1
|
de Carvalho Costa LR, Li L, Haak L, Teel L, Feris LA, Marchand E, Pagilla KR. Optimizing ozone treatment for pathogen removal and disinfection by-product control for potable reuse at pilot-scale. CHEMOSPHERE 2024; 364:143128. [PMID: 39159769 DOI: 10.1016/j.chemosphere.2024.143128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 08/21/2024]
Abstract
Reclaimed water poses environmental and human health risks due to residual organic micropollutants and pathogens. Ozonation of reclaimed water to control pathogens and trace organics is an important step in advanced water treatment systems for potable reuse of reclaimed water. Ensuring efficient pathogen reduction while controlling disinfection byproducts remains a significant challenge to implementing ozonation in reclaimed water reuse applications. This study aimed to investigate ozonation conditions using a plug flow reactor (PFR) to achieve effective pathogen removal/inactivation while minimizing bromate and N-Nitrosodimethylamine (NDMA) formation. The pilot scale study was conducted using three doses of ozone (0.7, 1.0 and 1.4 ozone/total organic carbon (O3/TOC) ratio) to determine the disinfection performance using actual reclaimed water. The disinfection efficiency was assessed by measuring total coliforms, Escherichia coli (E. coli), Pepper Mild Mottle Virus (PMMoV), Tomato Brown Rugose Fruit Virus (ToBRFV) and Norovirus (HNoV). The ozone CT values ranged from 1.60 to 13.62 mg min L-1, resulting in significant reductions in pathogens and indicators. Specifically, ozone treatment led to concentration reductions of 2.46-2.89, 2.03-2.18, 0.46-1.63, 2.23-2.64 and > 4 log for total coliforms, E. coli, PMMoV, ToBRFV, and HNoV, respectively. After ozonation, concentrations of bromate and NDMA increased, reaching levels between 2.8 and 12.0 μg L-1, and 28-40.0 ng L-1, respectively, for average feed water bromide levels of 86.7 ± 1.8 μg L-1 and TOC levels of 7.2 ± 0.1 mg L-1. The increases in DBP formation were pronounced with higher ozone dosages, possibly requiring removal/control in subsequent treatment steps in some potable reuse applications.
Collapse
Affiliation(s)
- Leticia Reggiane de Carvalho Costa
- Department of Chemical Engineering, Federal University of Rio Grande Do Sul, Porto Alegre, 2777 Ramiro Barcelos St, RS, 90035-007, Brazil
| | - Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Lydia Teel
- Truckee Meadows Water Authority, Reno, NV, 89502, USA
| | - Liliana Amaral Feris
- Department of Chemical Engineering, Federal University of Rio Grande Do Sul, Porto Alegre, 2777 Ramiro Barcelos St, RS, 90035-007, Brazil
| | - Eric Marchand
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, MS-0258, Reno, 1664 North Virginia St, NV, 89557, USA.
| |
Collapse
|
2
|
Hinneh KDC, Okabe J, Kosaka K, Echigo S, Itoh S. N-Nitrosodimethylamine formation from anthropogenic nitrogenous compounds during preozonation and post-chloramination with characteristic low treatment dose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45913-45928. [PMID: 38980483 DOI: 10.1007/s11356-024-34236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
One effective option to minimize N-nitrosodimethylamine (NDMA) in finished drinking water is to identify and control its precursors. However, previous works to identify significant precursors use formation potential (FP) tests using high doses to assure the maximum NDMA formation rather than the NDMA formation in finished waters. In this study, we applied characteristic low treatment doses of ozone (O3)-to-dissolved organic carbon (DOC) of target compounds of 0.8 mg/mg and NH2Cl of 2.5 ± 0.2 mg Cl2/L to evaluate the NDMAFP yields of organic compounds bearing N,N-dimethylamine (DMA) and N,N-dimethylhydrazine (DMH) during preozonation and post-chloramination. The results in pH-buffered Milli-Q water showed a significant decrease from ≤ 52% to non-detectable levels in the O3-NDMAFP yields of O3-reactive precursors (i.e., DMH-like compounds) after preozonation and post-chloramination. Similarly, a significant decrease from 0.5 to 12% to nonquantifiable levels was observed for the NH2Cl-NDMAFP yields of NH2Cl-reactive precursors; however, the NH2Cl-NDMAFP yields of N,N-dimethylbenzylamine (DMBzA)-like compounds only decreased from ~ 110 to ≤ 43%, suggesting that these compounds could contribute to NH2Cl-NDMAFPs even after preozonation. The effect of the matrix in sewage-effluent and lake water samples varied and was specific for precursors; for example, the O3-NDMAFP yield of 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene) disemicarbazide (TMDS), an important O3-reactive NDMA precursor, did not significantly decrease when tested in sewage-effluent samples. Based on the previous occurrence concentration of TMDS in sewage samples, we estimated an NDMAFP of ~ 315 ng/L. This estimate exceeds the guidance concentrations of NDMA (3-100 ng/L), highlighting the importance of TMDS and its related compounds for NDMA formation.
Collapse
Affiliation(s)
- Klon D C Hinneh
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Nishikyo, 615-8540, Japan.
- Graduate School of Global Environmental Studies, Kyoto University, Yoshidahonmachi, Kyoto, Sakyo, 606-8501, Japan.
| | - Junki Okabe
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Nishikyo, 615-8540, Japan
| | - Koji Kosaka
- Department of Environmental Health, National Institute of Public Health, Wako, Saitama, 351-0197, Japan
| | - Shinya Echigo
- Graduate School of Global Environmental Studies, Kyoto University, Yoshidahonmachi, Kyoto, Sakyo, 606-8501, Japan
| | - Sadahiko Itoh
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Nishikyo, 615-8540, Japan
| |
Collapse
|
3
|
Zheng X, Zhong T, Zhao H, Huang F, Huang W, Hu L, Xia D, Tian S, Shu D, He C. MnO 2-based capacitive system enhances ozone inactivation of bacteria by disrupting cell membrane. WATER RESEARCH 2024; 256:121608. [PMID: 38657310 DOI: 10.1016/j.watres.2024.121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The application of ozone (O3) disinfection has been hindered by its low solubility in water and the formation of disinfection by-products (DBPs). In this study, capacitive disinfection is applied as a pre-treatment for O3 oxidation, in which manganese dioxide with a rambutan-like hollow spherical structure is used as the electrode to increase the charge density on the electrode surface. When a voltage is applied, the negative-charged microbes are attracted to the electrodes and killed by electrical interactions. The contact between microbes and capacitive electrodes leads to changes in cell permeability and burst of reactive oxygen species, thereby promoting the diffusion of O3 into the cells. After O3 penetrates the cell membrane, it can directly attack the cytoplasmic constituents, accelerating fatal and irreversible damage to pathogens. As a result, the performance of the capacitance-O3 process is proved better than the direct sum of the two individual process efficiencies. The design of capacitance-O3 system is beneficial to reduce the ozone dosage and DBPs with a broader inactivation spectrum, which is conducive to the application of ozone in primary water disinfection.
Collapse
Affiliation(s)
- Xiyuan Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| | - Fan Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenbin Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lingling Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| |
Collapse
|
4
|
Sommaggio LRD, Mazzeo DEC, Malvestiti JA, Dantas RF, Marin-Morales MA. Influence of ozonation and UV/H 2O 2 on the genotoxicity of secondary wastewater effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170883. [PMID: 38354810 DOI: 10.1016/j.scitotenv.2024.170883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The implementation of novel wastewater treatment technologies, including Advanced Oxidation Processes (AOPs) such as ozonation and ultraviolet radiation (UV) combined with hydrogen peroxide (H2O2), can be a promising strategy for enhancing the quality of these effluents. However, during effluent oxidation AOPs may produce toxic compounds that can compromise the water reuse and the receiving water body. Given this possibility, the aim of this study was to evaluate the genotoxic potential of secondary effluents from two different Wastewater Treatment Plants (WWTP) that were subjected to ozonation or UV/H2O2 for periods of 20 (T1) and 40 (T2) minutes. The genotoxic potential was carried out with the Comet assay (for clastogenic damage) and the Micronucleus assay (for clastogenic and aneugenic damage) in HepG2/C3A cell culture (metabolizing cell line). The results of the comet assay revealed a significant increase in tail intensity in the Municipal WWTP (dry period) effluents treated with UV/H2O2 (T1 and T2). MN occurrence was noted across all treatments in both Pilot and Municipal WWTP (dry period) effluents, whereas nuclear buds (NBs) were noted for all Pilot WWTP treatments and UV/H2O2 treatments of Municipal WWTP (dry period). Moreover, the UV/H2O2 (T1) treatment of Municipal WWTP (dry period) exhibited a noteworthy incidence of multiple alterations per cell (MN + NBs). These findings imply that UV/H2O2 treatment demonstrates higher genotoxic potential compared to ozonation. Furthermore, seasonal variations can have an impact on the genotoxicity of the samples. Results of the study emphasize the importance of conducting genotoxicological tests using human cell cultures, such as HepG2/C3A, to assess the final effluent quality from WWTP before its discharge or reuse. This precaution is essential to safeguard the integrity of the receiving water body and, by extension, the biotic components it contains.
Collapse
Affiliation(s)
- Laís Roberta Deroldo Sommaggio
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Dânia Elisa Christofoletti Mazzeo
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Universidade Federal de São Carlos (UFSCar), Araras, SP, Brazil.
| | - Jacqueline Aparecida Malvestiti
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332, Limeira, SP, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, 303, Piracicaba, SP, 13400-970, Brazil
| | - Renato Falcão Dantas
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332, Limeira, SP, Brazil.
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, 13506-900 Rio Claro, SP, Brazil.
| |
Collapse
|
5
|
von Gunten U. Oxidation processes and me. WATER RESEARCH 2024; 253:121148. [PMID: 38387263 DOI: 10.1016/j.watres.2024.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/24/2024]
Abstract
This publication summarizes my journey in the field of chemical oxidation processes for water treatment over the last 30+ years. Initially, the efficiency of the application of chemical oxidants for micropollutant abatement was assessed by the abatement of the target compounds only. This is controlled by reaction kinetics and therefore, second-order rate constant for these reactions are the pre-requisite to assess the efficiency and feasibility of such processes. Due to the tremendous efforts in this area, we currently have a good experimental data base for second-order rate constants for many chemical oxidants, including radicals. Based on this, predictions can be made for compounds without experimental data with Quantitative Structure Activity Relationships with Hammet/Taft constants or energies of highest occupied molecular orbitals from quantum chemical computations. Chemical oxidation in water treatment has to be economically feasible and therefore, the extent of transformation of micropollutants is often limited and mineralization of target compounds cannot be achieved under realistic conditions. The formation of transformation products from the reactions of the target compounds with chemical oxidants is inherent to oxidation processes and the following questions have evolved over the years: Are the formed transformation products biologically less active than the target compounds? Is there a new toxicity associated with transformation products? Are transformation products more biodegradable than the corresponding target compounds? In addition to the positive effects on water quality related to abatement of micropollutants, chemical oxidants react mainly with water matrix components such as the dissolved organic matter (DOM), bromide and iodide. As a matter of fact, the fraction of oxidants consumed by the DOM is typically > 99%, which makes such processes inherently inefficient. The consequences are loss of oxidation capacity and the formation of organic and inorganic disinfection byproducts also involving bromide and iodide, which can be oxidized to reactive bromine and iodine with their ensuing reactions with DOM. Overall, it has turned out in the last three decades, that chemical oxidation processes are complex to understand and to manage. However, the tremendous research efforts have led to a good understanding of the underlying processes and allow a widespread and optimized application of such processes in water treatment practice such as drinking water, municipal and industrial wastewater and water reuse systems.
