1
|
Bethke K, Kwidzińska K, Caban M. Investigation of pharmaceutical bioaccumulation in Daphnia sp. living in a wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174915. [PMID: 39134262 DOI: 10.1016/j.scitotenv.2024.174915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used pharmaceuticals. Their presence in natural waters is due to the low removal efficiency in conventional wastewater treatment plants (WWTPs). Interestingly, certain zooplankton species can survive the mixture of pollution and abnormal water conditions in WWTPs. In our study, for the first time, we tested the in-situ bioaccumulation of NSAIDs and their metabolites in Daphnia pulex, which were obtained in high numbers in one WWTP during the summer. It was found that diclofenac (DCF) and 4-hydroxy DCF were present in the studied clarifiers and ponds. Among these chemicals, only DCF was detected in daphnia. The bioaccumulation factor of DCF in daphnia was below 36 L kg-1ww and was lower than those obtained under experimental conditions for Daphnia magna. The tested daphnia adapted to chronic exposure to mixtures of drugs in μg L-1 level and could be implemented in biobased WWTPs. According to our data, there is a need to supplement the risk assessment of anthropogenic pollutants with in-situ cases to demonstrate the adaptation possibilities of wild-living organisms.
Collapse
Affiliation(s)
- Katarzyna Bethke
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Klaudia Kwidzińska
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
2
|
Kotowska U, Piekutin J, Polińska W, Kotowski A. Removal of contaminants of emerging concern by Wolffia arrhiza and Lemna minor depending on the process conditions, pollutants concentration, and matrix type. Sci Rep 2024; 14:15898. [PMID: 38987638 PMCID: PMC11237155 DOI: 10.1038/s41598-024-66962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Research was carried out on the removal of a group of six contaminants of emerging concern: bisphenol A, N,N-diethyl-m-toluamide, diethylstilbestrol, triclosan, estrone and estradiol from the water matrix during contact with small floating macrophytes Wolffia arrhiza and Lemna minor. The optimal conditions for the process, such as pH, light exposure per day, and plant mass, were determined using the design of experiments chemometric approach based on central composite design. Experiments conducted under the designated optimal conditions showed that after 7 days, the removal efficiency equals 88-98% in the case of W. arrhiza and 87-97% in the case of L. minor, while after 14 days of the experiment, these values are 93-99.6% and 89-98%, respectively. The primary mechanism responsible for removing CECs is the plant uptake, with the mean uptake rate constant equal to 0.299 day-1 and 0.277 day-1 for W. arrhiza and L. minor, respectively. Experiments conducted using municipal wastewater as a sample matrix showed that the treatment efficiency remains high (the average values 84% and 75%; in the case of raw wastewater, 93% and 89%, and in the case of treated wastewater, for W. arrhiza and L. minor, respectively). Landfill leachate significantly reduces plants' ability to remove pollutants (the average removal efficiency equals 59% and 56%, for W. arrhiza and L. minor, respectively).
Collapse
Affiliation(s)
- Urszula Kotowska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K Str., 15-245, Bialystok, Poland.
| | - Janina Piekutin
- Department of Environmental Engineering Technology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E, 15-351, Bialystok, Poland
| | - Weronika Polińska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciolkowskiego 1K Str., 15-245, Bialystok, Poland
| | - Adam Kotowski
- Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351, Bialystok, Poland
| |
Collapse
|
3
|
Gidstedt S, Betsholtz A, Cimbritz M, Davidsson Å, Hagman M, Karlsson S, Takman M, Svahn O, Micolucci F. Chemically enhanced primary treatment, microsieving, direct membrane filtration and GAC filtration of municipal wastewater: a pilot-scale study. ENVIRONMENTAL TECHNOLOGY 2024; 45:28-39. [PMID: 35815380 DOI: 10.1080/09593330.2022.2099307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Chemically enhanced primary treatment (CEPT) followed by microsieving and direct membrane filtration (DMF) as ultrafiltration, was evaluated on pilot scale at a municipal wastewater treatment plant. In addition, a granular activated carbon (GAC) filter downstream of DMF was evaluated for the removal of organic micropollutants. Up to 80% of the total organic carbon (TOC) and 96% of the total phosphorus were removed by CEPT with microsieving. The additional contribution of subsequent DMF was minor, and only five days of downstream GAC filtration was possible due to fouling of the membrane. Of the 21 organic micropollutants analysed, all were removed (≥ 98%) by the GAC filter until 440 bed volumes, while CEPT with microsieving and DMF removed only a few compounds. Measurements of the oxygen uptake rate indicated that the required aeration for supplementary biological treatment downstream of CEPT with microsieving, both with and without subsequent DMF, was 20-25% of that in the influent wastewater. This study demonstrated the potential of using compact physicochemical processes to treat municipal wastewater, including the removal of organic micropollutants.
Collapse
Affiliation(s)
- Simon Gidstedt
- Department of Chemical Engineering, Lund University, Lund, Sweden
- Sweden Water Research AB, Ideon Science Park, Lund, Sweden
| | | | - Michael Cimbritz
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Åsa Davidsson
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Marinette Hagman
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Stina Karlsson
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Maria Takman
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Ola Svahn
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | | |
Collapse
|
4
|
Muñoz-Vega E, Schulz S, Rodriguez-Escales P, Behle V, Spada L, Vogel AL, Sanchez-Vila X, Schüth C. Role of Soil Biofilms in Clogging and Fate of Pharmaceuticals: A Laboratory-Scale Column Experiment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12398-12410. [PMID: 37558209 PMCID: PMC10448752 DOI: 10.1021/acs.est.3c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Contamination of groundwater with pharmaceutical active compounds (PhACs) increased over the last decades. Potential pathways of PhACs to groundwater include techniques such as irrigation, managed aquifer recharge, or bank filtration as well as natural processes such as losing streams of PhACs-loaded source waters. Usually, these systems are characterized by redox-active zones, where microorganisms grow and become immobilized by the formation of biofilms, structures that colonize the pore space and decrease the infiltration capacities, a phenomenon known as bioclogging. The goal of this work is to gain a deeper understanding of the influence of soil biofilms on hydraulic conductivity reduction and the fate of PhACs in the subsurface. For this purpose, we selected three PhACs with different physicochemical properties (carbamazepine, diclofenac, and metoprolol) and performed batch and column experiments using a natural soil, as it is and with the organic matter removed, under different biological conditions. We observed enhanced sorption and biodegradation for all PhACs in the system with higher biological activity. Bioclogging was more prevalent in the absence of organic matter. Our results differ from works using artificial porous media and thus reveal the importance of utilizing natural soils with organic matter in studies designed to assess the role of soil biofilms in bioclogging and the fate of PhACs in soils.
Collapse
Affiliation(s)
- Edinsson Muñoz-Vega
- Institute
of Applied Geosciences, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Stephan Schulz
- Institute
of Applied Geosciences, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Paula Rodriguez-Escales
- Department
of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain
- Hydrogeology
Group (UPC−CSIC), Barcelona 08034, Spain
| | - Vera Behle
- Department
of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain
| | - Lucas Spada
- Institute
for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, Frankfurt
am Main 60438, Germany
| | - Alexander L. Vogel
- Institute
for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, Frankfurt
am Main 60438, Germany
| | - Xavier Sanchez-Vila
- Department
of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain
- Hydrogeology
Group (UPC−CSIC), Barcelona 08034, Spain
| | - Christoph Schüth
- Institute
of Applied Geosciences, Technische Universität
Darmstadt, Darmstadt 64287, Germany
- Water
Resources Management Division, IWW Water
Centre, Mülheim
an der Ruhr 45476, Germany
| |
Collapse
|
5
|
Kumar R, Whelan A, Cannon P, Sheehan M, Reeves L, Antunes E. Occurrence of emerging contaminants in biosolids in northern Queensland, Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121786. [PMID: 37156436 DOI: 10.1016/j.envpol.2023.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
This study aims to identify and quantify different classes of emerging contaminants (ECs), such as pharmaceutical and personal care products (PPCPs), per-and polyfluoroalkyl substances (PFAS), heavy metals (HMs), polycyclic musks (PMs) in biosolids from different sewage treatment plants (STPs) from regional councils across Northern Queensland, Australia. Biosolids samples were named BS1 to BS7 for each council. The results revealed significant variations in the concentrations of different ECs in biosolids which could be explained in some instances by the characteristics of the upstream sewage network. For instance, BS4-biosolids from a small agricultural shire (largely sugarcane) showed the highest concentration of zinc and copper, which were 2430 and 1050 mg/kg, respectively. Among PPCPs, the concentration of ciprofloxacin was found to be the highest in BS3 and BS5, two large regional council areas which are a mix of domestic and industrial (predominantly domestic) biosolids of 1010 and 1590 ng/g, respectively. In addition, the quantity of sertraline was consistently high in all biosolids except from BS7, one of the smaller regional councils, which is indicative of the domestic catchments attached. PFAS compounds were detected in all biosolids samples except in BS6, one of the small (agricultural and tourist) catchments. Two PFAS compounds emerged as the most common pollutants that were perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). The largest industrial catchment biosolids, BS2 showed the highest concentration of PFOS at 253 ng/g, while the smallest regional council, BS7 showed the maximum concentration of 7.90 ng/g of PFOA. Overall, this study concludes that certain ECs such as HMs, antibiotics, PFOS and PFOA in biosolids may pose high environmental risks.
Collapse
Affiliation(s)
- Ravinder Kumar
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Anna Whelan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia; Townsville City Council, Wastewater Operations, Townsville, QLD, 4810, Australia
| | | | - Madoc Sheehan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Louise Reeves
- Queensland Water Directorate, Brisbane, QLD, 4009, Australia
| | - Elsa Antunes
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
6
|
Huang B, Zhao Q, Sun C, Zhu L, Zhang H, Zhang Y, Liu C, Li F. Trace Analysis of Gases and Liquids with Spontaneous Raman Scattering Based on the Integrating Sphere Principle. Anal Chem 2022; 94:13311-13314. [PMID: 36154009 DOI: 10.1021/acs.analchem.2c03701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spontaneous Raman scattering is an attractive optical technique for the analysis of gases and liquids; however, their low densities and notoriously weak scattering cross sections demand an enhancement of the spontaneous Raman scattering signal for detection. Here, we have developed a simple but highly effective and fast technique to enhance the signal of spontaneous Raman scattering from gases and liquids. The technique is developed based on the principle of an integrating sphere, which realizes the multiple pass actions of low-energy pump light and the collection of all Raman scattered light for a sample volume of 2 mL. By measuring the ambient air sample with an exposure time of 180 s, we found the experimental detection limit of our spontaneous Raman scattering setup can reach 3 ppm. CH4 (<2 ppm) in air can be also examined by increasing the exposure time to 300 s. The performance of our setup used for the analysis of trace gases is further illustrated by characterizing ethane, propane, butane, and pentane in methane as well as isotopes of carbon dioxide. The results reveal that the detection limit of our setup for liquids can be improved by nearly 4 orders of magnitude compared to that of confocal Raman scattering spectroscopy with the same experimental conditions.
Collapse
Affiliation(s)
- Baokun Huang
- School of Science, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiannan Zhao
- School of Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chenglin Sun
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Lin Zhu
- School of Science, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hong Zhang
- School of Science, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yunhong Zhang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Cunming Liu
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Fabing Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Mahlangu OT, Motsa MM, Nkambule TI, Mamba BB. Rejection of trace organic compounds by membrane processes: mechanisms, challenges, and opportunities. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This work critically reviews the application of various membrane separation processes (MSPs) in treating water polluted with trace organic compounds (TOrCs) paying attention to nanofiltration (NF), reverse osmosis (RO), membrane bioreactor (MBR), forward osmosis (FO), and membrane distillation (MD). Furthermore, the focus is on loopholes that exist when investigating mechanisms through which membranes reject/retain TOrCs, with the emphasis on the characteristics of the model TOrCs which would facilitate the identification of all the potential mechanisms of rejection. An explanation is also given as to why it is important to investigate rejection using real water samples, especially when aiming for industrial application of membranes with novel materials. MSPs such as NF and RO are prone to fouling which often leads to lower permeate flux and solute rejection, presumably due to cake-enhanced concentration polarisation (CECP) effects. This review demonstrates why CECP effects are not always the reason behind the observed decline in the rejection of TOrCs by fouled membranes. To mitigate for fouling, researchers have often modified the membrane surfaces by incorporating nanoparticles. This review also attempts to explain why nano-engineered membranes have not seen a breakthrough at industrial scale. Finally, insight is provided into the possibility of harnessing solar and wind energy to drive energy intensive MSPs. Focus is also paid into how low-grade energy could be stored and applied to recover diluted draw solutions in FO mode.
