1
|
Tu J, Lin Z, Sun E, Yu T, Zhang W, Sun Y, Zhu H, Qian P, Cheng G. Establishment and Application of a Triplex Real-Time Reverse-Transcription Polymerase Chain Reaction Assay for Differentiation of PEDV, TGEV and PKV. Vet Sci 2024; 11:413. [PMID: 39330793 PMCID: PMC11435592 DOI: 10.3390/vetsci11090413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The pathogens responsible for porcine viral diarrhea are diverse, causing significant economic losses to the pig industry. PEDV and TGEV are well-known pathogens causing diarrheal diseases in pigs, leading to significant economic losses in the breeding industry. In contrast, the newly identified diarrhea virus, PKV, has not garnered as much attention. However, co-infection of PKV with PEDV results in more severe symptoms in piglets, such as acute gastroenteritis, and promotes increased replication of PEDV. Rapid and accurate diagnosis of viral diarrhea is essential for farms to identify pathogens early and mitigate economic losses. This study describes the development of a triplex real-time fluorescent quantitative RT-qPCR technique that can simultaneously detect three RNA viruses associated with porcine viral diarrhea: PEDV, TGEV, and PKV. To establish the triplex RT-qPCR method for the simultaneous detection and identification of the above three diarrhea viruses, conserved regions of the M gene of TGEV, the N gene of PEDV, and the 3D gene of PKV were selected to design specific primers and probes. After optimizing the reaction conditions, the method's specificity, sensitivity, and reproducibility were evaluated. The triplex RT-qPCR method did not show a significant difference in PCR efficiency compared to the single RT-qPCR method. The method is specific to TGEV, PKV, and PEDV, exhibits no cross-reactivity with other pathogens, and demonstrates satisfactory sensitivity and reproducibility; the limit of detection (LOD) of PEDV, TGEV, and PKV is 11.42 copies/μL. Furthermore, the performance of the triplex RT-qPCR assay was compared with the Chinese standard single-assay method for detecting TGEV, PKV, and PEDV, showing complete consistency between the two methods (100% compliant). Subsequently, 1502 clinical diarrhea samples were collected from the Guangxi Zhuang Autonomous Region to investigate the local prevalence of TGEV, PKV, and PEDV and the positive rates were 16.38% (246/1502), 1.46% (22/1502), and 45.14% (678/1502), respectively. Co-infection of PEDV and PKV were most common, with a rate of 12.12% (182/1502). This study presents a valuable method for the rapid and simultaneous identification of PEDV, TGEV, and PKV in clinical animal farming practices, and provides a reassessment of the epidemiology of these diarrhea-causing viral pathogens in the Guangxi Zhuang Autonomous Region.
Collapse
Affiliation(s)
- Jun Tu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.T.)
- Guangxi Yangxiang Co., Ltd., Guigang 537100, China
| | - Zhengdan Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.T.)
| | - Erchao Sun
- Guangxi Yangxiang Co., Ltd., Guigang 537100, China
| | - Teng Yu
- Guangxi Yangxiang Co., Ltd., Guigang 537100, China
| | | | - Yumei Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.T.)
| | - Hechao Zhu
- Guangxi Yangxiang Co., Ltd., Guigang 537100, China
| | - Pin Qian
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.T.)
| | - Guofu Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.T.)
| |
Collapse
|
2
|
Xin Z, Li S, Lu X, Liu L, Gao Y, Hu F, Yu K, Ma X, Li Y, Huang B, Wu J, Guo X. Development and Clinical Application of a Molecular Assay for Four Common Porcine Enteroviruses. Vet Sci 2024; 11:305. [PMID: 39057989 PMCID: PMC11281614 DOI: 10.3390/vetsci11070305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), porcine transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA) are the four main pathogens that cause viral diarrhea in pigs, and they often occur in mixed infections, which are difficult to distinguish only according to clinical symptoms. Here, we developed a multiplex TaqMan-probe-based real-time RT-PCR method for the simultaneous detection of PEDV, TGEV, PDCoV, and PoRVA for the first time. The specific primers and probes were designed for the M protein gene of PEDV, N protein gene of TGEV, N protein gene of PDCoV, and VP7 protein gene of PoRVA, and corresponding recombinant plasmids were constructed. The method showed extreme specificity, high sensitivity, and excellent repeatability; the limit of detection (LOD) can reach as low as 2.18 × 102 copies/μL in multiplex real-time RT-PCR assay. A total of 97 clinical samples were used to compare the results of the conventional reverse transcription PCR (RT-PCR) and this multiplex real-time RT-PCR for PEDV, TGEV, PDCoV, and PoRVA detection, and the results were 100% consistent. Subsequently, five randomly selected clinical samples that tested positive were sent for DNA sequencing verification, and the sequencing results showed consistency with the detection results of the conventional RT-PCR and our developed method in this study. In summary, this study developed a multiplex real-time RT-PCR method for simultaneous detection of PEDV, TGEV, PDCoV, and PoRVA, and the results of this study can provide technical means for the differential diagnosis and epidemiological investigation of these four porcine viral diarrheic diseases.
Collapse
Affiliation(s)
- Zhonghao Xin
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Shiheng Li
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Xiao Lu
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Liping Liu
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Yuehua Gao
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Feng Hu
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Kexiang Yu
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Xiuli Ma
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Yufeng Li
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Bing Huang
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| | - Jiaqiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Science, Jinan 250100, China;
| | - Xiaozhen Guo
- Key Laboratory of Poultry Disease Diagnosis and Immunity in Shandong Province, Poultry Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.X.); (S.L.); (X.L.); (L.L.); (Y.G.); (F.H.); (K.Y.); (X.M.); (Y.L.); (B.H.)
| |
Collapse
|
3
|
Wang Y, Pang F. Diagnosis of bovine viral diarrhea virus: an overview of currently available methods. Front Microbiol 2024; 15:1370050. [PMID: 38646626 PMCID: PMC11026595 DOI: 10.3389/fmicb.2024.1370050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the causative agent of bovine viral diarrhea (BVD), which results in significant economic losses in the global cattle industry. Fortunately, various diagnostic methods available for BVDV have been established. They include etiological methods, such as virus isolation (VI); serological methods, such as enzyme-linked immunosorbent assay (ELISA), immunofluorescence assay (IFA), and immunohistochemistry (IHC); molecular methods, such as reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR, digital droplet PCR (ddPCR), loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and CRISPR-Cas system; and biosensors. This review summarizes the current diagnostic methods for BVDV, discussing their advantages and disadvantages, and proposes future perspectives for the diagnosis of BVDV, with the intention of providing valuable guidance for effective diagnosis and control of BVD disease.
Collapse
Affiliation(s)
| | - Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Wen S, Li X, Lv X, Liu K, Ren J, Zhai J, Song Y. Current progress on innate immune evasion mediated by Npro protein of pestiviruses. Front Immunol 2023; 14:1136051. [PMID: 37090696 PMCID: PMC10115221 DOI: 10.3389/fimmu.2023.1136051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Interferon (IFN), the most effective antiviral cytokine, is involved in innate and adaptive immune responses and is essential to the host defense against virus invasion. Once the host was infected by pathogens, the pathogen-associated molecular patterns (PAMPs) were recognized by the host pattern recognition receptors (PRRs), which activates interferon regulatory transcription factors (IRFs) and nuclear factor-kappa B (NF-κB) signal transduction pathway to induce IFN expression. Pathogens have acquired many strategies to escape the IFN-mediated antiviral immune response. Pestiviruses cause massive economic losses in the livestock industry worldwide every year. The immune escape strategies acquired by pestiviruses during evolution are among the major difficulties in its control. Previous experiments indicated that Erns, as an envelope glycoprotein unique to pestiviruses with RNase activity, could cleave viral ss- and dsRNAs, therefore inhibiting the host IFN production induced by viral ss- and dsRNAs. In contrast, Npro, the other envelope glycoprotein unique to pestiviruses, mainly stimulates the degradation of transcription factor IRF-3 to confront the IFN response. This review mainly summarized the current progress on mechanisms mediated by Npro of pestiviruses to antagonize IFN production.
Collapse
Affiliation(s)
- Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Xintong Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Lv
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Kai Liu
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Jingqiang Ren
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Zhejiang, Wenzhou, China
- *Correspondence: Jingqiang Ren, ; Jingbo Zhai, ; Yang Song,
| | - Jingbo Zhai
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
- *Correspondence: Jingqiang Ren, ; Jingbo Zhai, ; Yang Song,
| | - Yang Song
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
- *Correspondence: Jingqiang Ren, ; Jingbo Zhai, ; Yang Song,
| |
Collapse
|
5
|
Bold D, Souza-Neto JA, Gombo-Ochir D, Gaudreault NN, Meekins DA, McDowell CD, Zayat B, Richt JA. Rapid Identification of ASFV, CSFV and FMDV from Mongolian Outbreaks with MinION Short Amplicon Sequencing. Pathogens 2023; 12:533. [PMID: 37111419 PMCID: PMC10140976 DOI: 10.3390/pathogens12040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
African swine fever virus (ASFV), classical swine fever virus (CSFV), and foot-and-mouth disease virus (FMDV) cause important transboundary animal diseases (TADs) that have a significant economic impact. The rapid and unequivocal identification of these pathogens and distinction from other animal diseases based on clinical symptoms in the field is difficult. Nevertheless, early pathogen detection is critical in limiting their spread and impact as is the availability of a reliable, rapid, and cost-effective diagnostic test. The purpose of this study was to evaluate the feasibility to identify ASFV, CSFV, and FMDV in field samples using next generation sequencing of short PCR products as a point-of-care diagnostic. We isolated nucleic acids from tissue samples of animals in Mongolia that were infected with ASFV (2019), CSFV (2015), or FMDV (2018), and performed conventional (RT-) PCR using primers recommended by the Terrestrial Animal Health Code of the World Organization for Animal Health (WOAH). The (RT-) PCR products were then sequenced in Mongolia using the MinION nanopore portable sequencer. The resulting sequencing reads successfully identified the respective pathogens that exhibited 91-100% nucleic acid similarity to the reference strains. Phylogenetic analyses suggest that the Mongolian virus isolates are closely related to other isolates circulating in the same geographic region. Based on our results, sequencing short fragments derived by conventional (RT-) PCR is a reliable approach for rapid point-of-care diagnostics for ASFV, CSFV, and FMDV even in low-resource countries.