Collapse
Affiliation(s)
- Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf, Switzerland; ENAC, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale, CH-1000, Lausanne, Switzerland.
| |
Collapse
|
6
|
Zhao B, Park K, Kondo D, Wada H, Nakada N, Nishimura F, Ihara M, Tanaka H. Comparison on removal performance of virus, antibiotic-resistant bacteria, cell-associated and cell-free antibiotic resistance genes, and indicator chemicals by ozone in the filtrated secondary effluent of a sewage treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133347. [PMID: 38150766 DOI: 10.1016/j.jhazmat.2023.133347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Due to the widespread appearance of viruses, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs) in the aquatic environment, more powerful oxidation processes such as ozonation are needed to enhance the efficiency of their inactivation and removal during wastewater treatment. However, information is lacking on the elimination rates of viruses, ARBs, cell-associated ARGs (ca-ARGs), and cell-free ARGs (cf-ARGs) during ozonation. This study examined the kinetics and dose-dependent inactivation of a virus (MS2 coliphage) and an ARB (Ampicillin-resistant [AmpR] E. coli) and the removal of ca- and cf-ARGs (plasmid-encoded blaTEM) by ozonation in a filtered secondary effluent (SE) of a municipal sewage treatment plant (STP). In addition, the ozonation kinetics of carbamazepine (CBZ) and metoprolol (MTP)-ubiquitous organic micropollutants with different removal rate constants-were also investigated in order to monitor their effectiveness as indicators for the abovementioned biological risk factors. Our results showed that ozonation was an efficient way to remove MS2, AmpRE. coli, ARGs, CBZ, and MTP. We investigated the kinetics of their inactivation/removal with respect to exposure in terms of CT (dissolved ozone concentration C and contact time T) value, and found their inactivation/removal constants were in the following order: MS2 (8.66 ×103 M-1s-1) ≈ AmpRE. coli (8.19 ×103 M-1s-1) > cf-ARG (3.95 ×103 M-1s-1) > CBZ (3.21 ×103 M-1s-1) > ca-ARG (2.48×103 M-1s-1) > MTP (8.35 ×102 M-1s-1). In terms of specific ozone dose, > 5-log inactivation of MS2 was observed at > 0.30 mg O3/mg DOC, while > 5-log inactivation of AmpRE. coli was confirmed at 1.61-2.35 mg O3/mg DOC. Moreover, there was almost no removal of ca-ARG when the specific ozone dose was < 0.68 mg O3/mg DOC. However, 2.86-3.42-log removal of ca-ARG was observed at 1.27-1.31 mg O3/mg DOC, while 1.14-1.36-log removal of cf-ARG was confirmed at 3.60-4.30 mg O3/mg DOC. As alternative indicators, > 4-log removal of CBZ was observed at > 1.00 mg O3/mg DOC, while > 2-log removal of MTP was confirmed at > 2.00 mg O3/mg DOC. Thus, it was observed that inactivation of E. coli needs a greater ozone dose to achieve the same level of inactivation of AmpRE. coli; for ARGs, cf-ARG can persist longer than ca-ARG if low dosages of ozone are applied in the filtrated SE, CBZ might act as an indicator with which to monitor the inactivation of viruses and ARBs, while MTP might act as an indicator with which to monitor removal of ARGs. Moreover, cf-ARG cannot be neglected even after ozonation due to the possibility that ca-ARGs can become cf-ARGs during ozonation and be discharged with the final effluent, posing a potential risk to the receiving environment.
Collapse
Affiliation(s)
- Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan.
| | - Kyoungsoo Park
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Daisuke Kondo
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Hiroyuki Wada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Norihide Nakada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan; Graduate School of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama, Kanagawa 221-8686, Japan
| | - Fumitake Nishimura
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan; Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe-Otsu, Nankoku city, Kochi 783-8502, Japan.
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
7
|
Prada-Vásquez MA, Pituco MM, Caixeta MP, Cardona Gallo SA, Botero-Coy AM, Hernández F, Torres-Palma RA, Vilar VJP. Ozonation using a stainless-steel membrane contactor: Gas-liquid mass transfer and pharmaceuticals removal from secondary-treated municipal wastewater. CHEMOSPHERE 2024; 349:140888. [PMID: 38070615 DOI: 10.1016/j.chemosphere.2023.140888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
A tubular porous stainless steel membrane contactor was characterized in terms of ozone-water mass transport, as well as its application in removing 23 pharmaceuticals (PhACs) detected in the secondary-treated municipal wastewater, under continuous mode operation. The volumetric mass transfer coefficient (KLa) was evaluated based on liquid flow rate, gas flow rate, and ozone gas concentration. The KLa values were substantially improved with an increment in liquid flow rate (1.6 times from 30 to 70 dm3 h-1) and gas flow rate (3.6 times from 0.30 to 0.85 Ndm3 min-1) due to the improved mixing in the gas-liquid interface. For the lowest liquid flow rate (30 dm3 h-1), the water phase boundary layer (82%) exhibited the major ozone transfer resistance, but it became almost comparable with membrane resistance for the highest liquid flow rate (70 dm3 h-1). Additionally, the influence of the specific ozone dose (0.39, 0.53, and 0.69 g O3 g DOC-1) and ozone inlet gas concentration ( [Formula: see text] = 27, 80, and 134 g Nm-3) were investigated in the elimination of 23 PhACs found in secondary-treated municipal wastewater. An ozone dose of 0.69 g O3 g DOC-1 and residence time of 60 s resulted in the removal of 12 out of the 23 compounds over 80%, while 17 compounds were abated above 60%. The elimination of PhACs was strongly correlated with kinetic reaction constants values with ozone and hydroxyl radicals (kO3 and kHO•), leading to a characteristic elimination pattern for each group of contaminants. This study demonstrates the high potential of membrane contactors as an appealing alternative for ozone-driven wastewater treatment.
Collapse
Affiliation(s)
- María A Prada-Vásquez
- Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas, Departamento de Geociencias y Medioambiente, Medellín, Colombia; Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Mateus Mestriner Pituco
- LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Mateus P Caixeta
- LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Santiago A Cardona Gallo
- Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas, Departamento de Geociencias y Medioambiente, Medellín, Colombia
| | - Ana M Botero-Coy
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castelló, Spain
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Vítor J P Vilar
- LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
8
|
Puxeddu S, Scano A, Scorciapino MA, Delogu I, Vascellari S, Ennas G, Manzin A, Angius F. Physico-Chemical Investigation and Antimicrobial Efficacy of Ozonated Oils: The Case Study of Commercial Ozonated Olive and Sunflower Seed Refined Oils. Molecules 2024; 29:679. [PMID: 38338423 PMCID: PMC10856119 DOI: 10.3390/molecules29030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Drug resistance represents one of the great plagues of our time worldwide. This largely limits the treatment of common infections and requires the development of new antibiotics or other alternative approaches. Noteworthy, the indiscriminate use of antibiotics is mostly responsible for the selection of mutations that confer drug resistance to microbes. In this regard, recently, ozone has been raising interest for its unique biological properties when dissolved in natural oils. Ozonated oils have been reported to act in a non-specific way on microorganisms hindering the acquisition of advantageous mutations that result in resistance. Here, we focused on the antimicrobial effect of two commercial olive (OOO) and sunflower seeds (OSO) oils. Nuclear magnetic resonance spectroscopy and thermal analysis showed the change in the chemical composition of the oils after ozonation treatment. Different ozonated oil concentrations were then used to evaluate their antimicrobial profile against Candida albicans, Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli by agar diffusion and broth dilution methods. Cytotoxicity was also evaluated in keratinocytes and epithelial cells. Overall, our results revealed that both OOO and OSO showed a potent microbicidal effect, especially against C. albicans (IC50 = OOO: 0.3 mg/mL and OSO: 0.2 mg/mL) and E. faecalis (IC50 = OOO: 0.4 mg/mL and OSO: 2.8 mg/mL) albeit exerting a certain effect also against S. aureus and E. coli. Moreover, both OOO and OSO do not yield any relevant cytotoxic effect at the active concentrations in both cell lines. This indicates that the ozonated oils studied are not toxic for mammalian cells despite exerting a potent antimicrobial effect on specific microorganisms. Therefore, OOO and OSO may be considered to integrate standard therapies in the treatment of common infections, likely overcoming drug resistance issues.
Collapse
Affiliation(s)
- Silvia Puxeddu
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, 09042 Cagliari, Italy; (S.P.); (I.D.); (S.V.); (A.M.)
| | - Alessandra Scano
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.S.); (M.A.S.); (G.E.)
- Research Unit of the National Consortium of Materials Science and Technology (INSTM), University of Cagliari, 09042 Cagliari, Italy
| | - Mariano Andrea Scorciapino
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.S.); (M.A.S.); (G.E.)
| | - Ilenia Delogu
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, 09042 Cagliari, Italy; (S.P.); (I.D.); (S.V.); (A.M.)
| | - Sarah Vascellari
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, 09042 Cagliari, Italy; (S.P.); (I.D.); (S.V.); (A.M.)
| | - Guido Ennas
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.S.); (M.A.S.); (G.E.)
- Research Unit of the National Consortium of Materials Science and Technology (INSTM), University of Cagliari, 09042 Cagliari, Italy
| | - Aldo Manzin
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, 09042 Cagliari, Italy; (S.P.); (I.D.); (S.V.); (A.M.)
| | - Fabrizio Angius
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, 09042 Cagliari, Italy; (S.P.); (I.D.); (S.V.); (A.M.)
| |
Collapse
|
9
|
Morrison C, Hogard S, Pearce R, Mohan A, Pisarenko AN, Dickenson ERV, von Gunten U, Wert EC. Critical Review on Bromate Formation during Ozonation and Control Options for Its Minimization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18393-18409. [PMID: 37363871 PMCID: PMC10690720 DOI: 10.1021/acs.est.3c00538] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Ozone is a commonly applied disinfectant and oxidant in drinking water and has more recently been implemented for enhanced municipal wastewater treatment for potable reuse and ecosystem protection. One drawback is the potential formation of bromate, a possible human carcinogen with a strict drinking water standard of 10 μg/L. The formation of bromate from bromide during ozonation is complex and involves reactions with both ozone and secondary oxidants formed from ozone decomposition, i.e., hydroxyl radical. The underlying mechanism has been elucidated over the past several decades, and the extent of many parallel reactions occurring with either ozone or hydroxyl radicals depends strongly on the concentration, type of dissolved organic matter (DOM), and carbonate. On the basis of mechanistic considerations, several approaches minimizing bromate formation during ozonation can be applied. Removal of bromate after ozonation is less feasible. We recommend that bromate control strategies be prioritized in the following order: (1) control bromide discharge at the source and ensure optimal ozone mass-transfer design to minimize bromate formation, (2) minimize bromate formation during ozonation by chemical control strategies, such as ammonium with or without chlorine addition or hydrogen peroxide addition, which interfere with specific bromate formation steps and/or mask bromide, (3) implement a pretreatment strategy to reduce bromide and/or DOM prior to ozonation, and (4) assess the suitability of ozonation altogether or utilize a downstream treatment process that may already be in place, such as reverse osmosis, for post-ozone bromate abatement. A one-size-fits-all approach to bromate control does not exist, and treatment objectives, such as disinfection and micropollutant abatement, must also be considered.
Collapse
Affiliation(s)
- Christina
M. Morrison
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| | - Samantha Hogard
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471-0911, United
States
- The
Charles Edward Via, Jr. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Robert Pearce
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471-0911, United
States
- The
Charles Edward Via, Jr. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Aarthi Mohan
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| | - Aleksey N. Pisarenko
- Trussell
Technologies, Inc., 380
Stevens Avenue, Suite 212, Solana Beach, California 92075, United States
| | - Eric R. V. Dickenson
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| | - Urs von Gunten
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Dubendorf, Switzerland
- School of
Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne
(EPFL), 1015 Lausanne, Switzerland
| | - Eric C. Wert
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| |
Collapse
|
10
|
Wang H, Gao L, Xie Y, Yu G, Wang Y. Clarification of the role of singlet oxygen for pollutant abatement during persulfate-based advanced oxidation processes: Co 3O 4@CNTs activated peroxymonosulfate as an example. WATER RESEARCH 2023; 244:120480. [PMID: 37598568 DOI: 10.1016/j.watres.2023.120480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Singlet oxygen (1O2) has often been identified by the popularly used quenching method as a more important reactive species (RS) than sulfate radicals (SO4•-) and hydroxyl radicals (•OH) for pollutant abatement during persulfate-based advanced oxidation processes (PS-AOPs), especially those activated by carbon-based catalysts. However, latest studies have demonstrated that the quenching method actually can often mislead the interpretations of the role of RS for pollutant abatement during AOPs due to various confounding effects caused by adding high-concentration quenchers in the system. To clarify the role of 1O2 in PS-AOPs, this study developed a probe compound-based experimental and kinetic model to quantify the concentrations and exposures of 1O2, SO4•-, and •OH, as well as their relative contributions to pollutant abatement during a cobalt oxide incorporated carbon nanotubes activated peroxymonosulfate (Co3O4@CNTs/PMS) process. Results show that during the Co3O4@CNTs/PMS process, the exposures and transient concentrations of 1O2 were about 19.6 and 41.3 times higher than those of SO4•- and •OH, respectively. However, the relative contribution of 1O2 to the abatement of most pollutants tested in this study (e.g., sulfisoxazole, sulfamethoxyprazine, trimethoprim, and metoprolol) is generally negligible (f1O2 ≤ 8%) compared to that of SO4•- and •OH ( [Formula: see text] = 15%-98% and f•OH = 2%-78%) because of the significantly lower reactivity of 1O2 with these compounds than that of SO4•- and •OH. Reasons for misidentifying 1O2 as the dominant RS for pollutant abatement by the quenching method were then analyzed based on reaction kinetics principles. The results of this study highlight that while 1O2 can be generated in significant amounts and be present at higher concentrations than SO4•- and •OH in PS-AOP systems, 1O2 is unlikely to be the dominant RS for the abatement of most pollutants during the PS-AOPs because of its weak and selective oxidation capacity, and caution should be taken when using the quenching method to evaluate the role of RS for pollutant abatement by the PS-AOPs.
