1
|
Qiu Y, Qiu M, Li S, Li S, Zhu J, Tian K, Chen N. Emergence, prevalence and evolution of porcine reproductive and respiratory syndrome virus 1 in China from 1994 to 2024. Virology 2025; 605:110457. [PMID: 39999587 DOI: 10.1016/j.virol.2025.110457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) was first detected in Chinese swine herds during an epidemiological investigation since 1994. Even though PRRSV-1 has been existed in China for 30 years, much less attention was paid on PRRSV-1 than PRRSV-2. This review systematically evaluated the emergence, prevalence and evolution of Chinese PRRSV-1 from 1994 to 2024. Here we showed that PRRSV-1 has been detected in at least 28 regions of China, which can be divided into eight subgroups within subtype 1. During the evolution in Chinese swine herds, a large number of substitutions, insertions and deletions were identified. Recombination events were also commonly detected accompanying with nsp1-nsp3, nsp9-nsp10 and ORF2-ORF6 regions as the cross-over hotspots. Remarkably, Chinese PRRSV-1 isolates showed a trend of increasing in pathogenicity in recent years. At last, we discussed the differential detection methods and cross-protection strategies against PRRSV-1 isolates. Overall, PRRSV-1 has become one of the widely-spread viruses in China posing a significant threat to China's swine industry.
Collapse
Affiliation(s)
- Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang, 110164, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, 471000, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Sánchez-Carvajal JM, Godel A, Husson N, Summerfield A, García-Nicolás O. Plasmacytoid dendritic cell sensing of African swine fever virus-infected macrophages results in STING-dependent robust interferon-α production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:130-140. [PMID: 40073264 DOI: 10.1093/jimmun/vkae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/16/2024] [Indexed: 03/14/2025]
Abstract
While several African swine fever virus (ASFV)-encoded proteins potently interfere with the cGAS-STING (cyclic GMP-AMP synthetase-stimulator of interferon genes) pathway at different levels to suppress interferon (IFN) type I production in infected macrophages, systemic IFN-α is induced during the early stages of AFSV infection in pigs. The present study elucidates a mechanism by which such responses can be triggered, at least in vitro. We demonstrate that infection of monocyte-derived macrophages (MDMs) by ASFV genotype 2 strains is highly efficient but immunologically silent with respect to IFN type I, IFN-stimulated gene induction, and tumor necrosis factor production. Additionally, ASFV does not directly activate plasmacytoid dendritic cells (pDCs). However, coculturing pDCs with ASFV-infected MDMs results in a strong pDC response characterized by high levels of IFN-α and tumor necrosis factor. IFN type I, in turn, promoted interleukin-1 receptor antagonist production by macrophages. Similar to the sensing of infected cells by other viruses, pDC activation required integrin-mediated cognate interactions with ASFV-infected MDMs to form an interferogenic synapse. Inhibitor studies indicated that the activation of pDCs requires the STING pathway and the formation of gap junctions. While IL-4-polarized macrophages showed increased susceptibility, IFN-γ-polarized ASFV-infected macrophages induced higher pDC activation. Pretreatment of pDCs with IFN-β and IFN-γ also enhanced IFN-α production in response to ASFV-infected macrophages, highlighting the influence of the immunological microenvironment. These findings suggest that the IFN-α detected during ASFV infection in pigs may be a result of pDC sensing ASFV-infected macrophages.
Collapse
Affiliation(s)
- José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes, University of Córdoba, Córdoba, Spain
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Aurélie Godel
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nolwen Husson
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Obdulio García-Nicolás
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Ruedas-Torres I, Thi to Nga B, Salguero FJ. Pathogenicity and virulence of African swine fever virus. Virulence 2024; 15:2375550. [PMID: 38973077 PMCID: PMC11232652 DOI: 10.1080/21505594.2024.2375550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
African swine fever (ASF) is a devastating disease with a high impact on the pork industry worldwide. ASF virus (ASFV) is a very complex pathogen, the sole member of the family Asfaviridae, which induces a state of immune suppression in the host through infection of myeloid cells and apoptosis of lymphocytes. Moreover, haemorrhages are the other main pathogenic effect of ASFV infection in pigs, related to the infection of endothelial cells, as well as the activation and structural changes of this cell population by proinflammatory cytokine upregulation within bystander monocytes and macrophages. There are still many gaps in the knowledge of the role of proteins produced by the ASFV, which is related to the difficulty in producing a safe and effective vaccine to combat the disease, although few candidates have been approved for use in Southeast Asia in the past couple of years.
Collapse
Affiliation(s)
- Ines Ruedas-Torres
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
| | - Bui Thi to Nga
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Francisco J. Salguero
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
4
|
Zhang W, Wang X, Zhang H, Pan Y, Ma W, Xu Y, Tian Z, Xia C, Fu L, Wang Y. Comparison of pathogenicity and host responses of emerging porcine reproductive and respiratory syndrome virus variants in piglets. J Virol 2024; 98:e0154223. [PMID: 39445829 PMCID: PMC11575335 DOI: 10.1128/jvi.01542-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly variable virus with genetic diversity. This study comparatively examines the pathogenicity and immunological impact of two emergent PRRSV strains, SD53 and HuN4, in piglets. Our results indicate that SD53 strain induces milder clinical syndromes and less severe tissue damage than HuN4, despite similar replication rates. Hematological tests showed less perturbations in peripheral blood cell profiles after SD53 infection, suggesting a less systemic impact. The neutrophil-to-lymphocyte ratio was notably lower in SD53-infected piglets, suggesting a less intense inflammatory reaction. Moreover, SD53 infection led to lower levels of pro-inflammatory cytokines, further supporting a less pronounced inflammatory profile. Both strains induced the production of PRRSV-specific antibodies. However, transcriptomic analysis of lung and lymph node tissues from infected piglets disclosed a more moderate up-regulation of core genes, including ISGs, in the SD53 group. Further analysis indicated that SD53 primarily enhanced immune-related signaling, particularly in T cell response modules, while HuN4 caused a more robust pro-inflammatory reaction and a dampening of T cell functionality. Flow cytometry analyses confirmed these findings, showing higher CD4/CD8 ratios and increased CD4+ T cell percentages in SD53-infected piglets, implying a more robust T cell response. Collectively, these findings broaden our comprehension of PRRSV pathogenesis and may inform the development of future therapeutic or prophylactic strategies for controlling PRRSV infections more effectively. IMPORTANCE The high mutation rate of porcine reproductive and respiratory syndrome virus (PRRSV) poses significant challenges to its accurate diagnosis and the implementation of effective control measures. This research explores the pathogenic profiles of two emerging PRRSV stains: the NADC30-like strain SD53 and the highly pathogenic strain HuN4. Our investigation reveals that SD53 initiates distinct immunopathological responses in vivo compared with those provoked by HuN4. By conducting a transcriptome analysis of differential gene expression in the lungs and lymph nodes of infected piglets, we unveil the intricate molecular mechanisms underlying the contrasting pathogenicity of these two strains. The comprehensive insights yielded by this study are instrumental in advancing our understanding of the dominant NADC30-like PRRSV strain, which has become increasingly prevalent in China's swine industry.
Collapse
Affiliation(s)
- Wenli Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - He Zhang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pan
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenjie Ma
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yunfei Xu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijun Tian
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
5
|
Ruedas-Torres I, Sánchez-Carvajal JM, Salguero FJ, Pallarés FJ, Carrasco L, Mateu E, Gómez-Laguna J, Rodríguez-Gómez IM. The scene of lung pathology during PRRSV-1 infection. Front Vet Sci 2024; 11:1330990. [PMID: 38566751 PMCID: PMC10985324 DOI: 10.3389/fvets.2024.1330990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important infectious diseases for the pig industry worldwide. The disease was firstly reported in 1987 and became endemic in many countries. Since then, outbreaks caused by strains of high virulence have been reported several times in Asia, America and Europe. Interstitial pneumonia, microscopically characterised by thickened alveolar septa, is the hallmark lesion of PRRS. However, suppurative bronchopneumonia and proliferative and necrotising pneumonia are also observed, particularly when a virulent strain is involved. This raises the question of whether the infection by certain strains results in an overstimulation of the proinflammatory response and whether there is some degree of correlation between the strain involved and a particular pattern of lung injury. Thus, it is of interest to know how the inflammatory response is modulated in these cases due to the interplay between virus and host factors. This review provides an overview of the macroscopic, microscopic, and molecular pathology of PRRSV-1 strains in the lung, emphasising the differences between strains of different virulence.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- United Kingdom Health Security Agency (UKHSA Porton Down), Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | | | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, Barcelona, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), UIC Zoonosis y Enfermedades Emergentes ENZOEM, International Agrifood Campus of Excellence (CeiA3), Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
6
|
Riccio S, Childs K, Jackson B, Graham SP, Seago J. The Identification of Host Proteins That Interact with Non-Structural Proteins-1α and -1β of Porcine Reproductive and Respiratory Syndrome Virus-1. Viruses 2023; 15:2445. [PMID: 38140685 PMCID: PMC10747794 DOI: 10.3390/v15122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome viruses (PRRSV-1 and -2) are the causative agents of one of the most important infectious diseases affecting the global pig industry. Previous studies, largely focused on PRRSV-2, have shown that non-structural protein-1α (NSP1α) and NSP1β modulate host cell responses; however, the underlying molecular mechanisms remain to be fully elucidated. Therefore, we aimed to identify novel PRRSV-1 NSP1-host protein interactions to improve our knowledge of NSP1-mediated immunomodulation. NSP1α and NSP1β from a representative western European PRRSV-1 subtype 1 field strain (215-06) were used to screen a cDNA library generated from porcine alveolar macrophages (PAMs), the primary target cell of PRRSV, using the yeast-2-hybrid system. This identified 60 putative binding partners for NSP1α and 115 putative binding partners for NSP1β. Of those taken forward for further investigation, 3 interactions with NSP1α and 27 with NSP1β were confirmed. These proteins are involved in the immune response, ubiquitination, nuclear transport, or protein expression. Increasing the stringency of the system revealed NSP1α interacts more strongly with PIAS1 than PIAS2, whereas NSP1β interacts more weakly with TAB3 and CPSF4. Our study has increased our knowledge of the PRRSV-1 NSP1α and NSP1β interactomes, further investigation of which could provide detailed insight into PRRSV immunomodulation and aid vaccine development.
Collapse
Affiliation(s)
- Sofia Riccio
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Kay Childs
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Ben Jackson
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Simon P. Graham
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Julian Seago
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| |
Collapse
|
7
|
Rawal G, Almeida MN, Gauger PC, Zimmerman JJ, Ye F, Rademacher CJ, Armenta Leyva B, Munguia-Ramirez B, Tarasiuk G, Schumacher LL, Aljets EK, Thomas JT, Zhu JH, Trexel JB, Zhang J. In Vivo and In Vitro Characterization of the Recently Emergent PRRSV 1-4-4 L1C Variant (L1C.5) in Comparison with Other PRRSV-2 Lineage 1 Isolates. Viruses 2023; 15:2233. [PMID: 38005910 PMCID: PMC10674456 DOI: 10.3390/v15112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The recently emerged PRRSV 1-4-4 L1C variant (L1C.5) was in vivo and in vitro characterized in this study in comparison with three other contemporary 1-4-4 isolates (L1C.1, L1A, and L1H) and one 1-7-4 L1A isolate. Seventy-two 3-week-old PRRSV-naive pigs were divided into six groups with twelve pigs/group. Forty-eight pigs (eight/group) were for inoculation, and 24 pigs (four/group) served as contact pigs. Pigs in pen A of each room were inoculated with the corresponding virus or negative media. At two days post inoculation (DPI), contact pigs were added to pen B adjacent to pen A in each room. Pigs were necropsied at 10 and 28 DPI. Compared to other virus-inoculated groups, the L1C.5-inoculated pigs exhibited more severe anorexia and lethargy, higher mortality, a higher fraction of pigs with fever (>40 °C), higher average temperature at several DPIs, and higher viremia levels at 2 DPI. A higher percentage of the contact pigs in the L1C.5 group became viremic at two days post contact, implying the higher transmissibility of this virus strain. It was also found that some PRRSV isolates caused brain infection in inoculation pigs and/or contact pigs. The complete genome sequences and growth characteristics in ZMAC cells of five PRRSV-2 isolates were further compared. Collectively, this study confirms that the PRRSV 1-4-4 L1C variant (L1C.5) is highly virulent with potential higher transmissibility, but the genetic determinants of virulence remain to be elucidated.