Collapse
Affiliation(s)
- Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jayme A. Souza-Neto
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Batsukh Zayat
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17029, Mongolia
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
6
|
Yi W, Zhu H, Wu Y, Li Q, Lou W, Zhao H, Pan Z. The recombinant Erns and truncated E2-based indirect enzyme-linked immunosorbent assays to distinguishably test specific antibodies against classical swine fever virus and bovine viral diarrhea virus. Virol J 2022; 19:121. [PMID: 35869505 PMCID: PMC9308313 DOI: 10.1186/s12985-022-01851-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
Classical swine fever (CSF) virus is the causative agent of an economically important, highly contagious disease of pigs. CSFV is genetically and serologically related to bovine viral diarrhea virus (BVDV). BVDV infection in pigs can mimic CSF clinical signs, which cause difficulty in differentiation. Serological test for detection of virus specific antibodies is a valuable tool for diagnosis and surveillance of CSFV and BVDV infections in animals. The aim of this study was to develop the CSFV Erns and BVDV tE2 -based ELISAs to distinguishably test specific antibodies against CSFV and BVDV.
Methods
The CSFV Erns and truncated E2 (tE2, residues 690–865) of BVDV were expressed in E. coli and purified by Ni–NTA affinity chromatography, respectively. Employing Erns or tE2 protein as diagnostic antigen, indirect ELISAs were developed to distinguishably test specific antibodies against CSFV and BVDV. The specificity and sensitivity of ELISAs were evaluated using a panel of virus specific sera of pigs, immunized rabbits and immunized mice. A total 150 clinical serum samples from farm pigs were measured by the developed ELISAs and compared with virus neutralizing test (VNT).
Results
Indirect ELISA was established based on recombinant CSFV Erns or BVDV tE2 protein, respectively. No serological cross-reaction between antibodies against CSFV and BVDV was observed in sera of immunized rabbits, immunized mice or farm pigs by detections of the Erns and tE2 -based ELISAs. Compared to VNT, the CSFV Erns -based ELISA displayed a high sensitivity (93.3%), specificity (92.0%) and agreement rate (92.7%), and the sensitivity, specificity and agreement rate of BVDV tE2 -based ELISA was 92.3%, 95.2% and 94.7%, respectively.
Conclusion
The newly developed ELISAs are highly specific and sensitive and would be valuable tools for serological diagnosis for CSFV and BVDV infections.
Collapse
|
7
|
Zhu J, Wang C, Zhang L, Zhu T, Li H, Wang Y, Xue K, Qi M, Peng Q, Chen Y, Hu C, Chen X, Chen J, Chen H, Guo A. Isolation of BVDV-1a, 1m, and 1v strains from diarrheal calf in china and identification of its genome sequence and cattle virulence. Front Vet Sci 2022; 9:1008107. [PMID: 36467650 PMCID: PMC9709263 DOI: 10.3389/fvets.2022.1008107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/10/2022] [Indexed: 08/25/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an important livestock viral pathogen responsible for causing significant economic losses. The emerging and novel BVDV isolates are clinically and biologically important, as there are highly antigenic diverse and pathogenic differences among BVDV genotypes. However, no study has yet compared the virulence of predominant genotype isolates (BVDV-1a, 1b, and 1m) in China and the emerging genotype isolate BVDV-1v. The serological relationship among these genotypes has not yet been described. In this study, we isolated three BVDV isolates from calves with severe diarrhea, characterized as BVDV-1a, 1m, and novel 1v, based on multiple genomic regions [including 5-untranslated region (5'-UTR), Npro, and E2] and the phylogenetic analysis of nearly complete genomes. For the novel genotype, genetic variation analysis of the E2 protein of the BVDV-1v HB-03 strain indicates multiple amino acid mutation sites, including potential host cell-binding sites and neutralizing epitopes. Recombination analysis of the BVDV-1v HB-03 strain hinted at the possible occurrence of cross-genotypes (among 1m, 1o, and 1q) and cross-geographical region transmission events. To compare the pathogenic characters and virulence among these BVDV-1 genotypes, newborn calves uninfected with common pathogens were infected intranasally with BVDV isolates. The calves infected with the three genotype isolates show different symptom severities (diarrhea, fever, slowing weight gain, virus shedding, leukopenia, viremia, and immune-related tissue damage). In addition, these infected calves also showed bovine respiratory disease complexes (BRDCs), such as nasal discharge, coughing, abnormal breathing, and lung damage. Based on assessing different parameters, BVDV-1m HB-01 is identified as a highly virulent strain, and BVDV-1a HN-03 and BVDV-1v HB-03 are both identified as moderately virulent strains. Furthermore, the cross-neutralization test demonstrated the antigenic diversity among these Chinese genotypes (1a, 1m, and 1v). Our findings illustrated the genetic evolution characteristics of the emerging genotype and the pathogenic mechanism and antigenic diversity of different genotype strains, These findings also provided an excellent vaccine candidate strain and a suitable BVDV challenge strain for the comprehensive prevention and control of BVDV.
Collapse
Affiliation(s)
- Jie Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Chen Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lina Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Hanxiong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yunqiu Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Kaili Xue
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | | | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Berbamine hydrochloride inhibits bovine viral diarrhea virus replication via interfering in late-stage autophagy. Virus Res 2022; 321:198905. [PMID: 36064041 DOI: 10.1016/j.virusres.2022.198905] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 12/24/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is a harmful pathogen that easily causes large-scale infections and huge economic losses to the cattle industry. Berbamine hydrochloride (BBH) is a natural product extracted from berberis and has a wide range of pharmacological effects. However, the antiviral effect of BBH against BVDV needs to be further elucidated. This study aimed to evaluate the antiviral activities of BBH against BVDV infection. We mainly used RT-qPCR, Western blotting, immunofluorescence, and TEM assays to assess the inhibitory activity of BBH against BVDV. The results showed that BBH had an inhibitory effect on BVDV and higher inhibitory activity in the viral attachment and release in MDBK cells. This study found that BVDV could induce and use autophagy to replicate itself. Further results showed that BBH inhibited BVDV infection by inhibiting autophagy integrity in BVDV-infected cells, which was proven by the detection of autophagy-related proteins. Our data show that in BBH-treated BVDV-infected cells, the expression of p62 and LC3 increased over time. After the addition of an autophagy inhibitor, chloroquine (CQ), and an autophagy promoter, rapamycin (Rapa), we found that promoting autophagy was beneficial to the replication of BVDV, while inhibiting autophagy could reduce the number of infections by BVDV, which was evidenced by the expression of the BVDV E2 protein. Furthermore, BBH blocked the normal binding of LC3 and LAMP1 in BVDV-infected cells. In conclusion, BBH inhibited BVDV infection by inhibiting BVDV-induced autophagy in cells, and its inhibitory effect was obvious in the viral attachment and release stages. Therefore, our study provides a new idea for exploring novel anti-BVDV drugs.
Collapse
|
9
|
Evaluation of Ultraviolet Type C Radiation in Inactivating Relevant Veterinary Viruses on Experimentally Contaminated Surfaces. Pathogens 2022; 11:pathogens11060686. [PMID: 35745540 PMCID: PMC9231353 DOI: 10.3390/pathogens11060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
Many swine farms employ UVC treatment in employees' personal belongings and small tools entering farms as part of the biosecurity protocol to decrease the risk of pathogen introduction into the operation. However, the UVC efficacy in some veterinary viruses is not fully evaluated. This study evaluated the efficacy of ultraviolet type C (UVC) radiation in inactivating seven relevant veterinary viruses: Swine Poxvirus (SwPV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Porcine Epidemic Diarrhea Virus (PEDV), Swine Influenza Virus (SIV), Bovine Viral Diarrhea Virus (BVDV), Porcine Parvovirus (PPV), and Senecavirus A (SVA). The experimentally contaminated materials included polystyrene and filter paper. The samples were exposed to UVC for 5 min (total dose of 360 mJ/cm2). The UVC treatment caused a decrease over 4 log10 in SwPV titer on the polystyrene surface, whereas it consistently reduced about 5 log10 in PPV and SVA samples. No viable virus was recovered from PRRSV, PEDV, SIV, and BVDV samples. In filter paper, conversely, the efficacy was reduced. This study provides essential information on the inactivation effectiveness of a specific dose of UVC on important veterinary viruses, further supporting the rational application and strategic guidance for UVC radiation use to disinfect materials.
Collapse
|
10
|
Muasya D, Van Leeuwen J, Gitau G, McKenna S, Heider L, Muraya J. Evaluation of antibody and antigen cross-reaction in Kenyan dairy cattle naturally infected with two pestiviruses: Bovine viral diarrhea virus and classical swine fever virus. Vet World 2022; 15:1290-1296. [PMID: 35765487 PMCID: PMC9210842 DOI: 10.14202/vetworld.2022.1290-1296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Bovine viral diarrhea virus (BVDV) and classical swine fever virus (CSFV) are important pathogens of cattle and pigs, respectively, and belong to the genus Pestivirus. As CSFV has been shown to infect cattle, it can create diagnostic challenges of BVDV results through possible cross-reactivity where cattle could be exposed to pigs and CSFV. This study aimed to determine the possible cross-reactivity of BVDV and CSFV enzyme-linked immunosorbent assay (ELISA) results for antigen (Ag) and antibody (Ab) among smallholder dairy cattle in Kenya. Materials and Methods: This was a cross-sectional study based on a single visit to farms to collect serum samples and other descriptive farm-level and animal-level information. Testing for BVDV Ag and Ab was conducted on serum samples from 320 dairy cows and heifers, with CSFV Ag and Ab testing conducted on a subset of 133 and 74 serum samples, respectively. CSFV testing was based on BVDV test results and the availability of enough sample volume from farms that kept pigs. The Ag and Ab tests utilized IDEXX ELISA for both BVDV and CSFV. Results: For the 74 samples with Ab tests for both viruses, 40 (54.0%) were BVDV Ab positive, while 63 (85.1%) were CSFV Ab positive. Of the 40 BVDV Ab positive samples, 36 cattle (90.0%) tested positive for CSFV Ab. However, of the 34 BVDV Ab negative samples, 27 (79.4%) were CSFV Ab test-positive. For the 133 samples with Ag tests for both viruses, 125 (94.0%) were BVDV Ag positive, while 2 (1.5%) samples were CSFV Ag positive. None of the eight BVDV Ag negative samples was positive for CSFV Ag and only two (1.6%) of the 125 BVDV Ag positive samples were positive for CSFV Ag. Conclusion: The results indicate either substantial cross-reactivity of the two Ab ELISA tests, or reactivity with some other protein in the samples that led to the positive Ab test results. There was only limited evidence for cross-reactivity of the two Ag ELISA tests. We recommend that Pestivirus genus cross-reactivity be considered when interpreting BVDV ELISA results in cattle, more for Ab than Ag tests. Further research is needed to clarify the levels of cross-reactivity between BVDV and other Pestivirus Ag and Ab tests from animals on mixed-species farms.