Collapse
Affiliation(s)
- Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083 China; School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 China
| | - Lingwei Gao
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 China
| | - Yuxin Xie
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083 China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environmental and Ecology, Beijing Normal University, Zhuhai 519000 China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084 China.
| |
Collapse
|
11
|
van Gijn K, van Dam MRHP, de Wilt HA, de Wilde V, Rijnaarts HHM, Langenhoff AAM. Removal of micropollutants and ecotoxicity during combined biological activated carbon and ozone (BO 3) treatment. WATER RESEARCH 2023; 242:120179. [PMID: 37302178 DOI: 10.1016/j.watres.2023.120179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Ozonation is a viable option to improve the removal of micropollutants (MPs) in wastewater treatment plants (WWTPs). Nevertheless, the application of ozonation is hindered by its high energy requirements and by the uncertainties regarding the formation of toxic transformation products in the process. Energy requirements of ozonation can be reduced with a pre-ozone treatment, such as a biological activated carbon (BAC) filter, that removes part of the effluent organic matter before ozonation. This study investigated a combination of BAC filtration followed by ozonation (the BO3 process) to remove MPs at low ozone doses and low energy input, and focused on the formation of toxic organic and inorganic products during ozonation. Effluent from a WWTP was collected, spiked with MPs (approximately 1 µg/L) and treated with the BO3 process. Different flowrates (0.25-4 L/h) and specific ozone doses (0.2-0.6 g O3/g TOC) were tested and MPs, ecotoxicity and bromate were analyzed. For ecotoxicity assessment, three in vivo (daphnia, algae and bacteria) and six in vitro CALUX assays (Era, GR, PAH, P53, PR, andNrf2 CALUX) were used. Results show that the combination of BAC filtration and ozonation has higher MP removal and higher ecotoxicity removal than only BAC filtration and only ozonation. The in vivo assays show a low ecotoxicity in the initial WWTP effluent samples and no clear trend with increasing ozone doses, while most of the in vitro assays show a decrease in ecotoxicity with increasing ozone dose. This suggests that for the tested bioassays, feed water and ozone doses, the overall ecotoxicity of the formed transformation products during ozonation was lower than the overall ecotoxicity of the parent compounds. In the experiments with bromide spiking, relevant formation of bromate was observed above specific ozone doses of approximately 0.4 O3/g TOC and more bromate was formed for the samples with BAC pre-treatment. This indirectly indicates the effectivity of the pre-treatment in removing organic matter and making ozone more available to react with other compounds (such as MPs, but also bromide), but also underlines the importance of controlling the ozone dose to be below the threshold to avoid formation of bromate. It was concluded that treatment of the tested WWTP effluent in the BO3 process at a specific ozone dose of 0.2 g O3/g TOC, results in high MP removal at limited energy input while no increase in ecotoxicity, nor formation of bromate was observed under this condition. This indicates that the hybrid BO3 process can be implemented to remove MPs and improve the ecological quality of this WWTP effluent with a lower energy demand than conventional MP removal processes such as standalone ozonation.
Collapse
Affiliation(s)
- K van Gijn
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
| | - M R H P van Dam
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
| | - H A de Wilt
- Royal HaskoningDHV, 3800 BC Amersfoort, the Netherlands
| | - V de Wilde
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
| | - H H M Rijnaarts
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
| | - A A M Langenhoff
- Department of Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
12
|
Lee W, Choi S, Kim H, Lee W, Lee M, Son H, Lee C, Cho M, Lee Y. Efficiency of ozonation and O 3/H 2O 2 as enhanced wastewater treatment processes for micropollutant abatement and disinfection with minimized byproduct formation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131436. [PMID: 37146328 DOI: 10.1016/j.jhazmat.2023.131436] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/21/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023]
Abstract
Ozonation, a viable option for improving wastewater effluent quality, requires process optimization to ensure the organic micropollutants (OMPs) elimination and disinfection under minimized byproduct formation. This study assessed and compared the efficiencies of ozonation (O3) and ozone with hydrogen peroxide (O3/H2O2) for 70 OMPs elimination, inactivation of three bacteria and three viruses, and formation of bromate and biodegradable organics during the bench-scale O3 and O3/H2O2 treatment of municipal wastewater effluent. 39 OMPs were fully eliminated, and 22 OMPs were considerably eliminated (54 ± 14%) at an ozone dosage of 0.5 gO3/gDOC for their high reactivity to ozone or •OH. The chemical kinetics approach accurately predicted the OMP elimination levels based on the rate constants and exposures of ozone and •OH, where the quantum chemical calculation and group contribution method successfully predicted the ozone and •OH rate constants, respectively. Microbial inactivation levels increased with increasing ozone dosage up to ∼3.1 (bacteria) and ∼2.6 (virus) log10 reductions at 0.7 gO3/gDOC. O3/H2O2 minimized bromate formation but significantly decreased bacteria/virus inactivation, whereas its impact on OMP elimination was insignificant. Ozonation produced biodegradable organics that were removed by a post-biodegradation treatment, achieving up to 24% DOM mineralization. These results can be useful for optimizing O3 and O3/H2O2 processes for enhanced wastewater treatment.
Collapse
Affiliation(s)
- Woongbae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Sangki Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Hyunjin Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Woorim Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea; Busan Water Quality Institute, Gimhae, Gyeongsangnam 621-813, Republic of Korea
| | - Minju Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Gimhae, Gyeongsangnam 621-813, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, Seoul 08826, Republic of Korea
| | - Min Cho
- SELS Center, Division of Biotechnology, College of Environmental & Bioresource Sciences, Chonbuk National University, Iksan 54596, Republic of Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea.
| |
Collapse
|
13
|
Slavik I, Kostrowski D, Uhl W. Effect of solar radiation on natural organic matter composition in surface waters and resulting impacts on drinking water treatment. ENVIRONMENTAL TECHNOLOGY 2023; 44:1549-1565. [PMID: 34839798 DOI: 10.1080/09593330.2021.2007289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Solar radiation experiments showed a shift in the composition of natural organic matter (NOM). Due to irradiation, the concentration of high molecular weight (HMW) molecules decreased, and that of the low molecular weight (LMW) fraction increased. Microbiological analyses showed that biodegradation was neglectable. To assess the consequences for water treatment processes, coagulation jar tests were performed by comparing the removal effectivity for NOM fractions from irradiated and unirradiated raw water. The degree of dissolved organic carbon (DOC) removal by coagulation was lower for irradiated waters. As primarily HMW organic compounds are removed by coagulation, the decrease in coagulation performance is attributed to the increase in the LMW concentration due to photochemical reactions induced by solar radiation. Flocs were about 15% larger for irradiated water. Possibilities to adapt water treatment to respond to changes in DOC composition and concentration are outlined. Ozonation-biofiltration is judged as the most promising treatment process to cope with climate change-related challenges in drinking water treatment.
Collapse
Affiliation(s)
- I Slavik
- Hydro-Ingenieure GmbH, Düsseldorf, Germany
- Hochschule Magdeburg-Stendal, FB Wasser, Umwelt, Bau und Sicherheit Magdeburg, Germany
- Water Supply Engineering, Technische Universität Dresden, Dresden, Germany
| | - D Kostrowski
- Water Supply Engineering, Technische Universität Dresden, Dresden, Germany
| | - W Uhl
- Water Supply Engineering, Technische Universität Dresden, Dresden, Germany
- Aquateam COWI AS, Oslo, Norway
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
14
|
Yin S, Shen Q, Liu YD, Zhong R. Comparison of nitrate formation mechanisms from free amino acids and amines during ozonation: a computational study. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:680-693. [PMID: 36809457 DOI: 10.1039/d2em00501h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nitrate as a potential surrogate parameter for abatement of micropollutants, oxidant exposure, and characterizing oxidant-reactive DON during ozonation has attracted extensive attention, however, understanding of its formation mechanisms is still limited. In this study, nitrate formation mechanisms from amino acids (AAs) and amines during ozonation were investigated by the DFT method. The results indicate that N-ozonation initially occurs to produce competitive nitroso- and N,N-dihydroxy intermediates, and the former is preferred for both AAs and primary amines. Then, oxime and nitroalkane are generated during further ozonation, which are the important last intermediate products for nitrate formation from the respective AAs and amines. Moreover, the ozonation of the above important intermediates is the nitrate yield-controlling step, where the relatively higher reactivity of the CN moiety in the oxime compared to the general Cα atom in the nitroalkane explains why the nitrate yields of most AAs are higher than those from general amines, and it is the larger number of released Cα- anions, which are the real reaction sites attacked by ozone, that leads to the higher nitrate yield for nitroalkane with an electron-withdrawing group bound to the Cα atom. The good relationship between nitrate yields and activation free energies of the rate-limiting step (ΔG≠rls) and nitrate yield-controlling step (ΔG≠nycs) for the respective AAs and amines verifies the reliability of the proposed mechanisms. Additionally, the bond dissociation energy of Cα-H in the nitroalkanes formed from amines was found to be a good parameter to evaluate the reactivity of the amines. The findings here are helpful for further understanding nitrate formation mechanisms and predicting nitrate precursors during ozonation.
Collapse
Affiliation(s)
- Shuning Yin
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Qunfang Shen
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yong Dong Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
15
|
Manasfi T, Houska J, Gebhardt I, von Gunten U. Formation of carbonyl compounds during ozonation of lake water and wastewater: Development of a non-target screening method and quantification of target compounds. WATER RESEARCH 2023; 237:119751. [PMID: 37141690 DOI: 10.1016/j.watres.2023.119751] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/14/2023] [Indexed: 05/06/2023]
Abstract
Ozonation of natural waters is typically associated with the formation of carbonyl compounds (aldehydes, ketones and ketoacids), a main class of organic disinfection byproducts (DBPs). However, the detection of carbonyl compounds in water and wastewater is challenged by multiple difficulties inherent to their physicochemical properties. A non-target screening method involving the derivatisation of carbonyl compounds with p-toluenesulfonylhydrazine (TSH) followed by their analysis using liquid chromatography coupled to electrospray ionisation high-resolution mass spectrometry (LC-ESI-HRMS) and an advanced non-target screening and data processing workflow was developed. The workflow was applied to investigate the formation of carbonyl compounds during ozonation of different water types including lake water, aqueous solutions containing Suwannee River Fulvic acid (SRFA), and wastewater. A higher sensitivity for most target carbonyl compounds was achieved compared to previous derivatisation methods. Moreover, the method allowed the identification of known and unknown carbonyl compounds. 8 out of 17 target carbonyl compounds were consistently detected above limits of quantification (LOQs) in most ozonated samples. Generally, the concentrations of the 8 detected target compounds decreased in the order: formaldehyde > acetaldehyde > glyoxylic acid > pyruvic acid > glutaraldehyde > 2,3-butanedione > glyoxal > 1-acetyl-1-cyclohexene. The DOC concentration-normalised formation of carbonyl compounds during ozonation was higher in wastewater and SRFA-containing water than in lake water. The specific ozone doses and the type of the dissolved organic matter (DOM) played a predominant role for the extent of formation of carbonyl compounds. Five formation trends were distinguished for different carbonyl compounds. Some compounds were produced continuously upon ozonation even at high ozone doses, while others reached a maximum concentration at a certain ozone dose above which they decreased. Concentrations of target and peak areas of non-target carbonyl compounds during full-scale ozonation at a wastewater treatment plant showed an increase as a function of the specific ozone dose (sum of 8 target compounds ∼ 280 µg/L at 1 mgO3/mgC), followed by a significant decrease after biological sand filtration (> 64-94% abatement for the different compounds). This highlights the biodegradability of target and non-target carbonyl compounds and the importance of biological post-treatment.
