to prevent transmission to humans. Evidence indicates that enhancing intestinal mucosal immune responses is of paramount importance for preventing or reducing Campylobacter colonization in chickens. In view of this, the present study was undertaken to evaluate host responses to different C. jejuni-derived ligands, including lipooligosaccharide (LOS), outer membrane proteins (OMPs), and genomic DNA, with the ultimate goal of identifying a ligand with potent immunostimulatory capacity to serve as a mucosal vaccine adjuvant against enteric infections in chickens. The results revealed that C. jejuni pathogen-associated molecular patterns (PAMPs) varied in their ability to induce the expression of cytokines and chemokines in chicken macrophages and cecal tonsil mononuclear cells and nitric oxide production in macrophages. In addition, C. jejuni OMPs demonstrated superior activity over LOS and DNA ligands in eliciting cytokine expression associated with T helper (Th)1 and Th2 responses (interferon [IFN]-γ and interleukin [IL]-13, respectively), in addition to expression of pro-inflammatory cytokines (IL-1β), chemokine (CXCLi2), and regulatory cytokines (IL-10 and TGFβ1/4) in cecal tonsil cells. Importantly, in addition to their ability to induce innate responses, OMPs could also function as antigens to elicit C. jejuni-specific antibody responses and thereby confer dual protection against C. jejuni infection. Further studies are required to assess the protective efficacy of C. jejuni OMPs against C. jejuni infection in chickens.
Collapse
Affiliation(s)
- Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Al Shamlah, 62511, Beni-Suef, Egypt
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
34
|
Xia WG, Chen W, Abouelezz KFM, Ruan D, Wang S, Zhang YN, Fouad AM, Li KC, Huang XB, Zheng CT. The effects of dietary Se on productive and reproductive performance, tibial quality, and antioxidant capacity in laying duck breeders. Poult Sci 2020; 99:3971-3978. [PMID: 32731984 PMCID: PMC7597912 DOI: 10.1016/j.psj.2020.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/20/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
This study evaluated the optimal concentrations of dietary Se for the productive and reproductive performance, tibial quality, and antioxidant status in duck breeders aged 23 to 49 wk. In total, 432 Longyan duck breeders aged 22 wk were allotted randomly to 6 treatments, each with 6 replicates of 12 individually caged birds. The experiment lasted for 27 wk, and birds were fed corn-soybean meal-based diets containing 0.11, 0.19, 0.27, 0.35, 0.43, or 0.51 mg Se/kg, respectively. The tested dietary Se levels did not affect egg production and tibial quality of duck breeders. The Se contents of the shell, yolk or albumin, whole egg, and the fertility of set eggs increased in a linear and quadratic manner (P < 0.05) in response to the increased dietary Se level, whereas the yolk malondialdehyde (MDA) and embryonic mortality decreased. The activities of glutathione peroxidase 3 (Gpx3) in plasma and Gpx1 in the erythrocytes and livers of breeder ducks increased in a linear and quadratic manner (P < 0.05) in response to increased dietary Se levels, whereas the total superoxide dismutase (T-SOD) activity increased and the MDA concentration decreased in the liver. The activity of Gpx3 in the plasma and Gpx1 in the erythrocytes and livers of newly hatched ducklings increased linearly (P < 0.01) with the increase in Se level, whereas the T-SOD activity and MDA concentration did not change. In conclusion, diets containing 0.27 mg Se/kg led to the highest egg fertility and hatchability in Longyan duck breeders, and using levels >0.19 mg Se/kg diet enhanced the antioxidant capacity in breeders and their offspring. The regression model indicated that dietary Se levels 0.19, 0.27, 0.28, 0.24, and 0.30 mg/kg are optimal levels to obtain maximum Se deposition efficiency in eggs, egg fertility, Gpx1 activity in erythrocytes and liver in duck breeders, and plasma activity of Gpx3 in newly hatched ducklings, respectively.
