1
|
Liu PC, Chang TY, Chen XA, Cheng CC, Huang CH, Chen AY, Tsai SK, Young JJ, Chen CC. Synergistic antiviral potential of N-(2-hydroxy)propyl-3-trimethylammoniumchitosan-functionalized silver nanoparticles with oseltamivir against influenza A viruses. Int J Biol Macromol 2025; 284:137996. [PMID: 39586441 DOI: 10.1016/j.ijbiomac.2024.137996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
This study introduced a novel antiviral approach by combining three substances with different antiviral mechanisms: N-(2-hydroxy)propyl-3-trimethylammoniumchitosan (HTC), silver nanoparticles (AgNPs), and oseltamivir. First, positively surface-charged AgNPs were prepared using an environmentally friendly method. The surfaces of these AgNPs were capped with cationic quaternary chitosan HTC. It exhibits a positive zeta potential with extraordinary stability in aqueous solutions and facilitates substantial and rapid cellular uptake including entry into the cell nucleus. HTC-AgNPs display broad-spectrum antiviral activity against three influenza A viruses (H5N1, H3N2, and H1N1) at biocompatible concentrations. When blended with oseltamivir, HTC-AgNPs enhances the antiviral activity from that of oseltamivir alone by at least 20 times. After 24 h of combined treatment, the inhibition efficiency against influenza A virus can attain up to 99.9 %. We anticipate that this combination could reduce the effective dose of Tamiflu by 10-fold when used in clinic, thus shortening recovery period and lowering the medication costs. Moreover, the synergistic effects of the three active substances would reduce the likelihood of the emergence of drug-resistant viral strains. This would, in turn, enhance the effectiveness and safety of this medication.
Collapse
Affiliation(s)
- Ping-Cheng Liu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Xin-An Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC; Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan, ROC; Department of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - An-Yu Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Shan-Ko Tsai
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Jenn-Jong Young
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Biodefense, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan, ROC; Graduate Institute of Biodefense, National Defense Medical Center, Taipei 11490, Taiwan, ROC.
| |
Collapse
|
2
|
Loeb K, Lemaille C, Frederick C, Wallace HL, Kindrachuk J. Harnessing high-throughput OMICS in emerging zoonotic virus preparedness and response activities. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167337. [PMID: 38986821 DOI: 10.1016/j.bbadis.2024.167337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Emerging and re-emerging viruses pose unpredictable and significant challenges to global health. Emerging zoonotic infectious diseases, which are transmitted between humans and non-human animals, have been estimated to be responsible for nearly two-thirds of emerging infectious disease events and emergence events attributed to these pathogens have been increasing in frequency with the potential for high global health and economic burdens. In this review we will focus on the application of highthroughput OMICS approaches to emerging zoonotic virus investigtations. We highlight the key contributions of transcriptome and proteome investigations to emerging zoonotic virus preparedness and response activities with a focus on SARS-CoV-2, avian influenza virus subtype H5N1, and Orthoebolavirus investigations.
Collapse
Affiliation(s)
- Kristi Loeb
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Candice Lemaille
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Christina Frederick
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Hannah L Wallace
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jason Kindrachuk
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Manitoba Centre for Proteomics and Systems Biology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
3
|
Chabukdhara P, Kalita DJ, Tamuly S, Bora DP, Saikia DP, Borah S, Hazorika M, Borah MC, Gogoi SM, Deka NJ, Gogoi A, Bordoloi G, Khargharia S, Pathak SS. RIG-I expression pattern and cytokine profile in indigenous ducks infected with duck plague virus. Microb Pathog 2023:106205. [PMID: 37339691 DOI: 10.1016/j.micpath.2023.106205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
The present study was undertaken to elucidate mRNA expression pattern of RIG-I and serum cytokines profile alterations in indigenous ducks of Assam, India viz. Pati, Nageswari and Cinahanh in response to natural infections of duck plague virus. Field outbreaks of duck plague virus were attended during the study period for collection of tissue and blood samples. The ducks under study were divided into three distinct groups as per health status i.e. healthy, duck plague infected and recovered. Results from the study revealed that RIG-I gene expression was significantly upregulated in liver, intestine, spleen, brain and PBMC of both infected and recovered ducks. However, fold changes in RIG- I gene expression was lower in recovered ducks as compared to infected ones which indicated continued stimulation of RIG-I gene by the latent viruses. Both serum pro and anti-inflammatory cytokines were elevated in infected ducks as compared to healthy and recovered ducks, indicating activation of inflammatory reactions in the ducks due to virus invasion. The results from the study indicated that innate immune components of the infected ducks were stimulated in order to make an attempt to resist the virus from the infected ducks.
Collapse
Affiliation(s)
- Prasanta Chabukdhara
- Department of Veterinary Physiology & Biochemistry, Lakhimpur College of Veterinary Science, Assam Agricultural University, North Lakhimpur, Assam, 787 051, India.
| | - Dhruba Jyoti Kalita
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Shantanu Tamuly
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Durlav Prasad Bora
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Deep Prakash Saikia
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Sanjib Borah
- Department of Veterinary Physiology & Biochemistry, Lakhimpur College of Veterinary Science, Assam Agricultural University, North Lakhimpur, Assam, 787 051, India
| | - Mousumi Hazorika
- Veterinary Clinical Complex, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Mukul C Borah
- Department of Livestock Production and Management (Biostatistics), College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Sophia M Gogoi
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Naba Jyoti Deka
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Ankita Gogoi
- Department of Animal Genetics & Breeding, Lakhimpur College of Veterinary Science, Assam Agricultural University, North Lakhimpur, Assam, 787 051, India
| | - Gautam Bordoloi
- Department of Veterinary Parasitology, Lakhimpur College of Veterinary Science, Assam Agricultural University, North Lakhimpur, Assam, 787 051, India
| | - Sanjib Khargharia
- Department of Veterinary Pharmacology & Toxicology, Lakhimpur College of Veterinary Science, Assam Agricultural University, North Lakhimpur, Assam, 787 051, India
| | - Siddhartha S Pathak
- Department of Livestock Production and Management (Poultry Science), Lakhimpur College of Veterinary Science, Assam Agricultural University, North Lakhimpur, Assam, 787 051, India
| |
Collapse
|
4
|
He Z, Wang X, Lin Y, Feng S, Huang X, Zhao L, Zhang J, Ding Y, Li W, Yuan R, Jiao P. Genetic characteristics of waterfowl-origin H5N6 highly pathogenic avian influenza viruses and their pathogenesis in ducks and chickens. Front Microbiol 2023; 14:1211355. [PMID: 37405154 PMCID: PMC10315182 DOI: 10.3389/fmicb.2023.1211355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
Waterfowl, such as ducks, are natural hosts for avian influenza viruses (AIVs) and act as a bridge for transmitting the virus to humans or susceptible chickens. Since 2013, chickens and ducks have been threatened by waterfowl-origin H5N6 subtype AIVs in China. Therefore, it is necessary to investigate the genetic evolution, transmission, and pathogenicity of these viruses. In this study, we determined the genetic characteristics, transmission, and pathogenicity of waterfowl-origin H5N6 viruses in southern China. The hemagglutinin (HA) genes of H5N6 viruses were classified into the MIX-like branch of clade 2.3.4.4h. The neuraminidase (NA) genes belonged to the Eurasian lineage. The PB1 genes were classified into MIX-like and VN 2014-like branches. The remaining five genes were clustered into the MIX-like branch. Therefore, these viruses belonged to different genotypes. The cleavage site of the HA proteins of these viruses was RERRRKR/G, a molecular characteristic of the H5 highly pathogenic AIV. The NA stalk of all H5N6 viruses contained 11 amino acid deletions at residues 58-68. All viruses contained 627E and 701D in the PB2 proteins, which were molecular characteristics of typical bird AIVs. Furthermore, this study showed that Q135 and S23 viruses could replicate systematically in chickens and ducks. They did not cause death in ducks but induced mild clinical signs in them. All the infected chickens showed severe clinical signs and died. These viruses were shed from the digestive and respiratory tracts and transmitted horizontally in chickens and ducks. Our results provide valuable information for preventing H5N6 avian influenza outbreaks.
Collapse
Affiliation(s)
- Zhuoliang He
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Xia Wang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Yu Lin
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Siyu Feng
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xinyu Huang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Luxiang Zhao
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Junsheng Zhang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Yangbao Ding
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Weiqiang Li
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Runyu Yuan
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Peirong Jiao
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
5
|
Demuth L, Ohm M, Michaelsen-Preusse K, Schulze K, Riese P, Guzmán CA, Korte M, Hosseini S. Influenza vaccine is able to prevent neuroinflammation triggered by H7N7 IAV infection. Front Pharmacol 2023; 14:1142639. [PMID: 37063291 PMCID: PMC10090407 DOI: 10.3389/fphar.2023.1142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Influenza A virus (IAV) subtypes are a major cause of illness and mortality worldwide and pose a threat to human health. Although IAV infection is considered a self-limiting respiratory syndrome, an expanded spectrum of cerebral manifestations has been reported following IAV infection. Neurotropic IAVs, such as the H7N7 subtype, are capable of invading the central nervous system (CNS) and replicating in brain cells, resulting in microglia-induced neuroinflammation. Microglial cells, the brain’s resident immune cells, are instrumental in the inflammatory response to viral infection. While activation of microglia is important to initially contain the virus, excessive activation of these cells leads to neuronal damage. Previous studies have shown that acute and even long-term IAV-induced neuroinflammation leads to CNS damage. Therefore, the search for possible preventive or therapeutic strategies is of great importance. In this study, we investigated the potential effect of vaccination against acute neuroinflammation induced by H7N7 infection and subsequent neuronal damage in the hippocampus, a particularly vulnerable brain region, comparing young and aged mice. Immunosenescence is one of the striking pathophysiological changes during mammalian aging that leads to “inflammaging” and critically limits the protection by vaccines in the elderly. The results suggest that formalin-inactivated H7N7 vaccine has a preventive effect against the inflammatory responses in the periphery and also in the CNS after H7N7 infection. Cytokine and chemokine levels, increased microglial density, and cell volume after H7N7 infection were all attenuated by vaccination. Further structural analysis of microglial cells also revealed a change in branching complexity after H7N7 infection, most likely reflecting the neuroprotective effect of the vaccination. In addition, synapse loss was prevented in vaccinated mice. Remarkably, engulfment of post-synaptic compartments by microglia can be proposed as the underlying mechanism for spine loss triggered by H7N7 infection, which was partially modulated by vaccination. Although young mice showed better protection against neuroinflammation and the resulting deleterious neuronal effects upon vaccination, a beneficial role of the vaccine was also observed in the brains of older mice. Therefore, vaccination can be proposed as an important strategy to prevent neurological sequelae of H7N7 infection.