Collapse
Affiliation(s)
- Tarek Manasfi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Joanna Houska
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Isabelle Gebhardt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
16
|
Sauter D, Steuer A, Wasmund K, Hausmann B, Szewzyk U, Sperlich A, Gnirss R, Cooper M, Wintgens T. Microbial communities and processes in biofilters for post-treatment of ozonated wastewater treatment plant effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159265. [PMID: 36206900 DOI: 10.1016/j.scitotenv.2022.159265] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Ozonation is an established solution for organic micropollutant (OMP) abatement in tertiary wastewater treatment. Biofiltration is the most common process for the biological post-treatment step, which is generally required to remove undesired oxidation products from the reaction of ozone with water matrix compounds. This study comparatively investigates the effect of filter media on the removal of organic contaminants and on biofilm properties for biologically activated carbon (BAC) and anthracite biofilters. Biofilms were analysed in two pilot-scale filters that have been operated for >50,000 bed volumes as post-treatment for ozonated wastewater treatment plant effluent. In parallel, the removal performance of bulk organics and OMP, including differentiation of adsorption and biotransformation through sodium azide inhibition, were carried out in bench-scale filter columns filled with material from the pilot filters. The use of BAC instead of anthracite resulted in an improved removal of organic bulk parameters, dissolved oxygen, and OMP. The OMP removal observed in the BAC filter but not in the anthracite filter was based on adsorption for most of the investigated compounds. For valsartan, however, biotransformation was found to be the dominant pathway, indicating that conditions for biotransformation of certain OMP are better on BAC than on anthracite. Adenosine triphosphate analyses in the media-attached biofilms of the pilot filters showed that biomass concentrations in the BAC filter were significantly higher than in the anthracite filter. The microbial communities (16S rRNA gene sequencing) appeared to be similar with respect to the types of organisms occurring on both filter materials. Alpha diversity also exhibited little variation between filter media. Beta diversity analysis, however, revealed that filter media and bed depth substantially influenced the biofilm composition. In practice, the impact of filter media on biofilm properties and biotransformation processes should be considered for the design of biofilters.
Collapse
Affiliation(s)
- Daniel Sauter
- Berliner Wasserbetriebe, Neue Juedenstr. 1, 10179 Berlin, Germany
| | - Andrea Steuer
- Chair of Environmental Microbiology, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; School of Biological Science, University of Portsmouth, King Henry Building, King Henry I St, PO12DY Portsmouth, UK
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ulrich Szewzyk
- Chair of Environmental Microbiology, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | | | - Regina Gnirss
- Berliner Wasserbetriebe, Neue Juedenstr. 1, 10179 Berlin, Germany
| | - Myriel Cooper
- Chair of Environmental Microbiology, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
| | - Thomas Wintgens
- RWTH Aachen University, Institut für Siedlungswasserwirtschaft, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany; School of Life Sciences, Institute for Ecopreneurship, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 40, 4132 Muttenz, Switzerland.
| |
Collapse
|
17
|
Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Merkus VI, Sommer C, Smollich E, Sures B, Schmidt TC. Acute ecotoxicological effects on daphnids and green algae caused by the ozonation of ibuprofen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157611. [PMID: 35896135 DOI: 10.1016/j.scitotenv.2022.157611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Due to its ubiquitous presence in wastewaters, wastewater treatment plant effluents and even surface waters, the removal of the pharmaceutical ibuprofen from water is of special interest. Ozonation is widely applied for the treatment of micropollutants in wastewater treatment plants and is already known to also degrade ibuprofen. However, the formation of a wide range of transformation products during such oxidation steps might affect the aquatic environment. This study focuses on the acute ecotoxicological impact of the ibuprofen ozonation products on the two model organisms Daphnia magna and Desmodesmus subspicatus. For the identification of possibly ecotoxic products, a new workflow combining ecotoxicological testing, analytical methods and toxicity prediction was applied. Examination at different pH conditions with increasing ozone doses can point to respective products for further systematic examination. Seven ozonation products were confirmed in this study, two of them for the first time. Five previously postulated products were rejected. For pH 7 the inhibition of green algae growth was observed for mixtures oxidized with low ozone doses, while at pH 3 the mixtures with higher ozone doses caused toxic effects on the mobility of daphnids. Together with the analytical measurements in combination with ecotoxicity prediction, six products were identified which might have caused the toxic effect on green algae. However, no assignment to the observed toxic effects on daphnids was possible. The gained results indicate that mixture toxicity might play a role in oxidation processes and needs to be considered in ozonation studies concerning the ecotoxicological impact. Furthermore, the different observed toxicity for the two organisms underlines the importance of using multiple test systems for a comprehensive evaluation of the ecotoxicity during ozonation processes.
Collapse
Affiliation(s)
- Valentina I Merkus
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Christina Sommer
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Esther Smollich
- Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Bernd Sures
- Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141 Essen, Germany
| | - Torsten C Schmidt
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141 Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany.
| |
Collapse
|
19
|
Kharel S, Tentscher PR, Bester K. Further transformation of the primary ozonation products of tramadol- and venlafaxine N-oxide: Mechanistic and structural considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157259. [PMID: 35817117 DOI: 10.1016/j.scitotenv.2022.157259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Ozonation has been used to effectively remove micropollutants from the secondary effluent in several wastewater treatment plants. It is known that ozonation transforms tertiary amine compounds into their respective N-oxides, however in an earlier study a mass balance could not be closed at elevated ozone concentrations, leading to the assumption that more ozonation products are possible. This study was conducted to elucidate which (hitherto unknown) ozonation products can be formed from venlafaxine and tramadol when ozonating wastewater. Ozonation experiments were performed with tramadol and venlafaxine N-oxide in two different set-ups. Both tramadol- and venlafaxine N-oxide degraded during ozonation in pure (deionized) water in both semi-continuous and batch mode ozonation set-ups. 13 and 17 new transformation products were detected from tramadol- and venlafaxine N-oxide respectively, using high resolution mass spectrometry with ESI(+) ionization. Empirical chemical formulas were proposed based on the determination of the exact masses and interpretation of the product ion spectra. These transformation products result from the addition of one to three oxygen atoms and removal of C, -CH2, C2H2, C3H6, etc., from the parent molecule, respectively. Quenching experiments suggested that most of the transformation products originated from the direct reaction with ozone (eight for tramadol N-oxide and ten for venlafaxine N-oxide), whereas fewer products originated from the reaction with OH radicals (three for tramadol N-oxide and three for venlafaxine N-oxide). Reaction mechanisms and chemical structures of products are proposed, based on the available active sites and past literature on ozone reaction mechanisms. The experimental results are compared to theory and literature on ozone reactive sites and ozone reaction mechanisms. All in all this shows that there can be multiple ozonation products, and ozonation pathways can be complex, even if initially only one ozonation product is formed.
Collapse
Affiliation(s)
- Suman Kharel
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark; Centre for Water Technology (WATEC) at Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Peter R Tentscher
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
| | - Kai Bester
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark; Centre for Water Technology (WATEC) at Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
20
|
Sommaggio LRD, Oliveira FA, Malvestiti JA, Mazzeo DEC, Levy CE, Dantas RF, Marin-Morales MA. Assessment of phytotoxic potential and pathogenic bacteria removal from secondary effluents during ozonation and UV/H 2O 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115522. [PMID: 35759961 DOI: 10.1016/j.jenvman.2022.115522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Wastewater reuse is an important strategy for water resource management. For this reason, the disinfection process must be appropriated, eliminating pathogenic microorganisms. Ozonation (O3) and UV/H2O2 treatments can be used for effluent disinfection, but few studies just address the Escherichia coli quantification. In this study, secondary effluents from two wastewater treatment plants with different characteristics were exposed to O3 (5 and 10 mg L-1) or UV/H2O2 (H2O2: 90 mg L-1) treatments and evaluated by BD Phoenix ™ 100 (Becton Dickinson, USA) and MALDI-TOF for the characterization of the indigenous microorganisms in the effluents, before and after treatments. Additionally, all the samples were tested for phytotoxicity by Lactuca sativa bioassay. The results showed that the highest ozone dose and the UV/H2O2 treatment were effective in removing E. coli. UV/H2O2 was more efficient as it eliminated most of the microorganisms. Acinetobacter sp., Aeromonas and Pseudomonas were still found after O3 treatment. Bacillus sp. was found after O3 and UV/H2O2 treatments. The results with L. sativa showed inhibition of root growth for all dry period (low rainfall) samples of one of the WWTP, due to the high concentration of the phytotoxicity compounds. For environmental and human health safety, treated effluents should be evaluated for their toxic and pathogenic potential before being released into the environment. Pathogens evaluation on treated effluents should cover a wider range of pathogenic microorganisms than those routinely required by legislation.
Collapse
Affiliation(s)
- Lais Roberta Deroldo Sommaggio
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, 13506-900, Rio Claro, SP, Brazil.
| | - Flávio A Oliveira
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming, 105, 13081-970, Campinas, SP, Brazil.
| | | | - Dânia Elisa Christofoletti Mazzeo
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Federal University of São Carlos (UFSCAR), Araras, SP, Brazil.
| | - Carlos Emílio Levy
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming, 105, 13081-970, Campinas, SP, Brazil.
| | - Renato Falcão Dantas
- School of Technology, University of Campinas - UNICAMP, Paschoal Marmo 1888, 13484332, Limeira, SP, Brazil.
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University (Unesp), Av. 24-A, 1515, 13506-900, Rio Claro, SP, Brazil.
| |
Collapse
|
21
|
Vatankhah H, Tajdini B, Milstead RP, Clevenger E, Murray C, Knappe D, Remucal CK, Bellona C. Impact of ozone-biologically active filtration on the breakthrough of Perfluoroalkyl acids during granular activated carbon treatment of municipal wastewater effluent. WATER RESEARCH 2022; 223:118988. [PMID: 36007399 DOI: 10.1016/j.watres.2022.118988] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The presence of perfluoroalkyl acids (PFAAs) in municipal wastewater has highlighted the need to develop PFAA treatment approaches for wastewater effluent and potable reuse applications. Ozone (O3) and biologically active filtration (BAF) were investigated as standalone and combined pretreatment processes to improve the performance of granular activated carbon (GAC) for PFAA removal from wastewater effluent. As individual processes, ozonation at all three investigated doses (0.35, 0.75, 1.0 mg O3/mg DOC) and BAF at both tested empty bed contact times (EBCT; 15 and 20 min) led to significant improvement in PFAA removal by subsequent GAC treatment. With respect to standalone ozonation, the specific O3 dose of 0.75 mg O3/mg DOC was proven to be the optimum operating condition as further increase of the specific ozone dose to 1.0 mg O3/mg DOC did not provide considerable additional improvement. Extending the EBCT during standalone BAF from 15 to 20 minutes significantly improved the efficacy of GAC for the removal of tested PFAAs. Pretreatment with O3-BAF (0.75 mg O3/mg DOC; 20 min EBCT) in tandem outperformed both standalone ozonation and BAF for the removal of PFAA by GAC. Characterization of effluent organic matter (EfOM) by size exclusion chromatography (SEC) and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS) before and after pretreatments suggest that among multiple co-occurring phenomena, the shift towards smaller and more polar EfOM may have predominantly alleviated pore constriction/blockage without having adverse impact on direct site competition. This observation is supported by SEC and FT-ICR-MS results indicating reduced EfOM molecular size through O3 and BAF pretreatment as well as transition to more hydrophilic byproducts.