Collapse
Affiliation(s)
- Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Marcelo N. Almeida
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jeffrey J. Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Fangshu Ye
- Department of Statistics, Iowa State University, Ames, IA 50011, USA;
| | - Christopher J. Rademacher
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Betsy Armenta Leyva
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Berenice Munguia-Ramirez
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Grzegorz Tarasiuk
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Loni L. Schumacher
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Ethan K. Aljets
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Joseph T. Thomas
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jin-Hui Zhu
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jolie B. Trexel
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (M.N.A.); (P.C.G.); (J.J.Z.); (C.J.R.); (B.A.L.); (B.M.-R.); (G.T.); (L.L.S.); (E.K.A.); (J.T.T.); (J.-H.Z.); (J.B.T.)
| |
Collapse
|
8
|
Zhang W, Ma W, Pan Y, Wang X, Wang M, Zhang H, Gao J, Zhang H, Tian Z, Li C, Chen H, Xia C, Wang Y. Characterization of Rongchang piglets after infection with type 2 porcine reproductive and respiratory syndrome virus strains differing in pathogenicity. Front Microbiol 2023; 14:1283039. [PMID: 37920268 PMCID: PMC10618352 DOI: 10.3389/fmicb.2023.1283039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) affects the production and health of pigs and causes severe economic losses to the swine industry worldwide. Different pig breeds have been reported to have different levels of susceptibility to PRRSV, and different PRRSV strains may also influence the infectivity and pathogenicity of the virus. In this study, the susceptibility of Rongchang pigs (a prominent local pig breed in China) to PRRSV infection was thoroughly investigated. Rongchang piglets were exposed to two PRRSV strains: HuN4 (highly pathogenic PRRSV) and SD53-1603 (moderately virulent NADC30-like PRRSV). We observed that Rongchang pigs infected with HuN4 displayed significant clinical manifestations, including fever, reduced body weight, and interstitial pneumonia lesions. Routine blood tests revealed that HuN4-infected pigs exhibited slightly decreased levels of red blood cells, hemoglobin, reticulocytes, and a notable increase in monocytes than control pigs. Additionally, the Rongchang pigs exhibiting severe clinical signs presented a higher neutrophil-to-lymphocyte ratio and a lower lymphocyte-to-monocyte ratio. In contrast, SD53-1603 infection did not cause considerable harm to Rongchang pigs, only resulting in slightly elevated leukocytes and lymphocytes. Furthermore, these two PRRSV strains elicited divergent cytokine responses, such that SD53-1603 infection induced higher levels of TNF-α and IFN-γ, whereas HuN4 infection upregulated IL-1β. These dissimilarities in clinical symptoms, pathological changes, viremia, cytokine expression, and routine blood indices between HuN4 and SD53-1603 infections are critical in understanding the mechanisms of PRRSV infection and developing rational prevention and control strategies against PRRSV.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenjie Ma
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pan
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengjie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junxin Gao
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changwen Li
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
9
|
Xu H, Li C, Gong B, Li W, Guo Z, Sun Q, Zhao J, Xiang L, Li J, Tang YD, Leng C, Wang Q, Peng J, Zhou G, Liu H, An T, Cai X, Tian ZJ, Zhang H. Protective Efficacy of a Candidate Live-Attenuated Vaccine Derived from the SD-R Strain against NADC34-like Porcine Reproductive and Respiratory Syndrome Virus. Vaccines (Basel) 2023; 11:1349. [PMID: 37631917 PMCID: PMC10459522 DOI: 10.3390/vaccines11081349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023] Open
Abstract
NADC34-like porcine reproductive and respiratory syndrome virus (PRRSV) strains were first detected in China in 2017 and became major circulating strains in 2021. Our previous study showed that the live-attenuated vaccine candidate SD-R strain could provide broad cross-protection against different NADC30-like PRRSVs (sublineage 1.8). However, the protective effect of SD-R against NADC34-like PRRSV is unclear. Here, a novel NADC34-like PRRSV, LNTZJ1341-2012, was isolated from a pig farm experiencing disease in 2020. Sequence analysis revealed that LNTZJ1341-2012 belonged to PRRSV-2 sublineage 1.5, exhibited the same Nsp2 amino-acid deletion characteristics as IA/2014/NADC34, and had not recombined with other strains. Additionally, a good challenge model was established to evaluate the protection afforded by the candidate SD-R vaccine against infection with a representative NADC34-like strain (LNTZJ1341-2012). The control piglets in the challenge experiment displayed clinical signs typical of PRRSV infection, including transient fever, high viremia, mild clinical symptoms, and histopathological changes in the lungs and submaxillary lymph nodes. In contrast, SD-R vaccination significantly reduced serum and lung tissue viral loads, and vaccinated piglets did not show any clinical symptoms or histopathological changes. Our results demonstrated that LNTZJ1341-2012 is a mildly virulent NADC34-like PRRSV and that the live-attenuated vaccine SD-R can prevent the onset of clinical signs upon challenge with the NADC34-like PRRSV LNTZJ1341-2012 strain, indicating that SD-R is a promising vaccine candidate for the swine industry.
Collapse
Affiliation(s)
- Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Chao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Bangjun Gong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Wansheng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Zhenyang Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Qi Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Lirun Xiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Jinhao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Chaoliang Leng
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China;
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Jinmei Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Guohui Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Huairan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Zhi-Jun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| |
Collapse
|
10
|
de Brito RCF, Holtham K, Roser J, Saunders JE, Wezel Y, Henderson S, Mauch T, Sanz-Bernardo B, Frossard JP, Bernard M, Lean FZX, Nunez A, Gubbins S, Suárez NM, Davison AJ, Francis MJ, Huether M, Benchaoui H, Salt J, Fowler VL, Jarvis MA, Graham SP. An attenuated herpesvirus vectored vaccine candidate induces T-cell responses against highly conserved porcine reproductive and respiratory syndrome virus M and NSP5 proteins that are unable to control infection. Front Immunol 2023; 14:1201973. [PMID: 37600784 PMCID: PMC10436000 DOI: 10.3389/fimmu.2023.1201973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) remains a leading cause of economic loss in pig farming worldwide. Existing commercial vaccines, all based on modified live or inactivated PRRSV, fail to provide effective immunity against the highly diverse circulating strains of both PRRSV-1 and PRRSV-2. Therefore, there is an urgent need to develop more effective and broadly active PRRSV vaccines. In the absence of neutralizing antibodies, T cells are thought to play a central role in controlling PRRSV infection. Herpesvirus-based vectors are novel vaccine platforms capable of inducing high levels of T cells against encoded heterologous antigens. Therefore, the aim of this study was to assess the immunogenicity and efficacy of an attenuated herpesvirus-based vector (bovine herpesvirus-4; BoHV-4) expressing a fusion protein comprising two well-characterized PRRSV-1 T-cell antigens (M and NSP5). Prime-boost immunization of pigs with BoHV-4 expressing the M and NSP5 fusion protein (vector designated BoHV-4-M-NSP5) induced strong IFN-γ responses, as assessed by ELISpot assays of peripheral blood mononuclear cells (PBMC) stimulated with a pool of peptides representing PRRSV-1 M and NSP5. The responses were closely mirrored by spontaneous IFN-γ release from unstimulated cells, albeit at lower levels. A lower frequency of M and NSP5 specific IFN-γ responding cells was induced following a single dose of BoHV-4-M-NSP5 vector. Restimulation using M and NSP5 peptides from PRRSV-2 demonstrated a high level of cross-reactivity. Vaccination with BoHV-4-M-NSP5 did not affect viral loads in either the blood or lungs following challenge with the two heterologous PRRSV-1 strains. However, the BoHV-4-M-NSP5 prime-boost vaccination showed a marked trend toward reduced lung pathology following PRRSV-1 challenge. The limited effect of T cells on PRRSV-1 viral load was further examined by analyzing local and circulating T-cell responses using intracellular cytokine staining and proliferation assays. The results from this study suggest that vaccine-primed T-cell responses may have helped in the control of PRRSV-1 associated tissue damage, but had a minimal, if any, effect on controlling PRRSV-1 viral loads. Together, these results indicate that future efforts to develop effective PRRSV vaccines should focus on achieving a balanced T-cell and antibody response.
Collapse
Affiliation(s)
| | | | | | - Jack E. Saunders
- The Pirbright Institute, Woking, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Yvonne Wezel
- The Vaccine Group Ltd., Plymouth, United Kingdom
| | | | - Thekla Mauch
- The Vaccine Group Ltd., Plymouth, United Kingdom
| | | | | | - Matthieu Bernard
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Fabian Z. X. Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Alejandro Nunez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | | | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | | | | | - Jeremy Salt
- The Vaccine Group Ltd., Plymouth, United Kingdom
| | | | - Michael A. Jarvis
- The Vaccine Group Ltd., Plymouth, United Kingdom
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
| | | |
Collapse
|
11
|
Wei Y, Dai G, Huang M, Wen L, Chen RA, Liu DX. Construction of an infectious cloning system of porcine reproductive and respiratory syndrome virus and identification of glycoprotein 5 as a potential determinant of virulence and pathogenicity. Front Microbiol 2023; 14:1227485. [PMID: 37547693 PMCID: PMC10397516 DOI: 10.3389/fmicb.2023.1227485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection of pigs causes a variety of clinical manifestations, depending on the pathogenicity and virulence of the specific strain. Identification and characterization of potential determinant(s) for the pathogenicity and virulence of these strains would be an essential step to precisely design and develop effective anti-PRRSV intervention. In this study, we report the construction of an infectious clone system based on PRRSV vaccine strain SP by homologous recombination technique, and the rescue of a chimeric rSP-HUB2 strain by replacing the GP5 and M protein-coding region from SP strain with the corresponding region from a highly pathogenic strain PRRSV-HUB2. The two recombinant viruses were shown to be genetically stable and share similar growth kinetics, with rSP-HUB2 exhibiting apparent growth and fitness advantages. Compared to in cells infected with PRRSV-rSP, infection of cells with rSP-HUB2 showed significantly more inhibition of the induction of type I interferon (IFN-β) and interferon stimulator gene 56 (ISG56), and significantly more promotion of the induction of proinflammatory cytokines IL-6, IL-8, ISG15 and ISG20. Further overexpression, deletion and mutagenesis studies demonstrated that amino acid residue F16 in the N-terminal region of the GP5 protein from HUB2 was a determinant for the phenotypic difference between the two recombinant viruses. This study provides evidence that GP5 may function as a potential determinant for the pathogenicity and virulence of highly pathogenic PRRSV.
Collapse
Affiliation(s)
- Yuqing Wei
- Guangdong Province Key Laboratory Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
| | - Guo Dai
- Guangdong Province Key Laboratory Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, Guangdong, China
| | - Lianghai Wen
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, Guangdong, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, Guangdong, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
| |
Collapse
|
12
|
Lagumdzic E, Pernold CPS, Ertl R, Palmieri N, Stadler M, Sawyer S, Stas MR, Kreutzmann H, Rümenapf T, Ladinig A, Saalmüller A. Gene expression of peripheral blood mononuclear cells and CD8 + T cells from gilts after PRRSV infection. Front Immunol 2023; 14:1159970. [PMID: 37409113 PMCID: PMC10318438 DOI: 10.3389/fimmu.2023.1159970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-stranded RNA virus, which emerged in Europe and U.S.A. in the late 1980s and has since caused huge economic losses. Infection with PRRSV causes mild to severe respiratory and reproductive clinical symptoms in pigs. Alteration of the host immune response by PRRSV is associated with the increased susceptibility to secondary viral and bacterial infections resulting in more serious and chronic disease. However, the expression profiles underlying innate and adaptive immune responses to PRRSV infection are yet to be further elucidated. In this study, we investigated gene expression profiles of PBMCs and CD8+ T cells after PRRSV AUT15-33 infection. We identified the highest number of differentially expressed genes in PBMCs and CD8+ T cells at 7 dpi and 21 dpi, respectively. The gene expression profile of PBMCs from infected animals was dominated by a strong innate immune response at 7 dpi which persisted through 14 dpi and 21 dpi and was accompanied by involvement of adaptive immunity. The gene expression pattern of CD8+ T cells showed a strong adaptive immune response to PRRSV, leading to the formation of highly differentiated CD8+ T cells starting from 14 dpi. The hallmark of the CD8+ T-cell response was the increased expression of effector and cytolytic genes (PRF1, GZMA, GZMB, GZMK, KLRK1, KLRD1, FASL, NKG7), with the highest levels observed at 21 dpi. Temporal clustering analysis of DEGs of PBMCs and CD8+ T cells from PRRSV-infected animals revealed three and four clusters, respectively, suggesting tight transcriptional regulation of both the innate and the adaptive immune response to PRRSV. The main cluster of PBMCs was related to the innate immune response to PRRSV, while the main clusters of CD8+ T cells represented the initial transformation and differentiation of these cells in response to the PRRSV infection. Together, we provided extensive transcriptomics data explaining gene signatures of the immune response of PBMCs and CD8+ T cells after PRRSV infection. Additionally, our study provides potential biomarker targets useful for vaccine and therapeutics development.
Collapse
Affiliation(s)
- Emil Lagumdzic
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Clara P. S. Pernold
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Nicola Palmieri
- University Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Spencer Sawyer
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Melissa R. Stas
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Heinrich Kreutzmann
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
13
|
Li W, Li C, Guo Z, Xu H, Gong B, Sun Q, Zhao J, Xiang L, Leng C, Peng J, Zhou G, Tang Y, Liu H, An T, Cai XH, Tian ZJ, Wang Q, Zhang H. Genomic characteristics of a novel emerging PRRSV branch in sublineage 8.7 in China. Front Microbiol 2023; 14:1186322. [PMID: 37323894 PMCID: PMC10264644 DOI: 10.3389/fmicb.2023.1186322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused serious economic losses to the pig industry worldwide. During the continuous monitoring of PRRSV, a new PRRSV strain type with novel characteristics was first identified in three different regions of Shandong Province. These strains presented a novel deletion pattern (1 + 8 + 1) in the NSP2 region and belonged to a new branch in sublineage 8.7 based on the ORF5 gene phylogenetic tree. To further study the genomic characteristics of the new-branch PRRSV, we selected a sample from each of the three farms for whole-genome sequencing and sequence analysis. Based on the phylogenetic analysis of the whole genome, these strains formed a new independent branch in sublineage 8.7, which showed a close relationship with HP-PRRSV and intermediate PRRSV according to nucleotide and amino acid homology but displayed a completely different deletion pattern in NSP2. Recombinant analysis showed that these strains presented similar recombination patterns, all of which involved recombination with QYYZ in the ORF3 region. Furthermore, we found that the new-branch PRRSV retained highly consistent nucleotides at positions 117-120 (AGTA) of a quite conserved motif in the 3'-UTR; showed similar deletion patterns in the 5'-UTR, 3'-UTR and NSP2; retained characteristics consistent with intermediate PRRSV and exhibited a gradual evolution trend. The above results showed that the new-branch PRRSV strains may have the same origin and be similar to HP-PPRSV also evolved from intermediate PRRSV, but are distinct strains that evolved simultaneously with HP-PRRSV. They persist in some parts of China through rapid evolution, recombine with other strains and have the potential to become epidemic strains. The monitoring and biological characteristics of these strains should be further studied.
