1
|
Xu Y, Bai Y, Hiemstra T, Weng L. A new consistent modeling framework for the competitive adsorption of humic nanoparticles and oxyanions to metal (hydr)oxides: Multiple modes of heterogeneity, fractionation, and conformational change. J Colloid Interface Sci 2024; 660:522-533. [PMID: 38262179 DOI: 10.1016/j.jcis.2024.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
HYPOTHESIS The competitive interaction of oxyanions and humic nanoparticles (HNPs) with metal (hydr)oxide surfaces can be used to trace the ligand and charge distribution of adsorbed HNPs in relation to heterogeneity, fractionation, and conformational change. EXPERIMENTS Batch adsorption experiments of HNPs on goethite were performed in the absence and presence of phosphate. The size of HNPs was measured with size exclusion chromatography. The Ligand and Charge Distribution (LCD) model framework was further developed to describe the simultaneous interaction of HNPs and phosphate with goethite. FINDINGS Preferential adsorption decreases the mean molar mass of adsorbed HNPs, independent of the phosphate presence, showing a linear dependency on the adsorbed HNPs fraction. Phosphate ion can be used as a probe to trace the distribution of functional groups and the variation in affinity of HNPs. The spatial distribution of adsorbed HNPs is driven by the potential gradients in the electrical double layer, which changes the conformation of the adsorbed HNPs. At the particle level, the adsorption of heterogeneous HNPs has an affinity distribution, which can be explained by the variation in molar mass (kDa) and density of the functional groups (mol kg-1) of the HNPs. The presented model can simultaneously describe the competitive adsorption of HNPs and phosphate in a consistent manner.
Collapse
Affiliation(s)
- Yun Xu
- Soil Chemistry and Chemical Soil Quality, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yilina Bai
- Soil Chemistry and Chemical Soil Quality, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Tjisse Hiemstra
- Soil Chemistry and Chemical Soil Quality, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Liping Weng
- Soil Chemistry and Chemical Soil Quality, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; Agro-Environmental Protection Institute, Ministry of Agriculture, 300191 Tianjin, China.
| |
Collapse
|
2
|
Lei C, Chen Y, Li A, Gao R, Zhang Z, Chen J, Shi P, Zhou Q, Ma Y. A new process to further remove dissolved organic matter and disinfection by-product formation potential during drinking water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20959-20969. [PMID: 36264461 DOI: 10.1007/s11356-022-23676-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Biological activated carbon (BAC) will produce soluble microbial products (SMPs), which affect effluent quality. To clarify the mechanism by which BAC affects effluent water quality, the processes of a drinking water plant in Jiangsu Province were investigated. It was found that during the O3-BAC process, although ozonation could remove dissolved organic matter (DOC) to a certain extent, the DOC increased from 4.44 to 4.47 mg/L after BAC. Dissolved organic matter (DOM) in effluent from different processes was divided into five fractions based on hydrophilicity and hydrophobicity by resin fractionation. Through fluorescence excitation-emission matrix (EEM) spectroscopy combined with DOC analysis, it was found that SMPs are mainly included in transitional hydrophilic neutral (TPIN) fraction, which was the main cause of the DOC increase. Therefore, a new combined process was designed to remove TPIN effectively by coagulation after biological treatment, and found that coagulation had a good removal rate (13.2%) on TPIN. The trihalomethane formation potential (THMFP) of TPIN could be reduced effectively by 44.9% after coagulation. Compared with the old process, the new combined process had a higher removal rate (14.2-30.0%) of DOC, as well as a greater reduction of THMFP (29.0-78.6%) and haloacetic acid formation potential (HAAFP) (46.4-75.3%). This study aims to reveal the mechanism by which SMPs affect effluent water quality and exacerbate health risks, and to propose a solution to provide theoretical support for the design and optimization of drinking water treatment processes.
Collapse
Affiliation(s)
- Chongtian Lei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No.163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Yurong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No.163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No.163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Rui Gao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No.163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ziang Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No.163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Junxia Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No.163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No.163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No.163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Yan Ma
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, No.163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Valenti-Quiroga M, Daunis-I-Estadella P, Emiliano P, Valero F, Martin MJ. NOM fractionation by HPSEC-DAD-OCD for predicting trihalomethane disinfection by-product formation potential in full-scale drinking water treatment plants. WATER RESEARCH 2022; 227:119314. [PMID: 36351350 DOI: 10.1016/j.watres.2022.119314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/04/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Chlorination is a common method for water disinfection; however, it leads to the formation of disinfection by-products (DBPs), which are undesirable toxic pollutants. To prevent their formation, it is crucial to understand the reactivity of natural organic matter (NOM), which is considered a dominant precursor of DBPs. We propose a novel size exclusion chromatography (SEC) approach to evaluate NOM reactivity and the formation potential of total trihalomethanes-formation potentials (tTHMs-FP) and four regulated species (i.e. CHCl3, CHBrCl2, CHBr2Cl, and CHBr3). This method combines enhanced SEC separation with two analytical columns working in tandem and quantification of apparent molecular weight (AMW) NOM fractions using C content (organic carbon detector, OCD), 254-nm spectroscopic (diode-array detector, DAD) measurements, and spectral slopes at low (S206-240) and high (S350-380) wavelengths. Links between THMs-FP and NOM fractions from high performance size exclusion chromatography HPSEC-DAD-OCD were investigated using statistical modelling with multiple linear regressions for samples taken alongside conventional full-scale as well as full- and pilot-scale electrodialysis reversal and bench-scale ion exchange resins. The proposed models revealed promising correlations between the AMW NOM fractions and the THMs-FP. Methodological changes increased fractionated signal correlations relative to bulk regressions, especially in the proposed HPSEC-DAD-OCD method. Furthermore, spectroscopic models based on fractionated signals are presented, providing a promising approach to predict THMs-FP simultaneously considering the effect of the dominant THMs precursors, NOM and Br-.
Collapse
Affiliation(s)
- Meritxell Valenti-Quiroga
- LEQUIA. Institute of the Environment, Universitat de Girona, Carrer Maria Aurèlia Capmany, 69, Girona E-17003, Spain
| | - Pepus Daunis-I-Estadella
- Department of Computer Science, Applied Mathematics and Statistics, Universitat de Girona, Carrer Universitat de Girona, 6, Girona E-17003, Spain
| | - Pere Emiliano
- Ens d'Abastament d'Aigua Ter-Llobregat (ATL), Sant Martí de l'Erm 2, E-08970 Sant Joan Despí, Barcelona, Spain
| | - Fernando Valero
- Ens d'Abastament d'Aigua Ter-Llobregat (ATL), Sant Martí de l'Erm 2, E-08970 Sant Joan Despí, Barcelona, Spain
| | - Maria J Martin
- LEQUIA. Institute of the Environment, Universitat de Girona, Carrer Maria Aurèlia Capmany, 69, Girona E-17003, Spain.