Collapse
Affiliation(s)
- Hooman Vatankhah
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA; National Science Foundation Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA
| | - Bahareh Tajdini
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Reid P Milstead
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erica Clevenger
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Conner Murray
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Detlef Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Christina K Remucal
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christopher Bellona
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA; National Science Foundation Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), USA.
| |
Collapse
|
22
|
Gollong G, Neuwald IJ, Kuckelkorn J, Junek R, Zahn D. Assessing the protection gap for mobile and persistent chemicals during advanced water treatment - A study in a drinking water production and wastewater treatment plant. WATER RESEARCH 2022; 221:118847. [PMID: 35841789 DOI: 10.1016/j.watres.2022.118847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Persistent and mobile (PM) chemicals spread quickly in the water cycle and can reach drinking water. If these chemicals are also toxic (PMT) they may pose a threat to the aquatic environment and drinking water alike, and thus measures to prevent their spread are necessary. In this study, nontarget screening and cell-based toxicity tests after a polarity-based fractionation into polar and non-polar chemicals are utilized to assess and compare the effectiveness of ozonation and filtration through activated carbon in a wastewater treatment and drinking water production plant. Especially during wastewater treatment, differences in removal efficiency were evident. While median areas of non-polar features were reduced by a factor of 270, median areas for polar chemicals were only reduced by a factor of 4. Polar features showed significantly higher areas than their non-polar counterparts in wastewater treatment plant effluent and finished drinking water, implying a protection gap for these chemicals. Toxicity tests revealed higher initial toxicities (especially oxidative stress and estrogenic activity) for the non-polar fraction, but also showed a more pronounced decrease during treatment. Generally, the toxicity of the effluent was low for both fractions. Combined, these results imply a less effective removal but also a lower toxicity of polar chemicals. The behaviour of features during advanced waste and drinking water treatment was used to classify them as either PM chemicals or mobile transformation products (M-TPs). A suspect screening of the 476 highest intensity PM chemicals and M-TPs in 57 environmental and tap water samples showed high frequencies of detection (median >80%), which indicates the wide distribution of these chemicals in the aquatic environment and thus supports the chosen classification approach and the more generally applicability of obtained insights.
Collapse
Affiliation(s)
- Grete Gollong
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, Idstein, 65510, Germany
| | - Isabelle J Neuwald
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, Idstein, 65510, Germany
| | - Jochen Kuckelkorn
- Umweltbundesamt, Section Toxicology of Drinking Water and Swimming Pool Water, Heinrich-Heine-Strasse 12, Bad Elster, 08645, Germany
| | - Ralf Junek
- Umweltbundesamt, Section Toxicology of Drinking Water and Swimming Pool Water, Heinrich-Heine-Strasse 12, Bad Elster, 08645, Germany
| | - Daniel Zahn
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, Idstein, 65510, Germany.
| |
Collapse
|
23
|
Sahu RL, Dash RR, Pradhan PK. A study on adsorption of anionic surfactant from water during riverbank filtration. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Lei H, Guan X, Sun Y, Yan H. A novel design of in-line static mixer for permanganate/bisulfite process: Numerical simulations and pilot-scale testing. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10725. [PMID: 35616441 DOI: 10.1002/wer.10725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/05/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
An increasing number of chemical technologies to wipe out contaminants within an incredibly short period of time have been developed recently, while their application was always hindered by the inefficient or improper mixing of reactants. To address this issue, the present work proposed a new static mixer named Tai-Chi which consists of blade, fin, and spoiler elements. Tai-Chi mixer can slice and divert the solutions inside and generate high shear flow to promote mixing process. Numerical simulations helped to determine the optimal operating conditions for Tai-Chi mixer, including laying its components anterior to the injection nozzles and keeping the velocity rate ratio of main pipe to branch pipe within the range of 0.5 to 1. Numerical simulations further proved that Tai-Chi mixer could strike a great balance between mixing performance (coefficient of variation [CoV] reaches 0.1 within 5 to 7 pipe diameters downstream) and head loss (nearly a half of other high shear static mixer in the market). Data of pilot-scale testing by Tai-Chi mixer confirm that 80% sulfamethoxazole could be eliminated in permanganate/bisulfite process within 8 pipe diameters, as well as showed the superiority of Tai-Chi's mixing performance in early stage compared with other static mixers in the market. PRACTITIONER POINTS: A Tai-Chi static mixer with blade, fin, and spoiler elements is devised. The optimal condition of flow rate and installment of Tai-Chi mixer is determined. Ultra-fast mixing is achieved by Tai-Chi (CoV < 0.1 within 5-7 pipe diameters). Pilot-scale test verifies the mixing efficiency of Tai-Chi mixer.
Collapse
Affiliation(s)
- Han Lei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Yuankui Sun
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Hexiang Yan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Applications of Heterogeneous Photocatalysis to the Degradation of Oxytetracycline in Water: A Review. Molecules 2022; 27:molecules27092743. [PMID: 35566092 PMCID: PMC9105636 DOI: 10.3390/molecules27092743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Photocatalytic processes are being studied extensively as potential advanced wastewater treatments for the removal of pharmaceuticals, pesticides and other recalcitrant micropollutants from the effluents of conventional wastewater treatment plants (WWTPs). Oxytetracycline (OTC) is a widespread antibiotic which is frequently detected in surface water bodies as a recalcitrant and persistent micropollutant. This review provides an update on advances in heterogeneous photocatalysis for the degradation of OTC in water under UV light, sunlight and visible-light irradiation. Photocatalysts based on pure semiconducting oxides are rarely used, due to the problem of rapid recombination of electron–hole pairs. To overcome this issue, a good strategy could be the coupling of two different semiconducting compounds with different conduction and valence bands. Several methods are described to enhance the performances of catalysts, such as doping of the oxide with metal and/or non-metal elements, surface functionalization, composites and nano-heterojunction. Furthermore, a discussion on non-oxidic photocatalysts is briefly provided, focusing on the application of graphene-based nanocomposites for the effective treatment of OTC.
Collapse
|
26
|
Lim S, Shi JL, von Gunten U, McCurry DL. Ozonation of organic compounds in water and wastewater: A critical review. WATER RESEARCH 2022; 213:118053. [PMID: 35196612 DOI: 10.1016/j.watres.2022.118053] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Ozonation has been applied in water treatment for more than a century, first for disinfection, later for oxidation of inorganic and organic pollutants. In recent years, ozone has been increasingly applied for enhanced municipal wastewater treatment for ecosystem protection and for potable water reuse. These applications triggered significant research efforts on the abatement efficiency of organic contaminants and the ensuing formation of transformation products. This endeavor was accompanied by developments in analytical and computational chemistry, which allowed to improve the mechanistic understanding of ozone reactions. This critical review assesses the challenges of ozonation of impaired water qualities such as wastewaters and provides an up-to-date compilation of the recent kinetic and mechanistic findings of ozone reactions with dissolved organic matter, various functional groups (olefins, aromatic compounds, heterocyclic compounds, aliphatic nitrogen-containing compounds, sulfur-containing compounds, hydrocarbons, carbanions, β-diketones) and antibiotic resistance genes.
Collapse
Affiliation(s)
- Sungeun Lim
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Jiaming Lily Shi
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
27
|
Phan LT, Schaar H, Saracevic E, Krampe J, Kreuzinger N. Effect of ozonation on the biodegradability of urban wastewater treatment plant effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152466. [PMID: 34952079 DOI: 10.1016/j.scitotenv.2021.152466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The present work aimed to study the effect of ozonation on the organic sum parameters linked to enhanced biodegradability. Laboratory experiments were conducted with the effluent of four Austrian urban wastewater treatment plants with low food to microorganism ratios and different matrix characteristics. Biochemical oxygen demand over 5 days (BOD5) was measured before ozonation and after application of different specific ozone doses (Dspec) (0.4, 0.6 and 0.8 g O3/g DOC). Other investigated organic parameters comprised chemical oxygen demand (COD), dissolved organic carbon (DOC), UV absorption at 254 nm (UV254), which are parameters that are applied in routine wastewater analysis. Carbamazepine and benzotriazole were measured as reference micropollutants. The results showed a dose-dependent increase in biological activity after ozonation; this increase was linked to the enhanced biodegradability of substances that are recalcitrant to biodegradation in conventional activated sludge treatment. The highest relative change was determined for BOD5, which already occurred between 0 and 0.4 g O3/g DOC for all samples. Increasing the Dspec to 0.6 and 0.8 g O3/g DOC resulted in a less pronounced increase. DOC was not substantially decreased after ozonation, which was consistent with a low reported degree of mineralization, while partial oxidation led to a quantifiable decrease in COD (7 to 17%). Delta UV254 and the decline in specific UV absorption after ozonation clearly correlated with Dspec. In contrast, for COD and biodegradable DOC (BDOC), a clear dose-response pattern was identified only after exposure to BOD5 measurement. Indications for improved biodegradability were further supported by the rise in the BOD5/COD ratio. The results indicated that subsequent biological processes have a higher degradation potential after ozonation. The further reduction in biodegradable organic carbon emission by the combination of ozonation and biological post treatment represents another step towards sustainable water resource management in addition to micropollutant abatement.
Collapse
Affiliation(s)
- Lam Thanh Phan
- TU Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/226-1, 1040 Vienna, Austria; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Viet Nam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Heidemarie Schaar
- TU Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/226-1, 1040 Vienna, Austria.
| | - Ernis Saracevic
- TU Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/226-1, 1040 Vienna, Austria
| | - Jörg Krampe
- TU Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/226-1, 1040 Vienna, Austria
| | - Norbert Kreuzinger
- TU Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/226-1, 1040 Vienna, Austria
| |
Collapse
|
28
|
Dwinandha D, Zhang B, Fujii M. Prediction of reaction mechanism for OH radical-mediated phenol oxidation using quantum chemical calculation. CHEMOSPHERE 2022; 291:132763. [PMID: 34740699 DOI: 10.1016/j.chemosphere.2021.132763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Understanding the reaction mechanism of OH•-mediated oxidation of organic micropollutants (OMPs) contributes to the assessment and development of advanced oxidation processes (AOPs) for removal of OMPs in water environment. In this study, a theoretical approach using quantum chemical calculation (QCC) was employed to investigate the prediction accuracy of the reaction mechanism (i.e., reaction site and rate) for OH•-mediated oxidation of phenol, where the hydroquinone and catechol are generated as transformation products (TPs) via radical and electrophilic reactions. We compared three different levels of theory (Hartree-Fock, B3LYP, and M06-2X) with 6-311 + G (2d,2p)/SMD, and the reaction site and rate constants were predicted by the Fukui function and transition state theory, respectively. Overall, the prediction accuracy of the TPs formation mechanism was the highest in the calculations using M06-2X. For example, the initial OH• addition to phenol was predicted to occur with a probability of 77% for the ortho position and 23% for the para position, which was consistent with the experimental observation. By applying the transition state theory, the rate constants toward TPs formation pathway can be reasonably reproduced, suggesting that M06-2X has an effective function for polycyclic reactions. However, the observed discrepancies in rate constants are inferred from dispersion effects and the multi-reference property in the computational system or derived from mismatch of target reactions between theoretical calculations and experiments. Overall, this study provides an insight into QCC application for investigating the formation mechanism of TPs in AOPs for removal of OMPs in water environment.
Collapse
Affiliation(s)
- Dhimas Dwinandha
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Bei Zhang
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan.
| |
Collapse
|
29
|
Ribeirinho-Soares S, Moreira NFF, Graça C, Pereira MFR, Silva AMT, Nunes OC. Overgrowth control of potentially hazardous bacteria during storage of ozone treated wastewater through natural competition. WATER RESEARCH 2022; 209:117932. [PMID: 34902759 DOI: 10.1016/j.watres.2021.117932] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Improving the chemical and biological quality of treated wastewater is particularly important in world regions under water stress. In these regions, reutilization of wastewater is seen as an alternative to reduce water demand, particularly for agriculture irrigation. In a reuse scenario, the treated wastewater must have enough quality to avoid chemical and biological contamination of the receiving environment. Ozonation is among the technologies available to efficiently remove organic micropollutants and disinfect secondary effluents, being implemented in full-scale urban wastewater treatment plants worldwide. However, previous studies demonstrated that storage of ozone treated wastewater promoted the overgrowth of potentially harmful bacteria, putting at risk its reutilization, given for instance the possibility of contaminating the food-chain. Therefore, this study was designed to assess the potential beneficial role of inoculation of ozone treated wastewater with a diverse bacterial community during storage, for the control of the overgrowth of potentially hazardous bacteria, through bacterial competition. To achieve this goal, ozone treated wastewater (TWW) was diluted with river water (RW) in the same proportion, and the resulting bacterial community (RW+TWW) was compared to that of undiluted TWW over 7 days storage. As hypothesized, in contrast to TWW, where dominance of Beta- and Gammaproteobacteria, namely Pseudomonas spp. and Acinetobacter spp., was observed upon storage for 7 days, the bacterial communities of the diluted samples (RW+TWW) were diverse, resembling those of RW. Moreover, given the high abundance of antibiotic resistance genes in RW, the concentration of these genes in RW+TWW did not differ from that of the non-ozonated controls (WW, RW and RW+WW) over the storage period. These results highlight the necessity of finding a suitable pristine diverse bacterial community to be used in the future to compete with bacteria surviving ozonation, to prevent reactivation of undesirable bacteria during storage of treated wastewater.