Collapse
Affiliation(s)
- Luisa Demuth
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie Ohm
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai Schulze
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Braunschweig, Germany
| | - Peggy Riese
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Braunschweig, Germany
| | - Carlos A. Guzmán
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Braunschweig, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany
- *Correspondence: Shirin Hosseini,
| |
Collapse
|
6
|
Yang J, Yang K, Wang K, Zhou D, Zhou J, Du X, Liu S, Cheng Z. Serum amyloid A regulates TLR2/4-mediated IFN-β signaling pathway against Marek's disease virus. Virus Res 2023; 326:199044. [PMID: 36652973 DOI: 10.1016/j.virusres.2023.199044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/16/2023]
Abstract
Serum amyloid A (SAA), an acute response phase protein (APP), is crucial for the innate immune response during pathogenic microorganisms' invasion. Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that activates multiple innate immune molecules, including SAA, in the host during infection. However, the pathway through which SAA participates in MDV-induced host innate immunity remains unknown. The present study aimed to elucidate the pathway through which SAA exerts its anti-MDV function. We observed that MDV infection in vivo and in vitro significantly elevated SAA expression. Furthermore, through SAA overexpression and knockdown experiments, we demonstrated that SAA could inhibit MDV replication. Subsequently, we found that SAA activated Toll-Like Receptor 2/4 (TLR2/4) -mediated Interferon Beta (IFN-β) promoter activity and IFN regulatory factor 7 (IRF7) promoter activity. During MDV infection, SAA enhanced TLR2/4-mediated IFN-β signal transduction and messenger RNAs (mRNAs) expression of type I IFN (IFN-I) and interferon-stimulated genes (ISGs). Finally, TLR2/4 inhibitor OxPAPC inhibits the anti-MDV activity of SAA. These results demonstrated that SAA inhibits MDV replication and enhancing TLR2/4-mediated IFN-β signal transduction to promote IFNs and ISGs expression. This finding is the first to demonstrate the signaling pathway by which SAA exerts its anti-MDV function. It also provides new insights into the control of oncogenic herpesviruses from the perspective of acute response phase proteins.
Collapse
Affiliation(s)
- Jianhao Yang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Kunmei Yang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Kang Wang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Xusheng Du
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Shenglong Liu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China.
| |
Collapse
|
7
|
Foret-Lucas C, Figueroa T, Coggon A, Houffschmitt A, Dupré G, Fusade-Boyer M, Guérin JL, Delverdier M, Bessière P, Volmer R. In Vitro and In Vivo Characterization of H5N8 High-Pathogenicity Avian Influenza Virus Neurotropism in Ducks and Chickens. Microbiol Spectr 2023; 11:e0422922. [PMID: 36625654 PMCID: PMC9927090 DOI: 10.1128/spectrum.04229-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
H5N8 high-pathogenicity avian influenza virus (HPAIV) of clade 2.3.4.4B, which circulated during the 2016 epizootics in Europe, was notable for causing different clinical signs in ducks and chickens. The clinical signs preceding death were predominantly neurological in ducks versus respiratory in chickens. To investigate the determinants for the predominant neurological signs observed in ducks, we infected duck and chicken primary cortical neurons. Viral replication was identical in neuronal cultures from both species. In addition, we did not detect any major difference in the immune and inflammatory responses. These results suggest that the predominant neurological involvement of H5N8 HPAIV infection in ducks could not be recapitulated in primary neuronal cultures. In vivo, H5N8 HPAIV replication in ducks peaked soon after infection and led to an early colonization of the central nervous system. In contrast, viral replication was delayed in chickens but ultimately burst in the lungs of chickens, and the chickens died of respiratory distress before brain damage became significant. Consequently, the immune and inflammatory responses in the brain were significantly higher in duck brains than those in chickens. Our study thus suggests that early colonization of the central nervous system associated with prolonged survival after the onset of virus replication is the likely primary cause of the sustained inflammatory response and subsequent neurological disorders observed in H5N8 HPAIV-infected ducks. IMPORTANCE The severity of high-pathogenicity avian influenza virus (HPAIV) infection has been linked to its ability to replicate systemically and cause lesions in a variety of tissues. However, the symptomatology depends on the host species. The H5N8 virus of clade 2.3.4.4B had a pronounced neurotropism in ducks, leading to severe neurological disorders. In contrast, neurological signs were rarely observed in chickens, which suffered mostly from respiratory distress. Here, we investigated the determinants of H5N8 HPAIV neurotropism. We provide evidence that the difference in clinical signs was not due to a difference in neurotropism. Our results rather indicate that chickens died of respiratory distress due to intense viral replication in the lungs before viral replication in the brain could produce significant lesions. In contrast, ducks better controlled virus replication in the lungs, thus allowing the virus to replicate for a sufficient duration in the brain, to reach high levels, and to cause significant lesions.
Collapse
Affiliation(s)
- Charlotte Foret-Lucas
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Thomas Figueroa
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Amelia Coggon
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Alexandre Houffschmitt
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Gabriel Dupré
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxime Fusade-Boyer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Jean-Luc Guérin
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxence Delverdier
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Pierre Bessière
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Romain Volmer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| |
Collapse
|
8
|
Screening of Optimal CpG-Oligodeoxynucleotide for Anti-Inflammatory Responses in the Avian Macrophage Cell Line HD11. J Poult Sci 2023; 60:2023002. [PMID: 36756048 PMCID: PMC9884633 DOI: 10.2141/jpsa.2023002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
CpG-oligodeoxynucleotides (. CpG-ODNs ) have been shown to possess immunostimulatory features in both mammals and birds. However, compared to their proinflammatory effects, little is known about the anti-inflammatory responses triggered by CpG-ODN in avian cells. Hence, in this study, the anti-inflammatory response in the chicken macrophage cell line HD11 was characterized under stimulation with five types of CpG-ODNs: CpG-A1585, CpG-AD35, CpG-B1555, CpG-BK3, and CpG-C2395. Single-stimulus of CpG-B1555, CpG-BK3, or CpG-C2395 induced interleukin (IL)-10 expression without causing cell injury. The effects of pretreatment with CpG-ODNs before subsequent lipopolysaccharide stimulation were also evaluated. Interestingly, pretreatment with only CpG-C2395 resulted in high expression levels of IL-10 mRNA in the presence of lipopolysaccharide. Finally, gene expression analysis of inflammation-related cytokines and receptors revealed that pre-treatment with CpG-C2395 significantly reduced the mRNA expression of tumor necrosis factor-α, IL-1β, IL-6, and Toll-like receptor 4. Overall, these results shed light on the anti-inflammatory responses triggered by CpG-C2395 stimulation through a comparative analysis of five types of CpG-ODNs in chicken macrophages. These results also offer insights into the use of CpG-ODNs to suppress the expression of proinflammatory cytokines, which may be valuable in the prevention of avian infectious diseases in the poultry industry.
Collapse
|
9
|
Zhao B, Wang W, Song Y, Wen X, Feng S, Li W, Ding Y, Chen Z, He Z, Wang S, Jiao P. Genetic characterization and pathogenicity of H7N9 highly pathogenic avian influenza viruses isolated from South China in 2017. Front Microbiol 2023; 14:1105529. [PMID: 36960283 PMCID: PMC10027924 DOI: 10.3389/fmicb.2023.1105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 03/09/2023] Open
Abstract
Since 2017, the new H7N9 highly pathogenic avian influenza viruses (HPAIVs) have been responsible for more than 200,000 cases of chicken infection and more than 120,000 chicken deaths in China. Our previous study found that the Q26 was chicken-origin H7N9 HPAIV. In this study, we analyzed the genetic characterization of Q24, Q65, Q66, Q85, and Q102 H7N9 avian influenza viruses isolated from Guangdong, China in 2017. Our results showed that these viruses were highly pathogenic and belonged to two different genotypes, which suggested they occurred genetic reassortant. To investigate the pathogenicity, transmission, and host immune responses of H7N9 virus in chickens, we selected Q24 and Q26 viruses to inoculate chickens. The Q24 and Q26 viruses killed all inoculated chickens within 3 days and replicated effectively in all tested tissues. They were efficiently transmitted to contact chickens and killed them within 4 days through direct contact. Furthermore, we found that the expressions of several immune-related genes (e.g., TLR3, TLR7, MDA5, MAVS, IFN-β, IL-6, IL-8, OAS, Mx1, MHC I, and MHC II) were upregulated obviously in the lungs and spleen of chickens inoculated with the two H7N9 viruses at 24 h post-inoculation (HPI). Among these, IL-6 and IFN-β in lungs were the most upregulated (by 341.02-381.48-fold and 472.50-500.56-fold, respectively). These results suggest that the new H7N9 viruses isolated in 2017, can replicate and transmit effectively and trigger strong immune responses in chickens, which helps us understand the genetic and pathogenic variations of H7N9 HPAIVs in China.
Collapse
Affiliation(s)
- Bingbing Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
- Animal Influenza Laboratory of the Ministry of Agriculture and Rural Affairs, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenqing Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yating Song
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiangyang Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Siyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiqiang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yangbao Ding
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zuxian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhuoliang He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
- *Correspondence: Peirong Jiao, ; Shao Wang,
| | - Peirong Jiao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
- *Correspondence: Peirong Jiao, ; Shao Wang,
| |
Collapse
|
10
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
11
|
Yang Y, Meng Y, Chen L, Dong M, Zhang H, Wu J, Hao X, He S, Tian Y, Gong Z, Shang S. Development of specific monoclonal antibodies for the detection of natural chicken tumor necrosis factor-alpha. Heliyon 2022; 8:e12446. [PMID: 36593850 PMCID: PMC9803707 DOI: 10.1016/j.heliyon.2022.e12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is an important proinflammatory cytokine and the only known cytokine that can directly kill tumor cells. Unlike mammalian counterparts, chicken TNF-α (chTNF-α) gene has not been identified until very recently due to its high GC content (∼70%) and long GC fragments. The biological functions of this newly-identified cytokine and its detection methods remain to be further investigated. In this study, the extracellular domain of chTNF-α was cloned into prokaryotic vector after codon optimization and recombinant chTNF-α protein was expressed. Subsequently, using recombinant chTNF-ɑ as immunogen, rabbit polyclonal antibody (pAb) and eight clones of mouse anti-chTNF-ɑ monoclonal antibodies (mAbs) were produced, respectively. Both the pAb and mAbs specifically recognized recombinant chTNF-ɑ expressed in E.coli and transfected COS-7 cells. Further mapping the antigenic region showed that all the mAbs recognized a region of amino acid residues 195-285 of chTNF-ɑ. Furthermore, an antigen-capture enzyme-linked immunosorbent assay for the detection of chTNF-ɑ was established using one mAb and the pAb. This assay showed no cross-reactivity with irrelevant Trx-fused antigens and could detect natural chTNF-ɑ expressed by mitogen-activated chicken splenocytes in a dose-dependent manner, with a detection limit of 1 ng/mL. Collectively, our results indicated that the mAbs and pAb against chTNF-α are specific and could be used for the study of the biological functions of chTNF-ɑ and the detection of chTNF-ɑ.