| |
Collapse
|
4
|
Sustainable Treatment and Resource Recovery of Anion Exchange Spent Brine by Pilot-Scale Electrodialysis and Ultrafiltration. MEMBRANES 2022; 12:membranes12030273. [PMID: 35323747 PMCID: PMC8953537 DOI: 10.3390/membranes12030273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/18/2023]
Abstract
The anion exchange (AIX) spent brine, generated during the NDMP-3 resin regeneration process, highly loaded with organic substances mainly humic substances (HSs) and salts (mainly NaCl) remains an environmental concern. In this study, pilot-scale electro dialysis (ED) and ultrafiltration (UF) hybrid technologies were first used to recover NaCl solution as a resin regeneration agent and HSs, which could be utilized as a vital ingredient of organic fertilizer, from the AIX spent brine. Recovered ≈ 15% w/w NaCl solution obtained by two-stage pilot-scale ED can be used to regenerate saturated NDMP-3 anion exchange resins; the regeneration−readsorption performance of NDMP-3 resins was equivalent to that of fresh ≈ 15% w/w NaCl solution. The two-stage dilute solution with low-salt content (0.49% w/w) was further concentrated by pilot-scale UF, so that the HS content in the retentate solution was >30 g/L, which meets the HS content required for water-soluble organic fertilizers. The HS liquid fertilizer could significantly stimulate the growth of green vegetables with no phytotoxicity, mainly due to special properties of HSs. These results demonstrate that ED + UF hybrid technologies can be a promising approach for the sustainable treatment and resource recovery of AIX spent brine.
Collapse
|
5
|
Abstract
Recently, we have witnessed a booming development of composites and multi-dopant metal oxides to be employed as novel photocatalysts. Yet the practical application of photocatalysis for environmental purposes is still elusive. Concerns about the unknown fate and toxicity of nanoparticles, unsatisfactory performance in real conditions, mass transfer limitations and durability issues have so far discouraged investments in full-scale applications of photocatalysis. Herein, we provide a critical overview of the main challenges that are limiting large-scale application of photocatalysis in air and water/wastewater purification. We then discuss the main approaches reported in the literature to tackle these shortcomings, such as the design of photocatalytic reactors that retain the photocatalyst, the study of degradation of micropollutants in different water matrices, and the development of gas-phase reactors with optimized contact time and irradiation. Furthermore, we provide a critical analysis of research–practice gaps such as treatment of real water and air samples, degradation of pollutants with actual environmental concentrations, photocatalyst deactivation, and cost and environmental life-cycle assessment.
Collapse
|
6
|
Lee YK, Romera-Castillo C, Hong S, Hur J. Characteristics of microplastic polymer-derived dissolved organic matter and its potential as a disinfection byproduct precursor. WATER RESEARCH 2020; 175:115678. [PMID: 32199186 DOI: 10.1016/j.watres.2020.115678] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 05/22/2023]
Abstract
Although there are numerous studies concerning the occurrence of microplastics (MP) in the environment and its impact on the ecosystem, dissolved organic matter (DOM) leached from MP (MP-DOM) has received little attention, and its characteristics have been rarely examined. It is presumed that the DOM leaching from plastics could be accelerated when plastics lost their protective additives during their transport and weathering processes in aquatic systems. In this study, two additive-free MPs (or micro-sized plastic polymers) were leached in artificial freshwater under UV irradiation and dark conditions. The leached DOM was characterized by typical analyses for naturally occurring DOM (N-DOM) such as dissolved organic carbon (DOC), size exclusion chromatography (SEC), and Fourier-transform infrared spectroscopy (FTIR). The potential to generate trihalomethanes (THMs), a well-known environmental impact of N-DOM, was also explored for the DOM with plastic origins for the first time. The leaching results demonstrated that UV irradiation promoted the leaching of DOM from the plastic polymers with an amount corresponding to ∼3% of the total mass of the polymers. The leached amounts were much greater than those previously reported using commercial plastics which presumably contained protective additives. The SEC results revealed that, different from typical aquatic N-DOM, MP-DOM is mostly composed of low molecular weight fractions <350 Da. For the two polymer types (polyethylene and polypropylene), the MP-DOM exhibited a high potential to form THMs upon chlorination, which was comparable to those of typical aquatic N-DOM. This study highlighted an overlooked contribution of UV irradiation to the DOM leaching from additive-free plastics and the potential risk of MP-DOM to produce toxic disinfection byproducts (DBPs) upon chlorination.
Collapse
Affiliation(s)
- Yun Kyung Lee
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Cristina Romera-Castillo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar-CSIC, Barcelona, 08003, Spain
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea.
| |
Collapse
|
7
|
Retelletti Brogi S, Jung JY, Ha SY, Hur J. Seasonal differences in dissolved organic matter properties and sources in an Arctic fjord: Implications for future conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133740. [PMID: 31400694 DOI: 10.1016/j.scitotenv.2019.133740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
The Arctic Ocean is undergoing drastic changes due to the effects of climate change. Arctic fjords are preferred systems to study these changes as they respond quickly to variations in ocean, land and atmosphere conditions. In this study, we investigated for the first time the seasonal variability of dissolved organic matter (DOM) properties and its origin in an Arctic fjord, which allows for an assessment of the future potential effects of climate change in this environment. We conducted an integrated analysis of the concentrations, optical properties (absorption and fluorescence), and molecular size distributions of DOM in two seasons (October 2017 and April 2018) and in eight to ten stations in Kongsfjorden (Svalbard) along with the related environmental parameters such as chlorophyll-a, inorganic nutrients, particulate organic carbon (POC), temperature, and salinity. Our results showed that, in both seasons, the DOM in the fjord was predominately of autochthonous origin with a seasonally variable terrestrial input. The dissolved organic carbon (DOC) concentrations were consistently higher in October than in April at each station. Fluorescence spectroscopy revealed a marked seasonal variability depending on the DOM fluorophore types and size fractions. In October, humic-like and tryptophan-like substances were dominant whereas in April, tyrosine-like compounds represented, on average, 58% of the DOM fluorescence. This study points out the key role of spring sea ice melting in determining the DOM properties of the fjord in spring.
Collapse
Affiliation(s)
| | - Jin Young Jung
- Division of Polar Ocean Science Research, Korea Polar Research Institute (KOPRI), Incheon 21990, South Korea
| | - Sun-Yong Ha
- Division of Polar Ocean Science Research, Korea Polar Research Institute (KOPRI), Incheon 21990, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
8
|
Gora SL, Andrews SA. Removal of natural organic matter and disinfection byproduct precursors from drinking water using photocatalytically regenerable nanoscale adsorbents. CHEMOSPHERE 2019; 218:52-63. [PMID: 30469004 DOI: 10.1016/j.chemosphere.2018.11.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 10/23/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Disinfection byproduct precursors (DBPs) were removed from raw surface water obtained from two Canadian drinking water treatment plants via adsorption to two regenerable linear engineered TiO2 nanomaterials (LENs). The temperature employed in the final heating step of the LEN synthesis procedure was varied to produce two distinct nanomaterials, NB 550 and NB 700. The LENs had similar dimensions but differed in terms of surface characteristics, surface area, and crystal structure. Unlike the commercial TiO2 nanoparticles, both LENs were easily removed from the treated water via settling or filtration. Although neither of the LENs were as effective for NOM adsorption as commercial nanoparticles, both were able to remove substantial amounts of DBP precursors. NB 550 reduced the trihalomethane (THM) formation potential of both water sources by up to 40% and their haloacetic acid (HAA) formation potential by approximately 50%. NB 700 reduced the THM formation potential of one water source by 25% and that of the other by 40%. HAA precursor removal by NB 700 ranged from 25% to 30%. The adsorption of DOC, UV254, THM precursors, and HAA precursors by commercial nanoparticles and the LENs fit a modified Freundlich adsorption isotherm model. When the LENs were regenerated via exposure to UVA light they experienced a gradual loss in adsorption capacity of up to 50% over five regeneration cycles. This loss occurred more quickly for the less photoactive of the two nanomaterials, and was affected by water source, suggesting that components of the water matrices may have interfered with regeneration.