Collapse
Affiliation(s)
- Oranso T. Mahlangu
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Machawe M. Motsa
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Thabo I. Nkambule
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| | - Bhekie B. Mamba
- College of Engineering, Science and Technology, Institute for Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus , Roodepoort 1709 , South Africa
| |
Collapse
|
8
|
Kumar M, Ngasepam J, Dhangar K, Mahlknecht J, Manna S. Critical review on negative emerging contaminant removal efficiency of wastewater treatment systems: Concept, consistency and consequences. BIORESOURCE TECHNOLOGY 2022; 352:127054. [PMID: 35351567 DOI: 10.1016/j.biortech.2022.127054] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Emerging contaminants (ECs) are not completely removed by wastewater treatment owing to their capabilities of making complexes, toxic derivatives, byproduct formation, and dynamic partitioning. Negative contaminant removal i.e., higher concentrations (up to 5731%) of these ECs in the effluent with respect to the influent sampled on the same occasions, is globally prevalent in almost all types of treatment systems. Conventional WWTPs showed the highest negative removal (NR) for Carbamazepine, and Carbadox. Conjugation-deconjugation, types of WWTPs, transformations, leaching, operational parameters, sampling schemes, and nature of substance governs the NR efficiencies. Among the various categories of micropollutants, pesticides and beta-blockers are reported to exhibit the maximum percentage of NR, posing threat to human and the environment. With > 200% of NR for beta-blockers, low blood-pressure related symptoms may likely to get more prevalent in the near future. Study red-flags this phenomenon of negative removal that needs urgent attention.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| | | | - Kiran Dhangar
- Discipline of Civil Engineering, IIT Gandhinagar, Gujarat 382355, India
| | - Jurgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Sur Monterrey 64849, Mexico
| | - Suvendu Manna
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
9
|
Li C, Le-Minh N, McDonald JA, Kinsela AS, Fisher RM, Liu D, Stuetz RM. Occurrence and risk assessment of trace organic contaminants and metals in anaerobically co-digested sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151533. [PMID: 34762955 DOI: 10.1016/j.scitotenv.2021.151533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic co-digestion of sludge increases biogas production and maintains anaerobic digestion stability. However, it is unclear whether the addition of co-substrates may increase the concentration of trace organic contaminants (TrOCs) and metals, limiting potential resource recovery opportunities when applied to agricultural land. This study explored the occurrence of 20 TrOCs and 18 metals in wastewater sludge anaerobically co-digested with beverage rejects (cola, beer and juice) and food wastes. TrOCs results showed that cola reject caused an accumulation of caffeine in final digestate. Bisphenol A also significantly increased in food waste co-digestion when compared with the mono-digestion (control). No significant difference in TrOCs was observed in the juice reject co-digestion. Analysis of the metal composition revealed a significant increase in Cr and Al in juice reject co-digested sludge. While restaurant food waste increased concentrations of K and Ca, both of which may be beneficial when applied to land. All metals in this study were below the maximum permissible concentrations specified for agricultural land use in Australia. Environmental risk assessment of sludge when used as soil fertiliser, showed that caffeine, diuron, triclocarban, triclosan, Cu and Zn exhibited high risks, with the largest risk quotient (RQ) posed by caffeine. Estrone and naproxen implied medium risks, and ibuprofen implied a high risk except for the co-digestion using cola reject (RQ = 0.9, medium risk). The results emphasise the importance for wastewater utility operators to understand the impact of co-substrate selection on the quality of sludge to minimise environmental risk from the use of biosolids on agricultural land.
Collapse
Affiliation(s)
- Changwei Li
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia; Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Nhat Le-Minh
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - James A McDonald
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - Andrew S Kinsela
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - Ruth M Fisher
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Richard M Stuetz
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Ohoro CR, Adeniji AO, Elsheikh EAE, Al-Marzouqi A, Otim M, Okoh OO, Okoh AI. Influence of physicochemical parameters on PPCP occurrences in the wetlands. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:339. [PMID: 35389105 PMCID: PMC8989856 DOI: 10.1007/s10661-022-09990-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/22/2022] [Indexed: 05/25/2023]
Abstract
There have been many global studies on the occurrence and distribution of pharmaceuticals and personal care products (PPCPs) in the aquatic resources, but reports on the effects of physicochemical properties of water on their concentrations are very scarce. The amounts and removal of these contaminants in various environmental media are dependent on these physicochemical properties, which include pH, temperature, electrical conductivity, salinity, turbidity, and dissolved oxygen. Here, we reviewed the influence of these properties on determination of PPCPs. Reports showed that increase in turbidity, electrical conductivity, and salinity gives increase in concentrations of PPCPs. Also, neutral pH gives higher PPCP concentrations, while decrease in temperature and dissolved oxygen gives low concentration of PPCPs. Nevertheless, it is quite challenging to ascertain the influence of water quality parameters on the PPCP concentration, as other factors like climate change, type of water, source of pollution, persistence, and dilution factor may have great influence on the concentration of PPCPs. Therefore, routine monitoring is suggested as most water quality parameters vary because of effects of climate change.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa.
| | - Abiodun Olagoke Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
- Department of Chemistry and Chemical Technology, National University of Lesotho. P.O. Roma, 180, Maseru, Lesotho
| | - Elsiddig A E Elsheikh
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Amina Al-Marzouqi
- Department of Health Sciences Administration, University of Sharjah, Sharjah, United Arab Emirates
| | - Michael Otim
- Department of Health Sciences Administration, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola Oluranti Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
11
|
Wang G, Hambly AC, Dou Y, Wang G, Tang K, Andersen HR. Polishing micropollutants in municipal wastewater, using biogenic manganese oxides in a moving bed biofilm reactor (BioMn-MBBR). JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127889. [PMID: 34863559 DOI: 10.1016/j.jhazmat.2021.127889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Conventional wastewater treatment plants (WWTPs) cannot remove organic micropollutants efficiently, and thus various polishing processes are increasingly being studied. One such potential process is utilising biogenic manganese oxides (BioMnOx). The present study operated two moving bed biofilm reactors (MBBRs) with synthetic sewage as feed, one reactor feed was spiked with Mn(II) which allowed the continuous formation of BioMnOx by Mn-oxidising bacteria in the suspended biofilms (i.e. BioMn-MBBR). Spiking experiments with 14 micropollutants were conducted to investigate if BioMnOx combined with MBBR could be utilised to polish micropollutants in wastewater treatment. Results show enhanced removal by BioMn-MBBR over control MBBR (without BioMnOx) for specific micropollutants, such as diclofenac (36% vs. 5%) and sulfamethoxazole (80% vs. 24%). However, diclofenac removal was significantly inhibited when municipal wastewater was fed, and a further batch experiment demonstrates the reduced removal of diclofenac could be due to (unusual) higher pH in municipal wastewater compared to synthetic sewage. A shift in bacterial community was also observe in BioMn-MBBR over long-term operation. Overall, BioMn-MBBR in this study shows great potential for practical application in removing a larger range of micropollutants, which could be applied as an efficient polishing step for typical municipal wastewater.
Collapse
Affiliation(s)
- Guochen Wang
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| | - Adam C Hambly
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| | - Yibo Dou
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| | - Guan Wang
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark.
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
12
|
Niu XZ, Pepel RD, Paniego R, Abrell L, Field JA, Chorover J, Sierra-Alvarez R. Fate of bis-(4-tert-butyl phenyl)-iodonium under photolithography relevant irradiation and the environmental risk properties of the formed photoproducts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25988-25994. [PMID: 35218486 DOI: 10.1007/s11356-022-19376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Aryl-iodonium salts are utilized as photoacid generators (PAGs) in semiconductor photolithography and other photo-initiated manufacturing processes. Despite their utilization and suspected toxicity, the fate of these compounds within the perimeter of semiconductor fabrication plants is inadequately understood; the identification of photolithography products is still needed for a comprehensive environmental impact assessment. This study investigated the photolytic transformation of a representative iodonium PAG cation, bis-(4-tert-butyl phenyl)-iodonium, under conditions simulating industrial photolithography. Under 254-nm irradiation, bis-(4-tert-butyl phenyl)-iodonium reacted rapidly with a photolytic half-life of 39.2 s; different counter ions or solvents did not impact the degradation kinetics. At a semiconductor photolithography-relevant UV dosage of 25 mJ cm-2, 33% of bis-(4-tert-butyl phenyl)-iodonium was estimated to be transformed. Six aromatic/hydrophobic photoproducts were identified utilizing a combination of HPLC-DAD and GC-MS. Selected photoproducts such as tert-butyl benzene and tert-butyl iodobenzene had remarkably higher acute microbial toxicity toward bacterium Aliivibrio fischeri compared to bis-(4-tert-butyl phenyl)-iodonium. Octanol-water partition coefficients estimated using the Estimation Programs Interface Suite™ indicated that the photoproducts were substantially more hydrophobic than the parent compound. The results fill a critical data gap hindering the environmental impact assessment of iodonium PAGs and provide clues on potential management strategies for both iodonium compounds and their photoproducts.
Collapse
Affiliation(s)
- Xi-Zhi Niu
- Department of Chemical & Environmental Engineering, The University of Arizona, 1133 James E. Rogers Way, P.O. Box 210011, Tucson, AZ, 85721, USA
- Department of Environmental Science & Arizona Laboratory for Emerging Contaminants, The University of Arizona, AZ, 85721, Tucson, USA
| | - Richard D Pepel
- Department of Chemical & Environmental Engineering, The University of Arizona, 1133 James E. Rogers Way, P.O. Box 210011, Tucson, AZ, 85721, USA
| | - Rodrigo Paniego
- Department of Chemical & Environmental Engineering, The University of Arizona, 1133 James E. Rogers Way, P.O. Box 210011, Tucson, AZ, 85721, USA
| | - Leif Abrell
- Department of Environmental Science & Arizona Laboratory for Emerging Contaminants, The University of Arizona, AZ, 85721, Tucson, USA
| | - Jim A Field
- Department of Chemical & Environmental Engineering, The University of Arizona, 1133 James E. Rogers Way, P.O. Box 210011, Tucson, AZ, 85721, USA
| | - Jon Chorover
- Department of Environmental Science & Arizona Laboratory for Emerging Contaminants, The University of Arizona, AZ, 85721, Tucson, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical & Environmental Engineering, The University of Arizona, 1133 James E. Rogers Way, P.O. Box 210011, Tucson, AZ, 85721, USA.
| |
Collapse
|
13
|
Predation increases multiple components of microbial diversity in activated sludge communities. THE ISME JOURNAL 2022; 16:1086-1094. [PMID: 34853477 PMCID: PMC8941047 DOI: 10.1038/s41396-021-01145-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Protozoan predators form an essential component of activated sludge communities that is tightly linked to wastewater treatment efficiency. Nonetheless, very little is known how protozoan predation is channelled via bacterial communities to affect ecosystem functioning. Therefore, we experimentally manipulated protozoan predation pressure in activated-sludge communities to determine its impacts on microbial diversity, composition and putative functionality. Different components of bacterial diversity such as taxa richness, evenness, genetic diversity and beta diversity all responded strongly and positively to high protozoan predation pressure. These responses were non-linear and levelled off at higher levels of predation pressure, supporting predictions of hump-shaped relationships between predation pressure and prey diversity. In contrast to predation intensity, the impact of predator diversity had both positive (taxa richness) and negative (evenness and phylogenetic distinctiveness) effects on bacterial diversity. Furthermore, predation shaped the structure of bacterial communities. Reduction in top-down control negatively affected the majority of taxa that are generally associated with increased treatment efficiency, compromising particularly the potential for nitrogen removal. Consequently, our findings highlight responses of bacterial diversity and community composition as two distinct mechanisms linking protozoan predation with ecosystem functioning in activated sludge communities.