Collapse
Affiliation(s)
- Yi Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yining Meng
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Lina Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Maoli Dong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Huining Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ji Wu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoli Hao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shuangjiang He
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yunfei Tian
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zaicheng Gong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shaobin Shang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China,International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, China,Corresponding author.
| |
Collapse
|
12
|
de Bruin ACM, Spronken MI, Bestebroer TM, Fouchier RAM, Richard M. Reduced Replication of Highly Pathogenic Avian Influenza Virus in Duck Endothelial Cells Compared to Chicken Endothelial Cells Is Associated with Stronger Antiviral Responses. Viruses 2022; 14:v14010165. [PMID: 35062369 PMCID: PMC8779112 DOI: 10.3390/v14010165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause fatal systemic infections in chickens, which are associated with endotheliotropism. HPAIV infections in wild birds are generally milder and not endotheliotropic. Here, we aimed to elucidate the species-specific endotheliotropism of HPAIVs using primary chicken and duck aortic endothelial cells (chAEC and dAEC respectively). Viral replication kinetics and host responses were assessed in chAEC and dAEC upon inoculation with HPAIV H5N1 and compared to embryonic fibroblasts. Although dAEC were susceptible to HPAIV upon inoculation at high multiplicity of infection, HPAIV replicated to lower levels in dAEC than chAEC during multi-cycle replication. The susceptibility of duck embryonic endothelial cells to HPAIV was confirmed in embryos. Innate immune responses upon HPAIV inoculation differed between chAEC, dAEC, and embryonic fibroblasts. Expression of the pro-inflammatory cytokine IL8 increased in chicken cells but decreased in dAEC. Contrastingly, the induction of antiviral responses was stronger in dAEC than in chAEC, and chicken and duck fibroblasts. Taken together, these data demonstrate that although duck endothelial cells are permissive to HPAIV infection, they display markedly different innate immune responses than chAEC and embryonic fibroblasts. These differences may contribute to the species-dependent differences in endotheliotropism and consequently HPAIV pathogenesis.
Collapse
|
13
|
Bessière P, Figueroa T, Coggon A, Foret-Lucas C, Houffschmitt A, Fusade-Boyer M, Dupré G, Guérin JL, Delverdier M, Volmer R. Opposite Outcomes of the Within-Host Competition between High- and Low-Pathogenic H5N8 Avian Influenza Viruses in Chickens Compared to Ducks. J Virol 2022; 96:e0136621. [PMID: 34613804 PMCID: PMC8754203 DOI: 10.1128/jvi.01366-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIV) emerge from low-pathogenic avian influenza viruses (LPAIV) through the introduction of basic amino acids at the hemagglutinin (HA) cleavage site. Following viral evolution, the newly formed HPAIV likely represents a minority variant within the index host, predominantly infected with the LPAIV precursor. Using reverse genetics-engineered H5N8 viruses differing solely at the HA cleavage, we tested the hypothesis that the interaction between the minority HPAIV and the majority LPAIV could modulate the risk of HPAIV emergence and that the nature of the interaction could depend on the host species. In chickens, we observed that the H5N8LP increased H5N8HP replication and pathogenesis. In contrast, the H5N8LP antagonized H5N8HP replication and pathogenesis in ducks. Ducks mounted a more potent antiviral innate immune response than chickens against the H5N8LP, which correlated with H5N8HP inhibition. These data provide experimental evidence that HPAIV may be more likely to emerge in chickens than in ducks and underscore the importance of within-host viral variant interactions in viral evolution. IMPORTANCE Highly pathogenic avian influenza viruses represent a threat to poultry production systems and to human health because of their impact on food security and because of their zoonotic potential. It is therefore crucial to better understand how these viruses emerge. Using a within-host competition model between high- and low-pathogenic avian influenza viruses, we provide evidence that highly pathogenic avian influenza viruses could be more likely to emerge in chickens than in ducks. These results have important implications for highly pathogenic avian influenza virus emergence prevention, and they underscore the importance of within-host viral variant interactions in virus evolution.
Collapse
Affiliation(s)
- Pierre Bessière
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Thomas Figueroa
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Amelia Coggon
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Charlotte Foret-Lucas
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Alexandre Houffschmitt
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxime Fusade-Boyer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Gabriel Dupré
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Jean-Luc Guérin
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Maxence Delverdier
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| | - Romain Volmer
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, INRAE, IHAP, UMR 1225, Toulouse, France
| |
Collapse
|
14
|
Campbell LK, Fleming-Canepa X, Webster RG, Magor KE. Tissue Specific Transcriptome Changes Upon Influenza A Virus Replication in the Duck. Front Immunol 2021; 12:786205. [PMID: 34804075 PMCID: PMC8602823 DOI: 10.3389/fimmu.2021.786205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ducks are the natural host and reservoir of influenza A virus (IAV), and as such are permissive to viral replication while being unharmed by most strains. It is not known which mechanisms of viral control are globally regulated during infection, and which are specific to tissues during infection. Here we compare transcript expression from tissues from Pekin ducks infected with a recombinant H5N1 strain A/Vietnam 1203/04 (VN1203) or an H5N2 strain A/British Columbia 500/05 using RNA-sequencing analysis and aligning reads to the NCBI assembly ZJU1.0 of the domestic duck (Anas platyrhynchos) genome. Highly pathogenic VN1203 replicated in lungs and showed systemic dissemination, while BC500, like most low pathogenic strains, replicated in the intestines. VN1203 infection induced robust differential expression of genes all three days post infection, while BC500 induced the greatest number of differentially expressed genes on day 2 post infection. While there were many genes globally upregulated in response to either VN1203 or BC500, tissue specific gene expression differences were observed. Lungs of ducks infected with VN1203 and intestines of birds infected with BC500, tissues important in influenza replication, showed highest upregulation of pattern recognition receptors and interferon stimulated genes early in the response. These tissues also appear to have specific downregulation of inflammatory components, with downregulation of distinct sets of proinflammatory cytokines in lung, and downregulation of key components of leukocyte recruitment and complement pathways in intestine. Our results suggest that global and tissue specific regulation patterns help the duck control viral replication as well as limit some inflammatory responses in tissues involved in replication to avoid damage.
Collapse
Affiliation(s)
- Lee K Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | | | - Robert G Webster
- Division of Virology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Preferential Selection and Contribution of Non-Structural Protein 1 (NS1) to the Efficient Transmission of Panzootic Avian Influenza H5N8 Virus Clades 2.3.4.4A and B in Chickens and Ducks. J Virol 2021; 95:e0044521. [PMID: 34160261 DOI: 10.1128/jvi.00445-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Highly pathogenic avian influenza virus H5N8 clade 2.3.4.4 caused outbreaks in poultry at an unprecedented global scale. The virus was spread by wild birds in Asia in two waves: clade 2.3.4.4A in 2014/2015 and clade 2.3.4.4B from 2016 up to today. Both clades were highly virulent in chickens, but only clade B viruses exhibited high virulence in ducks. Viral factors which contribute to virulence and transmission of these panzootic H5N8 2.3.4.4 viruses are largely unknown. The NS1 protein, typically composed of 230 amino acids (aa), is a multifunctional protein which is also a pathogenicity factor. Here, we studied the evolutionary trajectory of H5N8 NS1 proteins from 2013 to 2019 and their role in the fitness of H5N8 viruses in chickens and ducks. Sequence analysis and in vitro experiments indicated that clade 2.3.4.4A and clade 2.3.4.4B viruses have a preference for NS1 of 237 aa and 217 aa, respectively, over NS1 of 230 aa. NS217 was exclusively seen in domestic and wild birds in Europe. The extension of the NS1 C terminus (CTE) of clade B virus reduced virus transmission and replication in chickens and ducks and partially impaired the systemic tropism to the endothelium in ducks. Conversely, lower impact on fitness of clade A virus was observed. Remarkably, the NS1 of clade A and clade B, regardless of length, was efficient in blocking interferon (IFN) induction in infected chickens, and changes in the NS1 C terminus reduced the efficiency for interferon antagonism. Together, the NS1 C terminus contributes to the efficient transmission and high fitness of H5N8 viruses in chickens and ducks. IMPORTANCE The panzootic H5N8 highly pathogenic avian influenza viruses of clade 2.3.4.4A and 2.3.4.4B devastated the poultry industry globally. Clade 2.3.4.4A was predominant in 2014/2015 while clade 2.3.4.4B was widely spread in 2016/2017. The two clades exhibited different pathotypes in ducks. Virus factors contributing to virulence and transmission are largely unknown. The NS1 protein is typically composed of 230 amino acids (aa) and is an essential interferon (IFN) antagonist. Here, we found that the NS1 protein of clade 2.3.4.4A preferentially evolved toward long NS1 with 237 aa, while clade 2.3.4.4B evolved toward shorter NS1 with 217 aa (exclusively found in Europe) due to stop codons in the C terminus (CTE). We showed that the NS1 CTE of H5N8 is required for efficient virus replication, transmission, and endotheliotropism in ducks. In chickens, H5N8 NS1 evolved toward higher efficiency to block IFN response. These findings may explain the preferential pattern for short NS1 and high fitness of the panzootic H5N8 in birds.
Collapse
|
16
|
Tong ZWM, Karawita AC, Kern C, Zhou H, Sinclair JE, Yan L, Chew KY, Lowther S, Trinidad L, Challagulla A, Schat KA, Baker ML, Short KR. Primary Chicken and Duck Endothelial Cells Display a Differential Response to Infection with Highly Pathogenic Avian Influenza Virus. Genes (Basel) 2021; 12:genes12060901. [PMID: 34200798 PMCID: PMC8230508 DOI: 10.3390/genes12060901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) in gallinaceous poultry are associated with viral infection of the endothelium, the induction of a ‘cytokine storm, and severe disease. In contrast, in Pekin ducks, HPAIVs are rarely endothelial tropic, and a cytokine storm is not observed. To date, understanding these species-dependent differences in pathogenesis has been hampered by the absence of a pure culture of duck and chicken endothelial cells. Here, we use our recently established in vitro cultures of duck and chicken aortic endothelial cells to investigate species-dependent differences in the response of endothelial cells to HPAIV H5N1 infection. We demonstrate that chicken and duck endothelial cells display a different transcriptional response to HPAI H5N1 infection in vitro—with chickens displaying a more pro-inflammatory response to infection. As similar observations were recorded following in vitro stimulation with the viral mimetic polyI:C, these findings were not specific to an HPAIV H5N1 infection. However, similar species-dependent differences in the transcriptional response to polyI:C were not observed in avian fibroblasts. Taken together, these data demonstrate that chicken and duck endothelial cells display a different response to HPAIV H5N1 infection, and this may help account for the species-dependent differences observed in inflammation in vivo.