Collapse
Affiliation(s)
- Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Nuno F F Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Cátia Graça
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| |
Collapse
|
30
|
Zheng Q, Unruh DK, Hutchins KM. Removal of the Micropollutants Propranolol Hydrochloride and 2-Naphthol From Water by Pyridine-Functionalized Polymers. Front Chem 2022; 9:793870. [PMID: 35127646 PMCID: PMC8815703 DOI: 10.3389/fchem.2021.793870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022] Open
Abstract
The number and concentration of micropollutants in aqueous environments are increasing. Two such micropollutants include the pharmaceutical, propranolol hydrochloride, and dye intermediate, 2-naphthol. Here, we describe the synthesis of both linear and crosslinked pyridine-functionalized copolymers that bind and remove propranolol hydrochloride and 2-naphthol from water solutions. Propranolol hydrochloride and 2-naphthol both contain hydrogen-bond-donor groups, and the pyridine moiety on the polymer acts as a hydrogen-bond acceptor to facilitate removal. Copolymers with different amounts of pyridine comonomer are synthesized, and as the amount of the pyridine comonomer is increased, the ability of the polymer to bind and remove the contaminant also increases. The concentrations of propranolol hydrochloride and 2-naphthol decreased by approximately 20–40% and 60–88%, respectively, depending on the polymer type that is used in the binding experiment. A control polymer was synthesized by using styrene in place of the pyridine monomer. In analogous binding experiments, the styrene polymer decreases the concentration of propranolol hydrochloride by 2% and 2-naphthol by 26%. Thus, the binding effectiveness is significantly reduced when the hydrogen-bond-acceptor group is not present on the polymer. We also show that the best performing crosslinked pyridine-functionalized polymer is reusable. Overall, these polymer adsorbents demonstrate the potential for removal of micropollutants from water.
Collapse
|
31
|
Gulde R, Clerc B, Rutsch M, Helbing J, Salhi E, McArdell CS, von Gunten U. Oxidation of 51 micropollutants during drinking water ozonation: Formation of transformation products and their fate during biological post-filtration. WATER RESEARCH 2021; 207:117812. [PMID: 34839057 DOI: 10.1016/j.watres.2021.117812] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Micropollutants (MP) with varying ozone-reactive moieties were spiked to lake water in the influent of a drinking water pilot plant consisting of an ozonation followed by a biological sand filtration. During ozonation, 227 transformation products (OTPs) from 39 of the spiked 51 MPs were detected after solid phase extraction by liquid chromatography high-resolution mass spectrometry (LC-HRMS/MS). Based on the MS/MS data, tentative molecular structures are proposed. Reaction mechanisms for the formation of a large number of OTPs are suggested by combination of the kinetics of formation and abatement and state-of-the-art knowledge on ozone and hydroxyl radical chemistry. OTPs forming as primary or higher generation products from the oxidation of MPs could be differentiated. However, some expected products from the reactions of ozone with activated aromatic compounds and olefins were not detected with the applied analytical procedure. 187 OTPs were present in the sand filtration in sufficiently high concentrations to elucidate their fate in this treatment step. 35 of these OTPs (19%) were abated in the sand filtration step, most likely due to biodegradation. Only 24 (13%) of the OTPs were abated more efficiently than the parent compounds, with a dependency on the functional group of the parent MPs and OTPs. Overall, this study provides evidence, that the common assumption that OTPs are easily abated in biological post-treatment is not generally valid. Nevertheless, it is unknown how the OTPs, which escaped detection, would have behaved in the biological post-treatment.
Collapse
Affiliation(s)
- Rebekka Gulde
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Baptiste Clerc
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Moreno Rutsch
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | | | - Elisabeth Salhi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015 Switzerland; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, CH-8092, Switzerland.
| |
Collapse
|
32
|
Juárez R, Karlsson S, Falås P, Davidsson Å, Bester K, Cimbritz M. Integrating dissolved and particulate matter into a prediction tool for ozonation of organic micropollutants in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148711. [PMID: 34243008 DOI: 10.1016/j.scitotenv.2021.148711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/03/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Ozonation is an established technique used to reduce the discharge of organic micropollutants into the aquatic environment, but the possibility of predicting the ozone demand for different wastewater matrices is still limited, especially in the presence of suspended solids (SS). A new tool for the prediction of the removal of organic micropollutants with ozone, based on dissolved and particulate matter in activated sludge effluents, was therefore developed. The removal of 25 organic micropollutants was determined on laboratory scale in the presence and absence of suspended solids. The linear trajectories of the dose-response curves enabled the determination of a new set of removal constants, based on dissolved chemical oxygen demand (COD) and SS. The presence of SS had a more negative effect on the removal of slow-reacting micropollutants (removal constant <3.5 mg CODCr,diss·mg O3-1) with ozone than on the fast-reacting micropollutants (removal constant >3.5 mg CODCr,diss·mg O3-1). However, the decreased removal of the organic micropollutants was generally small, <10%, at typical SS concentrations, <25 mg SS·L-1. Integration of the new removal constants based on COD and SS enabled the removal in an ozone pilot plant to be modelled with an average deviation of <10% for several organic micropollutants. The use of the frequently measured parameters, COD and SS, as input parameters could facilitate the future use of the tool to predict the removal of micropollutants during ozonation.
Collapse
Affiliation(s)
- Rubén Juárez
- Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, 223 70 Lund, Sweden; Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden.
| | - Stina Karlsson
- Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, 223 70 Lund, Sweden; Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Per Falås
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Åsa Davidsson
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Michael Cimbritz
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden
| |
Collapse
|
33
|
Insights into a packed bubble column for removal of several ozone-persistent TrOCs by ozonation: removal kinetics, energy efficiency and elimination prediction. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Cao KF, Chen Z, Shi Q, Wu YH, Lu Y, Mao Y, Chen XW, Li K, Xu Q, Hu HY. An insight to sequential ozone‑chlorine process for synergistic disinfection on reclaimed water: Experimental and modelling studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148563. [PMID: 34175603 DOI: 10.1016/j.scitotenv.2021.148563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Water reclamation plants (WRPs) are facing the challenges of ensuring microbial safety and require efficient disinfection systems. Sequential ozone‑chlorine disinfection is supposed to be a favorable alternative for reclaimed water disinfection. This study compared the inactivation efficiency of E.coli by single ozone, single chlorine, and sequential ozone‑chlorine disinfection approaches. Notably, a single ozone or chlorine process could only achieve a log removal rate of up to 5 log, whereas the sequential ozone‑chlorine disinfection could completely inactivate microorganisms (7.3 log). For sequential ozone‑chlorine disinfection, the efficiency of chlorination was improved by 2.4%-18.5%. The synergistic effect mainly attributed to the elimination of chlorine consuming substances by ozone. Through the chlorine decay model (CRS) fitting and calculating the integral CT value, the enhancement ability of ozone to chlorine disinfection was quantified. By introducing an enhancement coefficient (β), a succinct and accurate model was established to estimate the inactivation rate of sequential ozone‑chlorine disinfection (mean absolute percentage error: 0.035). The results and methodology of this study are informative to optimize the disinfection units of WRPs.
Collapse
Affiliation(s)
- Ke-Fan Cao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Qi Shi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yu Mao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Xiao-Wen Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Kuixiao Li
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, PR China
| | - Qi Xu
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou, 215163, PR China.
| |
Collapse
|
35
|
Wu QY, Yang ZW, Du Y, Ouyang WY, Wang WL. The promotions on radical formation and micropollutant degradation by the synergies between ozone and chemical reagents (synergistic ozonation): A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126327. [PMID: 34116271 DOI: 10.1016/j.jhazmat.2021.126327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The combination of ozone (O3) and chemical reagents (such as H2O2) shows synergies on the radical formation and micropollutant degradation. The promoting performance was associated with various parameters including chemical reagents, micropollutants, solution pH, and the water matrix. In this review, we summarized existing knowledge on radical formation pathways, radical yields, and radical oxidation for different synergistic ozonation processes in various water matrices (such as groundwater, surface water, and wastewater). The increase of radical yields by synergistic ozonation processes was positively related to the increase of O3-decay, with the increase being 1.1-4.4 folds than ozonation alone (0.2). Thus, synergistic ozonation can promote the degradation rate and efficiency of O3-resistant micropollutants (second order rate constant, kP,O3 < 200 M-1 s-1), but only slightly affects or even minorly inhibits the degradation of O3-reactive micropollutants (kP,O3 > 200 M-1 s-1). The water matrices, such as the dissolved organic matters, negatively suppressed the degradation of micropollutant by quenching O3-oxidation and radical oxidation (i.e. maximum promoting was decreased by 1.3 times), but may positively extend the promoting effects of synergistic ozonation to micropollutants that are more reactive to O3 (i.e. kP,O3 was extended from <200 to <2000 M-1 s-1). The formation of bromate would be increased through increasing radical oxidation by synergistic ozonation, but can be depressed by relative higher H2O2 as the reducing agent of HOBr/OBr- intermediate. The increase in bromate formation by O3/permononsulfate is a considerable concern due to permononsulfate cannot reduce the HOBr/OBr- intermediate.
Collapse
Affiliation(s)
- Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Zheng-Wei Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Ye Du
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Wan-Yue Ouyang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
36
|
Moreira NFF, Ribeirinho-Soares S, Viana AT, Graça CAL, Ribeiro ARL, Castelhano N, Egas C, Pereira MFR, Silva AMT, Nunes OC. Rethinking water treatment targets: Bacteria regrowth under unprovable conditions. WATER RESEARCH 2021; 201:117374. [PMID: 34214892 DOI: 10.1016/j.watres.2021.117374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Ozonation is among the currently used technologies to remove chemical and biological contaminants from secondary treated urban wastewater (UWW). Despite its effectiveness on the abatement of organic micropollutants (OMPs) and disinfection, previous studies have shown that regrow of bacteria may occur upon storage of the ozonated UWW. This reactivation has been attributed to the high content of assimilable organic carbon after treatment. In order to investigate if ozonation by-products are the main biological regrowth drivers in stored ozonated UWW, the ozonation surviving cells were resuspended in sterile bottled mineral water (MW), simulating a pristine oligotrophic environment. After 7 days storage, organisms such as Acinetobacter, Methylobacterium, Cupriavidus, Massilia, Acidovorax and Pseudomonas were dominant in both ozonated UWW and pristine MW, demonstrating that bacterial regrowth is not strictly related to the eventual presence of ozonation by-products, but instead with the ability of the surviving cells to cope with nutrient-poor environments. The resistome of UWW before and after ozonation was analysed by metagenomic techniques. Draft metagenome assembled genomes (dMAGs), recovered from both ozonated UWW and after cell resuspension in MW, harboured genes conferring resistance to diverse antibiotics classes. Some of these antibiotic resistance genes (ARGs) were located in the vicinity of mobile genetic elements, suggesting their potential to be mobilized. Among these, dMAGs affiliated to taxa with high relative abundance in stored water, such as P. aeruginosa and Acinetobacter spp., harboured ARGs conferring resistance to 12 and 4 families of antibiotics, respectively, including those encoding carbapenem hydrolysing oxacillinases. The results herein obtained point out that the design and development of new wastewater treatment technologies should include measures to attenuate the imbalance of the bacterial communities promoted by storage of the final treated wastewater, even when applying processes with high mineralization rates.