Collapse
Affiliation(s)
- W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - K F M Abouelezz
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China; Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - A M Fouad
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China; Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - K C Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - X B Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, P.R. China.
| |
Collapse
|
35
|
Swaggerty CL, He H, Genovese KJ, Callaway TR, Kogut MH, Piva A, Grilli E. A microencapsulated feed additive containing organic acids, thymol, and vanillin increases in vitro functional activity of peripheral blood leukocytes from broiler chicks. Poult Sci 2020; 99:3428-3436. [PMID: 32616236 PMCID: PMC7597814 DOI: 10.1016/j.psj.2020.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/03/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
During the first week after hatch, young chicks are vulnerable to pathogens as the immune system is not fully developed. The objectives of this study were to determine if supplementing the starter diet with a microencapsulated feed additive containing citric and sorbic acids, thymol, and vanillin affects in vitro functional activity of peripheral blood leukocytes (PBLs). Day-old chicks (n = 800) were assigned to either a control diet (0 g/metric ton [MT]) or a diet supplemented with 500 g/MT of the microencapsulated additive. At 4 D of age, peripheral blood was collected (100 birds per treatment), and heterophils and monocytes isolated (n = 4). Heterophils were assayed for the ability to undergo degranulation and production of an oxidative burst response while nitric oxide production was measured in monocytes. Select cytokine and chemokine mRNA expression levels were also determined. Statistical analysis was performed using Student t test comparing the supplemented diet to the control (P ≤ 0.05). Heterophils isolated from chicks fed the microencapsulated citric and sorbic acids, thymol, and vanillin had higher (P ≤ 0.05) levels of degranulation and oxidative burst responses than those isolated from chicks on the control diet. Heterophils from the supplemented chicks also had greater (P ≤ 0.05) expression of IL10, IL1β, and CXCL8 mRNA than those from control-fed chicks. Similarly, nitric oxide production was significantly (P ≤ 0.05) higher in monocytes isolated from birds fed the supplement. The cytokine and chemokine profile in monocytes from the supplement-fed chicks showed a significant (P ≤ 0.05) drop in IL10 mRNA expression while IL1β, IL4, and CXCL8 were unchanged. In conclusion, 4 D of supplementation with a microencapsulated blend made up of citric and sorbic acids, thymol, and vanillin enhanced the in vitro PBL functions of degranulation, oxidative burst, and nitric oxide production compared with the control diet. Collectively, the data suggest feeding broiler chicks a diet supplemented with a microencapsulated blend of citric and sorbic acids, thymol, and vanillin may prime key immune cells making them more functionally efficient and acts as an immune-modulator to boost the inefficient and undeveloped immune system of young chicks.
Collapse
Affiliation(s)
- Christina L Swaggerty
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA.
| | - Haiqi He
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Kenneth J Genovese
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Todd R Callaway
- University of Georgia, Department of Animal and Dairy Science, 252 Edgar L. Rhodes Center for Animal and Dairy Science, Athens, GA 30602, USA
| | - Michael H Kogut
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Andrea Piva
- Vetagro S.p.A., 42124, Reggio Emilia, Italy; DIMEVET, University of Bologna, Ozzano Emilia, Italy
| | - Ester Grilli
- Vetagro S.p.A., 42124, Reggio Emilia, Italy; DIMEVET, University of Bologna, Ozzano Emilia, Italy
| |
Collapse
|
36
|
Alizadeh M, Shojadoost B, Astill J, Taha-Abdelaziz K, Karimi SH, Bavananthasivam J, Kulkarni RR, Sharif S. Effects of in ovo Inoculation of Multi-Strain Lactobacilli on Cytokine Gene Expression and Antibody-Mediated Immune Responses in Chickens. Front Vet Sci 2020; 7:105. [PMID: 32185187 PMCID: PMC7058628 DOI: 10.3389/fvets.2020.00105] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/11/2020] [Indexed: 01/12/2023] Open
Abstract
This study was conducted to investigate the effects of various doses of a multi-strain lactobacilli mixture (Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus crispatus, and Lactobacillus johnsonii) on the innate and adaptive immune responses in broiler chickens. At embryonic day eighteen, 200 eggs were injected with PBS, or three different doses of a multi-strain lactobacilli mixture (1 × 105, 1 × 106, and 1 × 107 CFU/egg, P1, P2, and P3 respectively) along with a group of negative control. On days 5 and 10 post-hatch, cecal tonsil, bursa of fabricius, and spleen were collected for gene expression and cellular analysis. On days 14 and 21 post-hatch, birds were immunized intramuscularly with both sheep red blood cells (SRBC) and keyhole limpet hemocyanin (KLH). Serum samples were collected on days 0, 7, 14, and 21 after primary immunization. The results demonstrated that lactobacilli inoculation increased the splenic expression of cytokines, including interferon (IFN) - α, IFN-β, IFN-γ, interleukin (IL)-8, and IL-12 on day 5 post-hatch compared to the control group (PBS). However, in cecal tonsils, lactobacilli treatment downregulated the expression of IL-6 on day 5 post-hatch and IL-2 and IL-8 on day 10 post-hatch. No significant differences were observed in the expression of cytokine genes in the bursa except for IL-13 which was upregulated in lactobacilli-treated groups P2 and P3 on days 5 and 10 post-hatch. Flow cytometry analysis showed that the percentage of KUL01, CD4+ and CD8+ splenocytes was not affected by treatments. In addition, no significant differences were observed for antibody titers against SRBC. However, lactobacilli treatment (P1, P2, and P3) was found to increase IgM titers on day 21 post-primary immunization compared to controls. Furthermore, in ovo injection of the highest dose of probiotics (1 × 107, P3) increased serum IgG titers against KLH on day 7 post-primary immunization. In conclusion, this study demonstrated that that in ovo administration of lactobacilli can improve antibody-mediated immune responses and differentially modulate cytokine expression in mucosal and systemic lymphoid tissues of chickens.