Collapse
Affiliation(s)
- Daniel Muasya
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island (UPEI), Charlottetown, Prince Edward Island, Canada; Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - John Van Leeuwen
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island (UPEI), Charlottetown, Prince Edward Island, Canada
| | - George Gitau
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Shawn McKenna
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island (UPEI), Charlottetown, Prince Edward Island, Canada
| | - Luke Heider
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island (UPEI), Charlottetown, Prince Edward Island, Canada
| | - Joan Muraya
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
11
|
Guelbenzu-Gonzalo MP, Lozano JM, O'Sullivan P, Lane EA, Graham DA. A Herd Investigation Tool in Support of the Irish Bovine Viral Diarrhoea Eradication Programme. Front Vet Sci 2021; 8:694774. [PMID: 34485428 PMCID: PMC8416257 DOI: 10.3389/fvets.2021.694774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/29/2021] [Indexed: 01/18/2023] Open
Abstract
Bovine viral diarrhoea (BVD) is an important endemic disease of cattle. In Ireland, an industry-led compulsory eradication programme began in January 2013. The main elements of this programme are the identification and elimination of persistently infected (PI) calves by testing all new-borns, the implementation of biosecurity to prevent re-introduction of disease and continuous surveillance. In 2016, a standardised framework was developed to investigate herds with positive results. This is delivered by trained private veterinary practitioners (PVP). The investigation's aims are 3-fold: firstly, to identify plausible sources of infection; secondly, to ensure that no virus-positive animals remain on farm by resolving the BVD status of all animals in the herd; and thirdly, agreeing up to three biosecurity measures with the herd owner to prevent the re-introduction of the virus. Each investigation follows a common approach comprising four steps based on information from the programme database and collected on-farm: firstly, identifying the time period when each virus-positive calf was exposed in utero (window of susceptibility, taken as 30-120 days of gestation); secondly, determining the location of the dam of each positive calf during this period; thirdly, to investigate potential sources of exposure, either within the herd or external to it; and finally, based on the findings, the PVP and herdowner agree to implement up to three biosecurity measures to minimise the risk of reintroduction. Between 2016 and 2020, 4,105 investigations were completed. The biosecurity recommendations issued more frequently related to the risks of introduction of virus associated with contact with neighbouring cattle at pasture, personnel (including the farmer), the purchase of cattle and vaccination. Although each investigation generates farm-specific outcomes and advice, the aggregated results also provide an insight into the most commonly identified transmission pathways for these herds which inform overall programme communications on biosecurity. The most widely identified plausible sources of infection over these years included retained BVD-positive animals, Trojan births, contact at boundaries and indirect contact through herd owner and other personnel in the absence of appropriate hygiene measures. While generated in the context of BVD herd investigations, the findings also provide an insight into biosecurity practises more generally on Irish farms.
Collapse
Affiliation(s)
| | - Jose-Maria Lozano
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston Laboratory Complex, Celbridge, Ireland
| | | | - Elizabeth A. Lane
- Animal Health Division, Department of Agriculture, Food and the Marine, Dublin, Ireland
- Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
12
|
An adventitious agent-free clonal cell line that is highly susceptible to foot -and-mouth disease virus. Biologicals 2021; 72:33-41. [PMID: 34092457 DOI: 10.1016/j.biologicals.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
Porcine LFBKαVβ6 cells have been successfully used for diagnostics and propagation of all FMDV serotypes/subtypes. Unfortunately, after initial characterization, these cells showed contamination with bovine viral diarrhea virus (BVDV), a non-cytopathic adventitious agent. Persistent infection with BVDV could interfere with diagnostic tests and, also prevent consideration for other uses, i.e., vaccine production. In this study, we developed a three-prong methodology to completely remove BVDV from LFBKαVβ6 cells. Combined treatment with siRNA against BVDV NS5A, porcine interferon alpha and ribavirin resulted in the elimination of BVDV, as determined by immunohistochemistry analysis, quantitative RT-PCR and RNA sequencing. Importantly, elimination of BVDV from LFBKαVβ6 did not affect FMDV growth and plaque phenotype from different serotypes isolated and propagated in the clean cell line, newly named MGPK αVβ6-C5. Additionally, isolation of FMDV from field oro-pharyngeal samples, was successful at the same sensitivity as in BVDV-contaminated LFBKαVβ6 cells. Our results identified a direct method to efficiently eliminate BVDV from porcine cells without altering FMDV permissiveness, diagnostic value, or potential for use in vaccine production. Furthermore, these cells may provide an improved platform for diagnostics and propagation of other viruses of interest in the veterinary field and the virology community at large.
Collapse
|
13
|
Hidayat W, Wuryastuty H, Wasito R. Detection of Pestivirus in small ruminants in Central Java, Indonesia. Vet World 2021; 14:996-1001. [PMID: 34083951 PMCID: PMC8167512 DOI: 10.14202/vetworld.2021.996-1001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Globally, pestiviruses are among the most economically important viral pathogens of livestock. The genus Pestivirus comprises four species, including bovine viral diarrhea virus type 1 and 2 (BVDV-1 and BVDV-2), which infect cattle, border disease virus and classical swine fever virus which infect small ruminants and pigs, respectively. Accumulating evidence suggests that pestiviruses are no longer species-specific, creating new challenges for disease control. In Indonesia, investigations related to pestiviruses remain focused on cattle as the primary host and no research has been conducted on small ruminants (sheep and goats). Therefore, the present study aimed to study the possible occurrence of pestivirus (BVDV or BVD) infections in small ruminants in Indonesia, particularly in Central Java. Materials and Methods: We used 46 blood samples consisting of 26 sheep’s blood and 20 goat’s blood. Samples were selected from 247 small ruminant blood collected between July and October 2020 in Central Java, Indonesia, which met the following criteria: Female, local species, approximately 1-2 years old, never been pregnant, raised in the backyard, and had no close contact with cattle in either shelter or grazing area. We tested plasma samples from sheep and goats using competitive antibody enzyme-linked immunosorbent assay to detect specific antibodies against pestivirus followed by reverse transcription-polymerase chain reaction (RT-PCR) analysis for all positive samples to differentiate the species of pestivirus. Results: Two of the 20 samples collected from goats were positive for pestivirus at the serological and molecular levels, whereas 2 of 26 samples collected from sheep were doubtful but tested negative by RT-PCR. The genotyping test results obtained using nested PCR revealed that the positive samples collected from goats had a BVDV-1 genotype. Conclusion: The results of the present study demonstrated that BVDV-1 can infect species other than bovines, in Central Java, Indonesia. Further studies involving a larger number of samples are required to: (1) Determine the actual seroprevalence of pestiviruses in small ruminants and (2) Determine the potency of small ruminants as reservoirs for pestiviruses, both of which are important for the identification of the appropriate control program for pestiviruses in Indonesia.
Collapse
Affiliation(s)
- W Hidayat
- Master Study Program, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - H Wuryastuty
- Department of Veterinary Internal Medicine, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - R Wasito
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
14
|
Jelsma T, Wijnker JJ, van der Poel WHM, Wisselink HJ. Intestinal Viral Loads and Inactivation Kinetics of Livestock Viruses Relevant for Natural Casing Production: a Systematic Review and Meta-Analysis. Pathogens 2021; 10:pathogens10020173. [PMID: 33557372 PMCID: PMC7915499 DOI: 10.3390/pathogens10020173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 01/26/2023] Open
Abstract
Animal intestines are the source of edible sausage casings, which are traded worldwide and may come from areas where notifiable infectious animal diseases are prevalent. To estimate the risks of virus contamination, knowledge about the quantity of virus and decimal reduction values of the standard preservation method by salting is of great importance. A literature search, based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was performed in search engine CAB Abstracts to determine the viral load of 14 relevant animal viruses in natural casings or intestines. Only a very limited number of scientific publications per virus were found and viral loads in the intestines varied from high for ASFV (five publications), BVDV (3), CSFV (6), PPRV (3), RPV (2) and TGEV (3) to moderate for PEDV (2) and SVDV (3), low for HEV (2) and FMDV (5), very low for VESV (1) and negative for PrV (2) and VSV (1). PRRSV was found in intestines, however, viral titers were not published. Three viruses (BVDV, CSFV and PPRV) with high viral loads were selected to search for their inactivation kinetics. For casings, no inactivation data were found, however, thermal inactivation data of these viruses were available, but differed in quantity, quality and matrices. In conclusion, important data gaps still exist when it comes to the quantitative inactivation of viruses in sausage casings or livestock intestines.
Collapse
Affiliation(s)
- Tinka Jelsma
- Department of Virology, Wageningen Bioveterinary Research (WBVR) Part of Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands;
- Correspondence:
| | - Joris J. Wijnker
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80178, 3508 TD Utrecht, The Netherlands;
| | - Wim H. M. van der Poel
- Department of Virology, Wageningen Bioveterinary Research (WBVR) Part of Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands;
| | - Henk J. Wisselink
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR) Part of Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands;
| |
Collapse
|
15
|
Shi Y, Li B, Tao J, Cheng J, Liu H. The Complex Co-infections of Multiple Porcine Diarrhea Viruses in Local Area Based on the Luminex xTAG Multiplex Detection Method. Front Vet Sci 2021; 8:602866. [PMID: 33585617 PMCID: PMC7876553 DOI: 10.3389/fvets.2021.602866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/05/2021] [Indexed: 01/17/2023] Open
Abstract
The large-scale outbreaks of severe diarrhea caused by viruses have occurred in pigs since 2010, resulting in great damage to the pig industry. However, multiple infections have contributed to the outbreak of the disease and also resulted in great difficulties in diagnosis and control of the disease. Thus, a Luminex xTAG multiplex detection method, which was more sensitive and specific than general multiplex PCR method, was developed for the detection of 11 viral diarrhea pathogens, including PKoV, PAstV, PEDV, PSaV, PSV, PTV, PDCoV, TGEV, BVDV, PoRV, and PToV. To investigate the prevalence of diarrhea-associated viruses responsible for the outbreaks, a total of 753 porcine stool specimens collected from 9 pig farms in Shanghai during 2015-2018 were tested and the pathogen spectrums and co-infections were analyzed. As a result, PKoV, PAstV and PEDV were most commonly detected viruses in diarrheal pigs with the rate of 38.65% (291/753), 20.32% (153/753), and 15.54% (117/753), respectively. Furthermore, multiple infections were commonly seen, with positive rate of 28.42%. Infection pattern of the viral diarrhea pathogens in a specific farm was changing, and different farms had the various diarrhea infection patterns. A longitudinal investigation showed that PEDV was the key pathogen which was closely related to the death of diarrhea piglets. Other pathogens might play synergistic roles in the pathogenesis of diarrhea disease. Furthermore, the surveillance confirmed that variant enteropathogenic viruses were leading etiologic agents of porcine diarrhea, either mono-infection or co-infections of PKoV were common in pigs in Shanghai, but PEDV was still the key pathogen and multiple pathogens synergistically complicated the infection status, suggesting that controlling porcine diarrhea might be more complex than previously thought. The study provides a better understanding of diarrhea viruses in piglets, which will aid in better preventing and controlling epidemics of viral porcine diarrhea.
