1
|
Zeng J, Nakanishi T, Itoh S. Two-year Monitoring of Microbiological Water Quality in Small Water Supply Systems: Implications for Microbial Risk Management. ENVIRONMENTAL MANAGEMENT 2024; 74:256-267. [PMID: 38767663 DOI: 10.1007/s00267-024-01988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Small water supply systems (SWSSs) are often more vulnerable to waterborne disease outbreaks. In Japan, many SWSSs operate without regulation under the Waterworks Law, yet there is limited investigation into microbial contamination and the associated health risks. In this study, the microbiological water quality of four SWSSs that utilize mountain streams as water sources and do not install water treatment facilities were monitored for over 2 years. In investigated SWSSs, the mean heterotrophic plate counts were below 350 CFU/mL, and the total bacterial loads (16S rDNA concentration) ranged from 4.71 to 5.35 log10 copies/mL. The results also showed the consistent presence of fecal indicator bacteria (FIB), i.e., Escherichia coli and Clostridium perfringens, suggesting the potential of fecal pollution. E. coli was then utilized as an indicator to assess the health risk posed by E. coli O157:H7 and Campylobacter jejuni. The results indicated that the estimated mean annual risk of infection and disability-adjusted life years (DALYs) exceeded acceptable levels in all SWSSs for the two reference pathogens. To ensure microbial water safety, implementing appropriate water treatment facilities with an estimated mean required reduction of 5-6 log10 was necessary. This study highlighted the potential microbial contamination and health risk level in SWSSs that utilize mountain streams as water sources, even though the water sources were almost not affected by human activities. Furthermore, this study would also be helpful in supporting risk-based water management to ensure a safe water supply in SWSSs.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto, 615-8540, Japan
| | - Tomohiro Nakanishi
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto, 615-8540, Japan.
| | - Sadahiko Itoh
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto, 615-8540, Japan
| |
Collapse
|
2
|
Cheswick R, Nocker A, Moore G, Jefferson B, Jarvis P. Exploring the use of flow cytometry for understanding the efficacy of disinfection in chlorine contact tanks. WATER RESEARCH 2022; 217:118420. [PMID: 35468557 DOI: 10.1016/j.watres.2022.118420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
A pilot scale chlorine contact tank (CCT) with flexible baffling was installed at an operational water treatment plant (WTP), taking a direct feed from the outlet of the rapid gravity filters (RGF). For the first time, disinfection efficacy was established by direct microbial monitoring in a continuous reactor using flow cytometry (FCM). Disinfection variables of dose, time, and hydraulic efficiency (short circuiting and dispersion) were explored following characterisation of the reactor's residence time distributions (RTD) by tracer testing. FCM enabled distinction to be made between changes in disinfection reactor design where standard culture-based methods could not. The product of chlorine concentration (C) and residence time (t) correlated well with inactivation of microbes, organisms, with the highest cell reductions (N/N0) reaching <0.025 at Ctx¯ of 20 mg.min/L and above. The influence of reactor geometry on disinfection was best shown from the Ct10. This identified that the initial level of microbial inactivation was higher in unbaffled reactors for low Ct10 values, although the highest levels of inactivation of 0.015 could only be achieved in the baffled reactors, because these conditions enabled the highest Ct10 values to be achieved. Increased levels of disinfection were closely associated with increased formation of the trihalomethane disinfection by-products. The results highlight the importance of well-designed and operated CCT. The improved resolution afforded by FCM provides a tool that can dynamically quantify disinfection processes, enabling options for much better process control.