Collapse
Affiliation(s)
- Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Seyed Hossein Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jegarubee Bavananthasivam
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
37
|
Lin L, Yang J, Yang Y, Zhi H, Hu X, Chai D, Liu Y, Shen X, Wang J, Song Y, Zeng A, Li X, Feng H. Phosphorylation of Radix Cyathula officinalis polysaccharide improves its immune-enhancing activity. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1700996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lang Lin
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Jie Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Yan Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Hui Zhi
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Xin Hu
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Dongkun Chai
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Yunjie Liu
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Xiaojun Shen
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Jie Wang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Yunqi Song
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Aimei Zeng
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Xinyu Li
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Haibo Feng
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| |
Collapse
|
38
|
Taha-Abdelaziz K, Astill J, Kulkarni RR, Read LR, Najarian A, Farber JM, Sharif S. In vitro assessment of immunomodulatory and anti-Campylobacter activities of probiotic lactobacilli. Sci Rep 2019; 9:17903. [PMID: 31784645 PMCID: PMC6884649 DOI: 10.1038/s41598-019-54494-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/10/2019] [Indexed: 12/17/2022] Open
Abstract
The present study was undertaken to assess the antimicrobial activity of Lactobacillus spp. (L. salivarius, L. johnsonii, L. reuteri, L. crispatus, and L. gasseri) against Campylobacter jejuni as well as their immunomodulatory capabilities. The results demonstrated that lactobacilli exhibit differential antagonistic effects against C. jejuni and vary in their ability to elicit innate responses in chicken macrophages. All lactobacilli exerted inhibitory effects on C. jejuni growth, abrogated the production of the quorum sensing molecule autoinducer-2 (AI-2) by C. jejuni and inhibited the invasion of C. jejuni in human intestinal epithelial cells. Additionally, all lactobacilli, except L. reuteri, significantly reduced the expression of virulence-related genes in C. jejuni, including genes responsible for motility (flaA, flaB, and flhA), invasion (ciaB), and AI-2 production (luxS). All lactobacilli enhanced C. jejuni phagocytosis by macrophages and increased the expression of interferon (IFN)-γ, interleukin (IL)-1β, IL-12p40, IL-10, and chemokine (CXCLi2) in macrophages. Furthermore, L. salivarius, L. reuteri, L. crispatus, and a mixture of all lactobacilli significantly increased expression of the co-stimulatory molecules CD40, CD80, and CD86 in macrophages. In conclusion, these findings demonstrate that lactobacilli possess anti-Campylobacter and immunomodulatory activities. Further studies are needed to assess their protective efficacy against intestinal colonization by C. jejuni in broiler chickens.