Collapse
|
14
|
Liu Y, Ptacek CJ, Beauchemin S, MacKinnon T, Blowes DW. Effect of composting and amendment with biochar and woodchips on the fate and leachability of pharmaceuticals in biosolids destined for land application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151193. [PMID: 34699834 DOI: 10.1016/j.scitotenv.2021.151193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Land application of biosolids can improve soil fertility and enhance crop production. However, the occurrence and persistence of pharmaceutical compounds in the biosolids may result in leaching of these contaminants to surface water and groundwater, causing environmental contamination. This study evaluated the effectiveness of two organic amendments [biochar (BC) and woodchips (WC)] for reducing the concentration and leachability (mobility) of four pharmaceuticals in biosolids derived from wastewater treatment plants in southern Ontario, Canada. The effect of 360-d composting on fate and leachabilities of target pharmaceuticals in biosolid mixtures was also investigated. Composting decreased total and leachable concentrations of pharmaceuticals in unamended and BC- and WC-amended biosolids to various degrees, from 10% up to 99% depending on the compound. Blending BC or WC into the biosolids greatly increased the removal rates of the target pharmaceuticals, while simultaneously decreasing their half-lives (t0.5), compared to unamended biosolids. The t0.5 of contaminants in this study followed the order: carbamazepine (304-3053 d) > gemfibrozil (42.3-92.4 d) > naproxen (15.3-104 d) > ibuprofen (12.5-19.0 d). Amendment with BC and(or) WC significantly reduced the leachability of carbamazepine, ibuprofen, and gemfibrozil to variable extents, but significantly enhanced the leachability of naproxen, compared to unamended biosolids (P < 0.05). Biochar and WC exhibited different (positive or negative) effects on the leachability of individual pharmaceuticals. Significantly lower concentrations of total and(or) leachable (mobile) pharmaceuticals were observed in amended biosolids than unamended biosolids (P < 0.05). Biochar and WC are effective amendments that can reduce the environmental impact of biosolid land applications with respect to pharmaceutical contamination.
Collapse
Affiliation(s)
- YingYing Liu
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Suzanne Beauchemin
- Natural Resources Canada, CanmetMINING, 555 Booth Street, Ottawa, Ontario K1A 0G1, Canada
| | - Ted MacKinnon
- Natural Resources Canada, CanmetMINING, 555 Booth Street, Ottawa, Ontario K1A 0G1, Canada
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
15
|
Dos S Grignet R, Barros MGA, Panatta AAS, Bernal SPF, Ottoni JR, Passarini MRZ, da C S Gonçalves C. Medicines as an emergent contaminant: the review of microbial biodegration potential. Folia Microbiol (Praha) 2022; 67:157-174. [PMID: 34978661 DOI: 10.1007/s12223-021-00941-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022]
Abstract
Emerging environmental contaminants, such as medicine waste, are of great concern to the scientific community and to the local environmental and health departments because of their potential long-term effects and ecotoxicological risk. Besides the prolonged use of medicines for the development of modern society, the elucidation of their effect on the ecosystem is relatively recent. Medicine waste and its metabolites can, for instance, cause alterations in microbial dynamics and disturb fish behavior. Bioremediation is an efficient and eco-friendly technology that appears as a suitable alternative to conventional methods of water waste and sludge treatment and has the capacity to remove or reduce the presence of emerging contaminants. Thus, this review has the objective of compiling information on environmental contamination by common medicines and their microbial biodegradation, focusing on five therapeutic classes: analgesics, antibiotics, antidepressants, non-steroidal anti-inflammatory drugs (NSAIDs), and contraceptives. Their effects in the environment will also be analyzed, as well as the possible routes of degradation by microorganisms.
Collapse
Affiliation(s)
- Rosane Dos S Grignet
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Maria G A Barros
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Andressa A S Panatta
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Suzan P F Bernal
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Julia R Ottoni
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Michel R Z Passarini
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Caroline da C S Gonçalves
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil.
| |
Collapse
|
16
|
Dos Santos CR, Lebron YAR, Moreira VR, Koch K, Amaral MCS. Biodegradability, environmental risk assessment and ecological footprint in wastewater technologies for pharmaceutically active compounds removal. BIORESOURCE TECHNOLOGY 2022; 343:126150. [PMID: 34678454 DOI: 10.1016/j.biortech.2021.126150] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Several studies have investigated the removal of pharmaceutically active compounds (PhACs) by wastewater treatment technologies due to the risk that these compounds pose to the environment. In this sense, advanced biological processes have been developed for micropollutants removal, such as membrane bioreactors and moving bed biofilm reactors. Thus, this review holistically evaluated the biodegradation of 18 environmentally hazardous PhACs. Biological processes were assessed including removal efficiencies, environmental risk, and ecological footprint (consumption of resources and energy, atmospheric emissions, and waste generation). The maximum concentration of PhACs for a low or negligible risk scenario in treated wastewater and the potential of biological processes to meet this goal were assessed. Among the evaluated PhACs, the most biodegradable was paracetamol, while the most recalcitrant was diclofenac. Combination of conventional processes and advanced biological processes proved to be the most efficient way to remove several PhACs, mainly the osmotic membrane bioreactor.
Collapse
Affiliation(s)
- Carolina Rodrigues Dos Santos
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 30270-901 Belo Horizonte, MG, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 30270-901 Belo Horizonte, MG, Brazil
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 30270-901 Belo Horizonte, MG, Brazil
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 385748 Garching, Germany
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 30270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
17
|
Tracking macrolides, sulfonamides, fluoroquinolones, and tetracyclines in sludge treatment wetlands during loading and resting periods. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Betsholtz A, Karlsson S, Svahn O, Davidsson Å, Cimbritz M, Falås P. Tracking 14C-Labeled Organic Micropollutants to Differentiate between Adsorption and Degradation in GAC and Biofilm Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11318-11327. [PMID: 34311545 PMCID: PMC8383275 DOI: 10.1021/acs.est.1c02728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 05/22/2023]
Abstract
Granular activated carbon (GAC) filters can be used to reduce emissions of organic micropollutants via municipal wastewater, but it is still uncertain to which extent biological degradation contributes to their removal in GAC filters. 14C-labeled organic micropollutants were therefore used to distinguish degradation from adsorption in a GAC-filter media with associated biofilm. The rates and extents of biological degradation and adsorption were investigated and compared with other biofilm systems, including a moving bed biofilm reactor (MBBR) and a sand filter, by monitoring 14C activities in the liquid and gas phases. The microbial cleavage of ibuprofen, naproxen, diclofenac, and mecoprop was confirmed for all biofilms, based on the formation of 14CO2, whereas the degradation of 14C-labeled moieties of sulfamethoxazole and carbamazepine was undetected. Higher degradation rates for diclofenac were observed for the GAC-filter media than for the other biofilms. Degradation of previously adsorbed diclofenac onto GAC could be confirmed by the anaerobic adsorption and subsequent aerobic degradation by the GAC-bound biofilm. This study demonstrates the potential use of 14C-labeled micropollutants to study interactions and determine the relative contributions of adsorption and degradation in GAC-based treatment systems.
Collapse
Affiliation(s)
| | - Stina Karlsson
- Department
of Chemical Engineering, Lund University, 221 00 Lund, Sweden
- Sweden
Water Research AB, Ideon Science Park, Scheelevägen 15, 223 70 Lund, Sweden
| | - Ola Svahn
- School
of Education and Environment, Division of Natural Sciences, Kristianstad University, 291 88 Kristianstad, Sweden
| | - Åsa Davidsson
- Department
of Chemical Engineering, Lund University, 221 00 Lund, Sweden
| | - Michael Cimbritz
- Department
of Chemical Engineering, Lund University, 221 00 Lund, Sweden
| | - Per Falås
- Department
of Chemical Engineering, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
19
|
Zhu M, Zhang M, Yuan Y, Zhang P, Du S, Ya T, Chen D, Wang X, Zhang T. Responses of microbial communities and their interactions to ibuprofen in a bio-electrochemical system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112473. [PMID: 33819654 DOI: 10.1016/j.jenvman.2021.112473] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Ibuprofen has caused great concerns due to their potential environmental risks. However, their removal efficiency and their effects on microbial interactions in bio-electrochemical system remain unclear. To address these issues, a lab-scale bio-electrochemical reactor integrated with sulfur/iron-mediated autotrophic denitrification (BER-S/IAD) system exposing to 1000 μg L-1 ibuprofen was operated for about two months. Results revealed that the BER-S/IAD system obtained efficient simultaneous denitrification (98.93%) and phosphorus (82.67%) removal, as well as an excellent ibuprofen removal performance (96.98%). Ibuprofen had no significant impacts on the nitrate (NO3--N) removal and the ammonia (NH4+-N) accumulation, but decreased the total nitrogen (TN) and total phosphorus (TP) removal efficiencies. MiSeq sequencing analysis revealed that ibuprofen significantly (P < 0.05) decreased the microbial community diversity and changed their overall structure. Some bacteria related to denitrification and phosphorus removal, such as Pseudomonas and Thiobacillus, decreased significantly (P < 0.05). Moreover, molecular ecological network (MEN) analysis revealed that ibuprofen decreased the network's size and complexity, and enhanced the negative correlations of Proteobacteria and Firmicutes. Besides, ibuprofen decreased the links of some keystone bacteria related to denitrification and phosphorus removal. This research could provide a new dimension for our comprehending of the responses of microbial communities and their interactions to ibuprofen in bio-electrochemical system.
Collapse
Affiliation(s)
- Minghan Zhu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Minglu Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Peilin Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuai Du
- Beijing Guo Dian Fu Tong Science and Technology Development Co., Ltd., Beijing, 100090, China
| | - Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Daying Chen
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
20
|
Mao X, Li M, Li M. Fabrication of Bi 4O 5Br 2 photocatalyst for carbamazepine degradation under visible-light irradiation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:77-88. [PMID: 34280156 DOI: 10.2166/wst.2021.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bi4O5Br2 with irregular flake shape was synthesized by a facile and energy-saving hydrolysis method. Its band gap energy (Eg) was 2.1 eV. The formation mechanism was proposed. The Bi4O5Br2 exhibited superb visible-light-induced photocatalytic activity (>90%) toward the oxidation of carbamazepine. The kinetics rate constant (k) attained 0.0196 min-1. The effect of Bi4O5Br2 dosage, initial solution pH value, and inorganic anions on carbamazepine degradation was investigated. During the oxidation process, photogenerated holes (h+) and superoxide radical anions (•O2-) were the main active species. Based on the reaction intermediates results determined through a combined system of liquid chromatography and mass spectrometry, a possible reaction mechanism was speculated. The degree of contamination of carbamazepine solution after treatment was evaluated through the teratogenic effect experiment. After 120 min of visible light exposure, the carbamazepine solution is free of pollution. Also, the as-synthesized Bi4O5Br2 maintains good chemical stability and could be reused in the photodegradation process, indicating its potential in practical applications.