Collapse
Affiliation(s)
- Ying Shi
- Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Benqiang Li
- Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jie Tao
- Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
16
|
Riitho V, Strong R, Larska M, Graham SP, Steinbach F. Bovine Pestivirus Heterogeneity and Its Potential Impact on Vaccination and Diagnosis. Viruses 2020; 12:v12101134. [PMID: 33036281 PMCID: PMC7601184 DOI: 10.3390/v12101134] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
Bovine Pestiviruses A and B, formerly known as bovine viral diarrhoea viruses (BVDV)-1 and 2, respectively, are important pathogens of cattle worldwide, responsible for significant economic losses. Bovine viral diarrhoea control programmes are in effect in several high-income countries but less so in low- and middle-income countries where bovine pestiviruses are not considered in disease control programmes. However, bovine pestiviruses are genetically and antigenically diverse, which affects the efficiency of the control programmes. The emergence of atypical ruminant pestiviruses (Pestivirus H or BVDV-3) from various parts of the world and the detection of Pestivirus D (border disease virus) in cattle highlights the challenge that pestiviruses continue to pose to control measures including the development of vaccines with improved cross-protective potential and enhanced diagnostics. This review examines the effect of bovine pestivirus diversity and emergence of atypical pestiviruses in disease control by vaccination and diagnosis.
Collapse
Affiliation(s)
- Victor Riitho
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (V.R.); (R.S.)
| | - Rebecca Strong
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (V.R.); (R.S.)
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland;
| | - Simon P. Graham
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK;
- School of Veterinary Medicine, University of Surrey, Guilford GU2 7XH, UK
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, UK; (V.R.); (R.S.)
- School of Veterinary Medicine, University of Surrey, Guilford GU2 7XH, UK
- Correspondence:
| |
Collapse
|
17
|
Jia S, Huang X, Li H, Zheng D, Wang L, Qiao X, Jiang Y, Cui W, Tang L, Li Y, Xu Y. Immunogenicity evaluation of recombinant Lactobacillus casei W56 expressing bovine viral diarrhea virus E2 protein in conjunction with cholera toxin B subunit as an adjuvant. Microb Cell Fact 2020; 19:186. [PMID: 33004035 PMCID: PMC7527787 DOI: 10.1186/s12934-020-01449-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Bovine viral diarrhea virus (BVDV) is one of the main causes of infectious diseases in cattle and causes large financial losses to the cattle industry worldwide. In this study, Lactobacillus casei strain W56 (Lc W56) was used as antigen deliver carrier to construct a recombinant Lactobacillus vaccine pPG-E2-ctxB/Lc W56 constitutively expressing BVDV E2 protein fused with cholera toxin B subunit (ctxB) as an adjuvant, and its immunogenicity against BVDV infection in mice model by oral route was explored. RESULTS Our results suggested that pPG-E2-ctxB/Lc W56 can effectively activate dendritic cells (DCs) in the Peyer's patches, up-regulate the expression of Bcl-6, and promote T-follicular helper (Tfh) cells differentiation, as well as enhance B lymphocyte proliferation and promote them differentiate into specific IgA-secreting plasma cells, secreting anti-E2 mucosal sIgA antibody with BVDV-neutralizing activity. Moreover, significant levels (p < 0.01) of BVDV-neutralizing antigen-specific serum antibodies were induced in the pPG-E2-ctxB/LC W56 group post-vaccination. The recombinant Lactobacillus vaccine can induce cellular immune responses, and significant levels (p < 0.01) of Th1-associated cytokines (IL-2, IL-12, and IFN-γ), Th2-associated cytokines (IL-4, IL-10) and Th17-associated cytokine (IL-17) were determined in the serum of vaccinated mice. Significantly, the recombinant Lactobacillus vaccine provides immune protection against BVDV infection, which can be cleared effectively by the vaccine post-challenge in orally vaccinated animals. CONCLUSIONS The genetically engineered Lactobacillus vaccine constructed in this study is immunogenic in mice and can induce mucosal, humoral, and cellular immune responses, providing effective anti-BVDV immune protection. It thus represents a promising strategy for vaccine development against BVDV.
Collapse
Affiliation(s)
- Shuo Jia
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Xinning Huang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Hua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Dianzhong Zheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Yanping Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Wen Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Lijie Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Northeast Science Inspection Station, Key Laboratory of Animal Pathogen Biology of Ministry of Agriculture of China, Harbin, P. R. China
| | - Yijing Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Northeast Science Inspection Station, Key Laboratory of Animal Pathogen Biology of Ministry of Agriculture of China, Harbin, P. R. China
| | - Yigang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Northeast Science Inspection Station, Key Laboratory of Animal Pathogen Biology of Ministry of Agriculture of China, Harbin, P. R. China
| |
Collapse
|
18
|
Walz PH, Chamorro MF, M Falkenberg S, Passler T, van der Meer F, R Woolums A. Bovine viral diarrhea virus: An updated American College of Veterinary Internal Medicine consensus statement with focus on virus biology, hosts, immunosuppression, and vaccination. J Vet Intern Med 2020; 34:1690-1706. [PMID: 32633084 PMCID: PMC7517858 DOI: 10.1111/jvim.15816] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/01/2022] Open
Abstract
Control of bovine viral diarrhea virus (BVDV) in cattle populations across most of the world has remained elusive in spite of advances in knowledge about this viral pathogen. A central feature of virus perseverance in cattle herds is the unique mechanism of persistent infection. Managing BVDV infection in herds involves controlling persistently infected carrier animals using a multidimensional approach of vaccination, biosecurity, and identification of BVDV reservoirs. A decade has passed since the original American College of Veterinary Internal Medicine consensus statement on BVDV. While much has remained the same with respect to clinical signs of disease, pathogenesis of infection including persistent infection, and diagnosis, scientific articles published since 2010 have led to a greater understanding of difficulties associated with control of BVDV. This consensus statement update on BVDV presents greater focus on topics currently relevant to the biology and control of this viral pathogen of cattle, including changes in virus subpopulations, infection in heterologous hosts, immunosuppression, and vaccination.
Collapse
Affiliation(s)
- Paul H Walz
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Manuel F Chamorro
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Shollie M Falkenberg
- USDA Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Thomas Passler
- College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amelia R Woolums
- College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, USA
| |
Collapse
|
19
|
Asín J, Hilbe M, de Miguel R, Rodríguez-Largo A, Lanau A, Akerman A, Stalder H, Schweizer M, Luján L. An outbreak of abortions, stillbirths and malformations in a Spanish sheep flock associated with a bovine viral diarrhoea virus 2-contaminated orf vaccine. Transbound Emerg Dis 2020; 68:233-239. [PMID: 32386079 DOI: 10.1111/tbed.13619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
Bovine viral diarrhoea virus (BVDV) is a pestivirus that affects both cattle and sheep, causing an array of clinical signs, which include abortions and malformations in the offspring. Manufacturing of modified live virus (MLV) vaccines often includes the use of bovine-derived products, which implies a risk of contamination with viable BVDV. Recently, the circulation of a specific strain of BVDV 2b among Spanish sheep flocks, associated with outbreaks of abortions and malformations, and whose origin was not determined, has been observed. On February 2018, a MLV orf vaccine was applied to a 1,600 highly prolific sheep flock in the Northeast of Spain that included 550 pregnant ewes. In May 2018, during the lambing season, an unusual high rate (72.7%) of abortions, stillbirths, congenital malformations and neurological signs in the offspring was observed. It was estimated that about 1,000 lambs were lost. Three 1- to 3-day-old affected lambs and a sealed vial of the applied vaccine were studied. Lambs showed variable degrees of central nervous system malformations and presence of pestiviral antigen in the brain. Molecular studies demonstrated the presence of exactly the same BVDV 2b in the tissues of the three lambs and in the orf vaccine, thus pointing to a pestivirus contamination in the applied vaccine as the cause of the outbreak. Interestingly, sequencing at the 5'-untranslated region-(UTR) of the contaminating virus showed a complete match with the virus described in the previously reported outbreaks in Spain, thus indicating that the same contaminated vaccine could have also played a role in those cases. This communication provides a clear example of the effects of the application of this contaminated product in a sheep flock. The information presented here can be of interest in putative future cases of suspected circulation of this or other BVDV strains in ruminants.
Collapse
Affiliation(s)
- Javier Asín
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ricardo de Miguel
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | | | - Antonio Lanau
- Sociedad Cooperativa Limitada Agropecuaria del Sobrarbe (SCLAS) Veterinary Service, Huesca, Spain
| | - Alberto Akerman
- Sociedad Cooperativa Limitada Agropecuaria del Sobrarbe (SCLAS) Veterinary Service, Huesca, Spain
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Lluís Luján
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain.,Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
20
|
Russell GC, Zadoks RN, Willoughby K, Bachofen C. Bovine viral diarrhoea virus loses quasispecies diversity rapidly in culture. Microb Genom 2020; 6:e000343. [PMID: 32160141 PMCID: PMC7276709 DOI: 10.1099/mgen.0.000343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/07/2020] [Indexed: 12/25/2022] Open
Abstract
Bovine viral diarrhoea (BVD) is an important disease of cattle, with significant impacts on animal health and welfare. The wide host range of the causative pestiviruses may lead to formation of virus reservoirs in other ruminant or wildlife species, presenting a concern for the long-term success of BVD eradication campaigns. It is likely that the quasispecies nature of these RNA viruses contributes to their interspecies transmission by providing genetic plasticity. Understanding the spectrum of sequence variants present in persistently infected (PI) animals is, therefore, essential for studies of virus transmission. To analyse quasispecies diversity without amplification bias, we extracted viral RNA from the serum of a PI cow, and from cell culture fluid after three passages of the same virus in culture, to produce cDNA without amplification. Sequencing of this material using Illumina 250 bp paired-read technology produced full-length virus consensus sequences from both sources and demonstrated the quasispecies diversity of this pestivirus A genotype 1a field strain within serum and after culture. We report the distribution and diversity of over 800 SNPs and provide evidence for a loss of diversity after only three passages in cell culture, implying that cultured viruses cannot be used to understand quasispecies diversity and may not provide reliable molecular markers for source tracing or transmission studies. Additionally, both serum and cultured viruses could be sequenced as a set of 25 overlapping PCR amplicons that demonstrated the same consensus sequences and the presence of many of the same quasispecies variants. The observation that aspects of the quasispecies structure revealed by massively parallel sequencing are also detected after PCR and Sanger sequencing suggests that this approach may be useful for small or difficult to analyse samples.