Collapse
Affiliation(s)
- Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Al Shamlah, 62511, Beni-Suef, Egypt
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27519, US
| | - Leah R Read
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Afsaneh Najarian
- Canadian Research Institute for Food Safety (CRIFS), Guelph, ON, N1G 2W1, ON, N1G 2W1, Canada
| | - Jeffrey M Farber
- Canadian Research Institute for Food Safety (CRIFS), Guelph, ON, N1G 2W1, ON, N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
39
|
Omidi S, Ebrahimi M, Janmohammadi H, Moghaddam G, Rajabi Z, Hosseintabar-Ghasemabad B. The impact of in ovo injection of l-arginine on hatchability, immune system and caecum microflora of broiler chickens. J Anim Physiol Anim Nutr (Berl) 2019; 104:178-185. [PMID: 31587369 DOI: 10.1111/jpn.13222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 02/01/2023]
Abstract
The present article was conducted to evaluate the effect of in ovo injection of arginine on hatchability, immune system and caecum microflora of broiler chickens. For this reason, 300 fertile eggs were used in a completely randomized design with three experimental treatments. The experimental groups included: 1%-0.5% l-arginine (100 eggs), 2%-1% l-arginine (100 eggs), 3- control [included both sham control (injection of distilled water; 50 eggs) and control (no injection; 50 eggs)], which were injected on d 14 of incubation. After hatching, chicks of each experimental group (0.5% l-arginine, 1% l-arginine, and control groups) were randomly divided into four equal groups (as replicates) and reared for 30 days. Weight and feeding of chickens were recorded. Next, blood samples of chickens were collected on day 30 to evaluate antibody titre. Also, chickens were slaughtered on 24 and 30 days of the experiment to evaluate immune system organs and caecum microflora. Based on the results, in ovo injection of l-arginine had no significant effect on hatchability, body weight, antibody titre, spleen, bursa of Fabricius and thymus weight (p > .05). On the other hand, treatments significantly affected feed intake and feed conversion ratio (p < .05). As a novel finding, in ovo injection of l-arginine increased caecal Lactobacillus (p < .01), while decreasing Coliform and Escherichia Coli bacteria (p < .01). However, treatments did not influence caecal Enterococcus (p > .05). The overall results indicated that in ovo injection of 0.5% l-arginine had a better improving effect on caecal microflora and then considered as a recommended level of the present experiment.
Collapse
Affiliation(s)
- Somayeh Omidi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Marziyeh Ebrahimi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hossein Janmohammadi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Gholamali Moghaddam
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zolfaghar Rajabi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
40
|
Swaggerty CL, Callaway TR, Kogut MH, Piva A, Grilli E. Modulation of the Immune Response to Improve Health and Reduce Foodborne Pathogens in Poultry. Microorganisms 2019; 7:E65. [PMID: 30823445 PMCID: PMC6462950 DOI: 10.3390/microorganisms7030065] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022] Open
Abstract
Salmonella and Campylobacter are the two leading causes of bacterial-induced foodborne illness in the US. Food production animals including cattle, swine, and chickens are transmission sources for both pathogens. The number of Salmonella outbreaks attributed to poultry has decreased. However, the same cannot be said for Campylobacter where 50⁻70% of human cases result from poultry products. The poultry industry selects heavily on performance traits which adversely affects immune competence. Despite increasing demand for poultry, regulations and public outcry resulted in the ban of antibiotic growth promoters, pressuring the industry to find alternatives to manage flock health. One approach is to incorporate a program that naturally enhances/modulates the bird's immune response. Immunomodulation of the immune system can be achieved using a targeted dietary supplementation and/or feed additive to alter immune function. Science-based modulation of the immune system targets ways to reduce inflammation, boost a weakened response, manage gut health, and provide an alternative approach to prevent disease and control foodborne pathogens when conventional methods are not efficacious or not available. The role of immunomodulation is just one aspect of an integrated, coordinated approach to produce healthy birds that are also safe and wholesome products for consumers.
Collapse
Affiliation(s)
- Christina L Swaggerty
- United States Department of Agriculture/ARS, 2881 F and B Road, College Station, TX 77845, USA.
| | - Todd R Callaway
- Department of Animal and Dairy Science, University of Georgia, 425 River Road, Athens, GA 30602, USA.
| | - Michael H Kogut
- United States Department of Agriculture/ARS, 2881 F and B Road, College Station, TX 77845, USA.
| | - Andrea Piva
- Vetagro S.p.A., Via Porro 2, 42124, Reggio Emilia, Italy.
| | - Ester Grilli
- Vetagro S.p.A., Via Porro 2, 42124, Reggio Emilia, Italy.
| |
Collapse
|
41
|
Martínez Y, Ayala L, Hurtado C, Más D, Rodríguez R. Effects of Dietary Supplementation with Red Algae Powder (Chondrus crispus) on Growth Performance, Carcass Traits, Lymphoid Organ Weights and Intestinal pH in Broilers. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2019-1015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - L Ayala
- Instituto de Ciencia Animal, Cuba
| | | | - D Más
- Universidad Autónoma de Querétaro, Mexico
| | | |
Collapse
|