Collapse
Affiliation(s)
- Nuno F F Moreira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Teresa Viana
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia A L Graça
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Rita L Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nadine Castelhano
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Conceição Egas
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| | - M Fernando R Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
37
|
Gulde R, Rutsch M, Clerc B, Schollée JE, von Gunten U, McArdell CS. Formation of transformation products during ozonation of secondary wastewater effluent and their fate in post-treatment: From laboratory- to full-scale. WATER RESEARCH 2021; 200:117200. [PMID: 34051461 DOI: 10.1016/j.watres.2021.117200] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Ozonation is increasingly applied in water and wastewater treatment for the abatement of micropollutants (MPs). However, the transformation products formed during ozonation (OTPs) and their fate in biological or sorptive post-treatments is largely unknown. In this project, a high-throughput approach, combining laboratory ozonation experiments and detection by liquid chromatography high-resolution mass spectrometry (LC-HR-MS/MS), was developed and applied to identify OTPs formed during ozonation of wastewater effluent for a large number of relevant MPs (total 87). For the laboratory ozonation experiments, a simplified experimental solution, consisting of surrogate organic matter (methanol and acetate), was created, which produced ozonation conditions similar to realistic conditions in terms of ozone and hydroxyl radical exposures. The 87 selected parent MPs were divided into 19 mixtures, which enabled the identification of OTPs with an optimized number of experiments. The following two approaches were considered to identify OTPs. (1) A screening of LC-HR-MS signal formation in these experiments was performed and revealed a list of 1749 potential OTP candidate signals associated to 70 parent MPs. This list can be used in future suspect screening studies. (2) A screening was performed for signals that were formed in both batch experiments and in samples of wastewater treatment plants (WWTPs). This second approach was ultimately more time-efficient and was applied to four different WWTPs with ozonation (specific ozone doses in the range 0.23-0.55 gO3/gDOC), leading to the identification of 84 relevant OTPs of 40 parent MPs in wastewater effluent. Chemical structures could be proposed for 83 OTPs through the interpretation of MS/MS spectra and expert knowledge in ozone chemistry. Forty-eight OTPs (58%) have not been reported previously. The fate of the verified OTPs was studied in different post-treatment steps. During sand filtration, 87-89% of the OTPs were stable. In granular activated carbon (GAC) filters, OTPs were abated with decreasing efficiency with increasing run times of the filters. For example, in a GAC filter with 16,000 bed volumes, 53% of the OTPs were abated, while in a GAC filter with 35,000 bed volumes, 40% of the OTPs were abated. The highest abatement (87% of OTPs) was observed when 13 mg/L powdered activated carbon (PAC) was dosed onto a sand filter.
Collapse
Affiliation(s)
- Rebekka Gulde
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Moreno Rutsch
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Baptiste Clerc
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Jennifer E Schollée
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, CH-8092 Zurich, Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland.
| |
Collapse
|
38
|
Alameddine M, Siraki A, Tonoyan L, Gamal El-Din M. Treatment of a mixture of pharmaceuticals, herbicides and perfluorinated compounds by powdered activated carbon and ozone: Synergy, catalysis and insights into non-free OH contingent mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146138. [PMID: 33689896 DOI: 10.1016/j.scitotenv.2021.146138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Powdered activated carbon (PAC) is a strong adsorbent also capable of catalyzing ozonation processes. Ozone (O3) and PAC were simultaneously applied to treat a mixture of 17 micropollutants (MPs) at low concentrations, including 13 compounds that were studied for the first time by simultaneous addition of O3 and PAC system. Synergy and catalysis improved the removals and specific degradation rates of MPs in the first minute of the treatment. Radical probing experiments showed that scavenging hydroxyl radicals (OH) did not have a significant impact on the removals, while scavenging other reactive oxygen species was more influential. A detailed study by electron paramagnetic resonance spectroscopy ascertained that the decomposition of ozone in presence of PAC at neutral pH did not boost the generation of free OH. Instead, adsorbed OH was likely produced as PAC-HO along with other oxidizing species resulting from adsorbed singlet oxygen and superoxide radicals.
Collapse
Affiliation(s)
- Mirna Alameddine
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences(,) University of Alberta, Edmonton, Alberta T6G 2H5, Canada
| | - Lusine Tonoyan
- Faculty of Pharmacy and Pharmaceutical Sciences(,) University of Alberta, Edmonton, Alberta T6G 2H5, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
39
|
Lee H, Im SJ, Kim Y, Lee G, Jang A. Effects of microplastics on the removal of trace organic compounds during ozonation: Oxidation and adsorption of trace organic compounds and byproducts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116878. [PMID: 33774543 DOI: 10.1016/j.envpol.2021.116878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Trace organic compounds (TOrCs) and microplastics (MPs) have been recognized as emerging pollutants that cause severe water pollution related problems due to their non-degradable and bio-accumulative nature. Many studies on oxidation processes such as ozone have been conducted to efficiently remove TOrCs in water treatment. However, there has been a lack of research on the removal efficiency of TOrCs in the oxidation process when they co-exist with MPs and form transformation byproducts (TBPs) during this process. This study evaluates the effects of MPs on TOrC removal during ozonation at various ozone concentrations and based on the mass of MP particles in distilled water. The adsorption of TBPs and TOrCs was also evaluated using the Freundlich and Langmuir isotherm equations. The toxicity of these compounds was evaluated to confirm the risk to aquatic ecosystems. The results show that triclosan (TCS) had the highest absorption capacity amongst the TOrCs and TBPs tested. Polyvinylchloride exhibited the highest adsorption efficiency compared with polyethylene and polyethyleneterephthalate (TCS 0.341 mg/g) due to its high adsorption capacity and hydrophobicity. In the toxicity test, 2,4-dichlorophenol and 4-chloroaniline as TBPs had a relatively higher toxicity to Vibrio fischeri (a marine bacterial species) than Daphnia magna (a freshwater plankton species).
Collapse
Affiliation(s)
- Hyeonho Lee
- Graduate School of Water Resources, Sungkyunkwan UniversitySKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Sung-Ju Im
- Graduate School of Water Resources, Sungkyunkwan UniversitySKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Yoogon Kim
- Korea Institute of Industrial Technology, 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan, Chungcheongnam-do, 31056, Republic of Korea.
| | - Gwanghee Lee
- Haesung Engineering Inc., Heungdeok IT Valley B-709, 13, Heungdeok 1-ro, Giheung-gu, Yongin, Gyeonggi-do, 16954, Republic of Korea.
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan UniversitySKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
40
|
Abstract
Micropollutants and emerging substances pose a serious problem to environmental sustainability and remediation, due to their widespread use and applications in everyday life. This group of chemicals is diverse but with common toxic and harmful properties. Their concentration in the environment is often very low; however, due to their recalcitrant nature, they are persistent in air, water, and soil. From an engineering point of view, the challenge is not straightforward. It is difficult to remove these contaminants from complex mixtures of substances by conventional methods used in wastewater and drinking water treatment. Ozonation and ozone-based AOPs are accepted processes of degradation of resistant substances or at least enhancement of their biodegradability. The aim of this review paper is to present research trends aimed at solving problems in the research and application of ozone-based processes in the removal of micropollutants from wastewater, thus preventing leakage of harmful substances into surface water, soil, and groundwater and facilitating the reuse of wastewater. Priority substances, micropollutants and emerging pollutants, as well as processes and technologies for their transformation and elimination, are briefly specified. Results obtained by the authors in solving research projects that were aimed at eliminating selected micropollutants by ozonation and ozone-based AOPs are also presented. This review focuses on selected alkylphenols, petroleum substances, and organochlorine pesticides.
Collapse
|
41
|
Alameddine M, How ZT, Gamal El-Din M. Advancing the treatment of primary influent and effluent wastewater during wet weather flow by single versus powdered activated carbon-catalyzed ozonation for the removal of trace organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144679. [PMID: 33517010 DOI: 10.1016/j.scitotenv.2020.144679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
For the first time, single and PAC-catalyzed ozonation were explored for the wastewater treatment during wet weather flow in a prompt and efficient process. The effect of varying the ozone (O3) specific dose on the removal of micropollutants (MPs) was first investigated with a mixture of pharmaceuticals, herbicides and perfluorinated compounds in clean water. Most MPs showed higher affinity towards catalytic ozonation. Carbamazepine and Atrazine were found to be good surrogates for fast and slow reacting compounds, respectively. Applying single or PAC-catalyzed ozonation for 1 min only after coagulation was more efficient than applying them simultaneously. PAC-catalyzed ozonation was more efficient for the removal of organics and O3-resistant MPs. Both single and PAC-catalyzed ozonation achieved 4 log removal of E. coli, reduced the acute and genetic toxicity, and estrogenic activity of the wastewater. A detailed cost analysis revealed that applying single ozonation after coagulation costs between 0.06 and 0.32 $/m3 while applying PAC-catalyzed ozonation costs between 0.32 and 0.63 $/m3 for a flow rate between 100 and 600 MLD. Through a comprehensive performance assessment, PAC-catalyzed ozonation was deemed superior with one drawback related to the disposal of PAC.
Collapse
Affiliation(s)
- Mirna Alameddine
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zuo Tong How
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
42
|
Seiwert B, Nihemaiti M, Bauer C, Muschket M, Sauter D, Gnirss R, Reemtsma T. Ozonation products from trace organic chemicals in municipal wastewater and from metformin: peering through the keyhole with supercritical fluid chromatography-mass spectrometry. WATER RESEARCH 2021; 196:117024. [PMID: 33756112 DOI: 10.1016/j.watres.2021.117024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/11/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Ozonation is an important process to further reduce the trace organic chemicals (TrOCs) in treated municipal wastewater before discharge into surface waters, and is expected to form products that are more oxidized and more polar than their parent compounds. Many of these ozonation products (OPs) are biodegradable and thus removed by post-treatment (e.g., aldehydes). Most studies on OPs of TrOCs in wastewater rely on reversed-phase liquid chromatography- mass spectrometry (RPLC-MS), which is not suited for highly polar analytes. In this study, supercritical fluid chromatography combined with high resolution MS (SFC-HRMS) was applied in comparison to the generic RPLC-HRMS to search for OPs in ozonated wastewater treatment plant effluent at pilot-scale. While comparable results were obtained from these two techniques during suspect screenings for known OPs, a total of 23 OPs were only observed by SFC-HRMS via non-targeted screening. Several SFC-only OPs were proposed as the derivatives of methoxymethylmelamines, phenolic sulfates/sulfonates, and metformin; the latter was confirmed by laboratory-scale ozonation experiments. A complete ozonation pathway of metformin, a widespread and extremely hydrophilic TrOC in aquatic environment, was elaborated based on SFC-HRMS analysis. Five of the 10 metformin OPs are reported for the first time in this study. Three different dual-media filters were compared as post-treatments, and a combination of sand/anthracite and fresh post-granular activated carbon proved most effective in OPs removal due to the additional adsorption capacity. However, six SFC-only OPs, two of which originating from metformin, appeared to be persistent during all post-treatments, raising concerns on their occurrence in drinking water sources impacted by wastewater.
Collapse
Affiliation(s)
- Bettina Seiwert
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Maolida Nihemaiti
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Coretta Bauer
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Matthias Muschket
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Daniel Sauter
- Berliner Wasserbetriebe, Neue Juedenstr. 1, 10179 Berlin, Germany
| | - Regina Gnirss
- Berliner Wasserbetriebe, Neue Juedenstr. 1, 10179 Berlin, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany; University of Leipzig, Institute for Analytical Chemistry, Linnéstrasse 3, 04103 Leipzig, Germany.
| |
Collapse
|
43
|
Chen L, Fu W, Tan Y, Zhang X. Emerging organic contaminants and odorous compounds in secondary effluent wastewater: Identification and advanced treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124817. [PMID: 33370690 DOI: 10.1016/j.jhazmat.2020.124817] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
This study aims to address organic micropollutants in secondary effluents from municipal wastewater treatment plants (WWTPs) by first identification of micropollutants in different treatment units, and second by evaluating an advanced treatment process for removals of micropollutants. In secondary effluents, 28 types of pharmaceutical and personal care products (PPCPs), 5 types of endocrine disrupting chemicals (EDCs) and 3 types of odorous compounds are detected with total concentrations of 513 ± 57.8 ng/L, 991 ± 36.5 ng/L, 553 ± 48.3 ng/L, respectively. An integrated process consisting of in-situ ozonation, ceramic membrane filtration (CMF) and biological active carbon (BAC) filtration is investigated in a pilot scale (1000 m3/d) for removal of micropollutants in secondary effluents. The total removal efficiencies of PPCPs, EDCs and odorous compounds are 98.5%, 95.4%, and 91.1%, respectively. Removal mechanisms of emerging organic contaminants (EOCs) and odorous compounds are discussed based on their physicochemical properties. The remarkable removal efficiencies of micropollutants by the pilot system is attributed to synergistic effects of combining ozonation, ceramic membrane filtration and BAC filtration. This study provides a cost-effective and robust technology with the capability of treating secondary effluents for reuse applications.