Collapse
Affiliation(s)
- Xiaoming Mao
- Department of Chemistry, Changzhi University, Changzhi, 046011, China
| | - Min Li
- Department of Chemistry, Changzhi University, Changzhi, 046011, China
| | - Mengyao Li
- Department of Chemistry, Changzhi University, Changzhi, 046011, China
| |
Collapse
|
21
|
Tang K, Rosborg P, Rasmussen ES, Hambly A, Madsen M, Jensen NM, Hansen AA, Sund C, Andersen HG, Torresi E, Kragelund C, Andersen HR. Impact of intermittent feeding on polishing of micropollutants by moving bed biofilm reactors (MBBR). JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123536. [PMID: 32823027 DOI: 10.1016/j.jhazmat.2020.123536] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 05/25/2023]
Abstract
Moving bed biofilm reactors (MBBRs) were placed at two wastewater treatment plants, where they were constantly fed with effluent and intermittently fed with primary wastewater. Each reactor was subjected to different feast/famine periods and flow rates of primary wastewater, thus the different organic and nutrient loads (chemical oxygen demand(COD), ammonium(NH4-N)) resulted in different feast-famine conditions applied to the biomass. In batch experiments, this study investigated the effects of various feast-famine conditions on the biodegradation of micropollutants by MBBRs applied as an effluent polishing step. Rate constants of micropollutant removals were found to be positively correlated to the load of the total COD and NH4-N, indicating that higher organic loads were favourable for the growth of micropollutant degraders in these MBBRs. Rate constant of atenolol was five times higher when the biomass was fed with the highest COD and NH4-N load than it was fed with the lowest COD and NH4-N load. For diclofenac, mycophenolic acid and iohexol, their maximum rate constants were obtained with feeding of COD and NH4-N of approximately 570 mgCOD/d and 40∼60 mgNH4-N/d respectively. This also supports the concept that co-metabolism (rather competition inhibition or catabolic repression) plays an important role in micropollutants biodegradation in wastewater.
Collapse
Affiliation(s)
- Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark.
| | - Peter Rosborg
- Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, DK-8000 Århus C, Denmark
| | - Emma S Rasmussen
- Department of Bioscoence-Microbiology, Århus University, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Adam Hambly
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark
| | | | | | - Aviaja A Hansen
- Veolia Water Technologies, Haslegårdsvænger 18, 8210 Århus V, Denmark
| | - Christina Sund
- Veolia Water Technologies, Haslegårdsvænger 18, 8210 Århus V, Denmark
| | - Heidi G Andersen
- Veolia Water Technologies, Haslegårdsvænger 18, 8210 Århus V, Denmark
| | - Elena Torresi
- AnoxKaldnes Technology, Klosterängsvägen 11A, 226 47 Lund, Sweden
| | - Caroline Kragelund
- Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, DK-8000 Århus C, Denmark
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
22
|
Dubey M, Mohapatra S, Tyagi VK, Suthar S, Kazmi AA. Occurrence, fate, and persistence of emerging micropollutants in sewage sludge treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116515. [PMID: 33493756 DOI: 10.1016/j.envpol.2021.116515] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Sludge generated at sewage treatment plants is of environmental concern due to the voluminous production and the presence of a high concentration of emerging contaminants (ECs). This review discusses the fate of ECs in sewage sludge treatment with an emphasis on fundamental mechanisms driving the degradation of compounds based on chemical properties of the contaminant and process operating conditions. The removal of ECs in sewage sludge through various treatment processes of sludge stabilization, such as anaerobic digestion (AD), composting, and pre-treatment methods (thermal, sonication, and oxidation) followed by AD, are discussed. Several transformation mechanisms and remediation strategies for the removal of ECs in sludge are summarized. The study concludes that pH, sludge type, and the types of functional groups are the key factors affecting the sorption of ECs to sludge. During conventional waste stabilization processes such as composting, the degradation of ECs depends on the type of feedstock (TOC, N, P, C/N, C/P) and the initial concentration of the contaminant. In AD, the degree of degradation depends on the hydrophilicity of the compound. The estrogenicity of the sludge may sometimes increase due to the conversion to estrogenic compounds. The pre-treatment techniques can increase the partitioning of ECs in the soluble fraction resulting in enhanced biodegradation up to 10-60%. However, the formation of by-products and loss of OH· to scavenging under high organic content during advanced oxidation processes can make the process uneconomical and require further research.
Collapse
Affiliation(s)
- Monika Dubey
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, 138602, Singapore
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Absar Ahmad Kazmi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
23
|
Granatto CF, Grosseli GM, Sakamoto IK, Fadini PS, Varesche MBA. Methanogenic potential of diclofenac and ibuprofen in sanitary sewage using metabolic cosubstrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140530. [PMID: 32629260 DOI: 10.1016/j.scitotenv.2020.140530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Diclofenac (DCF) and ibuprofen (IBU) are widely used anti-inflammatory drugs and are frequently detected in wastewater from Wastewater Treatment Plants and in aquatic environments. In this study, the methanogenic potential (P) of anaerobic sludge subjected to DCF (7.11 ± 0.02 to 44.41 ± 0.05 mg L-1) and IBU (6.11 ± 0.01 to 42.61 ± 0.05 mg L-1), in sanitary sewage, was investigated in batch reactors. Cosubstrates (200 mg L-1 of organic matter) in the form of ethanol, methanol:ethanol and fumarate were tested separately for the removal of drugs. In the DCF assays, P was 6943 ± 121 μmolCH4, 9379 ± 259 μmolCH4, 9897 ± 212 μmolCH4 and 11,530 ± 368 μmolCH4 for control, fumarate, methanol:ethanol and ethanol conditions, respectively. In the IBU assays, under the same conditions, P was 6145 ± 101 μmolCH4, 6947 ± 66 μmolCH4, 8141 ± 191 μmolCH4and 10,583 ± 512 μmolCH4, respectively. Without cosubstrates, drug removal was below 18% for 43.10 ± 0.01 mgDCF L-1 and 43.12 ± 0.03 mgIBU L-1, respectively. Higher P and removal of DCF (28.24 ± 1.10%) and IBU (18.72 ± 1.60%) with ethanol was observed for 43.20 ± 0.01 mgDCF L-1 and 43.42 ± 0.03 mgIBU L-1, respectively. This aspect was better evidenced with DCF due to its molecular structure, a condition that resulted in a higher diversity of bacterial populations. Through the 16S rRNA sequencing, bacteria genera capable of performing aromatic ring cleavage, β-oxidation and oxidation of ethanol and fatty acids were identified. Higher relative abundance (>0.6%) was observed for Smithella, Sulfuricurvum and Synthophus for the Bacteria Domain and Methanosaeta (>79%) for the Archaea Domain. The use of ethanol favored greater mineralization of organic matter and greater methane production, which can directly assist in the metabolic pathways of microorganisms.
Collapse
Affiliation(s)
- Caroline F Granatto
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil..
| | - Guilherme M Grosseli
- Federal University of São Carlos, Washington Luiz Highway, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Isabel K Sakamoto
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil
| | - Pedro S Fadini
- Federal University of São Carlos, Washington Luiz Highway, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation Engineering, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, 13566-590 São Carlos, SP, Brazil..
| |
Collapse
|
24
|
Wang K, Larkin T, Singhal N, Zhao Y. Leachability of endocrine disrupting chemicals (EDCs) in municipal sewage sludge: Effects of EDCs interaction with dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140366. [PMID: 32623156 DOI: 10.1016/j.scitotenv.2020.140366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
In this study, experiments were performed to assess the significance of dissolved organic matter (DOM) on the leachability of four common EDCs, i.e., bisphenol A (BPA), 17α-ethinylestradiol (EE2), progesterone (PGT) and testosterone (TST), in municipal sewage sludge (MSS) under landfill conditions. The DOM was derived from two sources: MSS (MDOM), and natural soil represented by organic matter obtained from the Suwannee River (NDOM). Fluorescence excitation-emission matrix quenching combined with parallel factor analysis was adopted to characterize the interaction properties between the EDCs and DOM. The accumulative leachability of the target EDCs ranged from 0.09% (PGT) to 3.8% (TST). In particular, the leaching of BPA, EE2 and TST followed S-shaped curves, while PGT exhibited continuous leaching potential in untreated MSS. With the introduction of DOM, (i) the leachability of BPA and EE2 increased to 13.4% and 61.6%, respectively, whereas those of PGT and TST declined by 61.3% and 45.8%, respectively, and (ii) BPA, EE2 and PGT no longer reached leaching equilibrium but the S-shaped leaching property of TST persisted. The differential effects of MDOM and NDOM at identical concentrations on the EDCs leachability increased with curing time. BPA, EE2 and PGT quenched the MDOM fluorophores attributed to aromatic protein-like components. The fluorescence quenching of NDOM by BPA, EE2 and PGT was centered on soluble microbial by-product-like and humic-like substances. Compared with PGT, EE2 and BPA had greater capability for binding with DOM components largely via hydrophobic interactions, whereas PGT preferentially interacted with the DOM hydrophilic functionalities through specific interactions. TST had no binding capability but displayed potentials competing for sorption sites with DOM moieties. Our findings suggested that the management of MSS increased the risk of environmental contamination by EDCs for a long duration and that DOM was a useful indicator to predict the migration and transport properties of EDCs.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agricultural and Rural Affairs, Tianjin 300191, PR China; Jinan Environmental Research Academy, Jinan 250102, PR China; Department of Civil and Environmental Engineering, University of Auckland, Private Bag, 92019, New Zealand.
| | - Tam Larkin
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag, 92019, New Zealand
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag, 92019, New Zealand
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agricultural and Rural Affairs, Tianjin 300191, PR China
| |
Collapse
|
25
|
Carneiro RB, Mukaeda CM, Sabatini CA, Santos-Neto ÁJ, Zaiat M. Influence of organic loading rate on ciprofloxacin and sulfamethoxazole biodegradation in anaerobic fixed bed biofilm reactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111170. [PMID: 32763746 DOI: 10.1016/j.jenvman.2020.111170] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic compounds, notably sulfamethoxazole (SMX) and ciprofloxacin (CIP), are ubiquitous emerging contaminants (ECs), which are often found in domestic sewage. They are associated with the development of antimicrobial resistance. Operational parameters, e.g. organic loading rate (OLR), hydraulic retention time (HRT) and sludge retention time, may influence EC biodegradation in wastewater treatment plants. This study assessed the impact of the OLR variation on the biodegradation of CIP and SMX, applying two configurations of anaerobic fixed bed reactors: anaerobic packed bed biofilm reactor (APBBR) and anaerobic structured bed biofilm reactor (ASBBR). A significant reduction in the biodegradation of SMX (APBBR: 93-69%; ASBBR: 94-81%) and CIP (APBBR: 85-66%; ASBBR: 85-64%) was observed increasing OLR from 0.6 to 2.0 kgCOD m-3 d-1. The decrease in the HRT from 12 to 4 h resulted in higher liquid-phase mass transfer coefficient (APBBR: ks from 0.01 to 0.05 cm h-1; ASBBR: ks from 0.07 to 0.24 cm h-1), but this was not enough to overcome the decrease in the antibiotic-biomass contact time on biofilm, thus reducing the bioreactors' performance. The ASBBR favored biomethane production (from 7 to 17 mLCH4 g-1VSS L-1 d-1) and biodegradation kinetics (kbio from 1.7 to 4.2 and for SMX and from 2.1 to 4.8 L g-1VSS d-1 for CIP) due to the higher relative abundance of the archaea community in the biofilm and the lower liquid-phase mass transfer resistance in the structured bed. CIP and SMX cometabolic biodegradation was associated to the hydrogenotrophic methanogenesis (mainly Methanobacterium genus) in co-culture with fermentative bacteria (notably the genera Clostridium, Bacillus, Lactivibrio, Syntrophobacter and Syntrophorhabdus). The anaerobic fixed bed biofilm reactors proved to be highly efficient in biodegrading the antibiotics, preventing them from spreading to the environment.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Caio M Mukaeda
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Carolina A Sabatini
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- Laboratory of Chromatography (CROMA), Institute of Chemistry of São Carlos, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil.