Collapse
Affiliation(s)
- George C. Russell
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Ruth N. Zadoks
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
- Present address: Sydney School of Veterinary Science, University of Sydney, Camden, NSW, Australia
| | - Kim Willoughby
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
| | - Claudia Bachofen
- Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, UK
- Present address: Institute of Virology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland
| |
Collapse
|
21
|
Tetsuo M, Matsuno K, Tamura T, Fukuhara T, Kim T, Okamatsu M, Tautz N, Matsuura Y, Sakoda Y. Development of a High-Throughput Serum Neutralization Test Using Recombinant Pestiviruses Possessing a Small Reporter Tag. Pathogens 2020; 9:E188. [PMID: 32143534 PMCID: PMC7157198 DOI: 10.3390/pathogens9030188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
A serum neutralization test (SNT) is an essential method for the serological diagnosis of pestivirus infections, including classical swine fever, because of the cross reactivity of antibodies against pestiviruses and the non-quantitative properties of antibodies in an enzyme-linked immunosorbent assay. In conventional SNTs, an immunoperoxidase assay or observation of cytopathic effect after incubation for 3 to 7 days is needed to determine the SNT titer, which requires labor-intensive or time-consuming procedures. Therefore, a new SNT, based on the luciferase system and using classical swine fever virus, bovine viral diarrhea virus, and border disease virus possessing the 11-amino-acid subunit derived from NanoLuc luciferase was developed and evaluated; this approach enabled the rapid and easy determination of the SNT titer using a luminometer. In the new method, SNT titers can be determined tentatively at 2 days post-infection (dpi) and are comparable to those obtained by conventional SNTs at 3 or 4 dpi. In conclusion, the luciferase-based SNT can replace conventional SNTs as a high-throughput antibody test for pestivirus infections.
Collapse
Affiliation(s)
- Madoka Tetsuo
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
| | - Keita Matsuno
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
| | - Tomokazu Tamura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (T.T.); (T.F.); (Y.M.)
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (T.T.); (T.F.); (Y.M.)
| | - Taksoo Kim
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Lübeck, D-23562 Lübeck, Germany;
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (T.T.); (T.F.); (Y.M.)
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Division of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; (M.T.); (K.M.); (T.K.); (M.O.)
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
22
|
Tao J, Li B, Shi Y, Chen J, Zhu G, Shen X, Liu H. Attenuated porcine-derived type 2 bovine viral diarrhea virus as vector stably expressing viral gene. J Virol Methods 2020; 279:113842. [PMID: 32135175 DOI: 10.1016/j.jviromet.2020.113842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022]
Abstract
Infectious bovine viral diarrhea virus (BVDV) cDNA clones have been used for the expression of classical swine fever virus (CSFV) genes for immune prevention and control. However, can it be used for the expression of an allogenetic fragment? To answer this question, a BVDV chimeric virus expressing the spike (S) antigen fragment of porcine epidemic diarrhea virus (PEDV) was constructed. Antigen S499-602 was inserted into pig-derived BVDV-2 infectious cDNA clone pASH28 in tandem by overlapping PCR, located between the seventh and eighth amino acids at the N-terminus of the capsid (C) protein of BVDV. Indirect immunofluorescence assay confirmed that the chimeric virus vASH-dS312 containing double S499-602 sequences was successfully assembled, which could react with the monoclonal antibody (MAb) against BVDV E2 and PEDV S proteins. Further western blot analysis confirmed that the exogenous S499-602 double protein could be stably expressed. Next, the chimeric virus vASH-dS312 was administered to BALB/C mice either orally or by intramuscular injection. The immunized mice were healthy and showed no signs of toxicity. IgG against BVDV and PEDV antibodies could be detected in the mice administered vASH-dS312 by intramuscular injection, which had neutralization activity against BVDV and PEDV. Thus, this study reported a new insertion site in the BVDV infectious cDNA clone that could successfully express an allogenetic antigen.
Collapse
Affiliation(s)
- Jie Tao
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Benqiang Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Ying Shi
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Jinghua Chen
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xiaohui Shen
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Huili Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China.
| |
Collapse
|
23
|
Storino GY, Xavier EB, Mechler-Dreibi ML, Simonatto A, Gatto IRH, Oliveira MEF, Pituco EM, de Oliveira LG. No effects of noncytopathic bovine viral diarrhea virus type 2 on the reproductive tract of experimentally inoculated boars. Vet Microbiol 2019; 240:108512. [PMID: 31902514 DOI: 10.1016/j.vetmic.2019.108512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 01/04/2023]
Abstract
Bovine viral diarrhea virus (BVDV) infections in pigs may result in transient leukopenia, chronic gastroenteritis, septicemia, and hemorrhagic lesions. Both classical swine fever virus (CSF) and the atypical porcine pestivirus (APPV) are shed in the semen of infected boars. Because these viruses share conserved regions and present antigenic similarity, they may not be the only species belonging to the genus Pestivirus that can be shed in the semen of infected pigs. The objective of this study was to evaluate the testicular and epididymal changes, seminal parameters, and viral shedding in the reproductive tract of boars experimentally inoculated with noncytopathic BVDV-2. Six males were selected, and samples of blood, semen, and preputial swabs were collected every four days until the 52nd day after inoculation. The samples were tested for the presence of viral RNA by RT-PCR. An aliquot of whole blood was used to perform hematological analyses, which showed a significant reduction in monocyte counts and a significant increase in lymphocyte counts when comparing the pre- and postinoculation periods. The neutralizing antibody titers were determined by the virus neutralization test. None of the animals presented clinical signs or worsening of the seminal parameters that were evaluated. Moreover, BVDV-2 shedding by the reproductive route was not observed.
Collapse
Affiliation(s)
- Gabriel Yuri Storino
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences (FCAV). Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Eduarda Bellini Xavier
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences (FCAV). Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Marina Lopes Mechler-Dreibi
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences (FCAV). Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Artur Simonatto
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences (FCAV). Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Igor Renan Honorato Gatto
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences (FCAV). Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Maria Emilia Franco Oliveira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences (FCAV). Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Edviges Maristela Pituco
- Biological Institute of São Paulo, Av. Conselheiro Rodrigues Alves, 1252 - Vila Mariana, São Paulo, SP, 04014-002, Brazil
| | - Luís Guilherme de Oliveira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences (FCAV). Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
24
|
Li W, Mao L, Shu X, Liu R, Hao F, Li J, Liu M, Yang L, Zhang W, Sun M, Zhong C, Jiang J. Transcriptome analysis reveals differential immune related genes expression in bovine viral diarrhea virus-2 infected goat peripheral blood mononuclear cells (PBMCs). BMC Genomics 2019; 20:516. [PMID: 31226933 PMCID: PMC6588900 DOI: 10.1186/s12864-019-5830-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background Bovine viral diarrhea virus (BVDV) is an economically important viral pathogen of domestic and wild ruminants. Apart from cattle, small ruminants (goats and sheep) are also the susceptible hosts for BVDV. BVDV infection could interfere both of the innate and adaptive immunity of the host, while the genes and mechanisms responsible for these effects have not yet been fully understood. Peripheral blood mononuclear cells (PBMCs) play a pivotal role in the immune responses to viral infection, and these cells were the target of BVDV infection. In the present study, the transcriptome of goat peripheral blood mononuclear cells (PBMCs) infected with BVDV-2 was explored by using RNA-Seq technology. Results Goat PBMCs were successfully infected by BVDV-2, as determined by RT-PCR and quantitative real-time RT-PCR (qRT-PCR). RNA-Seq analysis results at 12 h post-infection (hpi) revealed 499 differentially expressed genes (DEGs, fold-change ≥ ± 2, p < 0.05) between infected and mock-infected PBMCs. Of these genes, 97 were up-regulated and the remaining 352 genes were down-regulated. The identified DEGs were found to be significantly enriched for locomotion/ localization, immune response, inflammatory response, defense response, regulation of cytokine production, etc., under GO enrichment analysis. Cytokine-cytokine receptor interaction, TNF signaling pathway, chemokine signaling pathway, etc., were found to be significantly enriched in KEGG pathway database. Protein-protein interaction (PPI) network analysis indicated most of the DEGs related to innate or adaptive immune responses, inflammatory response, and cytokine/chemokine-mediated signaling pathway. TNF, IL-6, IL-10, IL-12B, GM-CSF, ICAM1, EDN1, CCL5, CCL20, CXCL10, CCL2, MAPK11, MAPK13, CSF1R and LRRK1 were located in the core of the network and highly connected with other DGEs. Conclusions BVDV-2 infection of goat PBMCs causes the transcription changes of a series of DEGs related to host immune responses, including inflammation, defense response, cell locomotion, cytokine/chemokine-mediated signaling, etc. The results will be useful for exploring and further understanding the host responses to BVDV-2 infection in goats. Electronic supplementary material The online version of this article (10.1186/s12864-019-5830-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenliang Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China. .,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Li Mao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Xin Shu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Runxia Liu
- South Dakota State University, Brookings, SD, 57007, USA
| | - Fei Hao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jizong Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Maojun Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Leilei Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Wenwen Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Min Sun
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Chunyan Zhong
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.,College of Animal Science, Guizhou University, Guiyang, 550000, People's Republic of China
| | - Jieyuan Jiang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| |
Collapse
|
25
|
Zhou B. Classical Swine Fever in China-An Update Minireview. Front Vet Sci 2019; 6:187. [PMID: 31249837 PMCID: PMC6584753 DOI: 10.3389/fvets.2019.00187] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022] Open
Abstract
Classical swine fever (CSF) remains one of the most economically important viral diseases of domestic pigs and wild boar worldwide. The causative agent is CSF virus, it is highly contagious, with high morbidity and mortality rates; as such, it is an OIE-listed disease. Owing to a nationwide policy of vaccinations of pigs, CSF is well-controlled in China, with large-scale outbreaks rarely seen. Sporadic outbreaks are however still reported every year. In order to cope with future crises and to eradicate CSF, China should strengthen and support biosecurity measures such as the timely reporting of suspected disease, technologies for reliable diagnoses, culling infected herds, and tracing possible contacts, as well as continued vaccination and support of research into drug and genetic therapies. This mini-review summarizes the epidemiology of and control strategies for CSF in China.