Collapse
Affiliation(s)
- Zhen Wei Marcus Tong
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; (Z.W.M.T.); (A.C.K.); (J.E.S.); (L.Y.); (K.Y.C.)
| | - Anjana C. Karawita
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; (Z.W.M.T.); (A.C.K.); (J.E.S.); (L.Y.); (K.Y.C.)
- CSIRO, Australian Centre for Disease Preparedness, Health, and Biosecurity Business Unit, Geelong 3219, Australia; (S.L.); (L.T.); (A.C.); (M.L.B.)
| | - Colin Kern
- Department of Animal Science, University of California, Davis, CA 95616, USA; (C.K.); (H.Z.)
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, USA; (C.K.); (H.Z.)
| | - Jane E. Sinclair
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; (Z.W.M.T.); (A.C.K.); (J.E.S.); (L.Y.); (K.Y.C.)
| | - Limin Yan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; (Z.W.M.T.); (A.C.K.); (J.E.S.); (L.Y.); (K.Y.C.)
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; (Z.W.M.T.); (A.C.K.); (J.E.S.); (L.Y.); (K.Y.C.)
| | - Sue Lowther
- CSIRO, Australian Centre for Disease Preparedness, Health, and Biosecurity Business Unit, Geelong 3219, Australia; (S.L.); (L.T.); (A.C.); (M.L.B.)
| | - Lee Trinidad
- CSIRO, Australian Centre for Disease Preparedness, Health, and Biosecurity Business Unit, Geelong 3219, Australia; (S.L.); (L.T.); (A.C.); (M.L.B.)
| | - Arjun Challagulla
- CSIRO, Australian Centre for Disease Preparedness, Health, and Biosecurity Business Unit, Geelong 3219, Australia; (S.L.); (L.T.); (A.C.); (M.L.B.)
| | - Karel A. Schat
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| | - Michelle L. Baker
- CSIRO, Australian Centre for Disease Preparedness, Health, and Biosecurity Business Unit, Geelong 3219, Australia; (S.L.); (L.T.); (A.C.); (M.L.B.)
| | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; (Z.W.M.T.); (A.C.K.); (J.E.S.); (L.Y.); (K.Y.C.)
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane 4072, Australia
- Correspondence:
| |
Collapse
|
17
|
Veldhuis Kroeze E, Bauer L, Caliendo V, van Riel D. In Vivo Models to Study the Pathogenesis of Extra-Respiratory Complications of Influenza A Virus Infection. Viruses 2021; 13:v13050848. [PMID: 34066589 PMCID: PMC8148586 DOI: 10.3390/v13050848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Animal models are an inimitable method to study the systemic pathogenesis of virus-induced disease. Extra-respiratory complications of influenza A virus infections are not extensively studied even though they are often associated with severe disease and mortality. Here we review and recommend mammalian animal models that can be used to study extra-respiratory complications of the central nervous system and cardiovascular system as well as involvement of the eye, placenta, fetus, lacteal gland, liver, pancreas, intestinal tract, and lymphoid tissues during influenza A virus infections.
Collapse
|
18
|
Wang B, Su Q, Luo J, Li M, Wu Q, Chang H, Du J, Huang C, Ma J, Han S, Yuan G, He Y, Guo M, Zhang Q, He H. Differences in Highly Pathogenic H5N6 Avian Influenza Viral Pathogenicity and Inflammatory Response in Chickens and Ducks. Front Microbiol 2021; 12:593202. [PMID: 33584608 PMCID: PMC7878534 DOI: 10.3389/fmicb.2021.593202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/06/2021] [Indexed: 01/09/2023] Open
Abstract
Infection with H5N6 highly pathogenic avian influenza virus caused high mortality in chickens, while ducks often appear to be asymptomatic. But, some recent H5Nx subtype viruses could cause high mortality in ducks. The variation between different species and the mechanisms by which some H5Nx viruses cause death in ducks requires investigation to identify the key processes in influenza susceptibility and pathogenesis. Here, we characterized two representative H5N6 viruses, A/Pavo cristatus/Jiangxi/JA1/2016 (JA1) and A/Anas crecca/shanghai/SH1/2016 (SH1), and compared their pathogenicity and expression profiles of immune-related genes in chickens and ducks to identify the elements of the host immune-related response that were involved in disease lethality. Results suggested that H5N6 HPAIVs had higher pathogenic and inflammatory effect in chickens than in ducks. Importantly, the TNF-α, IL-6, IFN-γ and iNOS levels were significantly higher in the lung of SH1 infected chickens compared to those of ducks. And we found higher systemic levels of IL-6 induced by JA1 in chickens than in ducks. In addition, our experiments demonstrated that JA1 was associated with greater pathogenicity in ducks were accompanied by the excessive expression of iNOS in the brain. These results are helpful to understand the relationship between the pathogenicity of H5N6 AIVs and inflammatory responses to them in chickens and ducks.
Collapse
Affiliation(s)
- Bo Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Su
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Luo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiaoxing Wu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Han Chang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Du
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chengmei Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiajun Ma
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guohui Yuan
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yapeng He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Minglei Guo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qingxun Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Huang J, Wu S, Wu W, Liang Y, Zhuang H, Ye Z, Qu X, Liao M, Jiao P. The Biological Characteristics of Novel H5N6 Highly Pathogenic Avian Influenza Virus and Its Pathogenesis in Ducks. Front Microbiol 2021; 12:628545. [PMID: 33584629 PMCID: PMC7874018 DOI: 10.3389/fmicb.2021.628545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
Clade 2.3.4.4 H5Nx highly pathogenic avian influenza viruses (HPAIVs) have caused outbreaks in poultry in the world. Some of these viruses acquired internal genes from other subtype avian influenza viruses (AIVs) such as H9 and H6 for the generation of novel reassortant viruses and continually circulated in poultry. Here, we applied a duck-origin virus DK87 and a chicken-origin virus CK66 to assess the biological characteristics of novel reassortant H5N6 HPAIVs and its pathogenesis in ducks. A genetic analysis indicated that the HA genes of the two H5N6 HPAIVs were closely related to the H5 viruses of clade 2.3.4.4 circulating in Eastern Asia and classified into H5 AIV/Eastern Asia (EA)-like lineage. Their NA genes fell into Eurasian lineage had close relationship with those of H5N6 viruses circulating in China, Laos, Vietnam, Japan, and Korea. All internal genes of DK87 were aggregated closely with H5 AIV/EA-like viruses. The internal genes (PB1, PA, NP, M, and NS) of CK66 were derived from H9N2 AIV/SH98-like viruses and the PB2 were derived from H5 AIV/EA-like viruses. These results indicate that clade 2.3.4.4 H5N6 AIVs have continually evolved and recombined with the H9N2 viruses circulating in Southern China. Pathogenicity test showed that the two viruses displayed a broader tissue distribution in ducks and caused no clinical signs. These results indicated that ducks were permissive for the replication of the chicken-origin reassortant virus CK66 without prior adaptation, but the duck-origin virus DK87-inoculated ducks showed significantly higher viral titers in some organs than the CK66-inoculated ducks at 5 day post-inoculated (DPI). The recovery of viruses from oropharyngea and cloacal swabs of contacted ducks indicated that they transmitted in native ducks by direct contact. Quantitative reverse transcription PCR (qRT-PCR) results revealed that the immune-relative genes (PRRs, IFNs, Mx-1, IL-6, and IL-8) in the lungs of inoculated ducks were expressed regardless of virus origin, but the expression of these genes was significantly higher in response to infection with the DK87 virus compared to the CK66 virus at 3 DPI. Overall, we should provide further insights into how clade 2.3.4.4 H5N6 AIVs undergo genetic and pathogenic variations to prevent outbreaks of this disease.
Collapse
Affiliation(s)
- Jianni Huang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Siyu Wu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wenbo Wu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiwen Liang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haibin Zhuang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiyu Ye
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyun Qu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peirong Jiao
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
20
|
Jang Y, Seo SH. Age-Dependent Lethality in Ducks Caused by Highly Pathogenic H5N6 Avian Influenza Virus. Viruses 2020; 12:v12060591. [PMID: 32485904 PMCID: PMC7354466 DOI: 10.3390/v12060591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 01/02/2023] Open
Abstract
Ducks show notably higher resistance to highly pathogenic avian influenza viruses as compared to chickens. Here, we studied the age-dependent susceptibility in ducks to the infections caused by highly pathogenic avian influenza viruses. We intranasally infected ducks aged 1, 2, 4, and 8 weeks with highly pathogenic H5N6 avian influenza viruses isolated in South Korea in 2016. All the 1-and 2-week-old ducks died after infection, 20% of 3-week-old ducks died, and from the ducks aged 4 and 8 weeks, all of them survived. We performed microarray analysis and quantitative real-time PCR using total RNA isolated from the lungs of infected 2- and 4-week-old ducks to determine the mechanism underlying the age-dependent susceptibility to highly pathogenic avian influenza virus. Limited genes were found to be differentially expressed between the lungs of 2- and 4-week-old ducks. Cell damage-related genes, such as CIDEA and ND2, and the immune response-related gene NR4A3 were notably induced in the lungs of infected 2-week-old ducks compared to those in the lungs of infected 4-week-old ducks.
Collapse
Affiliation(s)
- Yunyueng Jang
- Laboratory of Influenza Research and College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea;
- Institute of Influenza Virus, Chungnam National University, Daejeon 34134, Korea
| | - Sang Heui Seo
- Laboratory of Influenza Research and College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea;
- Institute of Influenza Virus, Chungnam National University, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-821-7819; Fax: +82-42-821-6762
| |
Collapse
|
21
|
Campbell LK, Magor KE. Pattern Recognition Receptor Signaling and Innate Responses to Influenza A Viruses in the Mallard Duck, Compared to Humans and Chickens. Front Cell Infect Microbiol 2020; 10:209. [PMID: 32477965 PMCID: PMC7236763 DOI: 10.3389/fcimb.2020.00209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
Mallard ducks are a natural host and reservoir of avian Influenza A viruses. While most influenza strains can replicate in mallards, the virus typically does not cause substantial disease in this host. Mallards are often resistant to disease caused by highly pathogenic avian influenza viruses, while the same strains can cause severe infection in humans, chickens, and even other species of ducks, resulting in systemic spread of the virus and even death. The differences in influenza detection and antiviral effectors responsible for limiting damage in the mallards are largely unknown. Domestic mallards have an early and robust innate response to infection that seems to limit replication and clear highly pathogenic strains. The regulation and timing of the response to influenza also seems to circumvent damage done by a prolonged or dysregulated immune response. Rapid initiation of innate immune responses depends on viral recognition by pattern recognition receptors (PRRs) expressed in tissues where the virus replicates. RIG-like receptors (RLRs), Toll-like receptors (TLRs), and Nod-like receptors (NLRs) are all important influenza sensors in mammals during infection. Ducks utilize many of the same PRRs to detect influenza, namely RIG-I, TLR7, and TLR3 and their downstream adaptors. Ducks also express many of the same signal transduction proteins including TBK1, TRIF, and TRAF3. Some antiviral effectors expressed downstream of these signaling pathways inhibit influenza replication in ducks. In this review, we summarize the recent advances in our understanding of influenza recognition and response through duck PRRs and their adaptors. We compare basal tissue expression and regulation of these signaling components in birds, to better understand what contributes to influenza resistance in the duck.