Collapse
Affiliation(s)
- Li Chen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Wanyi Fu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China.
| | - Yu Tan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Xihui Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
44
|
Pereira D, Rocha LS, Gil MV, Otero M, Silva NJO, Esteves VI, Calisto V. In situ functionalization of a cellulosic-based activated carbon with magnetic iron oxides for the removal of carbamazepine from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18314-18327. [PMID: 32474779 DOI: 10.1007/s11356-020-09314-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The main goal of this work was to produce an easily recoverable waste-based magnetic activated carbon (MAC) for an efficient removal of the antiepileptic pharmaceutical carbamazepine (CBZ) from wastewater. For this purpose, the synthesis procedure was optimized and a material (MAC4) providing immediate recuperation from solution, remarkable adsorptive performance and relevant properties (specific surface area of 551 m2 g-1 and saturation magnetization of 39.84 emu g-1) was selected for further CBZ kinetic and equilibrium adsorption studies. MAC4 presented fast CBZ adsorption rates and short equilibrium times (< 30-45 min) in both ultrapure water and wastewater. Equilibrium studies showed that MAC4 attained maximum adsorption capacities (qm) of 68 ± 4 mg g-1 in ultrapure water and 60 ± 3 mg g-1 in wastewater, suggesting no significant interference of the aqueous matrix in the adsorption process. Overall, this work provides evidence of potential application of a waste-based MAC in the tertiary treatment of wastewaters. Graphical abstract.
Collapse
Affiliation(s)
- Diogo Pereira
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Luciana S Rocha
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - María V Gil
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain
| | - Marta Otero
- Department of Environment and Planning & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Nuno J O Silva
- Department of Physics & CICECO, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
45
|
Kharel S, Stapf M, Miehe U, Ekblad M, Cimbritz M, Falås P, Nilsson J, Sehlén R, Bregendahl J, Bester K. Removal of pharmaceutical metabolites in wastewater ozonation including their fate in different post-treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143989. [PMID: 33321442 DOI: 10.1016/j.scitotenv.2020.143989] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Advanced treatment technologies for the removal of pharmaceuticals and other organic micropollutants in WWTPs primarily target the removal of parent compounds. Nevertheless, the removal of metabolites originating from human- or microbial metabolism during biological treatment needs comparable consideration, as some of them might be present in high concentrations and contribute to toxicity. This study was conducted to elucidate the removal of human and microbial metabolites of pharmaceuticals as a function of the specific ozone dose. Ozonation was performed on four sites with two pilot- and two full-scale plants operated downstream of conventional activated sludge plants. The ozone reactivity of all metabolites (expressed as the ozone dose to remove 90% of the compound/decadic ozone dose) was lower than those of their parent compounds. The decadic ozone dose was 1.0, 1.3 and 1.1 mg O3/mg DOC for Epoxy-carbamazepine, Di-OH-carbamazepine and N-Desmethyl tramadol, respectively. 20-40% of the remaining metabolites were removed in a polishing sand/BAC-filter (biological activated carbon). Similar removal was observed for Epoxy-carbamazepine, Di-OH-carbamazepine and Hydroxy-diclofenac in a constructed wetland. However, the sand/anthracite filter had no effect. All four metabolites were removed in a GAC (granulated activated carbon) filter.
Collapse
Affiliation(s)
- Suman Kharel
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Michael Stapf
- Berlin Centre of Competence for Water (KWB), Cicerostr. 24, 10709 Berlin, Germany
| | - Ulf Miehe
- Berlin Centre of Competence for Water (KWB), Cicerostr. 24, 10709 Berlin, Germany
| | - Maja Ekblad
- Department of Chemical Engineering, Lund University, P O Box 124, SE-221 00 Lund, Sweden
| | - Michael Cimbritz
- Department of Chemical Engineering, Lund University, P O Box 124, SE-221 00 Lund, Sweden
| | - Per Falås
- Department of Chemical Engineering, Lund University, P O Box 124, SE-221 00 Lund, Sweden
| | - Josefine Nilsson
- Tekniska verken i Linköping AB (publ), Brogatan 1, Box 1500, 58115 Linköping, Sweden
| | - Robert Sehlén
- Tekniska verken i Linköping AB (publ), Brogatan 1, Box 1500, 58115 Linköping, Sweden
| | - Jeppe Bregendahl
- Kalundborg Forsyning A/S, Dokhavnsvej 15, 4400 Kalundborg, Denmark
| | - Kai Bester
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
46
|
Wang H, Sun L, Yan K, Wang J, Wang C, Yu G, Wang Y. Effects of coagulation-sedimentation-filtration pretreatment on micropollutant abatement by the electro-peroxone process. CHEMOSPHERE 2021; 266:129230. [PMID: 33316471 DOI: 10.1016/j.chemosphere.2020.129230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/22/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The electro-peroxone (EP) process has been considered an attractive alternative to conventional ozonation for micropollutant abatement in water treatment. However, how to integrate the EP process into the water treatment trains in water utilities has yet to be investigated. This study compared micropollutant abatement during the EP treatment of potable source water with and without pretreatment of biological oxidation, flocculation, sedimentation, and filtration. Results show that this pretreatment train removed 39% of dissolved organic carbon (DOC) and 28% of the UV254 absorbance of the raw water, leading to higher ozone (O3) stability in the treated water. By electrochemically generating hydrogen peroxide to accelerate O3 decomposition to hydroxyl radicals (•OH), the EP process considerably shortened the time required for ozone depletion and micropollutant abatement during the treatment of both the raw and pretreated water to ∼1 min, compared to ∼3 and 7.5 min during conventional ozonation of the raw and treated water, respectively. For the same specific ozone dose of 1 mg O3 mg-1 DOC (corresponding to 4.3 and 2.8 mg O3 L-1 for the raw and treated water, respectively), the abatement efficiencies of micropollutants with moderate and low ozone reactivity were increased by ∼10-15%, while the energy consumption for micropollutant abatement was decreased by ∼24-56% during the EP treatment of the treated water than the raw water. These results indicate that partial removal of DOC and ammonia from the raw water by the pretreatment train has a beneficial effect on enhancing micropollutant abatement and reducing energy consumption of the EP process. Therefore, it is more cost-effective to integrate the EP process after the pretreatment train in water utilities for micropollutant abatement.
Collapse
Affiliation(s)
- Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510006, China
| | - Linzhao Sun
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Kai Yan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510006, China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
47
|
Shi Q, Chen Z, Liu H, Lu Y, Li K, Shi Y, Mao Y, Hu HY. Efficient synergistic disinfection by ozone, ultraviolet irradiation and chlorine in secondary effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143641. [PMID: 33261863 DOI: 10.1016/j.scitotenv.2020.143641] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 05/03/2023]
Abstract
Disinfection of secondary effluents is vital to provide a sustainable aquatic environment, minimize microbial risks and guarantee public and environmental safety. This study investigated the effectiveness of six treatment trains including single and combined disinfection processes (i.e., ozone alone, ultraviolet (UV) irradiation alone, chlorine alone, sequential ozone-UV, sequential ozone-chlorine and sequential ozone-UV-chlorine) on bacterial inactivation, as well as bulk water quality parameters such as color, turbidity, absorbance at 254 nm (UV254), dissolved organic carbon (DOC) and fluorescence based on samples collected from an actual water reclamation plant (WRP). For the single disinfection processes, when the ozone, UV and chlorine doses reached 5 mg/L, 15 mJ/cm2 and 4 mg/L, respectively, the log removal of Escherichia coli (E. coli) reached 5 log. A trailing phenomenon was observed with further increases in the disinfectant dosage. Under the combined treatment scenarios, ozone pretreatment resulted in substantial removal of color, turbidity, UV254, fluorescence excitation-emission matrix (FEEM) and chlorine consuming organics, thus enhancing the efficiency of subsequent UV irradiation or chlorine treatments. In the sequential ozone-UV-chlorine experiments, E. coli inactivation reached 7 log with ozone, UV and available chlorine of 3 mg/L, 5 or 10 mJ/cm2 and 2.5 mg/L, respectively. On the basis of the results from the actual WRP, the estimated operating cost per unit for the disinfection systems is 0.065 CNY/t, which is economical for long-term operation.
Collapse
Affiliation(s)
- Qi Shi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Hai Liu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, PR China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Kuixiao Li
- Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, PR China
| | - Yulong Shi
- Research and Development Center, Beijing Drainage Group Co., Ltd, Beijing 100124, PR China
| | - Yu Mao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| |
Collapse
|
48
|
Chassaing FJ, Mahmudov R, Metcalfe CD, Yargeau V. Changes to levels of microcontaminants and biological responses in rainbow trout exposed to extracts from wastewater treated by catalytic ozonation. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124110. [PMID: 33049625 DOI: 10.1016/j.jhazmat.2020.124110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Two separate pilot-scale studies were performed at two wastewater treatment plants comparing conventional ozonation and catalytic ozonation with an alumina-based catalyst supplied by BASF. The results of the first pilot study showed that catalytic ozonation achieved the same degree of disinfection as conventional ozonation with 30% lower applied ozone dose and enhanced the removal of several contaminants of emerging concern (CECs). The second pilot study conducted over 6 months of operation with the same batch of catalyst showed sustained enhanced removal of CECs relative to ozonation alone. The removals of CECs by catalytic ozonation was particularly effective for compounds with low reaction rates with ozone, indicating reactions with hydroxyl radicals formed in the presence of the catalyst. Analysis of plasma vitellogenin and total glutathione in liver tissues of juvenile rainbow trout (Oncorhynchus mykiss) injected with wastewater extracts indicated that catalytic ozonation removed the estrogenic activity and modulated oxidative stress caused by exposure to the organic compounds in wastewater extracts. Analysis of other biomarker responses indicated that no transformation products were formed that can cause lipid damage in the liver or affect levels of a brain neurotransmitter (i.e. serotonin). Catalytic ozonation is a promising technology to increase the efficiency of ozone treatment of municipal wastewater and to meet increasingly more stringent regulations for effluent quality.
Collapse
Affiliation(s)
| | | | - Chris D Metcalfe
- School of the Environment, Trent University, Peterborough, ON, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
49
|
Edefell E, Falås P, Kharel S, Hagman M, Christensson M, Cimbritz M, Bester K. MBBRs as post-treatment to ozonation: Degradation of transformation products and ozone-resistant micropollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142103. [PMID: 32920394 DOI: 10.1016/j.scitotenv.2020.142103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/14/2020] [Accepted: 08/29/2020] [Indexed: 05/12/2023]
Abstract
The degradation potential of micropollutants and transformation products in biological post-treatment after ozonation is partly unknown. A pilot plant with ozonation and subsequent biological treatment in a moving bed biofilm reactor (MBBR) was thus operated over 16 months to investigate the removal of micropollutants and the formation and removal of N-oxide transformation products. Lab-scale kinetic experiments were performed in parallel. At a moderate ozone dose of 0.5 g O3 g-1 DOC, further degradation of gabapentin and 3 iodinated contrast media (iomeprol, iopamidol, and iohexol) could be induced by the biofilm at prolonged exposure times. To facilitate comparison of feeding regimens in biofilm systems a new surface-related degradation rate constant was introduced. The availability of substrates in the pilot MBBR influenced the micropollutant degradation kinetics with increasing and decreasing degradation rates. N-oxides from erythromycin, clarithromycin, tramadol, and venlafaxine were formed during ozonation and could not be degraded by the biofilm.
Collapse
Affiliation(s)
- Ellen Edefell
- Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, 223 70 Lund, Sweden; Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden.
| | - Per Falås
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Suman Kharel
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Marinette Hagman
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Magnus Christensson
- Veolia Water Technologies AB, AnoxKaldnes, Klosterängsvägen 11A, 226 47 Lund, Sweden
| | - Michael Cimbritz
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
50
|
Nunes OC. The challenge of removing waste from wastewater: let technology use nature! Microb Biotechnol 2021; 14:63-67. [PMID: 33222423 PMCID: PMC7888456 DOI: 10.1111/1751-7915.13711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/28/2022] Open
Abstract
Tertiary treatments capable of removing chemical and biological contaminants of emerging concern have been successfully developed and implemented at full scale, opening the possibility of using wastewater treatment plants as recycling units, capable of producing wastewater that can be reused in various activities, such as agriculture irrigation; However, tertiary treatments remove only part of the wastewater microbiota, leaving the opportunity for regrowth and/or reactivation of potentially hazardous microorganisms, facilitated by the poor competition among the surviving microorganisms; Under the motto 'added by technology, lead by nature', the treatment and storage of treated wastewater must find the balance to develop a protection shield against the impoverishment the microbial quality and the development of potentially hazardous bacteria.
Collapse
Affiliation(s)
- Olga C. Nunes
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and EnergyFaculdade de EngenhariaUniversidade do PortoRua Dr. Roberto FriasPorto4200‐465Portugal
| |
Collapse
|