Collapse
Affiliation(s)
- Wansheng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhenyang Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lirun Xiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, China
| | - Jinmei Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohui Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yandong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huairan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Jun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
14
|
Wang X, Bai X, Wang Y, Wang L, Wei L, Tan F, Zhou Z, Tian K. Pathogenicity characterization of PRRSV-1 181187-2 isolated in China. Microb Pathog 2023; 180:106158. [PMID: 37201637 DOI: 10.1016/j.micpath.2023.106158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
PRRSV-1 has caused more clinical infections in pigs in Chinese swine herds in recent years, however, the pathogenicity of PRRSV-1 in China is unclear. In order to study the pathogenicity of PRRSV-1, in this study, a PRRSV-1 strain, 181187-2, was isolated in primary alveolar macrophage (PAM) cells from a farm where abortions had been reported in China. The complete genome of 181187-2 was 14932 bp excluding Poly A, with 54-amino acid continuous deletion in the Nsp2 gene and 1 amino deletion in ORF3 gene compared with LV. Additionally, the piglets inoculated with strain 181187-2 by intranasal and intranasal plus intramuscular injection, animal experiments showed clinical symptoms including transient fever and depression, with no death. The obvious histopathological lesions including interstitial pneumonia and lymph node hemorrhage, and there were no significant differences in clinical symptoms and histopathological lesions with different challenge ways. Our results indicated that PRRSV -1 181187-2 was a moderately pathogenic strain in piglets.
Collapse
Affiliation(s)
- Xiaojuan Wang
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Xiaofei Bai
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Yuzhou Wang
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Lulu Wang
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Lulu Wei
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Feifei Tan
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China; WOAH Porcine Reproductive and Respiratory Syndrome Reference Laboratory, China Animal Disease Control Center, No. 17 Tiangui Road, Daxing District, Beijing, 100125, People's Republic of China
| | - Zhi Zhou
- WOAH Porcine Reproductive and Respiratory Syndrome Reference Laboratory, China Animal Disease Control Center, No. 17 Tiangui Road, Daxing District, Beijing, 100125, People's Republic of China.
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China; WOAH Porcine Reproductive and Respiratory Syndrome Reference Laboratory, China Animal Disease Control Center, No. 17 Tiangui Road, Daxing District, Beijing, 100125, People's Republic of China.
| |
Collapse
|
15
|
Xu H, Gong B, Sun Q, Li C, Zhao J, Xiang L, Li W, Guo Z, Tang YD, Leng C, Li Z, Wang Q, Zhou G, An T, Cai X, Tian ZJ, Peng J, Zhang H. Genomic Characterization and Pathogenicity of BJEU06-1-Like PRRSV-1 ZD-1 Isolated in China. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/6793604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV)-1 and PRRSV-2 have long been cocirculating in China. To date, all PRRSV-1 strains in China have been classified as subtype 1. We investigated the prevalence of PRRSV-1 in several areas of China from 2016 to 2022 and found that BJEU06-1-like strains comprised the main epidemic branch of PRRSV-1. Pathogenicity data for this subgroup are currently lacking. In this study, the Chinese BJEU06-1-like PRRSV-1 strain ZD-1 was isolated from primary alveolar macrophages (PAMs). ZD-1 has undergone no recombination and has a 5-aa discontinuous deletion in the Nsp2 protein, similar to other BJEU06-1-like strains; additionally, ZD-1 has a 26 aa C-terminal truncation in the GP3 gene. Pathogenicity studies revealed that ZD-1 causes obvious clinical symptoms: prolonged fever; reduced body weight; alveolar epithelial proliferation and moderate alveolar diaphragm widening in the lungs; diffuse lymphocytic hyperplasia in the lymph nodes; high levels of viremia in the serum; and elevated viral loads in the lungs, lymph nodes, and tonsils. These results suggested that the BJEU06-1-like PRRSV-1 strain ZD-1 is moderately pathogenic to piglets. This is the first study to evaluate the pathogenicity of the BJEU06-1-like branch in China, enriching the understanding of PRRSV-1 in China.
Collapse
|
16
|
Ruedas-Torres I, Sánchez-Carvajal JM, Carrasco L, Pallarés FJ, Larenas-Muñoz F, Rodríguez-Gómez IM, Gómez-Laguna J. PRRSV-1 induced lung lesion is associated with an imbalance between costimulatory and coinhibitory immune checkpoints. Front Microbiol 2023; 13:1007523. [PMID: 36713151 PMCID: PMC9878400 DOI: 10.3389/fmicb.2022.1007523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces a dysregulation on the innate and adaptive immune responses. T-cell activation requires a proper interaction and precise balance between costimulatory and coinhibitory molecules, commonly known as immune checkpoints. This study aims to evaluate the expression of immune checkpoints in lung and tracheobronchial lymph node from piglets infected with two PRRSV-1 strains of different virulence during the early stage of infection. Seventy 4-week-old piglets were grouped into three experimental groups: (i) control, (ii) 3249-infected group (low virulent strain), and (iii) Lena-infected group (virulent strain) and were euthanized at 1, 3, 6, 8, and 13 days post-infection (dpi). Lung and tracheobronchial lymph node were collected to evaluate histopathological findings, PRRSV viral load and mRNA expression of costimulatory (CD28, CD226, TNFRSF9, SELL, ICOS, and CD40) and coinhibitory (CTLA4, TIGIT, PD1/PDL1, TIM3, LAG3, and IDO1) molecules through RT-qPCR. Our findings highlight a mild increase of costimulatory molecules together with an earlier and stronger up-regulation of coinhibitory molecules in both organs from PRRSV-1-infected animals, especially in the lung from virulent Lena-infected animals. The simultaneous expression of coinhibitory immune checkpoints could work in synergy to control and limit the inflammation-induced tissue damage. Further studies should be addressed to determine the role of these molecules in later stages of PRRSV infection.
Collapse
|
17
|
Nonstructural Protein 2 Is Critical to Infection Efficiency of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus on PAMs and Influence Virulence In Vivo. Viruses 2022; 14:v14122613. [PMID: 36560616 PMCID: PMC9782917 DOI: 10.3390/v14122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an important viral disease, causing significant economic losses to the swine industry worldwide. Atypical cases caused by highly pathogenic PRRS virus (HP-PRRSV) emerged in 2006 in China. The vaccine strain HuN4-F112 has been developed from the wild-type HP-PRRSV HuN4 through repeated passages on MARC-145 cells. However, the mechanisms of attenuation have yet to be defined. Previous studies have shown that the vaccine strain HuN4-F112 could not effectively replicate in porcine alveolar macrophages (PAMs). In the present study, a series of chimeric and mutant PRRSVs were constructed to investigate regions associated with the virus attenuation. Firstly, the corresponding genome regions (ORF1a, ORF1b and ORFs 2-7) were exchanged between two infectious clones of HuN4 and HuN4-F112, and then the influence of small regions in ORF1a and ORF2-7 was evaluated, then influence of specific amino acids on NSP2 was tested. NSP2 was determined to be the key gene that regulated infection efficiency on PAMs, and amino acids at 893 and 979 of NSP2 were the key amino acids. The results of in vivo study indicated that NSP2 was not only important for infection efficiency in vitro, but also influenced the virulence, which was indicated by the results of survival rate, temperature, viremia, lung score and tissue score.
Collapse
|
18
|
A Molecular and Epidemiological Description of a Severe Porcine Reproductive and Respiratory Syndrome Outbreak in a Commercial Swine Production System in Russia. Viruses 2022; 14:v14020375. [PMID: 35215966 PMCID: PMC8875681 DOI: 10.3390/v14020375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating disease of swine in many parts of the world. Porcine reproductive and respiratory syndrome virus (PRRSV) type 1 is endemic in Europe, and prevalence of the subtypes differ spatially. In this study, we investigated a severe PRRS outbreak reported in 30 farms located in eastern Russia that belong to a large swine production company in the region that was also experiencing a pseudorabies outbreak in the system. Data included 28 ORF5 sequences from samples across 18 of the 25 infected sites, reverse transcriptase real-time polymerase chain reaction (RT-qPCR) results from diagnostic testing, reports of clinical signs, and animal movement records. We observed that the outbreak was due to two distinct variants of wildtype PRRSV type 1 subtype 1 with an average genetic distance of 15%. Results suggest that the wildtype PRRSV variants were introduced into the region around 2019, before affecting this production system (i.e., sow farms, nurseries, and finisher farms). Clinical signs did not differ between the variants, but they did differ by stage of pig production. Biosecurity lapses, including movement of animals from infected farms contributed to disease spread.
Collapse
|
19
|
Identification of Virulence Associated Region during Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus during Attenuation In Vitro: Complex Question with Different Strain Backgrounds. Viruses 2021; 14:v14010040. [PMID: 35062244 PMCID: PMC8780124 DOI: 10.3390/v14010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus PRRSV (HP-PRRSV) was one of the most devastating diseases of the pig industry, among various strategies, vaccination was one of the most useful tools for PRRS control. Attenuated live vaccine was used worldwide, however, the genetic basis of HP-PRRSV virulence change during attenuation remain to be determined. Here, to identify virulence associated regions of HP-PRRSV during attenuation in vitro, six full-length infectious cDNA clones with interchanges of 5′UTR + ORF1a, ORF1b, and ORF2-7 + 3′UTR regions between HP-PRRSV strain HuN4-F5 and its attenuated vaccine strain HuN4-F112 were generated, and chimeric viruses were rescued. Piglets were inoculated with chimeric viruses and their parental viruses, and rectal temperature were recorded daily, and serum were collected for future experiments. Our results showed that ORF1a played an important role on virus replication, cytokine response and lung damage, the exchange of ORF1b and ORF2-7 in different backbone led to different exhibition on virus replication in vivo/vitro and cytokine response. Among 9 PRRSV attenuated series, consistent amino acid changes during PRRSV attenuation were found in NSP4, NSP9, GP2, E, GP3 and GP4. Our study provides a fundamental data for the investigation of PRRSV attenuation, the different results of the virulence change among different studies indicated that different mechanisms might be used during PRRSV virulence enhancement in vivo and attenuation in vitro.
Collapse
|
20
|
Ruedas-Torres I, Gómez-Laguna J, Sánchez-Carvajal JM, Larenas-Muñoz F, Barranco I, Pallarés FJ, Carrasco L, Rodríguez-Gómez IM. Activation of T-bet, FOXP3, and EOMES in Target Organs From Piglets Infected With the Virulent PRRSV-1 Lena Strain. Front Immunol 2021; 12:773146. [PMID: 34956200 PMCID: PMC8697429 DOI: 10.3389/fimmu.2021.773146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023] Open
Abstract
Transcription factors (TFs) modulate genes involved in cell-type-specific proliferative and migratory properties, metabolic features, and effector functions. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogen agents in the porcine industry; however, TFs have been poorly studied during the course of this disease. Therefore, we aimed to evaluate the expressions of the TFs T-bet, GATA3, FOXP3, and Eomesodermin (EOMES) in target organs (the lung, tracheobronchial lymph node, and thymus) and those of different effector cytokines (IFNG, TNFA, and IL10) and the Fas ligand (FASL) during the early phase of infection with PRRSV-1 strains of different virulence. Target organs from mock-, virulent Lena-, and low virulent 3249-infected animals humanely euthanized at 1, 3, 6, 8, and 13 days post-infection (dpi) were collected to analyze the PRRSV viral load, histopathological lesions, and relative quantification through reverse transcription quantitative PCR (RT-qPCR) of the TFs and cytokines. Animals belonging to both infected groups, but mainly those infected with the virulent Lena strain, showed upregulation of the TFs T-bet, EOMES, and FOXP3, together with an increase of the cytokine IFN-γ in target organs at the end of the study (approximately 2 weeks post-infection). These results are suggestive of a stronger polarization to Th1 cells and regulatory T cells (Tregs), but also CD4+ cytotoxic T lymphocytes (CTLs), effector CD8+ T cells, and γδT cells in virulent PRRSV-1-infected animals; however, their biological functionality should be the object of further studies.
Collapse
|
21
|
Time-series transcriptomic analysis of bronchoalveolar lavage cells from virulent and low virulent PRRSV-1-infected piglets. J Virol 2021; 96:e0114021. [PMID: 34851149 PMCID: PMC8826917 DOI: 10.1128/jvi.01140-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has evolved to escape the immune surveillance for a survival advantage leading to a strong modulation of host’s immune responses and favoring secondary bacterial infections. However, limited data are available on how the immunological and transcriptional responses elicited by virulent and low-virulent PRRSV-1 strains are comparable and how they are conserved during the infection. To explore the kinetic transcriptional signature associated with the modulation of host immune response at lung level, a time-series transcriptomic analysis was performed in bronchoalveolar lavage cells upon experimental in vivo infection with two PRRSV-1 strains of different virulence, virulent subtype 3 Lena strain or the low-virulent subtype 1 3249 strain. The time-series analysis revealed overlapping patterns of dysregulated genes enriched in T-cell signaling pathways among both virulent and low-virulent strains, highlighting an upregulation of co-stimulatory and co-inhibitory immune checkpoints that were disclosed as Hub genes. On the other hand, virulent Lena infection induced an early and more marked “negative regulation of immune system process” with an overexpression of co-inhibitory receptors genes related to T-cell and NK cell functions, in association with more severe lung lesion, lung viral load, and BAL cell kinetics. These results underline a complex network of molecular mechanisms governing PRRSV-1 immunopathogenesis at lung level, revealing a pivotal role of co-inhibitory and co-stimulatory immune checkpoints in the pulmonary disease, which may have an impact on T-cell activation and related pathways. These immune checkpoints, together with the regulation of cytokine-signaling pathways, modulated in a virulence-dependent fashion, orchestrate an interplay among pro- and anti-inflammatory responses. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the major threats to swine health and global production, causing substantial economic losses. We explore the mechanisms involved in the modulation of host immune response at lung level performing a time-series transcriptomic analysis upon experimental infection with two PRRSV-1 strains of different virulence. A complex network of molecular mechanisms was revealed to control the immunopathogenesis of PRRSV-1 infection, highlighting an interplay among pro- and anti-inflammatory responses as a potential mechanism to restrict inflammation-induced lung injury. Moreover, a pivotal role of co-inhibitory and co-stimulatory immune checkpoints was evidenced, which may lead to progressive dysfunction of T cells, impairing viral clearance and leading to persistent infection, favoring as well secondary bacterial infections or viral rebound. However, further studies should be conducted to evaluate the functional role of immune checkpoints in advanced stages of PRRSV infection and explore a possible T-cell exhaustion state.