Collapse
Affiliation(s)
- Stephanie L Gora
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Susan A Andrews
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
9
|
Park S, Nam T, You J, Kim ES, Choi I, Park J, Cho KH. Evaluating membrane fouling potentials of dissolved organic matter in brackish water. WATER RESEARCH 2019; 149:65-73. [PMID: 30419468 DOI: 10.1016/j.watres.2018.10.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/24/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Isolating dissolved organic matter (DOM) is a preliminary step that improves the accuracy of its characterization. In this study, DOM in brackish water was clearly separated and evaluated by multiple characterization analyses. The sample was divided into three fractions by preparative high-performance liquid chromatography (preparative HPLC) according to molecular size. The homogeneity of each fraction was estimated by analytical size exclusion chromatography (SEC) and fluorescence excitation-emission matrix (FEEM). Pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) and liquid chromatography-organic carbon detection (LC-OCD) were used to characterize the physicochemical properties of each fraction. Py-GC/MS revealed that Fraction 1 consisted of evenly distributed organic matter in order polysaccharides, proteins, polyhydroxy aromatics, lignins, and lipids. However, Fraction 2 was primarily composed of dominant lipids and low portion of proteins, and Fraction 3 was composed predominantly of lignins and lipids. The LC-OCD results showed that Fractions 1 and 2 had similar organic carbon (OC) compositions: a humic substance (ca. 37%), building blocks (ca. 10%), and neutrals (ca. 37%), whereas Fraction 3 contained a high proportion of neutrals (62%). In the fouling experiments, the distinct DOM characteristics in each fraction resulted in different declining flux behaviors, ranked as: Fraction 2 > Fraction 1 > Fraction 3.
Collapse
Affiliation(s)
- Sanghun Park
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Taewoo Nam
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Jeongyeop You
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Eun-Sik Kim
- Department of Environmental System Engineering, Chonnam National University, Yeosu, Jeonnam, 59626, Republic of Korea
| | - Ilhwan Choi
- Water Analysis and Research Center, K-water, 34350 Sintanjin-ro, Daedeok-gu, Daejeon, Republic of Korea
| | - Jongkwan Park
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea.
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
10
|
Ma C, Yuan P, Jia S, Liu Y, Zhang X, Hou S, Zhang H, He Z. Catalytic micro-ozonation by Fe 3O 4 nanoparticles @ cow-dung ash for advanced treatment of biologically pre-treated leachate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 83:23-32. [PMID: 30514468 DOI: 10.1016/j.wasman.2018.10.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 05/28/2023]
Abstract
In this work, the biologically pre-treated leachate was subjected to catalytic micro-ozonation using cow-dung ash composites loaded with Fe3O4 nanoparticles (nano-Fe3O4@CDA) as the catalyst. The optimal conditions used were nano-Fe3O4@CDA dosage of 0.8 g/L, input ozone of 3.0 g/L, and reaction time of 120 min. This environment yielded the following results: The COD and color number (CN) removal reached 53% and 89%, respectively, and the BOD5/COD increased from 0.05 to 0.32. The catalytic micro-ozonation partially degraded the refractory substances into intermediates with lower molecular weight. The percentage of phenolic compounds decreased sharply from 28.08% to 8.56%, largely due to the opening of the ring as well as to the formation of organic intermediates with a low molecular weight. Based on the results culled from the electron paramagnetic resonance (EPR), it is evident that the nano-Fe3O4@CDA catalyst can accelerate in order to generate OH. This was the main mechanism involved in its excellent ability to degrade refractory pollutants. These results demonstrated the potential use of nano-Fe3O4@CDA as a catalyst in the catalytic micro-ozonation process.
Collapse
Affiliation(s)
- Cui Ma
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Pengfei Yuan
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Shengyong Jia
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yaqi Liu
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Xingjun Zhang
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Sen Hou
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Hanxu Zhang
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengguang He
- School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Lee D, Kwon M, Ahn Y, Jung Y, Nam SN, Choi IH, Kang JW. Characteristics of intracellular algogenic organic matter and its reactivity with hydroxyl radicals. WATER RESEARCH 2018; 144:13-25. [PMID: 30005177 DOI: 10.1016/j.watres.2018.06.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to investigate the reactivity of intracellular algogenic organic matter (IOM) with hydroxyl radicals (·OH), a key reaction species in advanced oxidation processes. IOM was extracted from two green algae, Chlamydomonas reinhardtii and Scenedesmus sp., and two blue-green algae, Anabaena sp. and Microcystis aeruginosa using a freeze-thaw method. The second-order rate constants of the extracted IOM with ·OH were determined as 7.95 × 108 MC-1 s-1 (Chlamydomonas reinhardtii), 6.71 × 108 MC-1 s-1 (Scenedesmus sp.), 4.02 × 108 MC-1 s-1 (Anabaena sp.), and 4.45 × 108 MC-1 s-1 (Microcystis aeruginosa). These rate constants were significantly higher than values reported for dissolved organic matter in various water sources. This implies that IOM formation during algal bloom season could change the ·OH water matrix demand and adversely affect the performance of advanced oxidation processes. To investigate the physical and chemical composition characteristics of IOM and their relationship to the rate constants determined for the reaction between IOM and ·OH, liquid chromatography-organic carbon detection (LC-OCD) and fluorescence excitation-emission matrix & parallel factor analysis (FEEM-PARAFAC) were used. The IOM mainly consisted of low molecular weight (LMW) matter and protein-related compounds, as evidenced LMW neutrals (38-65%), biopolymers (7-19%), and tryptophan-like compounds (74-94%). Based on the composition characteristics of IOM, it was concluded that the molecular weight and the presence of nitrogen-containing compounds are influential parameters for determining the reactivity of IOM with ·OH.