Collapse
Affiliation(s)
- Ryan Cheswick
- Cranfield University, Bedford, MK43 0AL, UK; Scottish Water, Castle House, Dunfermline, KY11 8GG, UK
| | | | - Graeme Moore
- Scottish Water, Castle House, Dunfermline, KY11 8GG, UK
| | | | | |
Collapse
|
3
|
Bian K, Wang C, Jia S, Shi P, Zhang H, Ye L, Zhou Q, Li A. Spatial dynamics of bacterial community in chlorinated drinking water distribution systems supplied with two treatment plants: An integral study of free-living and particle-associated bacteria. ENVIRONMENT INTERNATIONAL 2021; 154:106552. [PMID: 33866058 DOI: 10.1016/j.envint.2021.106552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
With the expansion of cities, the deterioration of drinking water quality undergoing complex and long-distance distribution is gaining increasing attention. However, spatial variations between free-living bacteria (FLB) and particle-associated bacteria (PAB) in chlorinated drinking water distribution systems (DWDSs) have not been fully explored, especially in complex water supply areas with multiple interconnected DWDSs. To fill this gap, this study utilized 16S rRNA approaches to characterize the spatial patterns of FLB and PAB in DWDSs with intersection regions. Based on distance-decay analysis, transportation distance is a potential driver of bacterial variation for both FLB (Pearson's r = -0.476, p < 0.01) and PAB. (Pearson's r = -0.352, p < 0.01). Moreover, the influence of transportation distance was further confirmed by a 1.20-99.45% decline in microbial contribution to the source of FLB and PAB communities in pipe water along the transportation pipelines. Meanwhile, significant difference (PERMANOVA, R2 = 0.14, p < 0.01) was found between FLB and PAB in DWDSs. Average proportions of Pseudomonas spp. were 59.84% and 45.59% for the PAB and intersection regions based on the 16S rRNA results, respectively, suggesting that PAB are potential reservoirs for high-risk bacteria, and a greater microbial risk may exist in intersection regions. In summary, transportation distance and pipeline intersection exerted significant impacts on the FLB and PAB in DWDSs. Therefore, precautionary strategies for controlling microbial risks that consider different microbial components and intersection regions in long-distance and multi-plant DWDSs should be implemented.
Collapse
Affiliation(s)
- Kaiqin Bian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chen Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Huaicheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Gao H, Ji H, Yu R, Zhu G. Effects of ozonation on disinfection by-product formation potentials and biostability in a pilot-scale drinking water treatment plant with micro-polluted water. ENVIRONMENTAL TECHNOLOGY 2021; 42:3254-3265. [PMID: 33284736 DOI: 10.1080/09593330.2020.1829083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/18/2020] [Indexed: 06/12/2023]
Abstract
The accelerated urbanization in China has caused intensified micro-pollution problems for drinking water sources, severely challenging drinking water treatment efficiencies and its biostability. This study mainly investigated the effects of ozonation on disinfection by-product formation potentials (DBPFPs) and biological dissolved organic carbon (BDOC) in a pilot-scale ozonation-biological activated carbon advanced drinking water treatment plant with micro-polluted raw water. The results indicated that the micro-polluted water would be effectively treated in the advanced treatment processes with DBPFPs significantly eliminated. The total removal rates of trihalomethane formation potentials (THMFPs) and haloacetic acid formation potentials (HAAFPs) increased with the elevated ozone dosage to finally a relatively stable stage, and the maximum removal rates of 77.3% and 57.0%, respectively, were achieved at the ozone dosage of 2 mg/L. The bromine incorporation in total THMFPs (TTHMFPs) was dramatically suppressed after integrated advanced treatment processes, while that in total HAAFPs (THAAFPs) was promoted with the corresponding increment of up to 25.3% for bromine incorporation factor, which caused relatively high brominated HAAFP proportions in the treated water than in the raw water. In addition, the BDOC generation rate and THAAFP removal rate during the post-ozonation treatment displayed apparent positive correlation, and a similar relationship was observed for the BDOC degradation rate and TTHMFP removal rate during the BAC treatment in the studied ozone dosage (1 ∼ 5 mg/L). The findings strongly implied a promising alternative to measure DBPFP removal rate instead of BDOC level for more sensitive and convenient monitoring of the biostability in the reclaimed water.