Collapse
|
22
|
Amadori M, Listorti V, Razzuoli E. Reappraisal of PRRS Immune Control Strategies: The Way Forward. Pathogens 2021; 10:pathogens10091073. [PMID: 34578106 PMCID: PMC8469074 DOI: 10.3390/pathogens10091073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
The control of porcine reproductive and respiratory syndrome (PRRS) is still a major issue worldwide in the pig farming sector. Despite extensive research efforts and the practical experience gained so far, the syndrome still severely affects farmed pigs worldwide and challenges established beliefs in veterinary virology and immunology. The clinical and economic repercussions of PRRS are based on concomitant, additive features of the virus pathogenicity, host susceptibility, and the influence of environmental, microbial, and non-microbial stressors. This makes a case for integrated, multi-disciplinary research efforts, in which the three types of contributing factors are critically evaluated toward the development of successful disease control strategies. These efforts could be significantly eased by the definition of reliable markers of disease risk and virus pathogenicity. As for the host's susceptibility to PRRSV infection and disease onset, the roles of both the innate and adaptive immune responses are still ill-defined. In particular, the overt discrepancy between passive and active immunity and the uncertain role of adaptive immunity vis-à-vis established PRRSV infection should prompt the scientific community to develop novel research schemes, in which apparently divergent and contradictory findings could be reconciled and eventually brought into a satisfactory conceptual framework.
Collapse
Affiliation(s)
- Massimo Amadori
- Italian Network of Veterinary Immunology, 25125 Brescia, Italy
- Correspondence:
| | - Valeria Listorti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genoa, Italy; (V.L.); (E.R.)
| | - Elisabetta Razzuoli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genoa, Italy; (V.L.); (E.R.)
| |
Collapse
|
23
|
Graham SP, Cheong YK, Furniss S, Nixon E, Smith JA, Yang X, Fruengel R, Hussain S, Tchorzewska MA, La Ragione RM, Ren G. Antiviral Efficacy of Metal and Metal Oxide Nanoparticles against the Porcine Reproductive and Respiratory Syndrome Virus. NANOMATERIALS 2021; 11:nano11082120. [PMID: 34443950 PMCID: PMC8398903 DOI: 10.3390/nano11082120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Porcine reproductive and respiratory syndrome viruses (PRRSV) are responsible for one of the most economically important diseases affecting the global pig industry. On-farm high-efficiency particulate air (HEPA) filtration systems can effectively reduce airborne transmission of PRRSV and the incidence of PRRS, but they are costly, and their adoption is limited. Therefore, there is a need for low-cost alternatives, such as antimicrobial filters impregnated with antiviral nanoparticles (AVNP). During the past 10 years, tailored intermetallic/multi-elemental AVNP compositions have demonstrated effective performance against human viruses. In this study, a panel of five AVNP was evaluated for viricidal activity against PRRSV. Three AVNP materials: AVNP2, copper nanoparticles (CuNP), and copper oxide nanoparticles (CuONP), were shown to exert a significant reduction (>99.99%) in virus titers at 1.0% (w/v) concentration. Among the three, CuNP was the most effective at lower concentrations. Further experiments revealed that AVNP generated significant reductions in viral titers within just 1.5 min. For an optimal reduction in viral titers, direct contact between viruses and AVNP was required. This was further explained by the inert nature of these AVNP, where only negligible leaching concentrations of Ag/Cu ions (0.06–4.06 ppm) were detected in AVNP supernatants. Real-time dynamic light scatting (DLS) and transmission electron microscopic (TEM) analyses suggested that the mono-dispersive hydrodynamic behavior of AVNPs may have enhanced their antiviral activity against PRRSV. Collectively, these data support the further evaluation of these AVNP as candidate nanoparticles for incorporation into antimicrobial air-filtration systems to reduce transmission of PRRSV and other airborne pathogens.
Collapse
Affiliation(s)
- Simon P. Graham
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
- The Pirbright Institute, Woking GU24 0NF, UK
- Correspondence: (S.P.G.); (G.R.); Tel.: +44-(0)1483-231-478 (S.P.G.); +44-(0)7940-767-589 (G.R.)
| | - Yuen-Ki Cheong
- School of Physics, Engineering and Computer Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (Y.-K.C.); (X.Y.)
| | - Summer Furniss
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
| | - Emma Nixon
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
| | - Joseph A. Smith
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
| | - Xiuyi Yang
- School of Physics, Engineering and Computer Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (Y.-K.C.); (X.Y.)
| | - Rieke Fruengel
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
| | - Sabha Hussain
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
| | - Monika A. Tchorzewska
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
| | - Roberto M. La Ragione
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; (S.F.); (E.N.); (J.A.S.); (R.F.); (S.H.); (M.A.T.); (R.M.L.R.)
| | - Guogang Ren
- School of Physics, Engineering and Computer Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (Y.-K.C.); (X.Y.)
- Correspondence: (S.P.G.); (G.R.); Tel.: +44-(0)1483-231-478 (S.P.G.); +44-(0)7940-767-589 (G.R.)
| |
Collapse
|
24
|
Li S, Li X, Qiu M, Li J, Xiao Y, Lin H, Zheng W, Zhu J, Chen N. Transcriptomic profiling reveals different innate immune responses in primary alveolar macrophages infected by two highly homologous porcine reproductive and respiratory syndrome viruses with distinct virulence. Microb Pathog 2021; 158:105102. [PMID: 34298124 DOI: 10.1016/j.micpath.2021.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) isolates show high genetic and pathogenic diversity. The mechanisms underlying different virulence of PRRSV isolates are still not fully clarified. Two highly homologous PRRSV isolates (XJ17-5 and JSTZ1712-12) with distinct virulence were identified in our previous study. To evaluate the association between host responses and different virulence, here we investigated the transcriptomic profiles of porcine alveolar macrophages (PAMs) infected with these two isolates. RNA-Seq results showed that there are 1932 differential expression genes (DEGs) between two PRRSV infected groups containing 1067 upregulation and 865 downregulation genes. Compared with the avirulent JSTZ1712-12 infected group, GO analysis identified significant enrichment gene sets not only associated with virus infection but also innate immune response in the virulent XJ17-5 infected group. In addition, KEGG analysis indicated significantly enriched genes associated with NOD-like and RIG-I-like receptor signaling pathways in XJ17-5 vs JSTZ1712-12 group. Furthermore, XJ17-5 isolate induced significantly higher levels of innate immune response associated genes (IL-1β, CXCL2, S100A8, OAS2, MX1, IFITM3, ISG15 and IFI6) than JSTZ1712-12 isolate, which were further confirmed by real-time PCR. Given that these two isolates share similar replication efficiency in vivo and in vitro, our results indicated that distinct virulence of PRRSV isolates is associated with different host innate immune responses.
Collapse
Affiliation(s)
- Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
25
|
Ruedas-Torres I, Rodríguez-Gómez IM, Sánchez-Carvajal JM, Larenas-Muñoz F, Pallarés FJ, Carrasco L, Gómez-Laguna J. The jigsaw of PRRSV virulence. Vet Microbiol 2021; 260:109168. [PMID: 34246042 DOI: 10.1016/j.vetmic.2021.109168] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of the, probably, most economically important disease for the pig industry worldwide. This disease, characterised by producing reproductive failure in sows and respiratory problems in growing pigs, appeared in the late 1980s in the United States and Canada. Since its appearance, strains capable of producing higher mortality rates as well as greater severity in clinical signs and lesions than classical strains have been identified. However, since the first reports of these "virulent" PRRSV outbreaks, no homogeneity and consensus in their description have been established. Moreover, to the authors' knowledge, there is no published information related to the criteria that a PRRSV strain should fulfil to be considered as a "virulent" strain. In this review, we revise the terminology used and gather the information related to the main characteristics and differences in clinical signs, lesions, viral replication and tropism as well as immunological parameters between virulent and classical PRRSV strains and propose a first approximation to the criteria to define a virulent PRRSV strain.
Collapse
Affiliation(s)
- I Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, 14014, Córdoba, Spain.
| | - I M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, 14014, Córdoba, Spain
| | - J M Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, 14014, Córdoba, Spain
| | - F Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, 14014, Córdoba, Spain
| | - F J Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, 14014, Córdoba, Spain
| | - L Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, 14014, Córdoba, Spain
| | - J Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
26
|
Guzmán M, Meléndez R, Jiménez C, Piche M, Jiménez E, León B, Cordero JM, Ramirez-Carvajal L, Uribe A, Van Nes A, Stegeman A, Romero JJ. Analysis of ORF5 sequences of Porcine Reproductive and Respiratory Syndrome virus (PRRSV) circulating within swine farms in Costa Rica. BMC Vet Res 2021; 17:217. [PMID: 34118903 PMCID: PMC8196928 DOI: 10.1186/s12917-021-02925-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/04/2021] [Indexed: 11/30/2022] Open
Abstract
Background Worldwide, Porcine Reproductive and Respiratory Syndrome (PRRS) is among the diseases that cause the highest economic impact in modern pig production. PRRS was first detected in Costa Rica in 1996 and has since then severely affected the local swine industry. Studies of the molecular characterization of circulating strains, correlation with clinical records, and associations with pathogens associated with Porcine Respiratory Disease Complex (PRDC) have not been done in Costa Rica. Results Sequencing and phylogenetic analysis of ORF5 proved that PRRSV-2 was the only species detected in all locations analyzed. These sequences were grouped into three clusters. When comparing samples from San Jose, Alejuela, and Puntarenas to historical isolates of the previously described lineages (1 to 9), it has been shown that these were closely related to each other and belonged to Lineage 5, along with the samples from Heredia. Intriguingly, samples from Cartago clustered in a separate clade, phylogenetically related to Lineage 1. Epitope analysis conducted on the GP5 sequence of field isolates from Costa Rica revealed seven peptides with at least 80% amino acid sequence identity with previously described and experimentally validated immunogenic regions. Previously described epitopes A, B, and C, were detected in the Santa Barbara-Heredia isolate. Conclusions Our data suggest that the virus has three distinct origins or introductions to the country. Future studies will elucidate how recently introduced vaccines will shape the evolutionary change of circulating field strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02925-7.
Collapse
Affiliation(s)
- Mónica Guzmán
- Department of Veterinary Diagnostics (DDV), Veterinary Services National Laboratories (LANASEVE), Animal Health National Service (SENASA), Ministry of Livestock and Agriculture (MAG), Heredia, Costa Rica
| | - Ronald Meléndez
- Department of Population Health Sciences, University of Utrecht, Utrecht, The Netherlands. .,Consultoría Regional de Investigación en Producción Animal Sostenible (CRIPAS), School of Veterinary Medicine (EMV), Universidad Nacional (UNA), Heredia, Costa Rica.
| | - Carlos Jiménez
- Department of Virology, School of Veterinary Medicine (EMV), Universidad Nacional (UNA), Heredia, Costa Rica
| | - Marta Piche
- Department of Virology, School of Veterinary Medicine (EMV), Universidad Nacional (UNA), Heredia, Costa Rica
| | | | - Bernal León
- Department of Veterinary Diagnostics (DDV), Veterinary Services National Laboratories (LANASEVE), Animal Health National Service (SENASA), Ministry of Livestock and Agriculture (MAG), Heredia, Costa Rica
| | - Juan M Cordero
- Department of Veterinary Diagnostics (DDV), Veterinary Services National Laboratories (LANASEVE), Animal Health National Service (SENASA), Ministry of Livestock and Agriculture (MAG), Heredia, Costa Rica
| | - Lisbeth Ramirez-Carvajal
- Department of Veterinary Diagnostics (DDV), Veterinary Services National Laboratories (LANASEVE), Animal Health National Service (SENASA), Ministry of Livestock and Agriculture (MAG), Heredia, Costa Rica.
| | | | - Arie Van Nes
- Department of Population Health Sciences, University of Utrecht, Utrecht, The Netherlands.
| | - Arjan Stegeman
- Department of Population Health Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Juan José Romero
- Consultoría Regional de Investigación en Producción Animal Sostenible (CRIPAS), School of Veterinary Medicine (EMV), Universidad Nacional (UNA), Heredia, Costa Rica
| |
Collapse
|
27
|
Su CM, Rowland RRR, Yoo D. Recent Advances in PRRS Virus Receptors and the Targeting of Receptor-Ligand for Control. Vaccines (Basel) 2021; 9:vaccines9040354. [PMID: 33916997 PMCID: PMC8067724 DOI: 10.3390/vaccines9040354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cellular receptors play a critical role in viral infection. At least seven cellular molecules have been identified as putative viral entry mediators for porcine reproductive and respiratory syndrome virus (PRRSV). Accumulating data indicate that among these candidates, CD163, a cysteine-rich scavenger receptor on macrophages, is the major receptor for PRRSV. This review discusses the recent advances and understanding of the entry of PRRSV into cells, viral pathogenesis in CD163 gene-edited swine, and CD163 as a potential target of receptor–ligand for the control of PRRS.