Collapse
Affiliation(s)
- Doorae Lee
- Department of Environmental Engineering (YIEST), Yonsei University, 234 Maeji, Heungup, Wonju 220-710, Republic of Korea
| | - Minhwan Kwon
- Department of Environmental Engineering (YIEST), Yonsei University, 234 Maeji, Heungup, Wonju 220-710, Republic of Korea
| | - Yongtae Ahn
- Department of Environmental Engineering (YIEST), Yonsei University, 234 Maeji, Heungup, Wonju 220-710, Republic of Korea
| | - Youmi Jung
- Department of Environmental Engineering (YIEST), Yonsei University, 234 Maeji, Heungup, Wonju 220-710, Republic of Korea
| | - Seong-Nam Nam
- Department of Civil and Environmental Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Il-Hwan Choi
- Water Analysis and Research Center, Korea Water Resources Corporation, 200 Sintanjin-ro, Daedeok-gu, Daejeon, 34350, Republic of Korea
| | - Joon-Wun Kang
- Department of Environmental Engineering (YIEST), Yonsei University, 234 Maeji, Heungup, Wonju 220-710, Republic of Korea.
| |
Collapse
|
12
|
Yu M, He X, Liu J, Wang Y, Xi B, Li D, Zhang H, Yang C. Characterization of isolated fractions of dissolved organic matter derived from municipal solid waste compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:275-283. [PMID: 29665545 DOI: 10.1016/j.scitotenv.2018.04.140] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Understanding the heterogeneous evolution characteristics of dissolved organic matter fractions derived from compost is crucial to exploring the composting biodegradation process and the possible applications of compost products. Herein, two-dimensional correlation spectroscopy integrated with reversed-phase high performance liquid chromatography and size exclusion chromatography were utilized to obtain the molecular weight (MW) and polarity evolution characteristics of humic acid (HA), fulvic acid (FA), and the hydrophilic (HyI) fractions during composting. The high-MW humic substances and building blocks in the HA fraction degraded faster during composting than polymers, proteins, and organic colloids. Similarly, the low MW acid FA factions transformed faster than the low weight neutral fractions, followed by building blocks, and finally polymers, proteins, and organic colloids. The evolutions of HyI fractions during composting occurred first for building blocks, followed by low MW acids, and finally low weight neutrals. With the progress of composting, the hydrophobic properties of the HA and FA fractions were enhanced. The degradation/humification process of the hydrophilic and transphilic components was faster than that of the hydrophobic component. Compared with the FA and HyI fractions, the HA fraction exhibited a higher MW and increased hydrophobicity.
Collapse
Affiliation(s)
- Minda Yu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiaomei Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuefeng Wang
- Hebei Provincial Academy of Environmental Sciences, Shijiazhuang 050030, China
| | - Beidou Xi
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Dan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chao Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
13
|
Retelletti Brogi S, Ha SY, Kim K, Derrien M, Lee YK, Hur J. Optical and molecular characterization of dissolved organic matter (DOM) in the Arctic ice core and the underlying seawater (Cambridge Bay, Canada): Implication for increased autochthonous DOM during ice melting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:802-811. [PMID: 29426205 DOI: 10.1016/j.scitotenv.2018.01.251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
Sea ice contains a large amount of dissolved organic matter (DOM), which can be released into the ocean once it melts. In this study, Arctic sea ice DOM was characterized for its optical (fluorescence) properties as well as the molecular sizes and composition via size exclusion chromatography and Fourier transformation ion cyclotron resonance mass spectrometry (FT-ICR MS). Ice cores were collected along with the underlying seawater samples in Cambridge Bay, an Arctic area experiencing seasonal ice formation. The ice core samples revealed a marked enrichment of dissolved organic carbon (DOC) compared to the seawater counterparts (up to 6.2 times greater). The accumulation can be attributed to in situ production by the autotrophic and heterotrophic communities. Fluorescence excitation emission matrices (EEMs) elaborated with parallel factor analysis (PARAFAC) evidenced the prevalence of protein-like substances in the ice cores, which likely results from in situ production followed by accumulation in the ice. Size exclusion chromatography further revealed the in situ production of all DOM size fractions, with the exception of the humic substance fraction. The majority of DOM in both the ice and seawater consists of low molecular weight compounds (<350 Da) probably derived by the microbial degradation/transformation of freshly produced DOM. Molecular characterization also supported the in situ production of DOM and highlighted the marked difference in molecular composition between sea ice and seawater. This study provides new insights into the possible role of sea ice DOM in the Arctic carbon cycle under climate change.
Collapse
Affiliation(s)
| | - Sun-Yong Ha
- Division of Polar Ocean Science Research, Korea Polar Research Institute (KOPRI), Incheon 21990, South Korea
| | - Kwanwoo Kim
- Department of Oceanography, Pusan National University, 30, Jangjeon-dong, Geumjeong-gu, Busan 46241, South Korea
| | - Morgane Derrien
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Yun Kyung Lee
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
14
|
Stylianou SK, Katsoyiannis IA, Ernst M, Zouboulis AI. Impact of O 3 or O 3/H 2O 2 treatment via a membrane contacting system on the composition and characteristics of the natural organic matter of surface waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12246-12255. [PMID: 28656574 DOI: 10.1007/s11356-017-9554-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
The present study aims to evaluate changes in the structure-composition of natural organic matter (NOM) that occur after the application of bubbleless ozonation or peroxone treatment of surface waters. The oxidation experiments (using 0.5-2 mg O3/mg DOC, or 2:1 O3:H2O2 molar ratio) were performed in a continuous mode, using a tubular ceramic membrane contactor. Fluorescence spectroscopy (emission-excitation matrix) and liquid chromatography-organic carbon detection (LC-OCD) were mainly used for the detailed DOC characterization. In brief, the application of single ozonation resulted to high reduction of humic-like peak fluorescence intensities (50-85%) and also to the formation of two new peaks in the region of protein-like components. The co-addition of H2O2 did not present the anticipated increase in the reduction of fluorescence intensity; however, it resulted to the further oxidation of protein-like fluorophores. LC-OCD measurements confirmed the decrease of average molecular weight of NOM during ozone treatment, due to the gradual degradation of biopolymers (14-23%) and humic substances (11-17%) towards building blocks and low molecular weight (LMW) neutrals. Advanced oxidation process (AOP) treatment by the mixture O3/H2O2 resulted in the simultaneous decrease of building blocks and LMW neutral concentrations. Conventional batch ozonation and AOP experiments were conducted using ozone-saturated solutions to investigate the effect of different contacting patterns. The results revealed that the different reaction pathways followed during bubbleless and conventional batch experiments may also influence the formation of NOM oxidation intermediates.
Collapse
Affiliation(s)
- Stylianos K Stylianou
- Department of Chemistry, Laboratory of Chemical and Environmental Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis A Katsoyiannis
- Department of Chemistry, Laboratory of Chemical and Environmental Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mathias Ernst
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - Anastasios I Zouboulis
- Department of Chemistry, Laboratory of Chemical and Environmental Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
15
|
Wang WL, Zhang X, Wu QY, Du Y, Hu HY. Degradation of natural organic matter by UV/chlorine oxidation: Molecular decomposition, formation of oxidation byproducts and cytotoxicity. WATER RESEARCH 2017; 124:251-258. [PMID: 28763641 DOI: 10.1016/j.watres.2017.07.029] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/12/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
The degradation of natural organic matters (NOMs) by the combination of UV and chlorine (UV/chlorine) was investigated in this study. UV/chlorine oxidation can effectively degrade NOMs, with the degradation of chromophores (∼80%) and fluorophores (76.4-80.8%) being more efficient than that of DOC (15.1-18.6%). This effect was attributed to the chromophores and fluorophores (double bonds, aromatic groups and phenolic groups) being preferentially degraded by UV/chlorine oxidation, particularly reactive groups with high electron donating capacity. Radical species •OH and •Cl were generated during UV/chlorine oxidation, with the contribution of •OH 1.4 times as high as that of •Cl. The degradation kinetics of different molecular weight (MW) fractions suggests that UV/chlorine oxidation degrades high MW fractions into low MW fractions, with the degradation rates of high MW fractions (>3000 Da) 4.5 times of those of medium MW fractions (1000-3000 Da). In comparison with chlorination alone, UV/chlorine oxidation did not increase the formation (30 min) and formation potential (24 h) of trihalomethanes, but instead promoted the formation and formation potential of haloacetic acids and chloral hydrate. Adsorbable organic halogen (AOX) formed from UV/chlorine oxidation of NOM were 0.8 times higher than those formed from chlorination. Cytotoxicity studies indicated that the cytotoxicity of NOM increased after both chlorination and UV/chlorine oxidation, which may be due to the formation of AOX.