Collapse
Affiliation(s)
- Lee K Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
The Microbiota Contributes to the Control of Highly Pathogenic H5N9 Influenza Virus Replication in Ducks. J Virol 2020; 94:JVI.00289-20. [PMID: 32102887 DOI: 10.1128/jvi.00289-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
Ducks usually show little or no clinical signs following highly pathogenic avian influenza virus infection. In order to analyze whether the microbiota could contribute to the control of influenza virus replication in ducks, we used a broad-spectrum oral antibiotic treatment to deplete the microbiota before infection with a highly pathogenic H5N9 avian influenza virus. Antibiotic-treated ducks and nontreated control ducks did not show any clinical signs following H5N9 virus infection. We did not detect any significant difference in virus titers neither in the respiratory tract nor in the brain nor spleen. However, we found that antibiotic-treated H5N9 virus-infected ducks had significantly increased intestinal virus excretion at days 3 and 5 postinfection. This was associated with a significantly decreased antiviral immune response in the intestine of antibiotic-treated ducks. Our findings highlight the importance of an intact microbiota for an efficient control of avian influenza virus replication in ducks.IMPORTANCE Ducks are frequently infected with avian influenza viruses belonging to multiple subtypes. They represent an important reservoir species of avian influenza viruses, which can occasionally be transmitted to other bird species or mammals, including humans. Ducks thus have a central role in the epidemiology of influenza virus infection. Importantly, ducks usually show little or no clinical signs even following infection with a highly pathogenic avian influenza virus. We provide evidence that the microbiota contributes to the control of influenza virus replication in ducks by modulating the antiviral immune response. Ducks are able to control influenza virus replication more efficiently when they have an intact intestinal microbiota. Therefore, maintaining a healthy microbiota by limiting perturbations to its composition should contribute to the prevention of avian influenza virus spread from the duck reservoir.
Collapse
|
23
|
Barjesteh N, O'Dowd K, Vahedi SM. Antiviral responses against chicken respiratory infections: Focus on avian influenza virus and infectious bronchitis virus. Cytokine 2020; 127:154961. [PMID: 31901597 PMCID: PMC7129915 DOI: 10.1016/j.cyto.2019.154961] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
Some of the respiratory viral infections in chickens pose a significant threat to the poultry industry and public health. In response to viral infections, host innate responses provide the first line of defense against viruses, which often act even before the establishment of the infection. Host cells sense the presence of viral components through germinal encoded pattern recognition receptors (PRRs). The engagement of PRRs with pathogen-associated molecular patterns leads to the induction of pro-inflammatory and interferon productions. Induced antiviral responses play a critical role in the outcome of the infections. In order to improve current strategies for control of viral infections or to advance new strategies aimed against viral infections, a deep understanding of host-virus interaction and induction of antiviral responses is required. In this review, we summarized recent progress in understanding innate antiviral responses in chickens with a focus on the avian influenza virus and infectious bronchitis virus.
Collapse
Affiliation(s)
- Neda Barjesteh
- Research Group on Infectious Diseases in Production Animals (GREMIP), and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.
| | - Kelsey O'Dowd
- Research Group on Infectious Diseases in Production Animals (GREMIP), and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Seyed Milad Vahedi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
24
|
Huo C, Xiao J, Xiao K, Zou S, Wang M, Qi P, Liu T, Hu Y. Pre-Treatment with Zirconia Nanoparticles Reduces Inflammation Induced by the Pathogenic H5N1 Influenza Virus. Int J Nanomedicine 2020; 15:661-674. [PMID: 32099358 PMCID: PMC6996547 DOI: 10.2147/ijn.s221667] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Background New approaches are urgently needed to fight influenza viral infection. Previous research has shown that zirconia nanoparticles can be used as anticancer materials, but their antiviral activity has not been reported. Here, we investigated the antiviral effect of zirconia (ZrO2) nanoparticles (NPs) against a highly pathogenic avian influenza virus. Materials and Methods In this study, the antiviral effects of ZrO2 on H5N1 virus were assessed in vivo, and the molecular mechanism responsible for this protection was investigated. Results Mice treated with 200 nm positively-charged NPs at a dose of 100 mg/kg showed higher survival rates and smaller reductions in weight. 200 nm ZrO2 activated mature dendritic cells and initially promoted the expression of cytokines associated with the antiviral response and innate immunity. In the lungs of H5N1-infected mice, ZrO2 treatment led to less pathological lung injury, significant reduction in influenza A virus replication, and overexpression of pro-inflammatory cytokines. Conclusion This antiviral study using zirconia NPs shows protection of mice against highly pathogenic avian influenza virus and suggests strong application potential for this method, introducing a new tool against a wide range of microbial infections.
Collapse
Affiliation(s)
- Caiyun Huo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, People's Republic of China
| | - Kai Xiao
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, People's Republic of China
| | - Ming Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China.,Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, People's Republic of China
| | - Peng Qi
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, People's Republic of China
| | - Tianlong Liu
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
25
|
Wu S, Zhang J, Huang J, Li W, Liu Z, He Z, Chen Z, He W, Zhao B, Qin Z, Jiao P, Liao M. Immune-Related Gene Expression in Ducks Infected With Waterfowl-Origin H5N6 Highly Pathogenic Avian Influenza Viruses. Front Microbiol 2019; 10:1782. [PMID: 31428075 PMCID: PMC6687855 DOI: 10.3389/fmicb.2019.01782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
Clade 2.3.4.4 H5 avian influenza viruses (AIVs) are widely prevalent and of significant concern to the poultry industry and public health in China. Nowadays, the clade 2.3.4.4 H5N6 virus has become a dominant AIV subtype among domestic ducks in southern China. We found that waterfowl-origin clade 2.3.4.4 H5N6 viruses (A/goose/Guangdong/16568/2016, GS16568 and A/duck/Guangdong/16873/2016, DK16873) isolated from southern China in 2016 could replicate in multiple organs of inoculated ducks. DK16873 virus caused mild infections and killed 2/5 of inoculated ducks, and GS16568 virus did not kill inoculated ducks. In addition, the two viruses could be transmitted via direct contact between ducks. DK16873 and GS16568 viruses killed 2/5 and 1/5 of contact ducks, respectively. Furthermore, ducks inoculated with the two H5N6 viruses exhibited different expressions of immune-related genes in their lungs. The expression of RIG-I, TLR3 and IL6 was significantly upregulated at 12 h post-inoculation (HPI) and most of the tested immune-related genes were significantly upregulated at 3 days post-inoculation (DPI). Notably, the expression of RIG-I and IL-6 in response to DK16873 virus was significantly higher than for GS16568 virus at 12 HPI and 3 DPI. Our research have provided helpful information about the pathogenicity, transmission and immune-related genes expression in ducks infected with new H5N6 AIVs.
Collapse
Affiliation(s)
- Siyu Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junsheng Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianni Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiqiang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiting Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhuoliang He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zuxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wanting He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingbing Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhifeng Qin
- Shenzhen Academy of Inspection and Quarantine, Shenzhen, China
| | - Peirong Jiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
Acute phase protein response to viral infection and vaccination. Arch Biochem Biophys 2019; 671:196-202. [PMID: 31323216 PMCID: PMC7094616 DOI: 10.1016/j.abb.2019.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/29/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
Organisms respond in multiple ways to microbial infections. Pathogen invasion tipically triggers an inflammatory response where acute phase proteins (APP) have a key role. Pentraxins (PTX) are a family of highly conserved APP that play a part in the host defense against infection. The larger proteins of the family are simply named pentraxins, while c-reactive proteins (CRP) and serum amyloid proteins (SAA, SAP) are known as short pentraxins. Although high APP levels have been broadly associated with bacterial infections, there is a growing body of evidence revealing increased PTX, CRP and SAP expression upon viral infection. Furthermore, CRP, PTX and SAP have shown their potential as diagnostic markers and predictors of disease outcome. Likewise, the measurement of APP levels can be valuable to determine the efficacy of antiviral therapies and vaccines. From the practical point of view, the ability of APP to reduce viral infectivity has been observed in several virus-host models. This has prompted investigation efforts to assess the role of acute phase response proteins as immunoregulatory molecules and their potential as therapeutic reagents. This work aims to present an overview of the APP response to viral infections reviewing the current knowledge in the field.
Collapse
|
27
|
Drobik-Czwarno W, Wolc A, Kucharska K, Martyniuk E. Genetic determinants of resistance to highly pathogenic avian influenza in chickens. ROCZNIKI NAUKOWE POLSKIEGO TOWARZYSTWA ZOOTECHNICZNEGO 2019. [DOI: 10.5604/01.3001.0013.5065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) poses a huge threat to poultry production and also introduces an epidemiological risk in the human population. Thus far, HPAI has been controlled mainly through widespread implementation of biosecurity, and in the case of an outbreak, liquidation of flocks and establishment of protection zones. Alternative strategies for combating HPAI include the use of vaccines, genetic modification, and genetic selection for increased general and specific immunity in birds. These kinds of strategies often require identification of the genes involved in the immune response to the pathogen. Many genes have been identified as potentially associated with differences in the response to HPAI between poultry species and between individuals. Thus far, the most attention has been focused on genes taking part in regulating the innate immune response, which is responsible for preventing infection and limiting the replication and spread of the virus. The most commonly mentioned candidates for layer chickens include interferon-stimulated genes (ISGs) and RIG-I-like receptors. Proteins encoded by genes of the BTLN family, defensins, and proteins involved in apoptosis have also been associated with differences in the response to HPAI. Recent years have seen an increasing number of studies on the genetic determinants of individual differences in the response to HPAI in chickens. Data from HPAI outbreaks in the US in the spring of 2015 and Mexico in the years 2012-2016 have enabled a more precise analysis of this problem. A number of genes have been identified as associated with the immune response, but their specific role in determining the survival of birds requires further study. Preliminary results indicate that genetic determinants of resistance to HPAI are highly complex and can vary depending on the virus strain and the genetic line of birds.