Collapse
|
28
|
A broadly neutralizing monoclonal antibody induces broad protection against heterogeneous PRRSV strains in piglets. Vet Res 2021; 52:45. [PMID: 33726857 PMCID: PMC7962380 DOI: 10.1186/s13567-021-00914-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/21/2021] [Indexed: 11/10/2022] Open
Abstract
Neutralizing antibodies (NAbs) have attracted attention as tools for achieving PRRSV control and prevention, but viral antigenic variation undermines the abilities of NAbs elicited by attenuated PRRSV vaccines to confer full protection against heterogeneous PRRSV field isolates. As demonstrated in this study, the monoclonal antibody (mAb) mAb-PN9cx3 exhibited broad-spectrum recognition and neutralizing activities against PRRSV-1 and PRRSV-2 strains in vitro. Furthermore, in vivo experiments revealed that the administration of two 10-mg doses of mAb-PN9cx3 before and after the inoculation of piglets with heterologous PRRSV isolates (HP-PRRSV-JXA1 or PRRSV NADC30-like strain HNhx) resulted in significant reduction of the PRRSV-induced pulmonary pathological changes and virus loads in porcine alveolar macrophages (PAMs) compared with the results obtained with mAb-treated isotype controls. Moreover, minimal hilar lymph node PRRSV antigen levels were observed in mAb-PN9cx3-treated piglets. A transcriptome profile analysis of PAMs extracted from lung tissues of piglets belonging to different groups (except for antibody-isotype controls) indicated that mAb-PN9cx3 treatment reversed the PRRSV infection-induced alterations in expression profiles. A gene ontology (GO) enrichment analysis of these genes traced their functions to pathways that included the immune response, inflammatory response, and response to steroid hormone, and their functions in oogenesis and positive regulation of angiogenesis have been implicated in PRRSV pathogenesis. Overall, NADC30-like HNhx infection affected more gene pathways than HP-PRRSV infection. In conclusion, our research describes a novel immunologic approach involving the use of mAbs that confer cross-protection against serious illness resulting from infection with heterogeneous PRRSV-2 isolates, which is a feat that has not yet been achieved through vaccination. Ultimately, mAb-PN9cx3 will be a powerful addition to our current arsenal for achieving PRRSV prevention and eradication.
Collapse
|
29
|
Argüello H, Rodríguez-Gómez IM, Sánchez-Carvajal JM, Pallares FJ, Díaz I, Cabrera-Rubio R, Crispie F, Cotter PD, Mateu E, Martín-Valls G, Carrasco L, Gómez-Laguna J. Porcine reproductive and respiratory syndrome virus impacts on gut microbiome in a strain virulence-dependent fashion. Microb Biotechnol 2021; 15:1007-1016. [PMID: 33656781 PMCID: PMC8913879 DOI: 10.1111/1751-7915.13757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a viral disease defined by reproductive problems, respiratory distress and a negative impact on growth rate and general condition. Virulent PRRS virus (PRRSV) strains have emerged in the last years with evident knowledge gaps in their impact on the host immune response. Thus, the present study examines the impact of acute PRRS virus (PRRSV) infection, with two strains of different virulence, on selected immune parameters and on the gut microbiota composition of infected pigs using 16S rRNA compositional sequencing. Pigs were infected with a low virulent (PRRS_3249) or a virulent (Lena) PRRSV‐1 strain and euthanized at 1, 3, 6, 8 or 13 days post‐inoculation (dpi). Faeces were collected from each animal at the necropsy time‐point. Alpha and beta diversity analyses demonstrated that infection, particularly with the Lena strain, impacted the microbiome composition from 6 dpi onwards. Taxonomic differences revealed that infected pigs had higher abundance of Treponema and Methanobrevibacter (FDR < 0.05). Differences were more considerable for Lena‐ than for PRRS_3249‐infected pigs, showing the impact of strain virulence in the intestinal changes. Lena‐infected pigs had reduced abundancies of anaerobic commensals such as Roseburia, Anaerostipes, Butyricicoccus and Prevotella (P < 0.05). The depletion of these desirable commensals was significantly correlated to infection severity measured by viraemia, clinical signs, lung lesions and immune parameters (IL‐6, IFN‐γ and Hp serum levels). Altogether, the results from this study demonstrate the indirect impact of PRRSV infection on gut microbiome composition in a strain virulence‐dependent fashion and its association with selected immune markers.
Collapse
Affiliation(s)
- Héctor Argüello
- Infectious Diseases and Epidemiology Unit, Department of Animal Health, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Jose María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Francisco José Pallares
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, Mare Nostrum Excellence Campus, Murcia, Spain
| | - Iván Díaz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain
| | - Raúl Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland.,Vistamilk, Fermoy, Co. Cork, Ireland
| | - Enric Mateu
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Bellaterra, Spain.,Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Gerard Martín-Valls
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| |
Collapse
|
30
|
Zhang L, Wang L, Cao S, Lv H, Huang J, Zhang G, Tabynov K, Zhao Q, Zhou EM. Nanobody Nb6 fused with porcine IgG Fc as the delivering tag to inhibit porcine reproductive and respiratory syndrome virus replication in porcine alveolar macrophages. Vet Res 2021; 52:25. [PMID: 33596995 PMCID: PMC7887809 DOI: 10.1186/s13567-020-00868-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious virus that has led to enormous economic loss worldwide because of ineffective prevention and treatment. In view of their minimized size, high target specificity and affinity, nanobodies have been extensively investigated as diagnostic tools and treatments of many diseases. Previously, a PRRSV Nsp9-specific nanobody (Nb6) was identified as a PRRSV replication inhibitor. When it was fused with cell-penetrating peptide (CPP) TAT, Nb6-TAT could enter the cells for PRRSV suppression. However, delivery of molecules by CPP lack cell specificity and have a short duration of action. PRRSV has a tropism for monocyte/macrophage lineage, which expresses high levels of Fcγ receptors. Herein, we designed a nanobody containing porcine IgG Fc (Fcγ) to inhibit PRRSV replication in PRRSV permissive cells. Fcγ fused Nb6 chimeric antibody (Nb6-pFc) was assembled into a dimer with interchain disulfide bonds and expressed in a Pichia pastoris system. The results show that Nb6-pFc exhibits a well-binding ability to recombinant Nsp9 or PRRSV-encoded Nsp9 and that FcγR-mediated endocytosis of Nb6-pFc into porcine alveolar macrophages (PAM) was in a dose-dependent manner. Nb6-pFc can inhibit PRRSV infection efficiently not only by binding with Nsp9 but also by upregulating proinflammatory cytokine production in PAM. Together, this study proposes the design of a porcine IgG Fc-fused nanobody that can enter PRRSV susceptible PAM via FcγR-mediated endocytosis and inhibit PRRSV replication. This research reveals that nanobody-Fcγ chimeric antibodies might be effective for the control and prevention of monocyte/macrophage lineage susceptible pathogeneses.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Lizhen Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Shuaishuai Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Huanhuan Lv
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Jingjing Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Guixi Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Kaissar Tabynov
- Kazakh National Agrarian University, 050010, Almaty, Kazakhstan
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
31
|
Sánchez-Carvajal JM, Ruedas-Torres I, Carrasco L, Pallarés FJ, Mateu E, Rodríguez-Gómez IM, Gómez-Laguna J. Activation of regulated cell death in the lung of piglets infected with virulent PRRSV-1 Lena strain occurs earlier and mediated by cleaved Caspase-8. Vet Res 2021; 52:12. [PMID: 33482914 PMCID: PMC7821682 DOI: 10.1186/s13567-020-00882-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
PRRSV-1 virulent strains cause high fever, marked respiratory disease and severe lesions in lung and lymphoid organs. Regulated cell death (RCD), such as apoptosis, necroptosis and pyroptosis, is triggered by the host to interrupt viral replication eliminating infected cells, however, although it seems to play a central role in the immunopathogenesis of PRRSV, there are significant gaps regarding their sequence and activation upon PRRSV-infection. The present study evaluated RCD events by means of caspases expression in the lung of PRRSV-1-infected pigs and their impact on pulmonary macrophage subpopulations and lung lesion. Conventional piglets were intranasally inoculated with the virulent subtype 3 Lena strain or the low virulent subtype 1 3249 strain and euthanised at 1, 3, 6, 8 and 13 dpi. Lena-infected piglets showed severe and early lung damage with a high frequency of PRRSV-N-protein+ cells, depletion of CD163+ cells and high viral load in the lung. The number of TUNEL+ cells was significantly higher than cCasp3+ cells in Lena-infected piglets during the first week post-infection. cCasp8 and to a lesser extent cCasp9 were activated by both PRRSV-1 strains after one week post-infection together with a replenishment of both CD163+ and Arg-1+ pulmonary macrophages. These results highlight the induction of other forms of RCD beyond apoptosis, such as, necroptosis and pyroptosis during the first week post-infection followed by the activation of, mainly, extrinsic apoptosis during the second week post-infection. The recovery of CD163+ macrophages at the end of the study represents an attempt to restore pulmonary macrophage subpopulations lost during the early stages of the infection but also a macrophage polarisation into M2 macrophages.
Collapse
Affiliation(s)
- Jose María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Spain.,Institut de Recerca i Tecnologia Agroalimentàries - Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
32
|
Crisci E, Moroldo M, Vu Manh TP, Mohammad A, Jourdren L, Urien C, Bouguyon E, Bordet E, Bevilacqua C, Bourge M, Pezant J, Pléau A, Boulesteix O, Schwartz I, Bertho N, Giuffra E. Distinctive Cellular and Metabolic Reprogramming in Porcine Lung Mononuclear Phagocytes Infected With Type 1 PRRSV Strains. Front Immunol 2020; 11:588411. [PMID: 33365028 PMCID: PMC7750501 DOI: 10.3389/fimmu.2020.588411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/19/2020] [Indexed: 01/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has an extensive impact on pig production. The causative virus (PRRSV) is divided into two species, PRRSV-1 (European origin) and PRRSV-2 (North American origin). Within PRRSV-1, PRRSV-1.3 strains, such as Lena, are more pathogenic than PRRSV-1.1 strains, such as Flanders 13 (FL13). To date, the molecular interactions of PRRSV with primary lung mononuclear phagocyte (MNP) subtypes, including conventional dendritic cells types 1 (cDC1) and 2 (cDC2), monocyte-derived DCs (moDC), and pulmonary intravascular macrophages (PIM), have not been thoroughly investigated. Here, we analyze the transcriptome profiles of in vivo FL13-infected parenchymal MNP subpopulations and of in vitro FL13- and Lena-infected parenchymal MNP. The cell-specific expression profiles of in vivo sorted cells correlated with their murine counterparts (AM, cDC1, cDC2, moDC) with the exception of PIM. Both in vivo and in vitro, FL13 infection altered the expression of a low number of host genes, and in vitro infection with Lena confirmed the higher ability of this strain to modulate host response. Machine learning (ML) and gene set enrichment analysis (GSEA) unraveled additional relevant genes and pathways modulated by FL13 infection that were not identified by conventional analyses. GSEA increased the cellular pathways enriched in the FL13 data set, but ML allowed a more complete comprehension of functional profiles during FL13 in vitro infection. Data indicates that cellular reprogramming differs upon Lena and FL13 infection and that the latter might keep antiviral and inflammatory macrophage/DC functions silent. Although the slow replication kinetics of FL13 likely contribute to differences in cellular gene expression, the data suggest distinct mechanisms of interaction of the two viruses with the innate immune system during early infection.
Collapse
Affiliation(s)
- Elisa Crisci
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Marco Moroldo
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Ammara Mohammad
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Jourdren
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Celine Urien
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Edwige Bouguyon
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elise Bordet
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Mickael Bourge
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jérémy Pezant
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRAE, Nouzilly, France
| | - Alexis Pléau
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRAE, Nouzilly, France
| | - Olivier Boulesteix
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRAE, Nouzilly, France
| | - Isabelle Schwartz
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Bertho
- Virologie et Immunologie Moléculaire, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elisabetta Giuffra
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| |
Collapse
|
33
|
Ferlazzo G, Ruggeri J, Boniotti MB, Guarneri F, Barbieri I, Tonni M, Bertasio C, Alborali GL, Amadori M. In vitro Cytokine Responses to Virulent PRRS Virus Strains. Front Vet Sci 2020; 7:335. [PMID: 32760741 PMCID: PMC7373743 DOI: 10.3389/fvets.2020.00335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) affects farmed swine causing heavy direct and indirect losses. The infections sustained by PRRS viruses (PRRSV-1 and PRRSV-2) may give rise to severe clinical cases. This highlights the issue of PRRSV pathogenicity and relevant markers thereof. Since PRRSV strains can be discriminated in terms of immunotypes, we aimed to detect possible correlates of virulence in vitro based on the profile of innate immune responses induced by strains of diverse virulence. To this purpose, 10 field PRRSV isolates were investigated in assays of innate immune response to detect possible features associated with virulence. Tumor necrosis factor-α, interleukin (IL)-1beta, IL-8, IL-10, and caspase-1 were measured in cultures of PRRSV-treated peripheral blood mononuclear cells of PRRS-naive pigs, unable to support PRRSV replication. Two reference PRRSV strains (highly pathogenic and attenuated, respectively), were included in the screening. The PRRSV strains isolated from field cases were shown to vary widely in terms of inflammatory cytokine responses in vitro, which were substantially lacking with some strains including the reference, highly pathogenic one. In particular, neither the field PRRSV isolates nor the reference highly pathogenic strain gave rise to an IL-1beta response, which was consistently induced by the attenuated strain, only. This pattern of response was reversed in an inflammatory environment, in which the attenuated strain reduced the ongoing IL-1beta response. Results indicate that some pathogenic PRRSV strains can prevent a primary inflammatory response of PBMCs, associated with reduced permissiveness of mature macrophages for PRRSV replication in later phases.