Collapse
Affiliation(s)
- Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xue Zhang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Ye Du
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| |
Collapse
|
16
|
Song L, Zhu B, Gray S, Duke M, Muthukumaran S. Performance of Hybrid Photocatalytic-Ceramic Membrane System for the Treatment of Secondary Effluent. MEMBRANES 2017; 7:E20. [PMID: 28350320 PMCID: PMC5489854 DOI: 10.3390/membranes7020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/15/2017] [Accepted: 03/15/2017] [Indexed: 11/30/2022]
Abstract
Evaluation of an advanced wastewater treatment system that combines photocatalysis with ceramic membrane filtration for the treatment of secondary effluent was undertaken. The results showed that, after photocatalysis and ceramic membrane filtration, the removal of dissolved organic carbon and UV254 was 60% and 54%, respectively, at a concentration of 4 g/L of TiO₂. Dissolved organic matter (DOM) present in the secondary effluent was characterised with a liquid chromatography-organic carbon detector (LC-OCD) technique. The results showed low removal of humics, building blocks, the other oxidation by-products and no removal of biopolymers after TiO₂/UV photocatalytic treatment. This suggested that the radical non-selective oxidation mechanisms of TiO₂/UV process resulted in secondary effluent in which all of the DOM fractions were present. However, the hybrid system was effective for removing biopolymers with the exception of low molecular weight (LMW) compounds acids, which accumulated from the beginning of the reaction. In addition, monitoring of the DOM fractions with LC-OCD analysis demonstrated that the reduction of the effluent aromaticity was not firmly correlated with the removal of humic substances for the combined processes.
Collapse
Affiliation(s)
- Lili Song
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia.
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Bo Zhu
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia.
| | - Stephen Gray
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia.
| | - Mikel Duke
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia.
| | - Shobha Muthukumaran
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia.
| |
Collapse
|
17
|
Zha XS, Ma LM, Wu J, Liu Y. The removal of organic precursors of DBPs during three advanced water treatment processes including ultrafiltration, biofiltration, and ozonation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16641-16652. [PMID: 27180835 DOI: 10.1007/s11356-016-6643-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
The removal efficiency of organic matter, the formation potential of trihalomethanes (THMFP), and the formation potential of haloacetic acids (HAAFP) in each unit of three advanced treatment processes were investigated in this paper. The molecular weight distribution and the components of organic matter in water samples were also determined to study the transformation of organic matter during these advanced treatments. Low-molecular-weight matter was the predominant fraction in raw water, and it could not be removed effectively by ultrafiltration and biofiltration. The dominant species of disinfection by-product formation potential (DBPFP) in raw water were chloroform and monochloroacetic acid (MCAA), with average concentrations of 107.3 and 125.9 μg/L, respectively. However, the formation potential of chloroform and MCAA decreased to 36.2 and 11.5 μg/L after ultrafiltration. Similarly, biological pretreatment obtained high removal efficiency for DBPFP. The total THMFP decreased from 173.8 to 81.8 μg/L, and the total HAAFP decreased from 211.9 to 84.2 μg/L. Separate ozonation had an adverse effect on DBPFP, especially for chlorinated HAAFP. Numerous low-molecular-weight compounds such as aldehydes, ketones, and alcohols were generated during the ozonation, which have been proven to be important precursors of HAAs. However, the ozonation/biological activated carbon (BAC) combined process had a better removal efficiency for DBPFP. The total DBPFP decreased remarkably from 338.7 to 113.3 μg/L after the O3/BAC process, far below the separated BAC of process B (189.1 μg/L).
Collapse
Affiliation(s)
- Xiao-Song Zha
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Lu-Ming Ma
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jin Wu
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yan Liu
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
18
|
Huang H, Sawade E, Cook D, Chow CWK, Drikas M, Jin B. High-performance size exclusion chromatography with a multi-wavelength absorbance detector study on dissolved organic matter characterisation along a water distribution system. J Environ Sci (China) 2016; 44:235-243. [PMID: 27266320 DOI: 10.1016/j.jes.2015.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 06/06/2023]
Abstract
This study examined the associations between dissolved organic matter (DOM) characteristics and potential nitrification occurrence in the presence of chloramine along a drinking water distribution system. High-performance size exclusion chromatography (HPSEC) coupled with a multiple wavelength detector (200-280nm) was employed to characterise DOM by molecular weight distribution, bacterial activity was analysed using flow cytometry, and a package of simple analytical tools, such as dissolved organic carbon, absorbance at 254nm, nitrate, nitrite, ammonia and total disinfectant residual were also applied and their applicability to indicate water quality changes in distribution systems were also evaluated. Results showed that multi-wavelength HPSEC analysis was useful to provide information about DOM character while changes in molecule weight profiles at wavelengths less than 230nm were also able to be related to other water quality parameters. Correct selection of the UV wavelengths can be an important factor for providing appropriate indicators associated with different DOM compositions. DOM molecular weight in the range of 0.2-0.5kDa measured at 210nm correlated positively with oxidised nitrogen concentration (r=0.99), and the concentrations of active bacterial cells in the distribution system (r=0.85). Our study also showed that the changes of DOM character and bacterial cells were significant in those sampling points that had decreases in total disinfectant residual. HPSEC-UV measured at 210nm and flow cytometry can detect the changes of low molecular weight of DOM and bacterial levels, respectively, when nitrification occurred within the chloraminated distribution system.
Collapse
Affiliation(s)
- Huiping Huang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Emma Sawade
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5100, Australia
| | - David Cook
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5100, Australia
| | - Christopher W K Chow
- School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5100, Australia.
| | - Mary Drikas
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5100, Australia
| | - Bo Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
19
|
Huang H, Chow CWK, Jin B. Characterisation of dissolved organic matter in stormwater using high-performance size exclusion chromatography. J Environ Sci (China) 2016; 42:236-245. [PMID: 27090716 DOI: 10.1016/j.jes.2015.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 06/05/2023]
Abstract
Understanding the complexity of dissolved organic matter (DOM) in stormwater has drawn a lot of interest, since DOM from stormwater causes not only environmental impacts, but also worsens downstream aquatic quality associated with water supply and treatability. This study introduced and employed high-performance size exclusion chromatography (HPSEC) coupled with an ultraviolet-visible (UV-vis) diode array detector to assess changes in stormwater-associated DOM characteristics. Stormwater DOM was also analysed in relation to storm event characteristics, water quality and spectroscopic analysis. Statistical tools were used to determine the correlations within DOM and water quality measurements. Results showed that dissolved organic carbon (DOC) and UV absorbance at 254 nm (UV254) as conventional DOM parameters were found to be correlated well to the changes in stormwater quality during each of the three storm events studied. Both detector wavelengths (210 and 254 nm) and their ratio (A210/A254) were found to provide additional information on the physiochemical properties of stormwater-associated DOM. This study indicated that A210/A254 is an important parameter which could be used to estimate the DOM proportions of functional groups and conjugated carbon species. This study provided also an understanding of stormwater quality constituents through assessing variability and sensitivity for various parameters, and the additional information of rainfall characteristics on runoff quality data for a better understanding of parameter correlations and influences.