Collapse
Affiliation(s)
- Wioleta Drobik-Czwarno
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wydział Nauk o Zwierzętach Katedra Genetyki i Ogólnej Hodowli Zwierząt
| | - Anna Wolc
- Iowa State University Department of Animal Science
| | - Kornelia Kucharska
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wydział Nauk o Zwierzętach Katedra Biologii Środowiska Zwierząt, Zakład Zoologii
| | - Elżbieta Martyniuk
- Szkoła Główna Gospodarstwa Wiejskiego w Warszawie; Wydział Nauk o Zwierzętach
| |
Collapse
|
28
|
Age-dependent pathogenesis of clade 2.3.4.4A H5N2 HPAIV in experimentally infected Broad Breasted White turkeys. Vet Microbiol 2019; 231:183-190. [PMID: 30955808 DOI: 10.1016/j.vetmic.2019.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
Highly pathogenic avian influenza (HPAI) is a viral disease with devastating consequences to the poultry industry as it results in high morbidity, mortality and international trade restrictions. In the present study, we characterized age-related differences in terms of pathology in commercial white broad breasted turkeys inoculated with A/turkey/Minnesota/12582/2015 (H5N2) HPAIV clade 2.3.4.4A, a virus from the largest HPAI poultry outbreak that affected the Unites States in 2014-2015. Turkeys infected at 6-weeks of age showed inapparent to little clinical signs with rapid disease progression, reaching 100% mortality at 3 days post infection (dpi). In contrast, turkeys infected at 16-weeks of age developed ataxia and lethargy and reached 100% mortality by 5 dpi. Infection in the 6-weeks old turkeys resulted in peracute lesions consistent of extensive hemorrhages, edema and necrosis, but inflammation was not prominent. In the 16-weeks old turkeys, necrosis and hemorrhages in tissues were accompanied by a more prominent subacute inflammatory infiltrate. Both age groups showed presence of avian influenza virus (AIV) nucleoprotein (NP) in multiple cell types including neurons, glial cells, ependymal cells, respiratory epithelial cells, air capillary epithelium and pulmonary macrophages, cardiac myocytes, smooth muscle fibers, pancreatic acini and ductal cells. Cells of the vascular walls stained strongly positive for viral antigens, but no positivity was found in the endothelial cells of any organs. These findings indicate that age is a determinant factor in the progression of the disease and delay of mortality during infection with the H5N2 clade 2.3.4.4A HPAI virus in naïve white broad breasted turkeys.
Collapse
|
29
|
Nuñez IA, Ross TM. A review of H5Nx avian influenza viruses. Ther Adv Vaccines Immunother 2019; 7:2515135518821625. [PMID: 30834359 PMCID: PMC6391539 DOI: 10.1177/2515135518821625] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs), originating from the A/goose/Guangdong/1/1996 H5 subtype, naturally circulate in wild-bird populations, particularly waterfowl, and often spill over to infect domestic poultry. Occasionally, humans are infected with HPAVI H5N1 resulting in high mortality, but no sustained human-to-human transmission. In this review, the replication cycle, pathogenicity, evolution, spread, and transmission of HPAIVs of H5Nx subtypes, along with the host immune responses to Highly Pathogenic Avian Influenza Virus (HPAIV) infection and potential vaccination, are discussed. In addition, the potential mechanisms for Highly Pathogenic Avian Influenza Virus (HPAIV) H5 Reassorted Viruses H5N1, H5N2, H5N6, H5N8 (H5Nx) viruses to transmit, infect, and adapt to the human host are reviewed.
Collapse
Affiliation(s)
- Ivette A. Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, 501 D.W. Brooks Drive, CVI Room 1504, Athens, GA 30602, USA
| |
Collapse
|
30
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
31
|
Drobik-Czwarno W, Wolc A, Fulton JE, Jankowski T, Arango J, O’Sullivan NP, Dekkers JCM. Genetic basis of resistance to avian influenza in different commercial varieties of layer chickens. Poult Sci 2018; 97:3421-3428. [DOI: 10.3382/ps/pey233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/23/2018] [Indexed: 11/20/2022] Open
|
32
|
Rohde F, Schusser B, Hron T, Farkašová H, Plachý J, Härtle S, Hejnar J, Elleder D, Kaspers B. Characterization of Chicken Tumor Necrosis Factor-α, a Long Missed Cytokine in Birds. Front Immunol 2018; 9:605. [PMID: 29719531 PMCID: PMC5913325 DOI: 10.3389/fimmu.2018.00605] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine playing critical roles in host defense and acute and chronic inflammation. It has been described in fish, amphibians, and mammals but was considered to be absent in the avian genomes. Here, we report on the identification and functional characterization of the avian ortholog. The chicken TNF-α (chTNF-α) is encoded by a highly GC-rich gene, whose product shares with its mammalian counterpart 45% homology in the extracellular part displaying the characteristic TNF homology domain. Orthologs of chTNF-α were identified in the genomes of 12 additional avian species including Palaeognathae and Neognathae, and the synteny of the closely adjacent loci with mammalian TNF-α orthologs was demonstrated in the crow (Corvus cornix) genome. In addition to chTNF-α, we obtained full sequences for homologs of TNF-α receptors 1 and 2 (TNFR1, TNFR2). chTNF-α mRNA is strongly induced by lipopolysaccharide (LPS) stimulation of monocyte derived, splenic and bone marrow macrophages, and significantly upregulated in splenic tissue in response to i.v. LPS treatment. Activation of T-lymphocytes by TCR crosslinking induces chTNF-α expression in CD4+ but not in CD8+ cells. To gain insights into its biological activity, we generated recombinant chTNF-α in eukaryotic and prokaryotic expression systems. Both, the full-length cytokine and the extracellular domain rapidly induced an NFκB-luciferase reporter in stably transfected CEC-32 reporter cells. Collectively, these data provide strong evidence for the existence of a fully functional TNF-α/TNF-α receptor system in birds thus filling a gap in our understanding of the evolution of cytokine systems.
Collapse
Affiliation(s)
- Franziska Rohde
- Department of Veterinary Science, Ludwig-Maximilians-Universität, Munich, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, Department of Animal Sciences, Technical University Munich, Munich, Germany
| | - Tomáš Hron
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Farkašová
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jiří Plachý
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Sonja Härtle
- Department of Veterinary Science, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jiří Hejnar
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Daniel Elleder
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Bernd Kaspers
- Department of Veterinary Science, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
33
|
Saito LB, Diaz-Satizabal L, Evseev D, Fleming-Canepa X, Mao S, Webster RG, Magor KE. IFN and cytokine responses in ducks to genetically similar H5N1 influenza A viruses of varying pathogenicity. J Gen Virol 2018; 99:464-474. [PMID: 29458524 DOI: 10.1099/jgv.0.001015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ducks, the reservoir host, are generally permissive to influenza A virus infection without disease symptoms. This natural ecology was upset by the emergence of H5N1 strains, which can kill ducks. To better understand host-virus interactions in the reservoir host, and influenza strain-specific molecular contributions to virulence, we infected White Pekin ducks with three similar H5N1 viruses, with known differences in pathogenicity and replication rate. We quantified viral replication and innate immune gene activation by qPCR, in lung and spleen tissues, isolated on each of the first 3 days of infection. The three viruses replicated well, as measured by accumulation of matrix gene transcript, and viral load declined over time in the spleen. The ducks produced rapid, but temporally limited, IFN and cytokine responses, peaking on the first day post-infection. IFN and proinflammatory cytokine gene induction were greater in response to infection with the more lethal viruses, compared to an attenuated strain. We conclude that a well-regulated IFN response, with the ability to overcome early viral immune inhibition, without hyperinflammation, contributes to the ability of ducks to survive H5N1 influenza replication in their airways, and yet clear systemic infection and limit disease.
Collapse
Affiliation(s)
- Leina B Saito
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Laura Diaz-Satizabal
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Danyel Evseev
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Ximena Fleming-Canepa
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Sai Mao
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.,Institute of Preventative Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, PR China
| | - Robert G Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Katharine E Magor
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
34
|
Samir M, Hamed M, Abdallah F, Kinh Nguyen V, Hernandez-Vargas EA, Seehusen F, Baumgärtner W, Hussein A, Ali AAH, Pessler F. An Egyptian HPAI H5N1 isolate from clade 2.2.1.2 is highly pathogenic in an experimentally infected domestic duck breed (Sudani duck). Transbound Emerg Dis 2018; 65:859-873. [PMID: 29363279 DOI: 10.1111/tbed.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 01/26/2023]
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause major problems in poultry and can, although rarely, cause human infection. Being enzootic in domestic poultry, Egyptian isolates are continuously evolving, and novel clades vary in their pathogenicity in avian hosts. Considering the importance of domestic ducks as natural hosts of HPAI H5N1 viruses and their likelihood of physical contact with other avian hosts and humans, it is of utmost importance to characterize the pathogenicity of newly emerged HPAI strains in the domestic duck. The most recently identified Egyptian clade 2.2.1.2 HPAI H5N1 viruses have been isolated from naturally infected pigeons, turkeys and humans. However, essentially nothing is known about their pathogenicity in domestic ducks. We therefore characterized the pathogenicity of an Egyptian HPAI H5N1 isolate A/chicken/Faquos/amn12/2011 (clade 2.2.1.2) in Sudani duck, a domestic duck breed commonly reared in Egypt. While viral transcription (HA mRNA) was highest in lung, heart and kidney peaking between 40 and 48 hpi, lower levels were detected in brain. Weight loss of infected ducks started at 16 hpi and persisted until 120 hpi. The first severe clinical signs were noted by 32 hpi and peaked in severity at 72 and 96 hpi. Haematological analyses showed a decline in total leucocytes, granulocytes, platelets and granulocyte/lymphocyte ratio, but lymphocytosis. Upon necropsy, lesions were obvious in heart, liver, spleen and pancreas and consisted mainly of necrosis and petechial haemorrhage. Histologically, lungs were the most severely affected organs, whereas brain only showed mild neuronal degeneration and gliosis at 48 hpi despite obvious neurological clinical signs. Taken together, our results provide first evidence that this HPAI H5N1 isolate (clade 2.2.1.2) is highly pathogenic to Sudani ducks and highlight the importance of this breed as potential reservoir and disseminator of HPAI strains from this clade.
Collapse
Affiliation(s)
- M Samir
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - M Hamed
- Marsa matrouh branch, Animal Health Research Institute, Dokki, Giza, Egypt
| | - F Abdallah
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - V Kinh Nguyen
- Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - E A Hernandez-Vargas
- Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - F Seehusen
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - W Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - A Hussein
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - A A H Ali
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - F Pessler
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
35
|
Identifying the genetic basis for resistance to avian influenza in commercial egg layer chickens. Animal 2017; 12:1363-1371. [PMID: 29103391 DOI: 10.1017/s1751731117002889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Two highly pathogenic avian influenza (HPAI) outbreaks have affected commercial egg production flocks in the American continent in recent years; a H7N3 outbreak in Mexico in 2012 that caused 70% to 85% mortality and a H5N2 outbreak in the United States in 2015 with over 99% mortality. Blood samples were obtained from survivors of each outbreak and from age and genetics matched non-affected controls. A total of 485 individuals (survivors and controls) were genotyped with a 600 k single nucleotide polymorphism (SNP) array to detect genomic regions that influenced the outcome of highly pathogenic influenza infection in the two outbreaks. A total of 420458 high quality, segregating SNPs were identified across all samples. Genetic differences between survivors and controls were analyzed using a logistic model, mixed models and a Bayesian variable selection approach. Several genomic regions potentially associated with resistance to HPAI were identified, after performing multidimensional scaling and adjustment for multiple testing. Analysis conducted within each outbreak identified different genomic regions for resistance to the two virus strains. The strongest signals for the Iowa H5N2 survivor samples were detected on chromosomes 1, 7, 9 and 15. Positional candidate genes were mainly coding for plasma membrane proteins with receptor activity and were also involved in immune response. Three regions with the strongest signal for the Mexico H7N3 samples were located on chromosomes 1 and 5. Neuronal cell surface, signal transduction and immune response proteins coding genes were located in the close proximity of these regions.