Collapse
Affiliation(s)
- Gianluca Ferlazzo
- Laboratory of Animal Welfare, Clinical Chemistry and Veterinary Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Jessica Ruggeri
- Laboratory of Animal Welfare, Clinical Chemistry and Veterinary Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Maria Beatrice Boniotti
- Genomics Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Flavia Guarneri
- Laboratory of Animal Welfare, Clinical Chemistry and Veterinary Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Ilaria Barbieri
- Genomics Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Matteo Tonni
- Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Cristina Bertasio
- Genomics Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Giovanni Loris Alborali
- Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Massimo Amadori
- Laboratory of Animal Welfare, Clinical Chemistry and Veterinary Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| |
Collapse
|
34
|
Yuzhakov AG, Raev SA, Shchetinin AM, Gushchin VA, Alekseev KP, Stafford VV, Komina AK, Zaberezhny AD, Gulyukin AM, Aliper TI. Full-genome analysis and pathogenicity of a genetically distinct Russian PRRSV-1 Tyu16 strain. Vet Microbiol 2020; 247:108784. [PMID: 32768228 DOI: 10.1016/j.vetmic.2020.108784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
Porcine reproductive and respiratory syndrome virus-1 (PRRSV-1) strains from Eastern Europe have a high diversity. All three known subtypes (1, 2, 3) of PRRSV-1 have been detected in Russia. There are two different groups of viruses belonging to the subtype 1: pan-European subtype 1 strains, and insufficiently studied Russian strains. The main objective of this study was to characterize the full genomic structure of the atypical Tyu16 strain of the Russian group subtype 1 PRRSV-1 and to assess its pathogenicity. Complete sequencing of the Tyu16 strain revealed that it did not belong to any existing subtype. Comparison of the whole genome sequence of the Tyu16 strain with that of PRRSV-1 prototype strains revealed 78.1 % (subtype 1 Lelystad), 78.1 % (subtype 2 WestSib13) and 77.7 % (subtype 3 Lena) nucleotide identity level, respectively. The coding sequence of different parts of the Tyu16 strain genome demonstrated a varying percentage identity to the different reference PRRSV-1 strains, which may indicate recombination events in its evolutionary history. We assume that among PRRSV-1 isolates, the Tyu16 is the closest relative to the common ancestor of PRRSV-1 and PRRSV-2. Low pathogenicity of the Tyu16 was demonstrated by experimental infection of 70-day-old piglets. Infected animals showed fever not exceeding 7 days, dyspnea in two out of five pigs and reduced weight gain. The virus shedding was undetectable and viremia was at low level.
Collapse
Affiliation(s)
- Anton G Yuzhakov
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Sergei A Raev
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Alexey M Shchetinin
- N. F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow, Russia.
| | - Vladimir A Gushchin
- N. F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow, Russia.
| | - Konstantin P Alekseev
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Viсtoria V Stafford
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Alina K Komina
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Alexei D Zaberezhny
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Alexey M Gulyukin
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| | - Taras I Aliper
- Federal State Budget Scientific Institution "Federal Scientific Centre VIEV" (FSC VIEV), Moscow, Russia.
| |
Collapse
|
35
|
Fitzgerald RM, Collins PJ, McMenamey MJ, Leonard FC, McGlynn H, O'Shea H. Porcine reproductive and respiratory syndrome virus: phylogenetic analysis of circulating strains in the Republic of Ireland from 2016 to 2017. Arch Virol 2020; 165:2057-2063. [PMID: 32594320 DOI: 10.1007/s00705-020-04710-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
In order to investigate the genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) strains currently circulating in the Republic of Ireland (ROI), the ORF5 gene from 17 field strains originating from four vaccinating commercial herds was sequenced and phylogenetically analysed. High genetic variability was observed between farms at the nucleotide (86.3-95.2%) and amino acid (85.5-96%) levels. Phylogenetic analysis confirmed that all field strains belonged to the European species (type 1) and clustered into three separate groups within the subtype 1 subgroup. This variation may pose challenges for diagnosis and prophylactic control of PRRSV through vaccination in the ROI.
Collapse
Affiliation(s)
- Rose M Fitzgerald
- Bio-Explore, Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, T12 P928, Republic of Ireland.
| | - Patrick J Collins
- Veterinary Science Division, Agri-Food and Biosciences Institute, Stormont, Belfast, BT4 3SD, Northern Ireland
| | - Michael J McMenamey
- Veterinary Science Division, Agri-Food and Biosciences Institute, Stormont, Belfast, BT4 3SD, Northern Ireland
| | - Finola C Leonard
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 W6F6, Republic of Ireland
| | - Hugh McGlynn
- Bio-Explore, Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, T12 P928, Republic of Ireland
| | - Helen O'Shea
- Bio-Explore, Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, T12 P928, Republic of Ireland
| |
Collapse
|
36
|
Sánchez-Carvajal JM, Rodríguez-Gómez IM, Ruedas-Torres I, Larenas-Muñoz F, Díaz I, Revilla C, Mateu E, Domínguez J, Martín-Valls G, Barranco I, Pallarés FJ, Carrasco L, Gómez-Laguna J. Activation of pro- and anti-inflammatory responses in lung tissue injury during the acute phase of PRRSV-1 infection with the virulent strain Lena. Vet Microbiol 2020; 246:108744. [PMID: 32605751 PMCID: PMC7265841 DOI: 10.1016/j.vetmic.2020.108744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022]
Abstract
Lena virulent strain caused an increase in sera levels of IFN-γ and IL-6. Lung viral load and PRRSV-N-protein+ cells were inversely correlated with CD163+ macrophages in the lung. CD14+ cells infiltrated interstitium to possibly replenish macrophages subsets. Lena-induced microscopic lung injury was linked to an increase of iNOS+ cells. The increase of CD200R1+ and FoxP3+ cells was associated with the course of lung injury.
Porcine reproductive and respiratory syndrome virus (PRRSV) plays a key role in porcine respiratory disease complex modulating the host immune response and favouring secondary bacterial infections. Pulmonary alveolar macrophages (PAMs) are the main cells supporting PRRSV replication, with CD163 as the essential receptor for viral infection. Although interstitial pneumonia is by far the representative lung lesion, suppurative bronchopneumonia is described for PRRSV virulent strains. This research explores the role of several immune markers potentially involved in the regulation of the inflammatory response and sensitisation of lung to secondary bacterial infections by PRRSV-1 strains of different virulence. Conventional pigs were intranasally inoculated with the virulent subtype 3 Lena strain or the low virulent subtype 1 3249 strain and euthanised at 1, 3, 6 and 8 dpi. Lena-infected pigs exhibited more severe clinical signs, macroscopic lung score and viraemia associated with an increase of IL-6 and IFN-γ in sera compared to 3249-infected pigs. Extensive areas of lung consolidation corresponding with suppurative bronchopneumonia were observed in Lena-infected pigs. Lung viral load and PRRSV-N-protein+ cells were always higher in Lena-infected animals. PRRSV-N-protein+ cells were linked to a marked drop of CD163+ macrophages. The number of CD14+ and iNOS+ cells gradually increased along PRRSV-1 infection, being more evident in Lena-infected pigs. The frequency of CD200R1+ and FoxP3+ cells peaked late in both PRRSV-1 strains, with a strong correlation between CD200R1+ cells and lung injury in Lena-infected pigs. These results highlight the role of molecules involved in the earlier and higher extent of lung lesions in piglets infected with the virulent Lena strain, pointing out the activation of routes potentially involved in the restraint of the local inflammatory response.
Collapse
Affiliation(s)
- J M Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain.
| | - I M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - I Ruedas-Torres
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - F Larenas-Muñoz
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - I Díaz
- Institut de Recerca i Tecnologia Agroalimentàries - Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - C Revilla
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - E Mateu
- Institut de Recerca i Tecnologia Agroalimentàries - Centre de Recerca en Sanitat Animal (IRTA-CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Spain
| | - J Domínguez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - G Martín-Valls
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Spain
| | - I Barranco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - F J Pallarés
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain
| | - L Carrasco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| | - J Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
37
|
Ruggeri J, Ferlazzo G, Boniotti MB, Capucci L, Guarneri F, Barbieri I, Alborali GL, Amadori M. Characterization of the IgA response to PRRS virus in pig oral fluids. PLoS One 2020; 15:e0229065. [PMID: 32126095 PMCID: PMC7053757 DOI: 10.1371/journal.pone.0229065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/28/2020] [Indexed: 12/28/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is a complex model of host/virus relationship. Disease control measures often includes "acclimatization", i.e. the exposure of PRRS-naïve gilts and sows to PRRSV-infected pigs and premises before the breeding period. In this respect, we had repeatedly observed an association between PRRSV-specific IgA responses in oral fluids (OF) of gilts and block of PRRSV spread. Therefore, we set out to investigate in vitro the inhibition of PRRSV replication by OF samples with different titers of PRRSV-specific IgA and IgG antibody, using Real-time RT PCR. PRRSV yield reduction in monocyte-derived macrophages was associated with the IgA content in OF samples, whereas the IgG-rich samples were sometimes associated with antibody-dependent enhancement (ADE) of replication. Accordingly, we could discriminate between ADE-positive and ADE-negative PRRSV strains. Next, we separated Ig isotypes in OF samples of PRRSV-infected pigs by means of protein A and size exclusion chromatography. The above results were confirmed by using separated Ig isotypes. Both dimeric and monomeric IgA were associated with the strongest reduction of PRRSV replication. The treatment of pig macrophages with separated OF antibodies before PRRSV infection was also associated with PRRSV yield reduction, along with clear changes of both CD163 and CD169 surface expression. Our results point at a role of mucosal IgA in the control of PRRSV replication by extra- and/or intracellular interaction with PRRSV, as well as by induction of signals leading to a reduced susceptibility of macrophages to PRRSV infection.
Collapse
Affiliation(s)
- Jessica Ruggeri
- Laboratory of Animal Welfare, Clinical Chemistry and Veterinary Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | - Gianluca Ferlazzo
- Laboratory of Animal Welfare, Clinical Chemistry and Veterinary Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | - Maria Beatrice Boniotti
- Genomics Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | - Lorenzo Capucci
- Virology Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Brescia, Italy
| | - Flavia Guarneri
- Laboratory of Animal Welfare, Clinical Chemistry and Veterinary Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | - Ilaria Barbieri
- Genomics Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | - Giovanni Loris Alborali
- Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
| | - Massimo Amadori
- Laboratory of Animal Welfare, Clinical Chemistry and Veterinary Immunology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy
- * E-mail:
| |
Collapse
|
38
|
Broad Protection of Pigs against Heterologous PRRSV Strains by a GP5-Mosaic DNA Vaccine Prime/GP5-Mosaic rVaccinia (VACV) Vaccine Boost. Vaccines (Basel) 2020; 8:vaccines8010106. [PMID: 32121277 PMCID: PMC7157218 DOI: 10.3390/vaccines8010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) viruses are a major cause of disease and economic loss in pigs worldwide. High genetic diversity among PRRSV strains is problematic for successful disease control by vaccination. Mosaic DNA and vaccinia (VACV) vaccines were developed in order to improve protection against heterologous PRRSV strains. METHODS Piglets were primed and boosted with GP5-Mosaic DNA vaccine and recombinant GP5-Mosaic VACV (rGP5-Mosaic VACV), respectively. Pigs vaccinated with rGP5-WT (VR2332) DNA and rGP5-WT VACV, or empty vector DNA and empty VACV respectively, served as controls. Virus challenge was given to separate groups of vaccinated pigs with VR2332 or MN184C. Necropsies were performed 14 days after challenge. RESULTS Vaccination with the GP5-Mosaic-based vaccines resulted in cellular reactivity and higher levels of neutralizing antibodies to both VR2332 and MN184C PRRSV strains. In contrast, vaccination of animals with the GP5-WT vaccines induced responses only to VR2332. Furthermore, vaccination with the GP5-Mosaic based vaccines resulted in protection against challenge with two heterologous virus strains, as demonstrated by the significantly lower viral loads in serum, tissues, porcine alveolar macrophages (PAMs), and bronchoalveolar lavage (BAL) fluids, and less severe lung lesions after challenge with either MN184C or VR2332, which have only 85% identity. In contrast, significant protection by the GP5-WT based vaccines was only achieved against the VR2332 strain. Conclusions: GP5-Mosaic vaccines, using a DNA-prime/VACV boost regimen, conferred protection in pigs against heterologous viruses.
Collapse
|
39
|
Fluorescence resonance energy transfer combined with asymmetric PCR for broad and sensitive detection of porcine reproductive and respiratory syndrome virus 2. J Virol Methods 2019; 272:113710. [PMID: 31351984 DOI: 10.1016/j.jviromet.2019.113710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 11/21/2022]
Abstract
With its ever-increasing viral genetic diversity, accurate diagnosis of porcine reproductive and respiratory syndrome virus (PRRSV) infection is indispensable for PRRSV control. Here, a sensitive graphene oxide (GO)-based FRET method was developed to detect PRRSV-2 based on the ability of GO to quench fluorophore by fluorescence resonance energy transfer (FRET). Using primers and a fluorophore-labeled ssDNA probe targeting a conserved region between the PRRSV M gene and 3'UTR, asymmetric PCR specifically amplified viral ssDNA that could anneal with probe to generate dsDNA only in the presence of virus. Upon exonuclease III treatment to release the probe fluorophore, which degrades dsDNA with blunt ends or recessed 3´-termini, the ssDNA annealed with other probe to generate enhanced fluorescence. This GO-based FRET assay specifically detected both classical and highly pathogenic PRRSV, with analytical sensitivity approaching 10 copies/μL, similar to that of real-time PCR but greater than that of conventional reverse transcription PCR (RT-PCR). Consistent with real-time RT-PCR detection, the assay developed here exhibited high diagnostic sensitivity for virus detection of sera from experimentally and naturally infected pigs. Thus, this novel GO-based FRET assay combined with asymmetric PCR detection is sensitive and specific and will be valuable for future PRRSV diagnosis.