Collapse
Affiliation(s)
- Huiping Huang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Christopher W K Chow
- School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5100, Australia.
| | - Bo Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
20
|
Zheng Q, Yang X, Deng W, Le XC, Li XF. Characterization of natural organic matter in water for optimizing water treatment and minimizing disinfection by-product formation. J Environ Sci (China) 2016; 42:1-5. [PMID: 27090688 DOI: 10.1016/j.jes.2016.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Xiaoqiu Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Wenchao Deng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
21
|
He W, Choi I, Lee JJ, Hur J. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:525-534. [PMID: 26674681 DOI: 10.1016/j.scitotenv.2015.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/17/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
In this study, temporal and spatial variations in five defined molecular size fractions of dissolved organic matter (DOM) were examined for a well preserved wetland (Upo Wetland) and its surrounding areas, and the influencing factors were explored with many biotic and abioic parameters. For each DOM sample, the five size fractions were determined by size-exclusion chromatography coupled with organic carbon detector (SEC-OCD). For 2-year long monthly monitoring, bio-polymers (BP), humic substances (HS), building blocks (BB), low molecular-weight (LMW) neutrals, and LMW acids displayed the median values of 264, 1884, 1070, 1090, and 11 μg-CL(-1), respectively, accounting for 6.2%, 41.7%, 24.5%, 26.4%, and 0.4% of dissolved organic carbon (DOC). The dominant presence of HS indicated that terrestrial input played important roles in DOM composition of the freshwater ecosystem, which contrasted with coastal wetlands in other reports. Both seasonal and periodic patterns in the variations were found only for HS and BB among the size fractions. It was also notable that the sources of HS were seasonally shifted from aquagenic origin in winter to pedogenic origin in summer. The correlations among the size fractions revealed that BB and LMW neutrals might be degradation products from HS and humic-like substances (HS+BB), respectively, while LMW acids, from LMW neutrals. Principle component analysis revealed that the humic-like substances and the aromaticity of DOM were associated with temperature, chlorophyll a, phosphorous, and rainfall, whereas the other fractions and the molecular weight of HS were primarily affected by solar irradiation. Significant correlations between DOM composition and some biotic factors further suggested that DOM may even affect the biological communities, which provides an insight into the potential coupling effects of biotic and abiotic factors on DOM molecular composition in freshwater wetlands.
Collapse
Affiliation(s)
- Wei He
- Department of Environment and Energy, Sejong University, Seoul 143-747, South Korea
| | - Ilhwan Choi
- Water Analysis and Research Center, K-water, 560 Sintanjin-ro, Daedeok-gu, Daejeon 307-711, South Korea
| | - Jung-Joon Lee
- Department of Biological Education, Daegu University, Gyungbuk 712-714, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 143-747, South Korea.
| |
Collapse
|
22
|
Chen M, He W, Choi I, Hur J. Tracking the monthly changes of dissolved organic matter composition in a newly constructed reservoir and its tributaries during the initial impounding period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1274-1283. [PMID: 26358212 DOI: 10.1007/s11356-015-5350-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Understanding the roles of inland reservoirs becomes increasingly important with respect to global carbon cycling as well as water resource management due to the unprecedented demand for construction in recent decades. In this study, the dissolved organic matter (DOM) quantity and quality in a newly constructed dam reservoir and its tributaries were monitored monthly during the initial impounding period (July to November 2014) using a size exclusion chromatography (SEC) with online organic carbon detector (OCD). The highest values were observed in the month of August with the highest precipitation for the bulk dissolved organic carbon (DOC), specific UV absorbance (SUVA), and most of the assigned size fractions (except for biopolymers) in the tributaries, indicating that allochthonous sources of DOM were dominant in the feeding stream waters of the reservoir. The bulk DOC and high molecular weight humic substance fraction (∼1 kDa) were generally co-varied with the monthly precipitation in the tributaries, while building blocks (350-500 Da), and low molecular weight (LMW) acids and neutrals showed different trends. In a dam site, the smaller molecular fractions became more abundant during the dry season (September to November), presumably due to the in-reservoir processes such as photo- and bio-degradation. Our results also revealed that storms mobilized a large amount of highly aromatic soil-derived DOM to the reservoir. A depth profile at the dam site showed the water is well mixed up to a depth of ∼20 m. The SEC-OCD data coupled with non-metric multidimensional scaling provided a clear visualization of the spatiotemporal variations in DOM composition, which shed new light on the DOM composition formed in a newly constructed dam reservoir and also on the strategies for future water treatment options.
Collapse
Affiliation(s)
- Meilian Chen
- Department of Environment and Energy, Sejong University, Seoul, 143-747, South Korea
| | - Wei He
- Department of Environment and Energy, Sejong University, Seoul, 143-747, South Korea
| | - Ilhwan Choi
- Water Analysis and Research Center, K-water, 560 Sintanjin-ro, Daedeok-gu, Daejeon, 307-711, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 143-747, South Korea.
| |
Collapse
|
23
|
Sandron S, Rojas A, Wilson R, Davies NW, Haddad PR, Shellie RA, Nesterenko PN, Kelleher BP, Paull B. Chromatographic methods for the isolation, separation and characterisation of dissolved organic matter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:1531-1567. [PMID: 26290053 DOI: 10.1039/c5em00223k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This review presents an overview of the separation techniques applied to the complex challenge of dissolved organic matter characterisation. The review discusses methods for isolation of dissolved organic matter from natural waters, and the range of separation techniques used to further fractionate this complex material. The review covers both liquid and gas chromatographic techniques, in their various modes, and electrophoretic based approaches. For each, the challenges that the separation and fractionation of such an immensely complex sample poses is critically reviewed.
Collapse
Affiliation(s)
- Sara Sandron
- Australian Centre for Research on Separation Sciences (ACROSS), University of Tasmania, Private Bag 75, Hobart, Tasmania, Australia 7001.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li W, Xu Z, Wu Q, Li Y, Shuang C, Li A. Characterization of fluorescent-dissolved organic matter and identification of specific fluorophores in textile effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4183-4189. [PMID: 25277708 DOI: 10.1007/s11356-014-3201-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
This study focused on the characterization of fluorescent-dissolved organic matter and identification of specific fluorophores in textile effluents. Samples from different textile wastewater treatment plants were characterized by high-performance liquid chromatography and size exclusion chromatography as well as fluorescence excitation-emission matrix spectra. Despite the highly heterogeneous textile effluents, the fluorescent components and their physicochemical properties were found relatively invariable, which is beneficial for the combination of biological and physicochemical treatment processes. The humic-like substance with triple-excitation peaks (excitation (Ex) 250, 310, 365/emission (Em) 460 nm) presented as the specific fluorescence indicator in textile effluents. It was also the major contributor to UV absorbance at 254 nm and resulted in the brown color of biologically treated textile effluents. By spectral comparison, the specific fluorophore in textile effluents could be attributed to the intermediate structure of azo dyes 1-amino-2-naphthol, which was transferred into the special humic-like substances during biological treatment.