Collapse
|
36
|
Lion A, Richard M, Esnault E, Kut E, Soubieux D, Guillory V, Germond M, Blondeau C, Guabiraba R, Short KR, Marc D, Quéré P, Trapp S. Productive replication of avian influenza viruses in chicken endothelial cells is determined by hemagglutinin cleavability and is related to innate immune escape. Virology 2017; 513:29-42. [PMID: 29031164 DOI: 10.1016/j.virol.2017.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Endotheliotropism is a hallmark of gallinaceous poultry infections with highly pathogenic avian influenza (HPAI) viruses and a feature that distinguishes HPAI from low pathogenic avian influenza (LPAI) viruses. Here, we used chicken aortic endothelial cells (chAEC) as a novel in vitro infection model to assess the susceptibility, permissiveness, and host response of chicken endothelial cells (EC) to infections with avian influenza (AI) viruses. Our data show that productive replication of AI viruses in chAEC is critically determined by hemagglutinin cleavability, and is thus an exclusive trait of HPAI viruses. However, we provide evidence for a link between limited (i.e. trypsin-dependent) replication of certain LPAI viruses, and the viruses' ability to dampen the antiviral innate immune response in infected chAEC. Strikingly, this cell response pattern was also detected in HPAI virus-infected chAEC, suggesting that viral innate immune escape might be a prerequisite for robust AI virus replication in chicken EC.
Collapse
Affiliation(s)
- Adrien Lion
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Mathilde Richard
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
| | - Evelyne Esnault
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Emmanuel Kut
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Denis Soubieux
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Vanaïque Guillory
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Mélody Germond
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Caroline Blondeau
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Rodrigo Guabiraba
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Kirsty R Short
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands; University of Queensland, School of Biomedical Sciences, Brisbane, Australia
| | - Daniel Marc
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Pascale Quéré
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Sascha Trapp
- INRA ISP, Université François Rabelais de Tours, UMR 1282, Nouzilly, France.
| |
Collapse
|
37
|
Widespread extrahepatic expression of acute-phase proteins in healthy chicken (Gallus gallus) tissues. Vet Immunol Immunopathol 2017; 190:10-17. [PMID: 28778317 DOI: 10.1016/j.vetimm.2017.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 12/28/2022]
Abstract
Acute phase proteins (APP) are plasma proteins that can modify their expression in response to inflammation caused by tissue injury, infections, immunological disorders or stress. Although APP are produced mainly in liver, extrahepatic production has also been described. As a prerequisite to get insight the expression of APP in chicken during diseases, this study investigated the presence of five APP, including alpha1-acid glycoprotein (AGP), Serum Amyloid A (SAA), PIT54, C-Reactive protein (CRP) and Ovotransferrin (OVT) in twenty tissues collected from healthy chicken (Gallus gallus) by quantitative Real Time PCR and immunohistochemistry. As expected, APP gene abundance was higher in liver compared with other tissues. The mRNA coding for CRP, OVT and SAA was detected in all analyzed tissues with a higher expression in gastrointestinal tract, respiratory and lymphatic samples. SAA expression was particularly high in cecal tonsil, lung, spleen and Meckel's diverticulum, whereas OVT in lung, bursa of Fabricius and pancreas. AGP and PIT54 mRNA expression were detected in all tissues but at negligible levels. Immunohistochemical expression of AGP and OVT was variably detected in different organs, being identified in endothelium of every tissue. Positive cells were present in the epithelium of the mucosal layer of gastrointestinal tract and kidney. Lung and central nervous system stained for both proteins. No positive staining was detected in lymphoid tissues and muscle. These results suggest that most tissues can express different amount of APP even in healthy conditions and are therefore capable to mount a local acute phase reaction.
Collapse
|
38
|
Wang X, Zhang J, Meng R, Jiang Y, Liang S, Zhang Y, Xie M, Zhou Z, Hou S. Host Differences Affecting Resistance and Susceptibility of the Second Generation of a Pekin Duck Flock to Duck Hepatitis A Virus Genotype 3. Front Microbiol 2017; 8:1128. [PMID: 28674528 PMCID: PMC5474462 DOI: 10.3389/fmicb.2017.01128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
Earlier work suggested the possibility to anti duck hepatitis A virus genotype 3 (DHAV-3) using the resistance breeding strategy. Here, we report the creation of the second generations of a resistant Pekin duck flock (designated Z8R2) and a highly susceptible Pekin duck flock (designated Z8S2) and the investigation of their responses to DHAV-3. Experimental infection with DHAV-3 at 7 days of age resulted in a high mortality (66.3%) in 11 susceptible Z8S2 families and an extremely low mortality rate (2.67%) in 32 Z8R2 families, indicating that Z8R2 exhibits strong resistance to DHAV-3, while Z8S2 is highly susceptible to the virus. Detection of DHAV-3 in the liver between 1 and 60 hours post inoculation (hpi) suggests that DHAV-3 can be replicated rapidly and efficiently in the liver of Z8S2, whereas the replication of the virus in the liver of Z8R2 is suppressed greatly. High levels of serum biochemical markers (e.g., ALT, AST, ALP and GGT) were detected in Z8S2 at 24 hpi, which were significantly higher than those in Z8R2. Analysis of transcripts in the liver revealed that the expression levels of several pattern recognition receptors (PRRs) (e.g., TLR4/7, RIG-1 and MDA5) and cytokines (e.g., IL-2, IL-6, IL-8, IFN-α, and IFN-γ) in Z8S2 were significantly higher than those in Z8R2 at 12 and 24 hpi. Together these findings suggest that Z8R2 and Z8S2 Pekin ducks, which were derived from the same Z8 line, exhibit disparate pathogenic outcomes following DHAV-3 infection. Therefore, it is possible to select a Pekin duck flock resistant to DHAV-3 employing the strategy described here. It is likely that the high viral load and the strong inflammatory response correlate with the high susceptibility of Z8S2 Pekin ducks to DHAV-3.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jiaojiao Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Runze Meng
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yong Jiang
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Suyun Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yunsheng Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Ming Xie
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhengkui Zhou
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| | - Shuisheng Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
39
|
Mishra A, Vijayakumar P, Raut AA. Emerging avian influenza infections: Current understanding of innate immune response and molecular pathogenesis. Int Rev Immunol 2017; 36:89-107. [PMID: 28272907 DOI: 10.1080/08830185.2017.1291640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in gallinaceous poultry species, domestic ducks, various aquatic and terrestrial wild bird species as well as humans. The outcome of the disease is determined by complex interactions of multiple components of the host, the virus, and the environment. While the host-innate immune response plays an important role for clearance of infection, excessive inflammatory immune response (cytokine storm) may contribute to morbidity and mortality of the host. Therefore, innate immunity response in avian influenza infection has two distinct roles. However, the viral pathogenic mechanism varies widely in different avian species, which are not completely understood. In this review, we summarized the current understanding and gaps in host-pathogen interaction of avian influenza infection in birds. In first part of this article, we summarized influenza viral pathogenesis of gallinaceous and non-gallinaceous avian species. Then we discussed innate immune response against influenza infection, cytokine storm, differential host immune responses against different pathotypes, and response in different avian species. Finally, we reviewed the systems biology approach to study host-pathogen interaction in avian species for better characterization of molecular pathogenesis of the disease. Wild aquatic birds act as natural reservoir of AIVs. Better understanding of host-pathogen interaction in natural reservoir is fundamental to understand the properties of AIV infection and development of improved vaccine and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Anamika Mishra
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Periyasamy Vijayakumar
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| | - Ashwin Ashok Raut
- a Pathogenomics Laboratory , OIE Reference Laboratory for Avian Influenza, ICAR-National Institute of High Security Animal Diseases , Bhopal , Madhya Pradesh , India
| |
Collapse
|
40
|
Novel Reassortant H5N6 Influenza A Virus from the Lao People's Democratic Republic Is Highly Pathogenic in Chickens. PLoS One 2016; 11:e0162375. [PMID: 27631618 PMCID: PMC5025169 DOI: 10.1371/journal.pone.0162375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/22/2016] [Indexed: 01/31/2023] Open
Abstract
Avian influenza viruses of H5 subtype can cause highly pathogenic disease in poultry. In March 2014, a new reassortant H5N6 subtype highly pathogenic avian influenza virus emerged in Lao People’s Democratic Republic. We have assessed the pathogenicity, pathobiology and immunological responses associated with this virus in chickens. Infection caused moderate to advanced disease in 6 of 6 chickens within 48 h of mucosal inoculation. High virus titers were observed in blood and tissues (kidney, spleen, liver, duodenum, heart, brain and lung) taken at euthanasia. Viral antigen was detected in endothelium, neurons, myocardium, lymphoid tissues and other cell types. Pro-inflammatory cytokines were elevated compared to non-infected birds. Our study confirmed that this new H5N6 reassortant is highly pathogenic, causing disease in chickens similar to that of Asian H5N1 viruses, and demonstrated the ability of such clade 2.3.4-origin H5 viruses to reassort with non-N1 subtype viruses while maintaining a fit and infectious phenotype. Recent detection of influenza H5N6 poultry infections in Lao PDR, China and Viet Nam, as well as six fatal human infections in China, demonstrate that these emergent highly pathogenic H5N6 viruses may be widely established in several countries and represent an emerging threat to poultry and human populations.
Collapse
|
41
|
Han D, Wei T, Zhang S, Wang M, Tian H, Cheng J, Xiao J, Hu Y, Chen M. The therapeutic effects of sodium cromoglycate against influenza A virus H5N1 in mice. Influenza Other Respir Viruses 2016; 10:57-66. [PMID: 26176755 PMCID: PMC4687497 DOI: 10.1111/irv.12334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 11/30/2022] Open
Abstract
Objectives To identify the protective role of sodium cromoglycate in mice during influenza virus infection. Design H5N1 virus‐infected mice were treated with the mast cell stabilizer sodium cromoglycate (SCG) to investigate its therapeutic effect. Sample The nose, trachea and lungs from mice were collected. Main outcome measures Virus replication and host responses were determined by plaque assay, quantitative PCR, immunohistochemistry, and histology. Results SCG‐treated mice survived better than did PBS‐treated mice after H5N1 virus infection. Mild pathological changes with fewer inflammatory cell infiltration and fewer virus antigens were observed in the nose, trachea, and lungs of SCG‐treated mice on days 3 and 5 post‐infection. However, no significant changes in viral load in the lungs were detected between SCG‐ and PBS‐treated mice. Furthermore, significantly decreased expression of interleukin‐6, tumor necrosis factor‐a, Toll‐like receptor 3, and TIR‐domain‐containing adapter‐inducing interferon‐b was detected in the lungs of SCG‐treated mice, and no higher expression of interferon‐c was detected. Conclusion These results suggest that SCG has therapeutic roles in H5N1 virus‐infected mice by alleviating the inflammatory response rather than inhibition of viral replication in the lungs.