Collapse
Affiliation(s)
- Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Evans CA, Pinior B, Larska M, Graham D, Schweizer M, Guidarini C, Decaro N, Ridpath J, Gates MC. Global knowledge gaps in the prevention and control of bovine viral diarrhoea (BVD) virus. Transbound Emerg Dis 2018; 66:640-652. [PMID: 30415496 DOI: 10.1111/tbed.13068] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022]
Abstract
The significant economic impacts of bovine viral diarrhoea (BVD) virus have prompted many countries worldwide to embark on regional or national BVD eradication programmes. Unlike other infectious diseases, BVD control is highly feasible in cattle production systems because the pathogenesis is well understood and there are effective tools to break the disease transmission cycle at the farm and industry levels. Coordinated control approaches typically involve directly testing populations for virus or serological screening of cattle herds to identify those with recent exposure to BVD, testing individual animals within affected herds to identify and eliminate persistently infected (PI) cattle, and implementing biosecurity measures such as double-fencing shared farm boundaries, vaccinating susceptible breeding cattle, improving visitor and equipment hygiene practices, and maintaining closed herds to prevent further disease transmission. As highlighted by the recent DISCONTOOLS review conducted by a panel of internationally recognized experts, knowledge gaps in the control measures are primarily centred around the practical application of existing tools rather than the need for creation of new tools. Further research is required to: (a) determine the most cost effective and socially acceptable means of applying BVD control measures in different cattle production systems; (b) identify the most effective ways to build widespread support for implementing BVD control measures from the bottom-up through farmer engagement and from the top-down through national policy; and (c) to develop strategies to prevent the reintroduction of BVD into disease-free regions by managing the risks associated with the movements of animals, personnel and equipment. Stronger collaboration between epidemiologists, economists and social scientists will be essential for progressing efforts to eradicate BVD from more countries worldwide.
Collapse
Affiliation(s)
- Caitlin A Evans
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Beate Pinior
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | - David Graham
- Animal Health Ireland, Carrick-on-Shannon, Ireland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | | | - M Carolyn Gates
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
27
|
Nascimento KA, Mechler ML, Gatto IR, Almeida HM, Pollo AS, Sant’Ana FJ, Pedroso PM, Oliveira LGD. Evidence of bovine viral diarrhea virus transmission by back pond water in experimentally infected piglets. PESQUISA VETERINARIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-5629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Swine can be infected by bovine viral diarrhea virus (BVDV). However, transmission routes among pigs are still unknown. The objective of the present study was to induce experimental infection of BVDV-1 in weaned piglets and to assess the potential transmission through pen back pond water, used to facilitate heat exchange of the pigs housed in barns. Two repetitions (BP1 and BP 2) were performed using 12 piglets proven to be free BVDV (n=6 per repetition) allocated into three groups: control, sentinels and infected with two piglets each. The piglets were placed in stainless steel isolators. The infected group received an inoculum containing BVDV-1, Singer strain. The piglets remained in the cabinets for 25 days, during which samples of nasal swab were collected daily and blood sampled weekly. At the end, the piglets were euthanized, necropsied and organ fragments were collected for histopathology, immunohistochemistry and RT-PCR. In the first experiment (BP1) the infected animals shed the virus between days 6 and 21 post-infection. Regarding the sentinel group, shedding occurred in only one piglet, on the 20th day after infection, and seroconversion was observed on the 25th day post-infection. In BP2, infected piglets I3 and I4 shed the virus on days 4 and 21 post-infection, respectively. Only one sentinel piglet (S3) she the virus on day 13 post-infection. Therefore, it was concluded that pigs can become infected with BVDV-1 and shed potentially infectious viral particles consequently, being able to transmit the virus to other pigs through back pond water.
Collapse
|
28
|
Lee KH, Han DG, Kim S, Choi EJ, Choi KS. Experimental infection of mice with noncytopathic bovine viral diarrhea virus 2 increases the number of megakaryocytes in bone marrow. Virol J 2018; 15:115. [PMID: 30055639 PMCID: PMC6064063 DOI: 10.1186/s12985-018-1030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/20/2018] [Indexed: 11/20/2022] Open
Abstract
Background Bovine viral diarrhea virus (BVDV) causes significant economic losses worldwide in the cattle industry through decrease in productive performance and immunosuppression of animals in herds. Recent studies conducted by our group showed that mice can be infected with BVDV-1 by the oral route. The purpose of this study was to assess the clinical signs, hematological changes, histopathological lesions in lymphoid tissues, and the distribution of the viral antigen after oral inoculation with a Korean noncytopathic (ncp) BVDV-2 field isolate in mice. Methods Mice were orally administered a low or high dose of BVDV-2; blood and tissue samples were collected on days 2, 5, and 9 postinfection (pi). We monitored clinical signs, hematological changes, histopathological lesions, and tissue distribution of a viral antigen by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) and then compared these parameters with those in ncp BVDV-1 infections. Results None of the infected mice developed any clinical signs of the illness. Significant thrombocytopenia was found in both low- and high-dose-inoculated mice on day 2 pi. Leukopenia was apparent only in low-dose-inoculated mice on day 2 pi, whereas lymphopenia was not observed in any ncp BVDV-2-infected animal. Viral RNA was found in the spleen in of low- and high-dose-inoculated mice by RT-PCR. According to the results of IHC, the viral antigen was consistently detected in lymphocytes of bone marrow and spleen and less frequently in bronchus-associated lymphoid tissue (BALT), mesenteric lymph nodes, and Peyer’s patches. Despite the antigen detection in BALT and mesenteric lymph nodes, histopathological lesions were not observed in these tissues. Lympholysis, infiltration by inflammatory cells, and increased numbers of megakaryocytes were seen in Peyer’s patches, spleens, and bone marrow, respectively. In contrast to ncp BVDV-1 infection, lympholysis was found in the spleen of ncp BVDV-2-infected mice. These histopathological lesions were more severe in high-dose-inoculated mice than in low-dose-inoculated mice. Conclusions Our results provide insight into the pathogenesis of ncp BVDV-2 infection in mice. Collectively, these results highlight significant differences in pathogenesis between ncp BVDV-1 and ncp BVDV-2 infections in a murine model.
Collapse
Affiliation(s)
- Kyung-Hyun Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Du-Gyeong Han
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Suhee Kim
- Animal Disease & Biosecurity Team, National Institute of Animal Science, Rural Development Administration, Wanju-Gun, 55365, Republic of Korea
| | - Eun-Jin Choi
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
29
|
Shi H, Leng C, Xu Q, Jiao Z, Shi H, Sun S, Qiu R, Kan Y, Yao L. Experimental infection of BALB/c mice with a caprine Pestivirus H isolate. Vet Microbiol 2018; 221:1-7. [PMID: 29981694 DOI: 10.1016/j.vetmic.2018.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 10/16/2022]
Abstract
To data, small animal Pestivirus H infection models have not been established. In order to develop a new infection model, BALB/c mice were inoculated with Pestivirus H strain HN1507. The virus-inoculated mice displayed nasal discharge and fever clinical signs. Histopathological changes in Pestivirus H-infected mice included alveolar septa thickening and alveolar atrophy in the lungs from 1 to 11 days post-inoculation (PI). Furthermore, we observed tracheal epithelial cell abscission and inflammatory cell infiltration in the tracheas from 1 to 9 days PI, infiltration of eosinophils in the spleens from 1 to 9 days PI, intestinal villi abscission and lysis of epithelial cells in the intestines from 1 to 11 days PI. The results of virus isolation showed that Pestivirus H replicated well in the lungs, tracheas, spleens, and intestines of infected BALB/c mice, and peak viral titers were observed 3 days PI. RT-PCR and immunofluorescence results were in agreement with the virus isolation results; however, the hearts of infected mice from 1 to 3 days PI were positive while virus isolation results were negative. To the best of our knowledge, this is the first study reporting Pestivirus H detection in BALB/c mice. Our findings indicated that Pestivirus H strain HN1507 was pathogenic to BALB/c mice and caused clinical signs and histopathological lesions in Pestivirus H-infected BALB/c mice.
Collapse
Affiliation(s)
- Hongfei Shi
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Chaoliang Leng
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Qian Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Zhujin Jiao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Hongling Shi
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Shiyu Sun
- Liaoning Center for Animal Disease Control and Prevention, Shenyang, PR China
| | - Reng Qiu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China.
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China.
| |
Collapse
|
30
|
An improved indirect ELISA for specific detection of antibodies against classical swine fever virus based on structurally designed E2 protein expressed in suspension mammalian cells. Arch Virol 2018; 163:1831-1839. [DOI: 10.1007/s00705-018-3809-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/03/2018] [Indexed: 10/17/2022]
|
31
|
Tao J, Li B, Chen J, Zhang C, Ma Y, Zhu G, Liu H. N pro His49 and E rns Lys412 mutations in pig bovine viral diarrhea virus type 2 synergistically enhance the cellular antiviral response. Virus Genes 2017; 54:57-66. [PMID: 28852929 DOI: 10.1007/s11262-017-1506-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/17/2017] [Indexed: 01/01/2023]
Abstract
Type I interferons are major components of the innate immune response of hosts, and accordingly, many viruses have evolved mechanisms to modulate the host response during infection. Bovine viral diarrhea virus (BVDV) nonstructural protein Npro and structural protein Erns play important roles in inhibiting type I interferon. The aim of this study was to explore the epistatic effects of amino acid mutations in Npro and Erns in porcine ST cells to characterize the immune response induced by BVDV-2. Plasmids with mutant amino acids His49 (H49), Glu22 (E22) in Npro, and His300 (H300), Lys412 (K412) in Erns which had been changed to Alanine (A) had similar effects on type I interferon production in MDBK and ST cells, but resulted in much greater ISG15, OAS, and Mx production in ST cells. The rescued vASH/NproH49ErnsK412 virus showed the best efficiency with respect to modulating antiviral cytokines, indicating that the amino acids Npro H49 and Erns K412 had highly synergistic effects in abolishing the ability to inhibit type I interferon. These findings have importance practical implications owing to the increasing prevalence of BVDV infections, including persistent infections, in domestic pigs.
Collapse
Affiliation(s)
- Jie Tao
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Benqiang Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Jinghua Chen
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Chunling Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Yufei Ma
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Huili Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China. .,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China.
| |
Collapse
|
32
|
Clinical responses and reproductive outcomes in pregnant ewes experimentally infected with bovine viral diarrhoea virus (type-1c) between days 59 and 69 of gestation. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Schwarz L, Riedel C, Högler S, Sinn LJ, Voglmayr T, Wöchtl B, Dinhopl N, Rebel-Bauder B, Weissenböck H, Ladinig A, Rümenapf T, Lamp B. Congenital infection with atypical porcine pestivirus (APPV) is associated with disease and viral persistence. Vet Res 2017; 48:1. [PMID: 28057061 PMCID: PMC5217315 DOI: 10.1186/s13567-016-0406-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
In 2013, several Austrian piglet-producing farms recorded outbreaks of action-related repetitive myoclonia in newborn piglets (“shaking piglets”). Malnutrition was seen in numerous piglets as a complication of this tremor syndrome. Overall piglet mortality was increased and the number of weaned piglets per sow decreased by more than 10% due to this outbreak. Histological examination of the CNS of affected piglets revealed moderate hypomyelination of the white substance in cerebellum and spinal cord. We detected a recently discovered pestivirus, termed atypical porcine pestivirus (APPV) in all these cases by RT-PCR. A genomic sequence and seven partial sequences were determined and revealed a 90% identity to the US APPV sequences and 92% identity to German sequences. In confirmation with previous reports, APPV genomes were identified in different body fluids and tissues including the CNS of diseased piglets. APPV could be isolated from a “shaking piglet”, which was incapable of consuming colostrum, and passaged on different porcine cells at very low titers. To assess the antibody response a blocking ELISA was developed targeting NS3. APPV specific antibodies were identified in sows and in PCR positive piglets affected by congenital tremor (CT). APPV genomes were detected continuously in piglets that gradually recovered from CT, while the antibody titers decreased over a 12-week interval, pointing towards maternally transmitted antibodies. High viral loads were detectable by qRT-PCR in saliva and semen of infected young adults indicating a persistent infection.