| | - Marcelo Zaiat
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| |
Collapse
|
26
|
Zhao Q, Li M, Zhang K, Wang N, Wang K, Wang H, Meng S, Mu R. Effect of ultrasound irradiation combined with ozone pretreatment on the anaerobic digestion for the biosludge exposed to trace-level levofloxacin: Degradation, microbial community and ARGs analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110356. [PMID: 32250825 DOI: 10.1016/j.jenvman.2020.110356] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic digestion, the principal method of stabilizing biosolids in wastewater treatment plants (WWTPs), can efficiently and largely attenuate the antibiotic resistances in biosludge. This study aims to investigate the effect of oxidative pretreatment with ultrasound irradiation combined with ozone (US/O3) on the mesophilic and thermophilic anaerobic digestion (MAD and TAD) for the biosludge bearing trace fluoroquinolones contaminants-levofloxacin (LEVO) which was widely used in recent years. During the oxidation, the trace-level LEVO was almost completely degraded. The methanogenic activity in US/O3 pretreated TAD dosed 0.1 mg/L LEVO was much higher than those in single MAD and TAD, therefore leading to a remarkable increase in biogas production. The identification of levofloxacin intermediates during chemical degradation was analyzed using LCMS technique and the reaction pathway based on them was proposed. Hydroxyl radicals provided by US/O3 contributed to oxidative ring opening of LEVO as well as degradation of other biomacromolecules in the biosludge. Besides, the quinoline resistance genes-qnrA and qnrS declined significantly by 1-2 orders of magnitude in US/O3-pretreated TAD, indicating that the active radicals produced by US/O3 oxidized and degraded LEVO and therefore inactivated the antibiotic resistant bacteria or genes in the biosolids. Meanwhile, the composition and structure of the microbial community altered and the diversity and richness of total bacterial and potential human pathogens decreased, the pattern of which was correlated with LEVO-resistant genes. Among the well-known AD-related phylum including Bacteroidetes, Firmicutes, Methanobacteria as well as Thermotogae which has been previously detected in TAD and performed organic hydrolysis and degradation, the potential LEVO-resistant bacteria were probably affiliated to Actinobacteria, Bacteroidetes, Proteobacteria, Thermotogae. This study revealed the contribution of US/O3 pretreatment to the anaerobic digestion in terms of ARGs reduction for trace-LEVO- exposed biosludge and could provide useful guidance for controlling the dissemination of ARB and ARGs in sewage sludge.
Collapse
Affiliation(s)
- Qian Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Shandong Province Co-Innovation Center of Green Building, Jinan, 250101, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Mei Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Shandong Province Co-Innovation Center of Green Building, Jinan, 250101, China
| | - Kefeng Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Shandong Province Co-Innovation Center of Green Building, Jinan, 250101, China
| | - Ning Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Shandong Province Co-Innovation Center of Green Building, Jinan, 250101, China
| | - Kaikai Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Shandong Province Co-Innovation Center of Green Building, Jinan, 250101, China.
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Shandong Province Co-Innovation Center of Green Building, Jinan, 250101, China
| |
Collapse
|
27
|
Taboada-Santos A, Behera CR, Sin G, Gernaey KV, Mauricio-Iglesias M, Carballa M, Lema JM. Assessment of the fate of organic micropollutants in novel wastewater treatment plant configurations through an empirical mechanistic model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137079. [PMID: 32044492 DOI: 10.1016/j.scitotenv.2020.137079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Novel wastewater treatment plants (WWTPs) are expected to be less energetically demanding than conventional ones. However, scarce information is available about the fate of organic micropollutants (OMPs) in these novel configurations. Therefore, the objective of this work is to assess the fate of OMPs in three novel WWTP configurations by using a plant-wide simulation that integrates multiple units. The difference among the three configurations is the organic carbon preconcentration technology: chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS) combined or not with a rotating belt filter (RBF); followed by a partial-nitritation (PN-AMX) unit. The simulation results show that the three selected novel configurations lead mainly to comparable OMPs removal efficiencies from wastewater, which were similar or lower, depending on the OMP, than those obtained in conventional WWTPs. However, the presence of hydrophobic OMPs in the digested sludge noticeably differs among the three configurations. Whereas the configuration based on sole HRAS to recover organic carbon leads to a lower presence of OMPs in digested sludge than the conventional WWTP, in the other two novel configurations this presence is noticeable higher. In conclusion, novel WWTP configurations do not improve the OMPs elimination from wastewater achieved in conventional ones, but the HRAS-based WWTP configuration leads to the lowest presence in digested sludge so it becomes the most efficient alternative.
Collapse
Affiliation(s)
- Anton Taboada-Santos
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Chitta Ranjan Behera
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark.
| | - Gürkan Sin
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark.
| | - Krist V Gernaey
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark.
| | - Miguel Mauricio-Iglesias
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Marta Carballa
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Juan M Lema
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
28
|
Carneiro RB, Gonzalez-Gil L, Londoño YA, Zaiat M, Carballa M, Lema JM. Acidogenesis is a key step in the anaerobic biotransformation of organic micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121888. [PMID: 31879099 DOI: 10.1016/j.jhazmat.2019.121888] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Understanding the role of the different anaerobic digestion stages on the removal of organic micropollutants (OMPs) is essential to mitigate their release from wastewater treatment plants. This study assessed the fate of 21 OMPs during hydrolysis and acidogenesis to elucidate the contribution of these stages to the overall anaerobic removal. Moreover, the removal mechanisms and factors influencing them were investigated. To this purpose, a fermentation reactor was operated and fed with two different substrates: starch (to jointly evaluate hydrolysis and acidogenesis) and glucose (to isolate acidogenesis). Results indicate that sulfamethoxazole was highly biotransformed (>80 %), while galaxolide, celestolide, tonalide, erythromycin, roxithromycin, trimethoprim, octylphenol and nonylphenol achieved a 50-80 % biotransformation. Since no significant differences in the biotransformation efficiencies were found between starch and glucose fermentation, it is stated that the enzymatic activities involved in starch hydrolysis do not significantly contribute to the cometabolic biotransformation of OMPs, while acidogenesis appears as the major player. Moreover, a higher biotransformation (≥15 percentage points and p ≤ 0.05) was found for galaxolide, celestolide, tonalide, erythromycin and roxithromycin during acidogenesis in comparison with the efficiencies reported for the acetogenic/methanogenic step. The biotransformation of some OMPs was explained considering their chemical structure and the enzymatic activities.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain; Biological Processes Laboratory (LPB), Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Lorena Gonzalez-Gil
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| | - Yudy Andrea Londoño
- GDCON Research Group, Faculty of Engineering, University Research Headquarters (SIU), University of Antioquia, Street 70 # 52-21, Medellín, Colombia.
| | - Marcelo Zaiat
- Biological Processes Laboratory (LPB), Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Marta Carballa
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| | - Juan M Lema
- Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Thiebault T. Sulfamethoxazole/Trimethoprim ratio as a new marker in raw wastewaters: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136916. [PMID: 32041046 DOI: 10.1016/j.scitotenv.2020.136916] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/23/2020] [Indexed: 05/23/2023]
Abstract
Global Trimethoprim (TMP) and Sulfamethoxazole (SMX) occurrences in raw wastewaters were systematically collected from the literature (n = 140 articles) in order to assess the relevance of using the SMX/TMP ratio as a marker of the main origin of wastewaters. These two antibiotics were selected due to their frequent use in association (i.e. co-trimoxazole) in a 5:1 ratio (SMX:TMP) for medication purposes, generating a unique opportunity to globally evaluate the validity of this ratio based on concentration values. Several parameters (e.g. sorption, biodegradation) may affect the theoretical SMX/TMP ratio. However, the collected data highlighted the good agreement between the theoretical ratio and the experimental one, especially in wastewater treatment plant influents and hospital effluents. Only livestock effluents displayed a very high SMX/TMP ratio, indicative of the very significant use of sulfonamide alone in this industry. Conversely, several countries displayed low SMX/TMP ratio values, highlighting local features in the human pharmacopoeia. This review provides new insights in order to develop an easy to handle and sound marker of wastewater origins (i.e. human/livestock), beyond atypical local customs.
Collapse
Affiliation(s)
- Thomas Thiebault
- EPHE, PSL University, UMR 7619 METIS, Sorbonne University, CNRS, F-75005, Paris, France.
| |
Collapse
|
30
|
Lin YC, Hsiao TC, Lin AYC. Urban wastewater treatment plants as a potential source of ketamine and methamphetamine emissions to air. WATER RESEARCH 2020; 172:115495. [PMID: 31954935 DOI: 10.1016/j.watres.2020.115495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/06/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Urban wastewater treatment plants (WWTPs) can be an emission source of aerosol particles to the air and this process has the potential to spread emerging pollutants into the air, where the particles can be widely transported over long distances to areas where this pollution is unexpected. This study demonstrates aeration tanks in WWTPs as a potential source of ketamine, methamphetamine and other emerging contaminant emissions into the air. Ketamine and methamphetamine are frequently detected in high concentrations (maximum of 151.8-162.8 pg/m3) in gaseous and aerosol samples along with 24 other emerging contaminants. Through correlation analysis, the common occurrence of emerging contaminants in air is attributable to their high aqueous concentrations as well as their physicochemical properties. Two simple regression models are developed to provide a practical and convenient way to estimate the steady-state concentrations in air. The gas-phase emission model illustrates the relationship between the solubility, the pKa and the aqueous concentration of compounds in the aeration basin and their gaseous concentrations in air (statistical strength of 74.1%; p value < 0.05), while the partition model establishes the ratio of a compound in the gas and particulate phases in air (statistical strength of 82.6%; p value < 0.05). The results provide a basis for assessing the risk of the inhalation exposure to airborne emerging contaminants; however, in-depth research addressing the impact of aerosols containing persistent pharmaceuticals on human health is still needed.
Collapse
Affiliation(s)
- Yen-Ching Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd, Taipei, 106, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd, Taipei, 106, Taiwan.
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd, Taipei, 106, Taiwan.
| |
Collapse
|
31
|
Pochiraju SS, Linden K, Gu AZ, Rosenblum J. Development of a separation framework for effects-based targeted and non-targeted toxicological screening of water and wastewater. WATER RESEARCH 2020; 170:115289. [PMID: 31785562 DOI: 10.1016/j.watres.2019.115289] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 05/25/2023]
Abstract
An environmental water sample fractionation framework was developed based on effects-directed analysis (EDA) to detect known and unknown compounds of concern in different waters. Secondary effluent from a wastewater treatment plant was used to demonstrate the effectiveness of the developed framework for characterizing estrogenic compounds in the effluent. The effluent was spiked with known estrogenic compounds to validate the framework in a targeted approach and an unspiked sample was also investigated in a non-targeted approach. The framework separated compounds based on polarity and adsorption using liquid-liquid extraction followed by solid phase extraction. The targeted and non-targeted effluents generated six fractions each, which were assessed for estrogenic activity using an in vitro bioassay (yeast estrogen screen - YES). Three out of the six fractions in each case, along with the raw effluent, showed estrogen equivalent concentrations (EEQs) ranging between 1.0 and 3.0 μg/L. Directed by the assay results, these estrogenic fractions were further analyzed using liquid- and gas-chromatography coupled with mass spectrometry for compound identification. The developed separation framework coupled with a bioassay aided in identification of both known and unknown compounds producing estrogenic effects in the water sample. The approach of fractionation followed by concentration helped isolate and elevate contaminant levels without necessarily concentrating potential matrix effects that could cause interfering cytotoxicity and inhibition in the bioassay. The targeted analysis showed consistency between predicted and observed results, while the non-targeted analysis revealed the presence of three estrogenic compounds in the unspiked effluent: di-isobutyl phthalate, diethyl phthalate and benzophenone, that were confirmed with standards. The study mainly aimed at development and validation of a simple yet effective EDA framework with low cost techniques for water and wastewater toxicity screening and evaluation, and the results suggested that the developed framework could be used as a screening tool for isolating and identifying unknown compounds in a complex water sample.