Collapse
Affiliation(s)
- Deping Han
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tangting Wei
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyi Zhang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ming Wang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Haiyan Tian
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinlong Cheng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Yanxin Hu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mingyong Chen
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Hagenaars TJ, Fischer EAJ, Jansen CA, Rebel JMJ, Spekreijse D, Vervelde L, Backer JA, de Jong MCM, Koets AP. Modelling the Innate Immune Response against Avian Influenza Virus in Chicken. PLoS One 2016; 11:e0157816. [PMID: 27328069 PMCID: PMC4915690 DOI: 10.1371/journal.pone.0157816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 06/06/2016] [Indexed: 11/22/2022] Open
Abstract
At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α, -β and -γ, lung (i.e. pulmonary) cells and Natural Killer cells. We use recent results from experimentally infected chickens to validate some of the model predictions. The model includes an initial exponential increase of the viral load, which we show to be consistent with experimental data. Using this exponential growth model we show that the duration until a given viral load is reached in experiments with different inoculation doses is consistent with a model assuming a linear relationship between initial viral load and inoculation dose. Subsequent to the exponential-growth phase, the model results show a decline in viral load caused by both target-cell limitation as well as the innate immune response. The model results suggest that the temporal viral load pattern in the lungs displayed in experimental data cannot be explained by target-cell limitation alone. For biologically plausible parameter values the model is able to qualitatively match to data on viral load in chicken lungs up until approximately 4 days post infection. Comparison of model predictions with data on CD107-mediated degranulation of Natural Killer cells yields some discrepancy also for earlier days post infection.
Collapse
Affiliation(s)
- T. J. Hagenaars
- Central Veterinary Institute, part of Wageningen UR, Lelystad, The Netherlands
- * E-mail:
| | - E. A. J. Fischer
- Central Veterinary Institute, part of Wageningen UR, Lelystad, The Netherlands
| | - C. A. Jansen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J. M. J. Rebel
- Central Veterinary Institute, part of Wageningen UR, Lelystad, The Netherlands
| | - D. Spekreijse
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - L. Vervelde
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J. A. Backer
- Central Veterinary Institute, part of Wageningen UR, Lelystad, The Netherlands
| | - M. C. M. de Jong
- Quantitative Veterinary Epidemiology, Wageningen University, Wageningen, The Netherlands
| | - A. P. Koets
- Central Veterinary Institute, part of Wageningen UR, Lelystad, The Netherlands
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
43
|
Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses. PLoS One 2016; 11:e0153671. [PMID: 27071061 PMCID: PMC4829244 DOI: 10.1371/journal.pone.0153671] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.
Collapse
|
44
|
Han D, Hu Y, Teng K, Deng X. Lower expression of sialic acid receptors in the cecum of silky fowl (Gallus gallus domesticus Brisson) compared to white leghorn. Poult Sci 2016; 95:1290-5. [PMID: 26976896 DOI: 10.3382/ps/pew065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
Avian influenza virus has received increasing attention in recent years because of the potential for recombination with the human virus. Distributions of sialic acid receptors on target cells are determinants of the susceptibilities of different species to influenza virus infection. In this study, the distribution of sialic acid receptors in the respiratory and gastrointestinal tracts of Silky Fowl and White Leghorn chickens were compared. The results showed that sialic acid-α-2,3-galactose receptors and sialic acid-α6-galactose receptors were both observed in Silky Fowl and White Leghorn, but fewer positive cells were detected in Silky Fowl with significant difference in the cecum. The lower abundance of sialic acid receptors likely results from the lower abundance of CD3 and F4/80 immune cells in the cecum of Silky Fowl.
Collapse
Affiliation(s)
- Deping Han
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Yanxin Hu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Kedao Teng
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xuemei Deng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
45
|
Luczo JM, Stambas J, Durr PA, Michalski WP, Bingham J. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif. Rev Med Virol 2015; 25:406-30. [PMID: 26467906 PMCID: PMC5057330 DOI: 10.1002/rmv.1846] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 11/22/2022]
Abstract
The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - John Stambas
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Peter A Durr
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia
| | - Wojtek P Michalski
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia
| | - John Bingham
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia
| |
Collapse
|
46
|
The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerg Microbes Infect 2015; 4:e28. [PMID: 26060601 PMCID: PMC4451266 DOI: 10.1038/emi.2015.28] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/12/2015] [Accepted: 03/31/2015] [Indexed: 12/14/2022]
Abstract
The complement system, an important part of innate immunity, plays a critical role in pathogen clearance. Unregulated complement activation is likely to play a crucial role in the pathogenesis of acute lung injury (ALI) induced by highly pathogenic virus including influenza A viruses H5N1, H7N9, and severe acute respiratory syndrome (SARS) coronavirus. In highly pathogenic virus-induced acute lung diseases, high levels of chemotactic and anaphylatoxic C5a were produced as a result of excessive complement activaiton. Overproduced C5a displays powerful biological activities in activation of phagocytic cells, generation of oxidants, and inflammatory sequelae named "cytokine storm", and so on. Blockade of C5a signaling have been implicated in the treatment of ALI induced by highly pathogenic virus. Herein, we review the literature that links C5a and ALI, and review our understanding of the mechanisms by which C5a affects ALI during highly pathogenic viral infection. In particular, we discuss the potential of the blockade of C5a signaling to treat ALI induced by highly pathogenic viruses.
Collapse
|
47
|
Rychlik I, Elsheimer-Matulova M, Kyrova K. Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella. Vet Res 2014; 45:119. [PMID: 25475706 PMCID: PMC4256799 DOI: 10.1186/s13567-014-0119-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/04/2014] [Indexed: 11/26/2022] Open
Abstract
Chickens can be infected with Salmonella enterica at any time during their life. However, infections within the first hours and days of their life are epidemiologically the most important, as newly hatched chickens are highly sensitive to Salmonella infection. Salmonella is initially recognized in the chicken caecum by TLR receptors and this recognition is followed by induction of chemokines, cytokines and many effector genes. This results in infiltration of heterophils, macrophages, B- and T-lymphocytes and changes in total gene expression in the caecal lamina propria. The highest induction in expression is observed for matrix metalloproteinase 7 (MMP7). Expression of this gene is increased in the chicken caecum over 4000 fold during the first 10 days after the infection of newly hatched chickens. Additional highly inducible genes in the caecum following S. Enteritidis infection include immune responsive gene 1 (IRG1), serum amyloid A (SAA), extracellular fatty acid binding protein (ExFABP), serine protease inhibitor (SERPINB10), trappin 6-like (TRAP6), calprotectin (MRP126), mitochondrial ES1 protein homolog (ES1), interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), avidin (AVD) and transglutaminase 4 (TGM4). The induction of expression of these proteins exceeds a factor of 50. Similar induction rates are also observed for chemokines and cytokines such as IL1β, IL6, IL8, IL17, IL18, IL22, IFNγ, AH221 or iNOS. Once the infection is under control, which happens approx. 2 weeks after infection, expression of IgY and IgA increases to facilitate Salmonella elimination from the gut lumen. This review outlines the function of individual proteins expressed in chickens after infection with non-typhoid Salmonella serovars.
Collapse
Affiliation(s)
- Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, Brno, 621 00, Czech Republic.
| | | | | |
Collapse
|
48
|
Goossens KE, Karpala AJ, Rohringer A, Ward A, Bean AGD. Characterisation of chicken viperin. Mol Immunol 2014; 63:373-80. [PMID: 25311379 DOI: 10.1016/j.molimm.2014.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 12/17/2022]
Abstract
The identification of immune pathways that protect against pathogens may lead to novel molecular therapies for both livestock and human health. Interferon (IFN) is a major response pathway that stimulates multiple genes targeted towards reducing virus. Viperin is one such interferon stimulated gene (ISG) that helps protect mammals from virus and may be critical to protecting chickens in the same way. In chickens, ISGs are not generally well characterised and viperin, in concert with other ISGs, may be important in protecting against virus. Here we identify chicken viperin (ch-viperin) and show that ch-viperin is upregulated in response to viral signature molecules. We further show that viperin is upregulated in response to virus infection in vivo. This data will benefit investigators targeting the antiviral pathways in the chicken.
Collapse
Affiliation(s)
- Kate E Goossens
- CSIRO Australian Animal Health Laboratory, Private Bag 24, Geelong, Victoria 3220, Australia; School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Adam J Karpala
- CSIRO Australian Animal Health Laboratory, Private Bag 24, Geelong, Victoria 3220, Australia.
| | - Andreas Rohringer
- CSIRO Australian Animal Health Laboratory, Private Bag 24, Geelong, Victoria 3220, Australia
| | - Alistair Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Andrew G D Bean
- CSIRO Australian Animal Health Laboratory, Private Bag 24, Geelong, Victoria 3220, Australia
| |
Collapse
|
49
|
Park EH, Song BM, Yum J, Kim JA, Oh SK, Kim HS, Cho GJ, Seo SH. Protective efficacy of a single dose of baculovirus hemagglutinin-based vaccine in chickens and ducks against homologous and heterologous H5N1 virus infections. Viral Immunol 2014; 27:449-62. [PMID: 25211640 DOI: 10.1089/vim.2014.0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Outbreaks of the highly pathogenic H5N1 virus in poultry and humans are ongoing. Vaccination is an efficient method for prevention of H5N1 infection. Using chickens and ducks, we assessed the efficacy of a vaccine comprising H5N1 hemagglutinin (HA) protein produced in a baculovirus expression system. The immunized chickens and ducks were protected against lethal infection by H5N1 in an antigen dose-dependent manner. Complete protection against homologous challenge and partial protection against heterologous challenge were achieved in chickens immunized with 5 μg HA protein and in ducks immunized with 10 μg HA protein. The IgG antibody subtype was mainly detected in the sera and tissues, including the lungs. The neuraminidase (NA) inhibition assay was negative in immunized chickens and ducks. Our results indicated that the expressed HA protein by baculovirus was immunogenic to both chickens and ducks, and the immunized chickens and ducks were protected from the lethal infections of highly pathogenic H5N1 influenza virus, though ducks required more HA protein than chickens to be protected. Also, baculovirus HA-vaccinated poultry can be differentiated from infected poultry by NA inhibition assay.
Collapse
Affiliation(s)
- Eun Hye Park
- 1 Laboratory of Influenza Research, Chungnam National University , Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|