Collapse
Affiliation(s)
- Lukas Schwarz
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Christiane Riedel
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Sandra Högler
- Department of Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Leonie J Sinn
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Thomas Voglmayr
- Traunkreis Vet Clinic, Großendorf 3, 4551, Ried im Traunkreis, Austria
| | - Bettina Wöchtl
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Nora Dinhopl
- Department of Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Barbara Rebel-Bauder
- Department of Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Herbert Weissenböck
- Department of Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Andrea Ladinig
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Till Rümenapf
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Benjamin Lamp
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
34
|
Tao J, Liao J, Wang J, Zhang X, Zhang Q, Zhu L, Zhang W, Liu H, Zhu G. Pig BVDV-2 non-structural protein (N pro) links to cellular antiviral response in vitro. Virus Genes 2016; 53:233-239. [PMID: 27866318 DOI: 10.1007/s11262-016-1410-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
Abstract
In this study, we constructed for the first time a full-length cDNA clone of pig-original bovine viral diarrhea virus 2 (BVDV-2) strain SH-28, modified the cDNA clone (pASH28) for mutant pASHΔNpro and derived virus strain vASHΔNpro by deleting the genomic region encoding the Npro polypeptide, and examined significance of protein Npro for antiviral responses in vitro. Data showed that Npro-deletion mutant virus vASHΔNpro led to significant overexpression of oligo adenylate synthetase (OAS), myxovirus-resistant protein 1 (Mx1), and ubiquitin-like protein 15 (ISG15). Data also revealed that overexpression of Npro, but not NS2 and NS3 proteins, resulted in significant down-regulation of OAS, Mx1, and ISG15 production (p ≤ 0.05) in bovine cells as well as porcine cells transfected with Npro recombinant eukaryotic expression plasmids. Npro (but not NS2 and NS3) was also found to inhibit poly(IC) from inducing production of type I interferon (IFN-I). These results indicated that protein Npro may play multiple roles in regulating antiviral response in host cells interfered by pig BVDV-2 strain, and provided useful information to understand better the mechanism of BVDV-2 persistent infection in pigs.
Collapse
Affiliation(s)
- Jie Tao
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Institute of Animal Sciences and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Jinhu Liao
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jianye Wang
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xinjun Zhang
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Qian Zhang
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Liqian Zhu
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Weiping Zhang
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Huili Liu
- Institute of Animal Sciences and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
35
|
Weber MN, Bauermann FV, Gómez-Romero N, Herring AD, Canal CW, Neill JD, Ridpath JF. Variation in pestivirus growth in testicle primary cell culture is more dependent on the individual cell donor than cattle breed. Vet Res Commun 2016; 41:1-7. [PMID: 27864728 DOI: 10.1007/s11259-016-9666-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
The causes of bovine respiratory disease complex (BRDC) are multifactorial and include infection with both viral and bacterial pathogens. Host factors are also involved as different breeds of cattle appear to have different susceptibilities to BRDC. Infection with bovine pestiviruses, including bovine viral diarrhea virus 1 (BVDV1), BVDV2 and 'HoBi'-like viruses, is linked to the development of BRDC. The aim of the present study was to compare the growth of different bovine pestiviruses in primary testicle cell cultures obtained from taurine, indicine and mixed taurine and indicine cattle breeds. Primary cells strains, derived from testicular tissue, were generated from three animals from each breed. Bovine pestivirus strains used were from BVDV-1a, BVDV-1b, BVDV-2a and 'HoBi'-like virus. Growth was compared by determining virus titers after one passage in primary cells. All tests were run in triplicate. Virus titers were determined by endpoint dilution and RT-qPCR. Statistical analysis was performed using one way analysis of variance (ANOVA) followed by the Tukey's Multiple Comparison Test (P˂0.05). Significant differences in virus growth did not correlate with cattle breed. However, significant differences were observed between cells derived from different individuals regardless of breed. Variation in the replication of virus in primary cell strains may reflect a genetic predisposition that favors virus replication.
Collapse
Affiliation(s)
- Matheus N Weber
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando V Bauermann
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Service (ARS), National Animal Disease Center (NADC), United States Department of Agriculture (USDA), 1920 Dayton Avenue, PO Box 70, Ames, IA, 50010, USA
| | - Ninnet Gómez-Romero
- Laboratorio de Vacunología y Constatación, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Distrito Federal, Mexico
| | - Andy D Herring
- Department of Animal Science, Texas A&M University (TAMU), College Station, TX, USA
| | - Cláudio W Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - John D Neill
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Service (ARS), National Animal Disease Center (NADC), United States Department of Agriculture (USDA), 1920 Dayton Avenue, PO Box 70, Ames, IA, 50010, USA
| | - Julia F Ridpath
- Ruminant Diseases and Immunology Research Unit, Agricultural Research Service (ARS), National Animal Disease Center (NADC), United States Department of Agriculture (USDA), 1920 Dayton Avenue, PO Box 70, Ames, IA, 50010, USA.
| |
Collapse
|
36
|
Evans CA, Cockcroft PD, Reichel MP. Antibodies to bovine viral diarrhoea virus (BVDV) in water buffalo (Bubalus bubalis)
and cattle from the Northern Territory of Australia. Aust Vet J 2016; 94:423-426. [DOI: 10.1111/avj.12517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/08/2016] [Accepted: 04/14/2016] [Indexed: 11/29/2022]
Affiliation(s)
- CA Evans
- School of Animal and Veterinary Sciences, Roseworthy Campus; University of Adelaide; Roseworthy South Australia 5371 Australia
| | - PD Cockcroft
- School of Animal and Veterinary Sciences, Roseworthy Campus; University of Adelaide; Roseworthy South Australia 5371 Australia
| | - MP Reichel
- School of Animal and Veterinary Sciences, Roseworthy Campus; University of Adelaide; Roseworthy South Australia 5371 Australia
| |
Collapse
|
37
|
Mao L, Li W, Yang L, Wang J, Cheng S, Wei Y, Wang Q, Zhang W, Hao F, Ding Y, Sun Y, Jiang J. Primary surveys on molecular epidemiology of bovine viral diarrhea virus 1 infecting goats in Jiangsu province, China. BMC Vet Res 2016; 12:181. [PMID: 27596263 PMCID: PMC5011786 DOI: 10.1186/s12917-016-0820-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 09/01/2016] [Indexed: 11/13/2022] Open
Abstract
Background Bovine viral diarrhea virus (BVDV) is a pathogen of domestic and wildlife animals worldwide and is associated with several diseases. In China, there are many reports about genotyping of BVDV strains originated from cattle and pigs, and some of them focused on the geographical distributions of BVDV. Currently, the goat industry in Jiangsu province of China is under going a rapid expansion. Most of these goat farms are backyard enterprises and in close proximity to pig and cattle farms. However, there was very limited information about BVDV infections in goats. The objective of this study was to assess the frequency of BVDV infections of goats, the relationship of these infections to clinical signs and determine what BVDV genotypes are circulating in Jiangsu province. Results From 236 goat sera collected from six regions in Jiangsu province between 2011 and 2013, BVDV-1 was identified in 29 samples from the five regions by RT-PCR. The BVDV-1 infections occurred with/without clinical signs. Eight different BVDV-1 strains were identified from these positive samples based on the 5′-untranslated region (5′-UTR) sequences, and further clustered into four BVDV-1 subtypes on the phylogenetic analysis. Three were BVDV-1b, two BVDV-1m, two BVDV-1o, and one BVDV-1p, respectively. Conclusions To our knowledge, this is the first report to investigate the occurrence of BVDV and the genotypes of BVDV infecting goats in China. The results indicated that BVDV-1 infections were indeed present and the viruses were with genetic variations in Chinese goat herds. The information would be very useful for prevention and control of BVDV-1 infections in China.
Collapse
Affiliation(s)
- Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Jianhui Wang
- Suining Animal Husbandry and Veterinary station, Suining, 221200, China
| | - Suping Cheng
- Hai'an Animal Husbandry and Veterinary Station, Hai'an, 226600, China
| | - Yong Wei
- Suining Animal Husbandry and Veterinary station, Suining, 221200, China
| | - Qiusheng Wang
- Hai'an Animal Husbandry and Veterinary Station, Hai'an, 226600, China
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Fei Hao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Yonglong Ding
- Hai'an Animal Husbandry and Veterinary Station, Hai'an, 226600, China
| | - Yinhua Sun
- Hai'an Animal Husbandry and Veterinary Station, Hai'an, 226600, China
| | - Jieyuan Jiang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China.
| |
Collapse
|
38
|
Dräger C, Schröder C, König P, Tegtmeyer B, Beer M, Blome S. Efficacy of Suvaxyn CSF Marker (CP7_E2alf) in the presence of pre-existing antibodies against Bovine viral diarrhea virus type 1. Vaccine 2016; 34:4666-4671. [PMID: 27523739 DOI: 10.1016/j.vaccine.2016.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/31/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022]
Abstract
Classical swine fever (CSF) is still one of the most important viral diseases of pigs worldwide and outbreaks are notifiable to the OIE. The different control options also include (emergency) vaccination, preferably with a vaccine that allows differentiation of infected from vaccinated animals (DIVA principle). Recently, the chimeric pestivirus "CP7_E2alf" (Suvaxyn® CSF Marker, Zoetis) was licensed as live attenuated marker vaccine by the European Medicines Agency (EMA). In the context of risk assessments for an emergency vaccination scenario, the question has been raised whether pre-existing anti-pestivirus antibodies, especially against the vaccine backbone Bovine viral diarrhea virus type 1 (BVDV-1), would interfere with "CP7_E2alf" vaccination and the accompanying DIVA diagnostics. To answer this question, a vaccination-challenge-trial was conducted with Suvaxyn® CSF Marker and the "gold-standard" of live-modified CSF vaccines C-strain (RIEMSER® Schweinepestvakzine) as comparator. Pre-existing antibodies against BVDV-1 were provoked in a subset of animals through intramuscular inoculation of a recent field isolate from Germany (two injections with an interval of 2weeks). Twenty-seven days after the first injection, intramuscular vaccination of pre-exposed and naïve animals with either "CP7_E2alf" or C-strain "Riems" was performed. Seven days later, all vaccinated animals and two additional controls were oro-nasally challenged with highly virulent CSF virus (CSFV) strain Koslov. It was demonstrated that pre-existing BVDV-1 antibodies do not impact on the efficacy of live attenuated vaccines against CSF. Both C-strain "Riems" and marker vaccine "CP7_E2alf" were able to confer full protection against highly virulent challenge seven days after vaccination. However, slight interference was seen with serological DIVA diagnostics accompanying the vaccination with CP7_E2alf. Amended sample preparation and combination of test systems was able to resolve most cases of false positive reactions. However, in such a co-infection scenario, optimization and embedding in a well-defined surveillance strategy is clearly needed.