Collapse
Affiliation(s)
- Susheera S Pochiraju
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Karl Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - April Z Gu
- Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - James Rosenblum
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
32
|
Jia Y, Yin L, Khanal SK, Zhang H, Oberoi AS, Lu H. Biotransformation of ibuprofen in biological sludge systems: Investigation of performance and mechanisms. WATER RESEARCH 2020; 170:115303. [PMID: 31751892 DOI: 10.1016/j.watres.2019.115303] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Ibuprofen (IBU), a common non-steroidal anti-inflammatory drug (NSAID), is widely used by humans for controlling fever and pain, and is frequently detected in the influent of wastewater treatment plants and different aquatic environments. In this study, the biotransformation of IBU in activated sludge (AS), anaerobic methanogenic sludge (AnMS) and sulfate-reducing bacteria (SRB)-enriched sludge systems was investigated at three different concentrations of 100, 500 and 1000 μg/L via a series of batch and continuous studies. IBU at concentration of 100 μg/L was effectively biodegraded by AS whereas AnMS and SRB-enriched sludge were less effective in IBU biodegradation at all concentrations tested. However, at higher IBU concentrations of 500 and 1000 μg/L, AS showed poor IBU biodegradation and chemical oxygen demand (COD) removal due to inhibition of aerobic heterotrophic bacteria (i.e., Candidatus Competibacter) by IBU and/or IBU biotransformation products. The microbial analyses showed that IBU addition shifted the microbial community structure in AS, AnMS and SRB-enriched sludge systems, however, the removals of COD, nitrogen and sulfur in both anaerobic sludge systems were not affected significantly (p > 0.05). The findings of this study provided a new insight into biotransformation of IBU in three important biological sludge systems.
Collapse
Affiliation(s)
- Yanyan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Linwan Yin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, USA
| | - Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Akashdeep Singh Oberoi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen, PR China.
| |
Collapse
|
33
|
Khan NA, Khan SU, Ahmed S, Farooqi IH, Yousefi M, Mohammadi AA, Changani F. Recent trends in disposal and treatment technologies of emerging-pollutants- A critical review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115744] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Henning N, Falås P, Castronovo S, Jewell KS, Bester K, Ternes TA, Wick A. Biological transformation of fexofenadine and sitagliptin by carrier-attached biomass and suspended sludge from a hybrid moving bed biofilm reactor. WATER RESEARCH 2019; 167:115034. [PMID: 31581038 DOI: 10.1016/j.watres.2019.115034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/09/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Laboratory-scale experiments were conducted to investigate the (bio)transformation of the antidiabetic sitagliptin (STG) and the antihistamine fexofenadine (FXF) during wastewater treatment. As inoculum either attached-growth on carriers or suspended sludge from a hybrid moving bed biofilm reactor (HMBBR) was used. Both target compounds were incubated in degradation experiments and quantified via LC-MS/MS for degradation kinetics. Furthermore transformation products (TPs) were analyzed via high resolution mass spectrometry (HRMS). Structural elucidation of the TPs was based on the high resolution molecular ion mass to propose a molecular formula and on MS2 fragmentation to elucidate the chemical structure of the TPs. In total, 22 TPs (9 TPs for STG and 13 TPs for FXF) were detected in the experiments with STG and FXF. For all TPs, chemical structures could be proposed. STG was mainly transformed via amide hydrolysis and conjugation of the primary amine moiety. In contrast, FXF was predominantly transformed by oxidative reactions such as oxidation (dehydrogenation) and hydroxylation. Furthermore, FXF was removed significantly faster in contact with carriers compared to suspended sludge, whereas STG was degraded slightly faster in contact with suspended sludge. Moreover, the primary TP of FXF was also degraded faster in contact with carriers leading to higher proportions of secondary TPs. Thus, the microbial community of both carriers and suspended sludge catalyzed the same primary transformation reactions but the transformation kinetics of FXF and the formation/degradation of FXF TPs were considerably higher in contact with carrier-attached biomass. The primary degradation of both target compounds in pilot- and full-scale conventional activated sludge (CAS) and MBBR reactors reached 42 and 61% for FXF and STG, respectively. Up to three of the identified TPs of FXF and 8 TPs of STG were detected in the effluents of pilot- and full-scale CAS and MBBR.
Collapse
Affiliation(s)
- Nina Henning
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Per Falås
- Water and Environmental Engineering, Department of Chemical Engineering, Lund University, 221 00, Lund, Sweden
| | - Sandro Castronovo
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Kevin S Jewell
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Kai Bester
- Department for Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Thomas A Ternes
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Arne Wick
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany.
| |
Collapse
|
35
|
Prevalence of Antibiotic Resistance Genes and Their Association with Antibiotics in a Wastewater Treatment Plant: Process Distribution and Analysis. WATER 2019. [DOI: 10.3390/w11122495] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Effluents from wastewater treatment plants has been identified as a main point-source of antibiotics and antibiotic resistance genes in natural water environments. In this study, a typical municipal sewage treatment system in south China was taken as the research object to investigate the effects of each treatment unit on eight target antibiotics (sulfamethoxazole, sulfamethazine, tetracycline hydrochloride, oxytetracycline dihydrate, norfloxacin, ofloxacin, clarithromycin, roxithromycin), 17 antibiotic resistance genes (ARGs) and class 1 integron genes in the system using Accelerated Solvent Extraction-Solid phase extraction-Ultra high Performance Liquid Chromatography-Tandem mass spectrometry (ASE-SPE-UPLC-MS/MS) and real-time fluorescent quantitative PCR (qPCR) and the correlation between them. Seven antibiotics (mainly sulfonamides and tetracyclines, 4.19–141.97 ng·L−1) were detected in the influent, while only sulfamethoxazole, sulfamethazine, ofloxacin, and clarithromycin were detected in the effluent (3.11–16.61 ng·L−1). The tetracycline antibiotics in the wastewater treatment plant (WWTP) were transferred to the sludge phase by adsorption, in which tetracycline hydrochloride and oxytetracycline dihydrate were mostly removed in the aerobic and anaerobic stages, while sulfamethoxazole was mainly removed through biological transformation. Sul I was the most abundant resistance gene, but the WWTP had no obvious effect on its removal. Anaerobic treatment was found to play an important role in tetA, tetQ, and tetX removal. Moreover, correlation analysis revealed that the relative abundance of tetX was significantly correlated with clarithromycin (p = 0.039) and ofloxacin (p = 0.028), while that of tetQ was significantly correlated with sulfamethazine (p = 0.007) and sulfamethoxazole (p = 0.001), and that of tetC was significantly correlated with the class 1 integron gene (p = 0.014). Overall, the results presented herein provide a reference for improving the antibiotics and ARGs removal efficiency of WWTPs in south China.
Collapse
|
36
|
Asif MB, Ansari AJ, Chen SS, Nghiem LD, Price WE, Hai FI. Understanding the mechanisms of trace organic contaminant removal by high retention membrane bioreactors: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34085-34100. [PMID: 30259242 DOI: 10.1007/s11356-018-3256-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
High retention membrane bioreactors (HR-MBR) combine a high retention membrane separation process such as membrane distillation, forward osmosis, or nanofiltration with a conventional activated sludge (CAS) process. Depending on the physicochemical properties of the trace organic contaminants (TrOCs) as well as the selected high retention membrane process, HR-MBR can achieve effective removal (80-99%) of a broad spectrum of TrOCs. An in-depth assessment of the available literature on HR-MBR performance suggests that compared to CAS and conventional MBRs (using micro- or ultra-filtration membrane), aqueous phase removal of TrOCs in HR-MBR is significantly better. Conceptually, longer retention time may significantly improve TrOC biodegradation, but there are insufficient data in the literature to evaluate the extent of TrOC biodegradation improvement by HR-MBR. The accumulation of hardly biodegradable TrOCs within the bioreactor of an HR-MBR system may complicate further treatment and beneficial reuse of sludge. In addition to TrOCs, accumulation of salts gradually increases the salinity in bioreactor and can adversely affect microbial activities. Strategies to mitigate these limitations are discussed. A qualitative framework is proposed to predict the contribution of the different key mechanisms of TrOC removal (i.e., membrane retention, biodegradation, and sorption) in HR-MBR.
Collapse
Affiliation(s)
- Muhammad B Asif
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Ashley J Ansari
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Long D Nghiem
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - William E Price
- Strategic Water Infrastructure Lab, School of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
37
|
Zhang W, Gago-Ferrero P, Gao Q, Ahrens L, Blum K, Rostvall A, Björlenius B, Andersson PL, Wiberg K, Haglund P, Renman G. Evaluation of five filter media in column experiment on the removal of selected organic micropollutants and phosphorus from household wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:920-928. [PMID: 31279249 DOI: 10.1016/j.jenvman.2019.05.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/24/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
A bench-scale column experiment was performed to study the removal of 31 selected organic micropollutants (MPs) and phosphorus by lignite, xyloid lignite (Xylit), granular activated carbon (GAC), Polonite® and sand over a period of 12 weeks. In total 29 out of the 31 MPs showed removal efficiency >90% by GAC with an average removal of 97 ± 6%. Xylit and lignite were less efficient with an average removal of 80 ± 28% and 68 ± 29%, respectively. The removal efficiency was found to be impacted by the characterization of the sorbents and physicochemical properties of the compounds, as well as the interaction between the sorbents and compounds. For instance, Xylit and lignite performed well for relatively hydrophobic (log octanol/water partition coefficient (Kow) ≥3) MPs, while the removal efficiency of moderately hydrophilic, highly hydrophilic and negatively charged MPs were lower. The organic sorbents were found to have more functional groups at their surfaces, which might explain the higher adsorption of MPs to these sorbents. The removal of several MPs improved after four weeks in sand, Xylit, GAC and lignite which may be related to increased biological activity and biofilm development. GAC and sand had limited ability to remove phosphorus (12 ± 27% and 14 ± 2%, respectively), while the calcium-silicate material Polonite® precipitated phosphorus efficiently and increased the total phosphorus removal from 12% to 96% after the GAC filter.
Collapse
Affiliation(s)
- Wen Zhang
- Dept. of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044, Stockholm, Sweden.
| | - Pablo Gago-Ferrero
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-75007, Uppsala, Sweden.
| | - Qiuju Gao
- Dept. of Chemistry, Umeå University, Linnaeus väg 6, SE-90187, Umeå, Sweden.
| | - Lutz Ahrens
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-75007, Uppsala, Sweden.
| | - Kristin Blum
- Dept. of Chemistry, Umeå University, Linnaeus väg 6, SE-90187, Umeå, Sweden.
| | - Ande Rostvall
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-75007, Uppsala, Sweden.
| | - Berndt Björlenius
- Dept. of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, SE-10691, Stockholm, Sweden.
| | - Patrik L Andersson
- Dept. of Chemistry, Umeå University, Linnaeus väg 6, SE-90187, Umeå, Sweden.
| | - Karin Wiberg
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-75007, Uppsala, Sweden.
| | - Peter Haglund
- Dept. of Chemistry, Umeå University, Linnaeus väg 6, SE-90187, Umeå, Sweden.
| | - Gunno Renman
- Dept. of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044, Stockholm, Sweden.
| |
Collapse
|
38
|
Septian A, Oh S, Shin WS. Sorption of antibiotics onto montmorillonite and kaolinite: competition modelling. ENVIRONMENTAL TECHNOLOGY 2019; 40:2940-2953. [PMID: 29598154 DOI: 10.1080/09593330.2018.1459870] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Antibiotic contaminants, which are generally present in bi-solute systems, can be competitively adsorbed onto clays. Single- and bi-solute sorptions of sulfadiazine (SDZ) and ciprofloxacin (CIP) onto montmorillonite and kaolinite were investigated at pH values of 5 and 8. Freundlich and Langmuir models were used and fit the experimental data well for single-solute sorption. The sorption isotherms were nonlinear (NF = 0.265-0.730), and the maximum sorption capacities (qmL) of the SDZ and CIP onto montmorillonite were higher than those onto kaolinite. The octanol-water distribution ratio (Dow), cation exchange capacity (CEC), Brunauer-Emmett-Teller (BET) surface area (ABET), pore size, point of zero charge (pHPZC), and basal spacing predominantly affected the Freundlich constant (KF) and qmL of SDZ0 and CIP+ at pH 5 more than SDZ- and CIP± at pH 8. For bi-solute sorption, the presence of CIP inhibited the SDZ sorption onto montmorillonite and kaolinite. Competitive sorption models such as Sheindorf-Rebhun-Sheintuch (SRS), Murali-Aylmore (M-A) and the modified extended Langmuir model (MELM) were used; of these, the MELM provided the best prediction with SDZ sorption onto montmorillonite at pH 8 and CIP onto kaolinite at pH 5 and 8 in SDZ/CIP system occurring synergistically, whereas others occurred antagonistically. The distribution coefficient (Kd) of the bi-solute sorption decreased with increasing pH in the order cationic > neutral > anionic for SDZ and cationic > zwitterionic > anionic for CIP, which resembled the Kd of single-solute sorption. Fourier transform infrared spectroscopy (FT-IR) spectra indicated that amine in SDZ and keto oxygen in CIP were responsible for the interactions with the montmorillonite and kaolinite.