Collapse
|
40
|
Bernelin-Cottet C, Urien C, McCaffrey J, Collins D, Donadei A, McDaid D, Jakob V, Barnier-Quer C, Collin N, Bouguyon E, Bordet E, Barc C, Boulesteix O, Leplat JJ, Blanc F, Contreras V, Bertho N, Moore AC, Schwartz-Cornil I. Electroporation of a nanoparticle-associated DNA vaccine induces higher inflammation and immunity compared to its delivery with microneedle patches in pigs. J Control Release 2019; 308:14-28. [PMID: 31265882 DOI: 10.1016/j.jconrel.2019.06.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022]
Abstract
DNA vaccination is an attractive technology, based on its well-established manufacturing process, safety profile, adaptability to rapidly combat pandemic pathogens, and stability at ambient temperature; however an optimal delivery method of DNA remains to be determined. As pigs are a relevant model for humans, we comparatively evaluated the efficiency of vaccine DNA delivery in vivo to pigs using dissolvable microneedle patches, intradermal inoculation with needle (ID), surface electroporation (EP), with DNA associated or not to cationic poly-lactic-co-glycolic acid nanoparticles (NPs). We used a luciferase encoding plasmid (pLuc) as a reporter and vaccine plasmids encoding antigens from the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), a clinically-significant swine arterivirus. Patches were successful at inducing luciferase expression in skin although at lower level than EP. EP induced the cutaneaous recruitment of granulocytes, of MHC2posCD172Apos myeloid cells and type 1 conventional dendritic cells, in association with local production of IL-1β, IL-8 and IL-17; these local responses were more limited with ID and undetectable with patches. The addition of NP to EP especially promoted the recruitment of the MHC2posCD172Apos CD163int and CD163neg myeloid subsets. Notably we obtained the strongest and broadest IFNγ T-cell response against a panel of PRRSV antigens with DNA + NPs delivered by EP, whereas patches and ID were ineffective. The anti-PRRSV IgG responses were the highest with EP administration independently of NPs, mild with ID, and undetectable with patches. These results contrast with the immunogenicity and efficacy previously induced in mice with patches. This study concludes that successful DNA vaccine administration in skin can be achieved in pigs with electroporation and patches, but only the former induces local inflammation, humoral and cellular immunity, with the highest potency when NPs were used. This finding shows the importance of evaluating the delivery and immunogenicity of DNA vaccines beyond the mouse model in a preclinical model relevant to human such as pig and reveals that EP with DNA combined to NP induces strong immunogenicity.
Collapse
Affiliation(s)
| | - Céline Urien
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Joanne McCaffrey
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Xeolas Pharmaceuticals Ltd., Dublin, Ireland
| | - Damien Collins
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Xeolas Pharmaceuticals Ltd., Dublin, Ireland
| | - Agnese Donadei
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Xeolas Pharmaceuticals Ltd., Dublin, Ireland
| | | | - Virginie Jakob
- Vaccine Formulation Laboratory, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Christophe Barnier-Quer
- Vaccine Formulation Laboratory, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Nicolas Collin
- Vaccine Formulation Laboratory, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | - Edwige Bouguyon
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Elise Bordet
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | | | | | - Jean-Jacques Leplat
- GABI, INRA-AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Fany Blanc
- GABI, INRA-AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Vanessa Contreras
- Immunology of viral infections and autoimmune diseases, IDMIT Department, IBFJ, INSERM U1184-CEA - Université Paris Sud 11, Fontenay-Aux-Roses et Le Kremlin-Bicêtre, France
| | - Nicolas Bertho
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France; BIOEPAR, Oniris, INRA, 44307 Nantes, France
| | - Anne C Moore
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | |
Collapse
|
41
|
Dortmans JCFM, Buter GJ, Dijkman R, Houben M, Duinhof TF. Molecular characterization of type 1 porcine reproductive and respiratory syndrome viruses (PRRSV) isolated in the Netherlands from 2014 to 2016. PLoS One 2019; 14:e0218481. [PMID: 31246977 PMCID: PMC6597066 DOI: 10.1371/journal.pone.0218481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/03/2019] [Indexed: 11/19/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of a devastating pig disease present all over the world. The remarkable genetic variation of PRRSV, makes epidemiological and molecular analysis of circulating viruses highly important to review current diagnostic tools and vaccine efficacy. Monitoring PRRS viruses supports modern herd management by explaining the source of found viruses, either internally or externally from the herd. No epidemiological or molecular study has been published on circulating PRRS-viruses in the Netherlands, since the early nineties. Therefore, the objective of this study is to investigate circulating PRRS-viruses in the Netherlands in 2014, 2015 and 2016 on a molecular level by sequencing ORF2, ORF3, ORF4, ORF5, ORF6 and ORF7. The results demonstrate that the 74 PRRSV strains belong to PRRSV-1, but the diversity among strains is high, based on nucleotide identity, individual ORF length and phylogenetic trees of individual ORFs. Furthermore, the data presented here show that the phylogenetic topology of some viruses is ORF dependent and suggests recombination. The identity of the strain of interest might be misinterpreted and wrong conclusions may be drawn in a diagnostic and epidemiological perspective, when only ORF5 is analyzed, as performed in many routine sequencing procedures.
Collapse
Affiliation(s)
| | | | - R. Dijkman
- GD Animal Health, Deventer, The Netherlands
| | - M. Houben
- GD Animal Health, Deventer, The Netherlands
| | | |
Collapse
|
42
|
Bernelin-Cottet C, Urien C, Fretaud M, Langevin C, Trus I, Jouneau L, Blanc F, Leplat JJ, Barc C, Boulesteix O, Riou M, Dysart M, Mahé S, Studsrub E, Nauwynck H, Bertho N, Bourry O, Schwartz-Cornil I. A DNA Prime Immuno-Potentiates a Modified Live Vaccine against the Porcine Reproductive and Respiratory Syndrome Virus but Does Not Improve Heterologous Protection. Viruses 2019; 11:E576. [PMID: 31242645 PMCID: PMC6631340 DOI: 10.3390/v11060576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus inducing abortion in sows and respiratory disease in young pigs, is a leading infectious cause of economic losses in the swine industry. Modified live vaccines (MLVs) help in controlling the disease, but their efficacy is often compromised by the high genetic diversity of circulating viruses, leading to vaccine escape variants in the field. In this study, we hypothesized that a DNA prime with naked plasmids encoding PRRSV antigens containing conserved T-cell epitopes may improve the protection of MLV against a heterologous challenge. Plasmids were delivered with surface electroporation or needle-free jet injection and European strain-derived PRRSV antigens were targeted or not to the dendritic cell receptor XCR1. Compared to MLV-alone, the DNA-MLV prime- boost regimen slightly improved the IFNγ T-cell response, and substantially increased the antibody response against envelope motives and the nucleoprotein N. The XCR1-targeting of N significantly improved the anti-N specific antibody response. Despite this immuno-potentiation, the DNA-MLV regimen did not further decrease the serum viral load or the nasal viral shedding of the challenge strain over MLV-alone. Finally, the heterologous protection, achieved in absence of detectable effective neutralizing antibodies, was not correlated to the measured antibody or to the IFNγ T-cell response. Therefore, immune correlates of protection remain to be identified and represent an important gap of knowledge in PRRSV vaccinology. This study importantly shows that a naked DNA prime immuno-potentiates an MLV, more on the B than on the IFNγ T-cell response side, and has to be further improved to reach cross-protection.
Collapse
Affiliation(s)
- Cindy Bernelin-Cottet
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Céline Urien
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Maxence Fretaud
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Christelle Langevin
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
- VIM, EMERG'IN-Plateforme d'Infectiologie Expérimentale IERP, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France.
| | - Ivan Trus
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Luc Jouneau
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Fany Blanc
- GABI, INRA-AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Jean-Jacques Leplat
- GABI, INRA-AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Céline Barc
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRA, 37380 Nouzilly, France.
| | - Olivier Boulesteix
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRA, 37380 Nouzilly, France.
| | - Mickaël Riou
- Plate-Forme d'Infectiologie Expérimentale-PFIE-UE1277, Centre Val de Loire, INRA, 37380 Nouzilly, France.
| | - Marilyn Dysart
- Pharmajet, 400 Corporate Circle Suite N, Golden, CO 80401, USA.
| | - Sophie Mahé
- Unité Virologie et Immunologie Porcines, Laboratoire de Ploufragan-Plouzané-Niort, Anses, BP 53, 22440 Ploufragan, France.
| | | | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Nicolas Bertho
- VIM, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | - Olivier Bourry
- Unité Virologie et Immunologie Porcines, Laboratoire de Ploufragan-Plouzané-Niort, Anses, BP 53, 22440 Ploufragan, France.
| | | |
Collapse
|
43
|
Rodríguez-Gómez IM, Sánchez-Carvajal JM, Pallarés FJ, Mateu E, Carrasco L, Gómez-Laguna J. Virulent Lena strain induced an earlier and stronger downregulation of CD163 in bronchoalveolar lavage cells. Vet Microbiol 2019; 235:101-109. [PMID: 31282367 DOI: 10.1016/j.vetmic.2019.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
Highly virulent porcine reproductive and respiratory syndrome virus (PRRSV) strains have increasingly overwhelmed Asia and Europe in recent years. This study aims to compare the clinical signs, gross and microscopic findings as well as the expression of CD163 within live pulmonary alveolar macrophages (PAMs) from bronchoalveolar lavage fluid (BALF) of pigs experimentally infected with two PRRSV strains of different virulence. Pigs were infected with either a subtype 1 PRRSV-1 3249 strain or a subtype 3 PRRSV-1 Lena strain and consecutively euthanized at 1, 3, 6, 8 and 13 days post-inoculation. Clinical signs were reported daily and BALF and lung tissue samples were collected at the different time-points and accordingly processed for their analysis. Pigs infected with Lena strain exhibited greater clinical signs as well as gross and microscopic lung scores compared to 3249-infected pigs. A decreased frequency of PAMs from BALF was observed early in pigs infected with Lena strain. Moreover, the frequency and median fluorescence intensity (MFI) of CD163 within PAMs were much lower in Lena-infected pigs than in 3249-infected pigs. This downregulation in CD163 was also observed in lung sections after the assessment of macrophages expressing CD163 by means of immunohistochemistry. This outcome may result from the effect of PRRSV replication, PRRSV-induced inflammation, the influx of immature macrophages to restore lung homeostasis and/or the evidence of CD163low cells after CD163+ cells decrease in BALF.
Collapse
Affiliation(s)
- Irene M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain.
| | - José M Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Francisco J Pallarés
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, Mare Nostrum Excellence Campus, Murcia, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| |
Collapse
|
44
|
Sánchez-Carvajal JM, Rodríguez-Gómez IM, Carrasco L, Barranco I, Álvarez B, Domínguez J, Salguero FJ, Gómez-Laguna J. Kinetics of the expression of CD163 and CD107a in the lung and tonsil of pigs after infection with PRRSV-1 strains of different virulence. Vet Res Commun 2019; 43:187-195. [PMID: 31104196 DOI: 10.1007/s11259-019-09755-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/30/2019] [Indexed: 11/26/2022]
Abstract
The emergence of virulent strains of porcine reproductive and respiratory syndrome virus (PRRSV), causing atypical and severe outbreaks, has been notified worldwide. This study assesses the expression, distribution and kinetics of PRRSV N-protein, CD163 and CD107a in the lung and tonsil from experimentally-infected piglets with three different PRRSV-1 strains: a virulent PRRSV-1 subtype 3 strain (SU1-bel) and two low-virulent subtype 1 strains, Lelystad virus (LV) and 215-06. SU1-bel replicated more efficiently in the lungs and tonsils. The number of CD163+ cells decreased in both tissues from all infected groups at 7 dpi, followed by an increase at the end of the study, highlighting a negative correlation with the number of N-protein+-infected cells. A significant increase in CD107a was observed in all infected groups at 35 dpi but no differences were observed among them. Whereas the initial decrease of CD163+ cells appears to be associated to virus replication and cell death, the later recovery of the CD163+ population may be due to either the induction of CD163 in immature cells, the recruitment of CD163+ cells in the area of infection, or both. These results highlight the ability of macrophage subpopulations in infected animals to recover and restore their potential biological functions at one-month post-infection, with the greatest improvement observed in SU1-bel-infected animals.
Collapse
Affiliation(s)
- Jose M Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', 14071, Córdoba, Spain.
| | - Irene M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', 14071, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', 14071, Córdoba, Spain
| | - Inmaculada Barranco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', 14071, Córdoba, Spain
| | - Belén Álvarez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Javier Domínguez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | | | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'ceiA3', 14071, Córdoba, Spain
| |
Collapse
|
45
|
Ogno G, Rodríguez-Gómez IM, Canelli E, Ruedas-Torres I, Álvarez B, Domínguez J, Borghetti P, Martelli P, Gómez-Laguna J. Impact of PRRSV strains of different in vivo virulence on the macrophage population of the thymus. Vet Microbiol 2019; 232:137-145. [PMID: 31030838 DOI: 10.1016/j.vetmic.2019.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/25/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
Abstract
The emergence of "highly pathogenic" isolates of porcine reproductive and respiratory syndrome virus (HP-PRRSV) has raised new concerns about PRRS control. Cells from the porcine monocyte-macrophage lineage represent the target for this virus, which replicates mainly in the lung, and especially in HP-PRRSV strains, also in lymphoid organs, such as the thymus. This study aimed at evaluating the impact of two PRRSV strains of different virulence on thymic macrophages as well as after heterologous vaccination. After experimental infection with PR11 and PR40 PRRSV1 subtype 1 strains (low and high virulent, respectively) samples from thymus were analysed by histopathology and immunohistochemistry for PRRSV N protein, TUNEL, CD172a, CD163, CD107a and BA4D5 expression. Mortality was similar in both infected groups, but lung lesions and thymus atrophy were more intense in PR40 group. Animals died at 10-14 dpi after PR11 or PR40 infection showed the most severe histopathological lesions, with a strong inflammatory response of the stroma and extensive cell death phenomena in the cortex. These animals presented an increase in the number of N protein, CD172a, CD163 and BA4D5 positive cells in the stroma and the cortex together with a decrease in the number of CD107a positive cells. Our results highlight the recruitment of macrophages in the thymus, the increase in the expression of CD163 and the regulation of the host cytotoxic activity by macrophages. However, no marked differences were observed between PR11- and PR40-infected animals. Heterologous vaccination restrained virus spread and lesions extent in the thymus of PR40-infected animals.