Collapse
Affiliation(s)
- Carolin Dräger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Birthe Tegtmeyer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
39
|
Han YJ, Chae JB, Chae JS, Yu DH, Park J, Park BK, Kim HC, Yoo JG, Choi KS. Identification of bovine viral diarrhea virus infection in Saanen goats in the Republic of Korea. Trop Anim Health Prod 2016; 48:1079-82. [PMID: 26992733 DOI: 10.1007/s11250-016-1042-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/07/2016] [Indexed: 01/19/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is one of the most important viral pathogens of livestock and causes substantial economic losses to the livestock industry worldwide. BVDV is not necessarily species specific and is known to infect domesticated and wild ruminants. In the present study, BVDV infection was identified in two Saanen goats from one farm, and two different viral subtypes were found, BVDV-1a and BVDV-2a. Each isolate was closely related to cattle isolates identified in the Republic of Korea. The two sequences obtained in this study were not consistent with border disease virus (BDV). The incidence of BVDV in this farm apparently occurred in the absence of contact with cattle and may be associated with grazing. This study demonstrates that BVDV infection may be possible to transmit among goats without exposure to cattle. Therefore, this result indicates that Saanen goats may act as natural reservoirs for BVDV. This is the first report of BVDV-1a infection in a Saanen goat.
Collapse
Affiliation(s)
- Yu-Jung Han
- College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Jeong-Byoung Chae
- Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Do-Hyeon Yu
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jinho Park
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Bae-Keun Park
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyeon-Cheol Kim
- College of Veterinary Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jae-Gyu Yoo
- Laboratory of Veterinary Clinics, National Institute of Animal Science Rural Development Administration, Jeonju, 54875, Republic of Korea
| | - Kyoung-Seong Choi
- College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
40
|
Hause BM, Collin EA, Peddireddi L, Yuan F, Chen Z, Hesse RA, Gauger PC, Clement T, Fang Y, Anderson G. Discovery of a novel putative atypical porcine pestivirus in pigs in the USA. J Gen Virol 2015. [PMID: 26219947 DOI: 10.1099/jgv.0.000251] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pestiviruses are some of the most significant pathogens affecting ruminants and swine. Here, we assembled a 11 276 bp contig encoding a predicted 3635 aa polyprotein from porcine serum with 68 % pairwise identity to that of a recently partially characterized Rhinolophus affinis pestivirus (RaPV) and approximately 25-28 % pairwise identity to those of other pestiviruses. The virus was provisionally named atypical porcine pestivirus (APPV). Metagenomic sequencing of 182 serum samples identified four additional APPV-positive samples. Positive samples originated from five states and ELISAs using recombinant APPV Erns found cross-reactive antibodies in 94 % of a collection of porcine serum samples, suggesting widespread distribution of APPV in the US swine herd. The molecular and serological results suggest that APPV is a novel, highly divergent porcine pestivirus widely distributed in US pigs.
Collapse
Affiliation(s)
- Ben M Hause
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Emily A Collin
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Lalitha Peddireddi
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Fangfeng Yuan
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Zhenhai Chen
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Richard A Hesse
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Travis Clement
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, USA
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Gary Anderson
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
41
|
Mao L, Li W, Liu X, Hao F, Yang L, Deng J, Zhang W, Wei J, Jiang J. Chinese border disease virus strain JSLS12-01 infects piglets and down-regulates the antibody responses of classical swine fever virus C strain vaccination. Vaccine 2015; 33:3918-22. [DOI: 10.1016/j.vaccine.2015.06.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 01/21/2023]
|
42
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
43
|
Reproductive performance in experimentally BVDV infected ewes and seroconversion rates in sheep co-mingled with BVDV PI calves. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2014.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Luo Y, Li S, Sun Y, Qiu HJ. Classical swine fever in China: a minireview. Vet Microbiol 2014; 172:1-6. [PMID: 24793098 DOI: 10.1016/j.vetmic.2014.04.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/26/2014] [Accepted: 04/01/2014] [Indexed: 11/30/2022]
Abstract
Classical swine fever (CSF), caused by Classical swine fever virus (CSFV), is an OIE-listed, highly contagious, often fatal disease of swine worldwide. Currently, the disease is controlled by prophylactic vaccination in China and many other countries using the modified live vaccines derived from C-strain, which was developed in China in the mid-1950s. This minireview summarizes the epidemiology, diagnostic assays, control and challenges of CSF in China. Though CSF is essentially under control, complete eradication of CSF in China remains a challenging task and needs long-term, joint efforts of stakeholders.
Collapse
Affiliation(s)
- Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, PR China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, PR China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, PR China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, PR China.
| |
Collapse
|
45
|
Deng Y, Shan TL, Tong W, Zheng XC, Guo YY, Zheng H, Cao SJ, Wen XT, Tong GZ. Genomic characterization of a bovine viral diarrhea virus 1 isolate from swine. Arch Virol 2014; 159:2513-7. [PMID: 24719194 DOI: 10.1007/s00705-014-2064-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Abstract
The SD0803 strain of the bovine viral diarrhea virus (BVDV) was isolated from a piglet in China in 2008 and has been classified as a novel subgenotype of BVDV-1. To describe the molecular features of this novel subgenotype, we sequenced and characterized the complete genome of the SD0803 virus. The genome is 12,271 bp in length and contains 5' and 3' untranslated regions (UTRs) that flank an open reading frame (ORF) encoding a 3,898-amino-acid polypeptide. The full-length genome of the SD0803 strain shares 78.8% to 83.3% identity with those of other BVDV-1 strains, 70.0% to 70.7% identity with those of BVDV-2 strains, and less than 67.6% identity with those of other pestiviruses. The highest level of shared identity was 83.3% between the complete SD0803 genome and that of the ZM-95 strain of BVDV-1. Phylogenetic analysis of the 5' UTR and the coding sequence for the N-terminal protease fragment of the SD0803 polyprotein indicated that the SD0803 virus is a member of the novel subgenotype BVDV-1q, isolates of which have been identified recently in dairy cattle and camels in China.
Collapse
Affiliation(s)
- Yu Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gong X, Liu L, Zheng F, Chen Q, Li Z, Cao X, Yin H, Zhou J, Cai X. Molecular investigation of bovine viral diarrhea virus infection in yaks (Bos gruniens) from Qinghai, China. Virol J 2014; 11:29. [PMID: 24524442 PMCID: PMC3926853 DOI: 10.1186/1743-422x-11-29] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/11/2014] [Indexed: 12/04/2022] Open
Abstract
Background Bovine viral diarrhea virus (BVDV) is a pestivirus which infects both domestic animals and wildlife species worldwide. In China, cattle are often infected with BVDV of different genotypes, but there is very limited knowledge regarding BVDV infection in Chinese yaks and the genetic diversity of the virus. The objectives of this study were to detect viral infection in yaks in Qinghai, China and to determine the genotypes of BVDV based on analysis of the 5′untranslated region (5′UTR) and N-terminal protease (Npro) region. Results Between 2010 and 2012, 407 blood samples were collected from yaks with or without clinical signs in six counties of Qinghai Province. Ninety-eight samples (24%) were found to be positive by reverse transcription polymerase chain reaction (RT-PCR) targeting a conserved region of BVDV-1 and BVDV-2. The nucleotide sequences of the 5′UTR and complete Npro region were determined for 16 positive samples. Phylogenetic reconstructions demonstrated that all 16 samples belong to subgenotypes BVDV-1b, BVDV-1d and BVDV-1q. Conclusions This study provides, for the first time, molecular evidence for BVDV infection in yaks in Qinghai involving multiple subgenotypes of BVDV-1. This may have occurred under three possible scenarios: interspecies transmission, natural infection, and the use of vaccines contaminated with BVDV. The results have important implications for yak production and management in China, and specifically indicate that unscientific vaccination practices should be stopped and bio-security increased.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jizhang Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No, 1 Xujiaping, Chengguan, Lanzhou 730046, People's Republic of China.
| | | |
Collapse
|
47
|
N pro of Bungowannah virus exhibits the same antagonistic function in the IFN induction pathway than that of other classical pestiviruses. Vet Microbiol 2013; 168:340-7. [PMID: 24398226 DOI: 10.1016/j.vetmic.2013.11.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 01/01/2023]
Abstract
Bungowannah virus is the most divergent atypical pestivirus that had been detected up to now, and does not fit into any of the four approved species: Bovine viral diarrhea virus type 1 (BVDV-1) and type 2 (BVDV-2), Classical swine fever virus (CSFV) and Border disease virus (BDV). However, the presence of N(pro) and E(rns) coding regions, which are unique to pestiviruses, provides clear evidence of a pestivirus. Nevertheless, the amino acid identity of Bungowannah virus N(pro) and BVDV-1 N(pro) (strain CP7) is only 51.5%. By using a BVDV-1 backbone, a novel chimeric construct was generated, in which the genomic region encoding the non-structural protein N(pro) was replaced by that of Bungowannah virus (CP7_N(pro)-Bungo). In vitro studies of CP7_N(pro)-Bungo revealed autonomous replication with the same efficacy as the BVDV backbone CP7 and infectious high-titer virus could be collected. In order to compare the ability of interferon (IFN) suppression, two reporter gene assays, specific for type-I IFN, were carried out. In virus-infected cells, no significant difference in blocking of IFN expression between the parental virus CP7, Bungowannah virus and the chimeric construct CP7_N(pro)-Bungo could be detected. In contrast, an N(pro) deletion mutant showed an impaired replication in bovine cells and a marked type-I IFN response. Taken together, our findings reveal the compatibility of non-structural protein N(pro) of atypical Bungowannah virus with a BVDV type 1 backbone and its characteristic feature as an inhibitor of type-I IFN induction with an inhibitor-activity comparable to other pestiviruses.
Collapse
|