Collapse
Affiliation(s)
- Ardie Septian
- a School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University , Daegu , Korea
| | - Sanghwa Oh
- a School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University , Daegu , Korea
| | - Won Sik Shin
- a School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University , Daegu , Korea
| |
Collapse
|
39
|
Cimbritz M, Edefell E, Thörnqvist E, El-Taliawy H, Ekenberg M, Burzio C, Modin O, Persson F, Wilén BM, Bester K, Falås P. PAC dosing to an MBBR - Effects on adsorption of micropollutants, nitrification and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:571-579. [PMID: 31067478 DOI: 10.1016/j.scitotenv.2019.04.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Two nitrifying MBBR reactors were operated in parallel, one with PAC dosing and one without, to determine the effects of PAC dosing on nitrification and micropollutant adsorption in municipal wastewater. The removal of micropollutants was evaluated for several doses of PAC and batch experiments were performed to measure adsorption kinetics and nitrification rates. The influence of PAC on the nitrifying microbial community was examined by high-throughput amplicon sequencing. Long-term operation of the pilot reactors showed that nitrification could be maintained while supplying PAC at increasing doses, as confirmed by high nitrification rates and significant abundance of nitrifying bacteria. The adsorption of organic micropollutants could be controlled by the PAC dose, and increased dosing resulted in corresponding improvements in removal efficiency. Biomass, suspended or attached to carriers, did not interfere with the adsorption of organic micropollutants. Freundlich isotherms obtained from the batch experiments were used to predict removal of organic micropollutants in the pilot reactors, suggesting that batch adsorption experiments can be used to predict micropollutant removal on a full scale. Collectively, the results show that nitrification and adsorption of organic micropollutants can be performed simultaneously in an MBBR.
Collapse
Affiliation(s)
- Michael Cimbritz
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden.
| | - Ellen Edefell
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden; Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, 223 70 Lund, Sweden
| | - Elias Thörnqvist
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Haitam El-Taliawy
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark
| | - Maria Ekenberg
- Veolia Water Technologies AB - AnoxKaldnes, Klosterängsvägen 11A, 226 47 Lund, Sweden
| | - Cecilia Burzio
- Chalmers University of Technology, Architecture and Civil Engineering, Water Environment Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Oskar Modin
- Chalmers University of Technology, Architecture and Civil Engineering, Water Environment Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Frank Persson
- Chalmers University of Technology, Architecture and Civil Engineering, Water Environment Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Britt-Marie Wilén
- Chalmers University of Technology, Architecture and Civil Engineering, Water Environment Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark
| | - Per Falås
- Department of Chemical Engineering, Lund University, PO Box 124, 221 00 Lund, Sweden
| |
Collapse
|
40
|
Nsenga Kumwimba M, Meng F. Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:419-441. [PMID: 31096373 DOI: 10.1016/j.scitotenv.2018.12.236] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 12/15/2018] [Indexed: 05/27/2023]
Abstract
While there has been a significant recent improvement in the removal of pollutants in natural and engineered systems, trace organic chemicals (TrOCs) are posing a major threat to aquatic environments and human health. There is a critical need for developing potential strategies that aim at enhancing metabolism and/or cometabolism of these compounds. Recently, knowledge regarding biodegradation of TrOCs by ammonia-oxidizing bacteria (AOB) has been widely developed. This review aims to delineate an up-to-date version of the ecophysiology of AOB and outline current knowledge related to biodegradation efficiencies of the frequently reported TrOCs by AOB. The paper also provides an insight into biodegradation pathways by AOB and transformation products of these compounds and makes recommendations for future research of AOB. In brief, nitrifying WWTFs (wastewater treatment facilities) were superior in degrading most TrOCs than non-nitrifying WWTFs due to cometabolic biodegradation by the AOB. To fully understand and/or enhance the cometabolic biodegradation of TrOCs by AOB, recent molecular research has focused on numerous crucial factors including availability of the compounds to AOB, presence of growth substrate (NH4-N), redox potentials, microorganism diversity (AOB and heterotrophs), physicochemical properties and operational parameters of the WWTFs, molecular structure of target TrOCs and membrane-based technologies, may all significantly impact the cometabolic biodegradation of TrOCs. Still, further exploration is required to elucidate the mechanisms involved in biodegradation of TrOCs by AOB and the toxicity levels of formed products.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Democratic Republic of the Congo
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
41
|
Zheng M, Han Y, Xu C, Zhang Z, Han H. Selective adsorption and bioavailability relevance of the cyclic organics in anaerobic pretreated coal pyrolysis wastewater by lignite activated coke. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:64-73. [PMID: 30404070 DOI: 10.1016/j.scitotenv.2018.10.331] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
This study originally investigated the selective adsorption of cyclic organics in APCPW by LAC, corresponding to the change of the bioavailability. As a product from low rank coal, LAC showed more oxygen (O)-containing groups and mesoporous structure than PAC. Adsorption mechanisms were analyzed by equilibrium isotherms and kinetics models combined with physicochemical properties of adsorbent and adsorbates. The results indicated that selectivity of LAC was dominated by chemical interaction and its mesoporous, and was enhanced by hydrophobicity of adsorbates. In addition, PAC and LAC were applied for the treatment of APCPW. Compared with PAC, LAC adsorption exhibited superior removal efficiency of Tph, TOC and TN at 85.90%, 91.15% and 51.64%, respectively. Furthermore, preferential adsorption of biotoxic and bioresistant cyclic organics by LAC was further proved by GC-MS analysis, resulting in increased bioavailability of APCPW. Specifically, LAC exerted sustained detoxication capacity until 86.50% reduction of TU by D. magna evaluation, and lowered toxicity rank (TU = 4.51, classIII) to T. pyriformis than that after PAC adsorption (TU > 10, ClassIV). Meanwhile, biodegradability was also improved by 9.17% after LAC adsorption. Lastly, LAC would exhibit great economic benefits as an alternative for PAC in subsequent process after anaerobic pretreatment.
Collapse
Affiliation(s)
- Mengqi Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou 510642, China
| | - Chunyan Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhengwen Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
42
|
Wang K, Larkin T, Singhal N, Zhuang T. Amendment of municipal sewage sludge with lime and mussel shell: Effects on fate of organic matter and pharmaceutically active compounds. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 85:272-282. [PMID: 30803581 DOI: 10.1016/j.wasman.2018.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
The deterioration in its strength from long-term degradation of organic matter and release of pharmaceutically active compounds (PhACs) have caused adverse environmental effects in municipal sewage sludge (MSS) landfill. Lime and a mixture of lime and mussel shell were employed as potential stabilization agents for MSS in this work. Their efficacy was assessed by investigating the effects on transformation of organic matter, as well as the occurrence and fate of four PhACs (fluoxetine, gemfibrozil, triclosan and carbamazepine) over 42 days. The addition of the selected agents: (i) prevented the microbial degradation of organic matter; (ii) modified the predominant functional groups of amide groups (amide I and II) and polysaccharides to deprotonated carboxylic groups and destruction of amide groups; and (iii) shifted the abundance of organic constituents from microbial by-products to humic acid-like organics with conformational changes. The measurement method provided reliable and precise results for determining PhAC concentrations in MSS with and without amendment, although matrix effects and process effects were found to affect measurement sensitivity. Available fractions of the PhACs increased in MSS with lime addition, but decreased in the presence of the mixture of lime and mussel shell due to the strong adsorption effects of the shells. The mixture of lime and mussel shell would be recommended for stabilizing MSS prior to being landfilled. However, longer term and larger scale investigation may be needed to better evaluate the applicability of lime and mussel shell for reducing the hazards and facilitating the management of MSS.
Collapse
Affiliation(s)
- Kun Wang
- Institute of Soil, Jinan Environmental Research Academy, Jinan 250102, PR China; Department of Civil and Environmental Engineering, University of Auckland, Private Bag 92019, New Zealand.
| | - Tam Larkin
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag 92019, New Zealand
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag 92019, New Zealand
| | - Tao Zhuang
- Institute of Soil, Jinan Environmental Research Academy, Jinan 250102, PR China
| |
Collapse
|
43
|
Briones RM, Sarmah AK. Sorption and mobility of metformin and guanylurea in soils as affected by biosolid amendment: Batch and column tests. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:19-27. [PMID: 30317086 DOI: 10.1016/j.envpol.2018.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Recent classification of metformin as an emerging contaminant warrants assessment of its fate and behaviour in the natural environment especially with land-based application of potentially contaminated wastewaters and biosolids. The present study provided further insight into the sorption mechanisms of metformin and its transformation product guanylurea in soil and upon biosolid fortification. Decreased metformin sorption (12.4%) as measured by the effective distribution coefficient (Kdeff) was observed with biosolids amendment while significant increase (2500%) in guanylurea sorption was calculated. Analysis of co-solute effects confirmed their contrasting sorption mechanisms with the absence of competitive effects in unamended soil. Results of the column tests were in good agreement with the batch sorption studies as the fitted values of retardation factors decreased and increased for metformin and guanylurea, respectively, upon addition of biosolids. The shapes of the breakthrough curves suggest slower desorption rates for both compounds in unamended soil resulting to non-equilibrium conditions and back-end tailings. However, in biosolid-amended soil columns, these tailings were less pronounced resembling equilibrium transport. Results also demonstrated enhanced mobility of both compounds upon biosolids fortification. The non-equilibrium chemical transport model fitted the measured data well (0.975 > r2 > 0.988) especially for unamended soils which suggests the existence of non-equilibrium conditions and rate-limited sorption sites.
Collapse
Affiliation(s)
- Rowena M Briones
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
44
|
Briones RM, Sarmah AK. Insight into the sorption mechanism of metformin and its transformation product guanylurea in pastoral soils and model sorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1323-1333. [PMID: 30248856 DOI: 10.1016/j.scitotenv.2018.07.251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/03/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Single solute sorption mechanisms of metformin (MET) and guanylurea (GUA) were investigated in six soils and three model sorbents (kaolinite, bentonite and humic acid) at varying initial pH and background electrolyte (Ca2+) concentrations. Electrostatic interaction and cation exchange were proposed as mechanisms of MET sorption. At initial solution pH between pKa1 and pKa2, electrostatic interaction is the dominating mechanism of MET sorption. However, as pH approaches pKa1, cation exchange becomes a significant mechanism of sorption as evidenced by the increased distribution coefficient (Kd) values in Matawhero (130-fold) and Nelson (2000-fold) soils with high cation exchange capacities (CEC) and permanently negative charged sites and when equilibrium pH < pKa1 where the divalent cationic form dominates in the solution. Furthermore, results showed higher sorption of MET on bentonite with effective distribution coefficient (Kdeff) value of 14.92 L/kg with high permanent negative charges than on kaolinite (Kdeff = 6.70 L/kg), a variable charge clay. Increased MET sorption at low equilibrium pH on kaolinite (Kdeff = 2.3 × 107 L/kg) and humic acid (Kdeff = 20.86 L/kg) further suggest cation exchange is also possible at pH < pKa1. On the other hand, two lines of evidence suggest cation exchange as an important mechanism of GUA sorption: (a) the positive correlation between cation exchange capacity and Kdeff values and (b) decreased Kdeff values as the Ca2+ concentration in solution was increased in all soils. Biosolids amendment of three soils resulted in contrasting effects on sorption affinities with a decrease for MET and increase for GUA, further confirming sorption mechanisms and significance of solution pH and CEC on the sorption of MET and GUA, respectively.