Collapse
Affiliation(s)
- Giulia Ogno
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy
| | - Irene M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Cordoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Elena Canelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Cordoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Belén Álvarez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Javier Domínguez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Cordoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain.
| |
Collapse
|
46
|
Goldeck D, Perry DM, Hayes JWP, Johnson LPM, Young JE, Roychoudhury P, McLuskey EL, Moffat K, Bakker AQ, Kwakkenbos MJ, Frossard JP, Rowland RRR, Murtaugh MP, Graham SP. Establishment of Systems to Enable Isolation of Porcine Monoclonal Antibodies Broadly Neutralizing the Porcine Reproductive and Respiratory Syndrome Virus. Front Immunol 2019; 10:572. [PMID: 30972067 PMCID: PMC6445960 DOI: 10.3389/fimmu.2019.00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/04/2019] [Indexed: 02/01/2023] Open
Abstract
The rapid evolution of porcine reproductive and respiratory syndrome viruses (PRRSV) poses a major challenge to effective disease control since available vaccines show variable efficacy against divergent strains. Knowledge of the antigenic targets of virus-neutralizing antibodies that confer protection against heterologous PRRSV strains would be a catalyst for the development of next-generation vaccines. Key to discovering these epitopes is the isolation of neutralizing monoclonal antibodies (mAbs) from immune pigs. To address this need, we sought to establish systems to enable the isolation of PRRSV neutralizing porcine mAbs. We experimentally produced a cohort of immune pigs by sequential challenge infection with four heterologous PRRSV strains spanning PRRSV-1 subtypes and PRRSV species. Whilst priming with PRRSV-1 subtype 1 did not confer full protection against a subsequent infection with a PRRSV-1 subtype 3 strain, animals were protected against a subsequent PRRSV-2 infection. The infection protocol resulted in high serum neutralizing antibody titers against PRRSV-1 Olot/91 and significant neutralization of heterologous PRRSV-1/-2 strains. Enriched memory B cells isolated at the termination of the study were genetically programmed by transduction with a retroviral vector expressing the Bcl-6 transcription factor and the anti-apoptotic Bcl-xL protein, a technology we demonstrated efficiently converts porcine memory B cells into proliferating antibody-secreting cells. Pools of transduced memory B cells were cultured and supernatants containing PRRSV-specific antibodies identified by flow cytometric staining of infected MARC-145 cells and in vitro neutralization of PRRSV-1. Collectively, these data suggest that this experimental system may be further exploited to produce a panel of PRRSV-specific mAbs, which will contribute both to our understanding of the antibody response to PRRSV and allow epitopes to be resolved that may ultimately guide the design of immunogens to induce cross-protective immunity.
Collapse
Affiliation(s)
| | - Dana M Perry
- The Pirbright Institute, Pirbright, United Kingdom.,School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jack W P Hayes
- The Pirbright Institute, Pirbright, United Kingdom.,School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Luke P M Johnson
- The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Science, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jordan E Young
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Parimal Roychoudhury
- The Pirbright Institute, Pirbright, United Kingdom.,College of Veterinary Science and Animal Husbandry, Central Agricultural University, Aizawl, India
| | - Elle L McLuskey
- The Pirbright Institute, Pirbright, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Katy Moffat
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | - Jean-Pierre Frossard
- Department of Virology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Raymond R R Rowland
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Michael P Murtaugh
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Simon P Graham
- The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Science, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
47
|
Ogno G, Sautter CA, Canelli E, García-Nicolás O, Stadejek T, Martelli P, Borghetti P, Summerfield A. In vitro characterization of PRRSV isolates with different in vivo virulence using monocyte-derived macrophages. Vet Microbiol 2019; 231:139-146. [PMID: 30955801 DOI: 10.1016/j.vetmic.2019.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 01/21/2023]
Abstract
The recent emergence of highly pathogenic porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) strains has caused severe economic losses. The biological elements defining virulence and pathogenicity are still unclear. In vitro characteristics using natural target cells of PRRSV provide important information to understand the basis of virulence at the cellular level, and provide a mean to reduce animal experimentations to achieve this goal. Here, we compared PRRSV strains from two geographically different regions, with varying in vivo characteristics, in terms of their interactions with monocyte-derived macrophages (MDMs). The strains included Lena and BOR59 from Belarus, and ILI6 from Russia, as well as PR11 and PR40, both from Italy. As a reference, we used a cell culture-adapted version of Lelystad, LVP. MDMs were pre-treated with IFNγ, IL-4 or IFNβ, in order to understand responses in polarized and antiviral MDMs. In general, independent of the geographical origin, the strains with high virulence infected a higher percentage of MDMs and replicated to higher titers. These virulence-dependent differences were most pronounced when the MDMs had been treated with IFNβ. Differentiation between intermediate and low virulent PRRSV was difficult, due to variations between different experiments, but LVP differed clearly from all field strains. IFNα and IL-10 were not detected in any experiment, but PR40 induced TNF and IL-1β. Taken together, these results validate the MDM model to understand pathogenicity factors of PRRSV and confirm the importance of the escape from type I and II IFN-mediated effects for PRRSV virulence.
Collapse
Affiliation(s)
- Giulia Ogno
- Department of Veterinary Science, University of Parma, Strada del Taglio, Parma, 10 - 43126, Italy
| | - Carmen A Sautter
- Institute of Virology and Immunology, Bern, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Elena Canelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, Parma, 10 - 43126, Italy
| | - Obdulio García-Nicolás
- Institute of Virology and Immunology, Bern, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, Parma, 10 - 43126, Italy
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio, Parma, 10 - 43126, Italy
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
48
|
Cui J, O’Connell CM, Costa A, Pan Y, Smyth JA, Verardi PH, Burgess DJ, Van Kruiningen HJ, Garmendia AE. A PRRSV GP5-Mosaic vaccine: Protection of pigs from challenge and ex vivo detection of IFNγ responses against several genotype 2 strains. PLoS One 2019; 14:e0208801. [PMID: 30703122 PMCID: PMC6354972 DOI: 10.1371/journal.pone.0208801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), is a highly mutable RNA virus that affects swine worldwide and its control is very challenging due to its formidable heterogeneity in the field. In the present study, DNA vaccines constructed with PRRSV GP5-Mosaic sequences were complexed to cationic liposomes and administered to experimental pigs by intradermal and intramuscular injection, followed by three boosters 14, 28 and 42 days later. The GP5-Mosaic vaccine thus formulated was immunogenic and induced protection from challenge in vaccinated pigs comparable to that induced by a wild type (VR2332) GP5 DNA vaccine (GP5-WT). Periodic sampling of blood and testing of vaccine-induced responses followed. Interferon-γ (IFN-γ) mRNA expression by virus-stimulated peripheral blood mononuclear cells (PBMCs) of GP5-Mosaic-vaccinated pigs was significantly higher compared to pigs vaccinated with either GP5-WT or empty vector at 21, 35 and 48 days after vaccination. Cross-reactive cellular responses were also demonstrated in GP5-Mosaic vaccinated pigs after stimulation of PBMCs with divergent strains of PRRSV. Thus, significantly higher levels of IFN-γ mRNA were detected when PBMCs from GP5-Mosaic-vaccinated pigs were stimulated by four Genotype 2 strains (VR2332, NADC9, NADC30 and SDSU73), which have at least 10% difference in GP5 amino acid sequences, while such responses were recorded only upon VR2332 stimulation in GP5-WT-vaccinated pigs. In addition, the levels of virus-specific neutralizing antibodies were higher in GP5-Mosaic or GP5-WT vaccinated pigs than those in vector-control pigs. The experimental pigs vaccinated with either the GP5-Mosaic vaccine or the GP5-WT vaccine were partially protected from challenge with VR2332, as measured by significantly lower viral loads in sera and tissues and lower lung lesion scores than the vector control group. These data demonstrate that the GP5-Mosaic vaccine can induce cross-reactive cellular responses to diverse strains, neutralizing antibodies, and protection in pigs.
Collapse
Affiliation(s)
- Junru Cui
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Caitlin M. O’Connell
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Antonio Costa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
| | - Yan Pan
- Guangxi Key Laboratory of Animal Vaccines and New Technology, Guangxi Veterinary Research Institute, Nanning, Guangxi, PR China
| | - Joan A. Smyth
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Paulo H. Verardi
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Diane J. Burgess
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
| | - Herbert J. Van Kruiningen
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
| | - Antonio E. Garmendia
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
49
|
Bordet E, Blanc F, Tiret M, Crisci E, Bouguyon E, Renson P, Maisonnasse P, Bourge M, Leplat JJ, Giuffra E, Jouneau L, Schwartz-Cornil I, Bourry O, Bertho N. Porcine Reproductive and Respiratory Syndrome Virus Type 1.3 Lena Triggers Conventional Dendritic Cells 1 Activation and T Helper 1 Immune Response Without Infecting Dendritic Cells. Front Immunol 2018; 9:2299. [PMID: 30333837 PMCID: PMC6176214 DOI: 10.3389/fimmu.2018.02299] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/17/2018] [Indexed: 12/03/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome virus (PRRSV) is an arterivirus responsible for highly contagious infection and huge economic losses in pig industry. Two species, PRRSV-1 and PRRSV-2 are distinguished, PRRSV-1 being more prevalent in Europe. PRRSV-1 can further be divided in subtypes. PRRSV-1.3 such as Lena are more pathogenic than PRRSV-1.1 such as Lelystad or Flanders13. PRRSV-1.3 viruses trigger a higher Th1 response than PRRSV-1.1, although the role of the cellular immune response in PRRSV clearance remains ill defined. The pathogenicity as well as the T cell response inductions may be differentially impacted according to the capacity of the virus strain to infect and/or activate DCs. However, the interactions of PRRSV with in vivo-differentiated-DC subtypes such as conventional DC1 (cDC1), cDC2, and monocyte-derived DCs (moDC) have not been thoroughly investigated. Here, DC subpopulations from Lena in vivo infected pigs were analyzed for viral genome detection. This experiment demonstrates that cDC1, cDC2, and moDC are not infected in vivo by Lena. Analysis of DC cytokines production revealed that cDC1 are clearly activated in vivo by Lena. In vitro comparison of 3 Europeans strains revealed no infection of the cDC1 and cDC2 and no or little infection of moDC with Lena, whereas the two PRRSV-1.1 strains infect none of the 3 DC subtypes. In vitro investigation of T helper polarization and cytokines production demonstrate that Lena induces a higher Th1 polarization and IFNγ secretion than FL13 and LV. Altogether, this work suggests an activation of cDC1 by Lena associated with a Th1 immune response polarization.
Collapse
Affiliation(s)
- Elise Bordet
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Fany Blanc
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mathieu Tiret
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elisa Crisci
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Edwige Bouguyon
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Patricia Renson
- Virologie et Immunologie Porcines, Agence Nationale de Sécurité Sanitaire, Ploufragan, France.,Université Bretagne Loire, Rennes, France.,Union des Groupements de Producteurs de Viande de Bretagne (UGPVB), Rennes, France
| | - Pauline Maisonnasse
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mickael Bourge
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Jacques Leplat
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elisabetta Giuffra
- UMR Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luc Jouneau
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Isabelle Schwartz-Cornil
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Bourry
- Virologie et Immunologie Porcines, Agence Nationale de Sécurité Sanitaire, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Nicolas Bertho
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
50
|
Chung CJ, Cha SH, Grimm AL, Ajithdoss D, Rzepka J, Chung G, Yu J, Davis WC, Ho CS. Pigs that recover from porcine reproduction and respiratory syndrome virus infection develop cytotoxic CD4+CD8+ and CD4+CD8- T-cells that kill virus infected cells. PLoS One 2018; 13:e0203482. [PMID: 30188946 PMCID: PMC6126854 DOI: 10.1371/journal.pone.0203482] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/21/2018] [Indexed: 11/24/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection is difficult to control because the virus undergoes antigenic variation during infection and also modulates the protective host immune response. Although current vaccines do not provide full protection, they have provided insight into the mechanisms of protection. Live PRRSV vaccines induce partial protection before the appearance of neutralizing antibody, suggesting cell-mediated immunity or other mechanisms may be involved. Herein, we demonstrate recovery from infection is associated with development of cytotoxic T-lymphocytes (CTL) that can kill PRRSV-infected target cells. Initial experiments showed survival of PRRSV-infected monocyte derived macrophage (MDM) targets is reduced when overlaid with peripheral blood mononuclear cells (PBMC) from gilts that had recovered from PRRSV infection. Further studies with PBMC depleted of either CD4+ or CD8+ T-cells and positively selected subpopulations of CD4+ and CD8+ T-cells showed that both CD4+ and CD8+ T-cells were involved in killing. Examination of killing at different time points revealed killing was biphasic and mediated by CTL of different phenotypes. CD4+CD8+high were associated with killing target cells infected for 3–6 hours. CD4+CD8- CTL were associated with killing at 16–24 hours. Thus, all the anti-PRRSV CTL activity in pigs was attributed to two phenotypes of CD4+ cells which is different from the anti-viral CD4-CD8+ CTL phenotype found in most other animals. These findings will be useful for evaluating CTL responses induced by current and future vaccines, guiding to a novel direction for future vaccine development.
Collapse
Affiliation(s)
- Chungwon J. Chung
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- VMRD Inc., Pullman, Washington, United States of America
- * E-mail: (CJC); (SHC)
| | - Sang-Ho Cha
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- * E-mail: (CJC); (SHC)
| | | | - Dharani Ajithdoss
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Joanna Rzepka
- VMRD Inc., Pullman, Washington, United States of America
| | - Grace Chung
- VMRD Inc., Pullman, Washington, United States of America
| | - Jieun Yu
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - William C. Davis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Chak-Sum Ho
- Gift of life Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|