Collapse
Affiliation(s)
- Wentao Li
- State Key Laboratory of Pollution Control and Resources Reuse, Collaborative Innovation Center for Advanced Water Pollution Control Technology and Equipment, School of the Environment, Nanjing University, Nanjing, 210023, China
| | | | | | | | | | | |
Collapse
|
25
|
Colour formation from pre and post-coagulation treatment of Pinus radiata sulfite pulp mill wastewater using nutrient limited aerated stabilisation basins. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Audenaert WTM, Vandierendonck D, Van Hulle SWH, Nopens I. Comparison of ozone and HO· induced conversion of effluent organic matter (EfOM) using ozonation and UV/H2O2 treatment. WATER RESEARCH 2013; 47:2387-2398. [PMID: 23466219 DOI: 10.1016/j.watres.2013.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/10/2013] [Accepted: 02/03/2013] [Indexed: 06/01/2023]
Abstract
This study experimentally examined the impact of oxidation on the properties of effluent organic matter (EfOM) using two different oxidation techniques: ozonation and UV/H2O2 treatment. Multiple surrogates for EfOM related to its spectral properties, molecular size, concentration, polarity and biodegradability were used to study the oxidant induced conversions. Spectral calculations as differential absorbance spectra (DAS) and absorbance slope index (ASI) were applied for the first time to describe EfOM oxidation and proved to be useful to unravel differences in working mechanism between ozone and hydroxyl radical (HO) induced transformation of EfOM. Effluent ozonation inherently led to significant HO production as a result of electron transfers between ozone and electron rich moieties of EfOM. HO production increased as function of ozone dose and was strongly correlated to UV absorption at 254 nm (UV254). During the UV moderated process, pseudo steady-state behaviour of the HO concentration was observed. Ozone decomposition was extremely sensitive to EfOM reactivity. Most likely, the degree of dissociation of EfOM controlled its reactivity towards ozone. The pH effect was quantified by calculating the pseudo-first order decay constant for ozone as function of reaction time and pH. Treatment with both processes led to more oxygen rich, less hydrophobic and more biodegradable EfOM.
Collapse
Affiliation(s)
- W T M Audenaert
- BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | | | | | | |
Collapse
|
27
|
Chevremont AC, Boudenne JL, Coulomb B, Farnet AM. Impact of watering with UV-LED-treated wastewater on microbial and physico-chemical parameters of soil. WATER RESEARCH 2013; 47:1971-82. [PMID: 23399076 DOI: 10.1016/j.watres.2013.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 05/12/2023]
Abstract
Advanced oxidation processes based on UV radiations have been shown to be a promising wastewater disinfection technology. The UV-LED system involves innovative materials and could be an advantageous alternative to mercury-vapor lamps. The use of the UV-LED system results in good water quality meeting the legislative requirements relating to wastewater reuse for irrigation. The aim of this study was to investigate the impact of watering with UV-LED treated wastewaters (UV-LED WW) on soil parameters. Solid-state ¹³C NMR shows that watering with UV-LED WW do not change the chemical composition of soil organic matter compared to soil watered with potable water. Regarding microbiological parameters, laccase, cellulase, protease and urease activities increase in soils watered with UV-LED WW which means that organic matter brought by the effluent is actively degraded by soil microorganisms. The functional diversity of soil microorganisms is not affected by watering with UV-LED WW when it is altered by 4 and 8 months of watering with wastewater (WW). After 12 months, functional diversity is similar regardless of the water used for watering. The persistence of faecal indicator bacteria (coliform and enterococci) was also determined and watering with UV-LED WW does not increase their number nor their diversity unlike soils irrigated with activated sludge wastewater. The study of watering-soil microcosms with UV-LED WW indicates that this system seems to be a promising alternative to the UV-lamp-treated wastewaters.
Collapse
Affiliation(s)
- A-C Chevremont
- Aix-Marseille Université, CNRS, FR ECCOREV, Laboratoire de Chimie de l'Environnement (FRE3416), Equipe Développements Métrologiques et Chimie des Milieux, 13331 Marseille cedex 3, France.
| | | | | | | |
Collapse
|
28
|
Mori M, Sugita T, Mase A, Funatogawa T, Kikuchi M, Aizawa K, Kato S, Saito Y, Ito T, Itabashi H. Photodecomposition of humic acid and natural organic matter in swamp water using a TiO(2)-coated ceramic foam filter: potential for the formation of disinfection byproducts. CHEMOSPHERE 2013; 90:1359-1365. [PMID: 22921646 DOI: 10.1016/j.chemosphere.2012.07.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
This paper reports on the photodecomposition of aqueous humic acid (HA) by a TiO(2)-coated ceramic foam filter (TCF) reactor and on the potential for the formation of disinfection byproducts (DBPs) upon chlorination of the photocatalytically treated solutions. This photocatalytic reactor can also be applied to the removal of natural organic matter (NOM) in swamp waters. The proposed photocatalytic reaction system was operated as per standardized methodologies. First, the ability of the TCF to decompose HA (a representative compound of NOM) was evaluated from the changes in the total organic carbon (TOC) and UV(254) with the reaction time. Remarkably, TOC removal and UV(254) values ranging from 44% to 61% and from 60% to 83%, respectively, were achieved. The potential for the formation of DBPs (total trihalomethane and total haloacetic acid) by chlorination of the phototreated solution was strongly dependent on the TOC removal and UV(254) values in the solution. The degree of photodecomposition of NOMs in the swamp water samples and the DBP formation potential showed similar trends as in the case of the standard solutions containing HA. The method used in this study could be effectively used to evaluate the efficiency of TCF for reducing HA and NOM, while suppressing the formation of DBP products.
Collapse
Affiliation(s)
- Masanobu Mori
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Akaighe N, Depner SW, Banerjee S, Sharma VK, Sohn M. The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 441:277-289. [PMID: 23164532 DOI: 10.1016/j.scitotenv.2012.09.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/13/2012] [Accepted: 09/23/2012] [Indexed: 06/01/2023]
Abstract
The formation and characterization of AgNPs (silver nanoparticles) formed from the reduction of Ag⁺ by SRNOM (Suwannee River natural organic matter) is reported. The images of SRNOM-formed AgNPs and the selected area electron diffraction (SAED) were captured by high resolution transmission electron microscopy (HRTEM). The colloidal and chemical stability of SRNOM- and SRHA (Suwannee River humic acid)-formed AgNPs in different ionic strength solutions of NaCl, KCl, CaCl₂ and MgCl₂ was investigated in an effort to evaluate the key fate and transport processes of these nanoparticles in natural aqueous environments. The aggregation state, stability and sedimentation rate of the AgNPs were monitored by Dynamic Light Scattering (DLS), zeta potential, and UV-vis measurements. The results indicate that both types of AgNPs are very unstable in high ionic strength solutions. Interestingly, the nanoparticles appeared more unstable in divalent cation solutions than in monovalent cation solutions at similar concentrations. Furthermore, the presence of SRNOM and SRHA contributed to the nanoparticle instability at high ionic strength in divalent metallic cation solutions, most likely due to intermolecular bridging with the organic matter. The results clearly suggest that changes in solution chemistry greatly affect nanoparticle long term stability and transport in natural aqueous environments.