Collapse
Affiliation(s)
- Rowena M Briones
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
45
|
Abtahi SM, Petermann M, Juppeau Flambard A, Beaufort S, Terrisse F, Trotouin T, Joannis Cassan C, Albasi C. Micropollutants removal in tertiary moving bed biofilm reactors (MBBRs): Contribution of the biofilm and suspended biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1464-1480. [PMID: 30189563 DOI: 10.1016/j.scitotenv.2018.06.303] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
The performance of tertiary moving bed biofilm reactors (MBBRs) was evaluated in terms of micropollutants (MPs) removal from secondary-treated municipal wastewater. After stepwise establishment of a mature biofilm, monitored by scanning electron and confocal microscopies, abiotic and biotic removals of MPs were deeply studied. Since no MPs reduction was observed by the both photodegradation and volatilization, abiotic removal of MPs was ascribed to the sorption onto the biomass. Target MPs i.e. Naproxen, Diclofenac, 17β-Estradiol and 4n-Nonylphenol, arranged in the ascending order of hydrophobicity, abiotically declined up to 2.8%, 4%, 9.5% and 15%, respectively. MPs sorption onto the suspended biomass was found around two times more than the biofilm, in line with MPs' higher sorption kinetic constants (ksor) found for the suspended biomass. When comparing abiotic and biotic aspects, we found that biotic removal outperformed its counterpart for all compounds as Diclofenac, Naproxen, 17β-Estradiol and 4n-Nonylphenol were biodegraded by 72.8, 80.6, 84.7 and 84.4%, respectively. The effect of the changes in organic loading rates (OLRs) was investigated on the pseudo-first order degradation constants (kbiol), revealing the dominant biodegradation mechanism of co-metabolism for the removal of Diclofenac, Naproxen, and 4n-Nonylphenol, while 17β-Estradiol obeyed the biodegradation mechanism of competitive inhibition. Biotic removals and kbiol values of all MPs were also seen higher in the biofilm as compared to the suspended biomass. To draw a conclusion, a quite high removal of recalcitrant MPs is achievable in tertiary MBBRs, making them a promising technology that supports both pathways of co-metabolism and competitive inhibition, next to the abiotic attenuation of MPs.
Collapse
Affiliation(s)
- S Mehran Abtahi
- Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4 Allée Emile Monso, F31432 Toulouse, France.
| | - Maike Petermann
- Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4 Allée Emile Monso, F31432 Toulouse, France
| | - Agathe Juppeau Flambard
- Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4 Allée Emile Monso, F31432 Toulouse, France
| | - Sandra Beaufort
- Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4 Allée Emile Monso, F31432 Toulouse, France
| | - Fanny Terrisse
- Biovitis S.A., Le Bourg, 15400 Saint-Étienne-de-Chomeil, France
| | - Thierry Trotouin
- Veolia, Centre régional Toulouse Pyrénées, 22 avenue Marcel Dassault, 31506 Toulouse, France
| | - Claire Joannis Cassan
- Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4 Allée Emile Monso, F31432 Toulouse, France
| | - Claire Albasi
- Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4 Allée Emile Monso, F31432 Toulouse, France.
| |
Collapse
|
46
|
Lakshminarasimman N, Quiñones O, Vanderford BJ, Campo-Moreno P, Dickenson EV, McAvoy DC. Biotransformation and sorption of trace organic compounds in biological nutrient removal treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:62-72. [PMID: 29857321 DOI: 10.1016/j.scitotenv.2018.05.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/25/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
This study determined biotransformation rates (kbio) and sorption-distribution coefficients (Kd) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems.
Collapse
Affiliation(s)
| | - Oscar Quiñones
- Water Quality Research and Development Division, Southern Nevada Water Authority, Henderson, NV 89015, USA
| | - Brett J Vanderford
- Water Quality Research and Development Division, Southern Nevada Water Authority, Henderson, NV 89015, USA
| | - Pablo Campo-Moreno
- Cranfield Water Science Institute, Cranfield University, Cranfield, Beds MK43 0AL, UK
| | - Eric V Dickenson
- Water Quality Research and Development Division, Southern Nevada Water Authority, Henderson, NV 89015, USA
| | - Drew C McAvoy
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
47
|
Li Y, Liu H, Li G, Luo W, Sun Y. Manure digestate storage under different conditions: Chemical characteristics and contaminant residuals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:19-25. [PMID: 29778678 DOI: 10.1016/j.scitotenv.2018.05.128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
In this study, chemical characteristics and contaminant residuals in livestock manure digestate were investigated during storage under different conditions. Results show that storing digestate openly under the mesophilic condition (30 ± 1 °C) led to water evaporation and thus considerable mass reduction. As a result, concentrative effect occurred to increase the contents of organic matter, nutrients, and heavy metals during digestate storage. By contrast, ammonium (NH4+) concentration in digestate decreased over storage period. The concentrative effect and NH4+ reduction could be mitigated by storing digestate with coverage and/or under psychrophilic conditions (e.g. 15 ± 1 °C). Regardless of storage conditions, organic matter was further biodegraded, thereby reducing the residuals of antibiotics in digestate. Antibiotic removal was more notable when digestate was stored under mesophilic conditions. Nevertheless, additional processes to control heavy metals and antibiotics in digestate are still necessary before agricultural applications.
Collapse
Affiliation(s)
- Yun Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Hang Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
48
|
Kramer RD, Filippe TC, Prado MR, de Azevedo JCR. The influence of solid-liquid coefficient in the fate of pharmaceuticals and personal care products in aerobic wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25515-25525. [PMID: 29956261 DOI: 10.1007/s11356-018-2609-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Wastewater treatment plants (WWTPs) are considered to be a source of environmental contamination by micropollutants, especially from pharmaceuticals and personal care products (PCPs). The pathway of those compounds during sewage treatment has been investigated, but data from real-scale WWTPs is still missing (for example, the values of the solid-liquid coefficient (Kd) during treatment). This paper uses the Kd values for some pharmaceuticals and PCPs (fenofibrate, gemfibrozil, propranolol, metoprolol, salicylic acid, acetylsalicylic acid, ibuprofen, diclofenac, naproxen, fenoprofen, caffeine, triclosan, methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben) to describe the micropollutants' behavior in the treatment process. In order to attain this data, an aerobic wastewater treatment plant located in Brazil was studied. Six samplings were carried out and a mass balance was performed, associating the concentrations of the micropollutants in the liquid phase with the solid phase (sludge and suspended solids). Of all the compounds analyzed, caffeine was the most biodegradable pollutant, as almost 98% of its mass was biodegraded. In contrast, triclosan had the highest load in sludge (median of 163.0 mg day-1) and adsorbed in SS (median of 0.593 mg day-1) at the output. Summing up, each micropollutant had a specific way to be removed during wastewater treatment.
Collapse
Affiliation(s)
- Rafael D Kramer
- Hydraulic and Sanitation Department, Federal University of Paraná, Curitiba, Brazil.
- Chemistry and Biology Department, Federal Technological University of Paraná, Curitiba, Brazil.
| | - Tais C Filippe
- Chemistry and Biology Department, Federal Technological University of Paraná, Curitiba, Brazil
| | - Marcelo R Prado
- Chemistry and Biology Department, Federal Technological University of Paraná, Curitiba, Brazil
| | - Júlio César R de Azevedo
- Hydraulic and Sanitation Department, Federal University of Paraná, Curitiba, Brazil
- Chemistry and Biology Department, Federal Technological University of Paraná, Curitiba, Brazil
| |
Collapse
|
49
|
Bagnis S, Fitzsimons M, Snape J, Tappin A, Comber S. Sorption of active pharmaceutical ingredients in untreated wastewater effluent and effect of dilution in freshwater: Implications for an "impact zone" environmental risk assessment approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:333-341. [PMID: 29258034 DOI: 10.1016/j.scitotenv.2017.12.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Evidence of ecotoxicological effects of active pharmaceuticals ingredients (APIs) has increased research into their environmental fate. In low and low-middle income countries (LLMICs) the main source of APIs to surface waters is from discharge of untreated wastewater. Consequently, concentrations of APIs can be relatively high in the "impact zone" downstream of a discharge point. Little is known about the fate of APIs in these impact zones. In this laboratory scale investigation, the effect of successive dilution of synthetic untreated wastewater (dilution factor 1 to 10) on the distribution of APIs was studied. The sorption was consistent with the chemical properties of each compound: charge, lipophilicity, and structure. Dilution increased desorption of the basic and neutral APIs (up to 27.7%) and correlated with their lipophilicity (R2>0.980); the positive charge was of secondary importance. Anions did not significantly desorb (<10% loss). Increased concentrations of dissolved organic matter at dilutions of 8 and 10 times that of untreated wastewater coincided with lower dissolved API concentrations. The data showed a clear trend in the desorption process of APIs that may lead to higher exposure risk than anticipated. Therefore, it is suggested that these aspects should be accounted for in the development of dedicated environmental risk assessment approach for APIs in riverine impact zones of LLMICs countries.
Collapse
Affiliation(s)
- Simone Bagnis
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Mark Fitzsimons
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Jason Snape
- AstraZeneca UK, Global Safety, Health and Environment, Macclesfield, UK; School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK
| | - Alan Tappin
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Sean Comber
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
50
|
Wang K, Larkin T, Singhal N, Song Y. Mobility of pharmaceutical and personal care products in lime amended wastewater biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1263-1273. [PMID: 29929239 DOI: 10.1016/j.scitotenv.2017.12.243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
Lime amendment of biosolids can produce large quantities of hydroxyl ions and increase biosolids pH. The mobility of some pharmaceutical and personal care products (PPCPs) is closely correlated with the pH of biosolids. In this study the mobility of six PPCPs: erythromycin, fluoxetine, carbamazepine, naproxen, gemfibrozil and triclosan, was measured in unamended and lime-amended biosolids over 63days. Biosolids were equilibrated either a at pH range of 5.5-11.5 or cured over a time period up to 63days. The mobility was calculated as the proportion of PPCPs associated with the soluble phase after a given equilibrium time or a curing period. In unamended biosolids the mobility of erythromycin, fluoxetine, gemfibrozil and triclosan decreased, the mobility of naproxen increased and the mobility of carbamazepine was almost unchanged over 63days of curing. Compared to unamended biosolids, lime addition increased the mobility of erythromycin and naproxen by 21.7% and 33.8% respectively, but suppressed the mobility of carbamazepine, fluoxetine, gemfibrozil and triclosan by up to 100% after 63days. The pH influence on hydrophobicity and speciation of PPCPs correlated well with the mobility of erythromycin and fluoxetine, but only partially correlated with the mobility of the other 4 compounds over the pH of 5.5-11.5. Attenuated total reflectance Fourier transformed infrared (ATR-FTIR) and emission-excitation matrices (EEMs) provided spectroscopic evidences showing that the increases in amide and carboxylic groups, the decrease in polysaccharides, and the increases in humic substances in dissolved organic matter (DOM) may be responsible for the changes in the PPCPs' mobility. The effects of lime amendment lasted for approximately a month. The results of this work suggest that lime amendment prevents some PPCPs from being dissolved in biosolids soluble phases, but may not "lock" all PPCPs into biosolids.
Collapse
Affiliation(s)
- Kun Wang
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag 92019, New Zealand.
| | - Tam Larkin
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag 92019, New Zealand
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag 92019, New Zealand
| | - Yantao Song
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag 92019, New Zealand
| |
Collapse
|