Collapse
Affiliation(s)
- Nelson Akaighe
- Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA
| | | | | | | | | |
Collapse
|
30
|
Carter HT, Tipping E, Koprivnjak JF, Miller MP, Cookson B, Hamilton-Taylor J. Freshwater DOM quantity and quality from a two-component model of UV absorbance. WATER RESEARCH 2012; 46:4532-4542. [PMID: 22698253 DOI: 10.1016/j.watres.2012.05.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOCL⁻¹). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r² = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).
Collapse
Affiliation(s)
- Heather T Carter
- Centre for Ecology and Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Yan M, Korshin G, Wang D, Cai Z. Characterization of dissolved organic matter using high-performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) with a multiple wavelength absorbance detector. CHEMOSPHERE 2012; 87:879-885. [PMID: 22369846 DOI: 10.1016/j.chemosphere.2012.01.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 05/31/2023]
Abstract
High-performance liquid chromatography-size exclusion chromatography (HPLC-SEC) coupled with a multiple wavelength absorbance detector (200-445 nm) was used in this study to investigate the apparent molecular weight (AMW) distributions of dissolved organic matter (DOM). Standard DOM, namely humic acid, fulvic acid and hydrophilic acid, from the Suwannee River were tested to ascertain the performance and sensitivity of the method. In addition to four compounds groups: humic substances (Peak 1, AMW 16 kD), fulvic acids (Peak 2, AMW 11 kD), low AMW acids (Peak 3, AMW 5 kD), and low AMW neutral and amphiphilic molecules, proteins and their amino acid building blocks (Peak 4, AMW 3 kD), an new group that appears to include low AMW, 6-10 kD, humic substances was found based on investigating the spectra at various elution times. The spectroscopic parameter S(>365) (slope at wavelengths >365 nm) was determined to be a good predictor of the AMW of the DOM. The detector wavelength played an important role in evaluating the AMW distribution. For some fractions, such as the humic and low AMW non-aromatic substances, the error in measurement was ± 30% as determined by two-dimensional chromatograms detected at an artificially selected wavelength. HPLC-SEC with multiple wavelength absorbance detection was found to be a useful technique for DOM characterization. It characterized the AMW distributions of DOM more accurately and provided additional, potentially important information concerning the properties of DOM with varying AMWs.
Collapse
Affiliation(s)
- Mingquan Yan
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | | | | | | |
Collapse
|
32
|
Hur J, Jung KY, Schlautman MA. Altering the characteristics of a leaf litter-derived humic substance by adsorptive fractionation versus simulated solar irradiation. WATER RESEARCH 2011; 45:6217-6226. [PMID: 21962456 DOI: 10.1016/j.watres.2011.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 09/05/2011] [Accepted: 09/10/2011] [Indexed: 05/31/2023]
Abstract
Changes in the characteristics of a leaf litter-derived humic substance (LLHS) that resulted from its adsorption onto kaolinite or exposure to simulated solar irradiation were tracked using selected spectroscopic descriptors, apparent weight-average molecular weight (MW(w)) and pyrene binding. Heterogeneity within the original bulk LLHS was confirmed by a range of different characteristics obtained from ultrafiltration-based size fractions. In general, trends of some changing LLHS characteristics were similar for the adsorption and irradiation processes when tracked against percent carbon removal. For example, the overall values of specific ultraviolet absorbance (SUVA), MW(w), and humification index (HIX) all decreased with increasing irradiation time and with increasing concentration of mineral adsorbent in the respective experiments, indicating that both processes resulted in less aromatic and smaller-sized LLHS components remaining in solution. In addition, both the adsorption and irradiation experiments resulted in enrichment of the relative distribution of protein-like fluorescence (PLF), implying the PLF-related components had low affinities for phototransformation and mineral surface adsorption. Despite these apparently similar overall trends in LLHS characteristics caused by the adsorption and irradiation processes, closer examination revealed considerable differences in how the two processes altered the original material. Net production of intermediate-sized constituents was observed only with the irradiation experiments. In addition, residual LLHS resulting from the adsorptive fractionation experiments exhibited consistently higher pyrene binding versus the irradiated LLHS despite having comparable MW(w) values. Changes in LLHS characteristics due to adsorption by kaolinite were likely caused by physical mechanisms (primarily hydrophobic interactions between LLHS components and the kaolinite surface) whereas the irradiation-induced changes appear to have been governed by the combined effects of several alteration mechanisms, including the transformation of more condensed aromatic structures to less aromatic constituents, conformational changes resulting from selective photooxidation, and the photochemical disruption of intramolecular charge-transfer interactions.
Collapse
Affiliation(s)
- Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 143-747, South Korea.
| | | | | |
Collapse
|
33
|
Uyguner-Demirel CS, Bekbolet M. Significance of analytical parameters for the understanding of natural organic matter in relation to photocatalytic oxidation. CHEMOSPHERE 2011; 84:1009-1031. [PMID: 21621242 DOI: 10.1016/j.chemosphere.2011.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 05/30/2023]
Abstract
In this review, special interest was devoted to provide information on the surrogate parameters expressing both quality and quantity of organic matter for the understanding of the photocatalytic oxidation of humic substances. Detailed investigation was directed to the application of photocatalysis with reference to source, origin and modeling of organic matter. Evaluation of the literature findings emphasizes that organic matter taken from natural waters are site specific and should be characterized in detail to be comparable to other studies. Taking into account the photocatalytic degradation studies of natural organic matter, humic substances, humic acids and fulvic acids in slurry systems, a procedure could be deduced that depends on the selection of a standard model sample with a representative concentration, selection of a standard photocatalyst and dose (e.g., TiO2 Degussa P-25, 0.25 mg mL(-1)), application of standardized reaction conditions such as light intensity, pH, and temperature. Furthermore, standardized filtration step avoiding organic leaching and selection of the most suitable analytical parameter are the crucial points to be considered. The use of such a protocol could form a basis for the determination of "relative degradation efficiency" of any sample containing natural organic matter, humic substances, humic acids and fulvic acids regardless of dependency on source and origin.
Collapse
Affiliation(s)
- C S Uyguner-Demirel
- Bogazici University, Institute of Environmental Sciences, 34342 Bebek, Istanbul, Turkey.
| | | |
Collapse
|
34
|
Effects of ozonation and biological activated carbon filtration on membrane fouling in ultrafiltration of an activated sludge effluent. J Memb Sci 2010. [DOI: 10.1016/j.memsci.2010.07.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|