Collapse
Affiliation(s)
- Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, People's Republic of China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, People's Republic of China
| | - Hongjun Ji
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, People's Republic of China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, People's Republic of China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, People's Republic of China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, People's Republic of China
| | - Guangcan Zhu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, People's Republic of China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Shi Y, Zhang Z, Zhang M, Ding G, Zhao B, Wang L, Zhang H. Biological membrane fouling control with the integrated and separated processes of MIEX and UF. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Pan R, Zhang K, Cen C, Zhou X, Xu J, Wu J, Wu X. Characteristics of biostability of drinking water in aged pipes after water source switching: ATP evaluation, biofilms niches and microbial community transition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116293. [PMID: 33412444 DOI: 10.1016/j.envpol.2020.116293] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Delivering quality-changed water often contributes to the biological instability of drinking water distribution systems (DWDS). However, the potential effects of quality-changed water on the biostability within DWDS are not well understood, especially after water switching to quality-improved water. The objective of this study was to investigate the effects of quality-improved water on DWDS, focusing on the stability of biofilm. The practical aged-pipe was assembled into pipe reactors to simulate the effect of switching to quality-improve water. The adenosine triphosphate (ATP) concentration of bulk water in the pipe reactors increased from ∼1.2 ng/L to almost above 5 ng/L when fed water switching to TP 2. Biomass quantified by measuring ATP concentration confirmed that the risk of biofilm release through aged cast-iron (CI) pipe surfaces after water source switching. The changes in water characteristics due to quality-improved water source could cause bacteria release in DWDS at the initial period (at the first 7 days). However, the DWDS can establish the new stable phase after 42 days. Over time, biomass in the bulk water of the distribution system decreased significantly (The ATP concentration in the bulk maintains around 3 ng/L) after 42 days, indicating the improvement of water quality. The biofilm was dominated by bacteria related to iron-cycling process, and at the genus level, Desulfovibrio had the highest relative abundance, however, it decreased significantly (from 48% to 9.3%) after water source switching. And there was a slightly increase in the fraction of iron-oxidizing bacteria (IOB) and siderophore-producing bacteria (SPB), but a relatively higher increase in nitrate-reducing bacteria (NRB), nitrobacteria (NOB), and iron-reducing bacteria (IRB) was observed. Taken together, these results and the corrosion morphology, indicate that pipe biofilm and corrosion were chemically and microbially stable after re-stability under water source switching. In addition, the bulk water environment showed a marked decrease in selected bacteria at genus level, including pathogenic species, indicating the improvement of quality in drinking water.
Collapse
Affiliation(s)
- Renjie Pan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Cheng Cen
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xinyan Zhou
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jia Xu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jiajia Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaogang Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
7
|
Grehs BWN, Lopes AR, Moreira NFF, Fernandes T, Linton MAO, Silva AMT, Manaia CM, Carissimi E, Nunes OC. Removal of microorganisms and antibiotic resistance genes from treated urban wastewater: A comparison between aluminium sulphate and tannin coagulants. WATER RESEARCH 2019; 166:115056. [PMID: 31520811 DOI: 10.1016/j.watres.2019.115056] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 05/28/2023]
Abstract
The presence of antibiotic resistant-bacteria (ARB) and antibiotic resistance genes (ARG) in treated effluents of urban wastewater treatment plants (WWTP) may represent a threat to the environment and public health. Therefore, cost-effective technologies contributing to minimize loads of these contaminants in the final effluents of WWTP are required. This study aimed at assessing the capacity of coagulation to reduce the ARB&ARG load in secondary treated urban wastewater (STWW), as well as the impact of the process on the structure and diversity of the bacterial community. Coagulation performance using aluminium sulphate, a synthetic substance, and tannins, a biowaste, was compared. Samples were analysed immediately before (STWW) and after the coagulation treatment (Alu, Tan), as well as after 3-days storage in the dark at room temperature (RSTWW, RAlu, RTan), to assess possible reactivation events. Both coagulants decreased the turbidity and colour and reduced the bacterial load (16S rRNA gene copy number, total heterotrophs (HET), and ARB (faecal coliforms resistant to amoxicillin (FC/AMX) or ciprofloxacin (FC/CIP) up to 1-2 log immediately after the treatment. Both coagulants reduced the load of intl1, but in average, aluminium sulphate was able to decrease the content of the analysed ARGs (blaTEM and qnrS) to lower levels than tannin. Reactivation after storage was observed mainly in RTan. In these samples the load of the culturable populations and qnrS gene prevalence increased, sometimes to values higher than those found in the initial wastewater. Reactivation was also characterized by an increment in Gammaproteobacteria relative abundance in the bacterial community, although with distinct patterns for RTan and RAlu. Curvibacter, Undibacterium and Aquaspirillum were among the most abundant genera in RAlu and Aeromonas, Pseudomonas and Stenotrophomonas in RTan. These bacterial community shifts were in agreement with the variations in the culturable bacterial counts of HET for RTan and FC/CIP for RAlu. In summary, the overall performance of aluminium sulphate was better than that of tannins in the treatment of treated urban wastewater.
Collapse
Affiliation(s)
- Bárbara W N Grehs
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil
| | - Ana Rita Lopes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Nuno F F Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Telma Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 13274169-005, Porto, Portugal
| | - Maria A O Linton
- Department of Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 13274169-005, Porto, Portugal
| | - Elvis Carissimi
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil.
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
8
|
Cheswick R, Cartmell E, Lee S, Upton A, Weir P, Moore G, Nocker A, Jefferson B, Jarvis P. Comparing flow cytometry with culture-based methods for microbial monitoring and as a diagnostic tool for assessing drinking water treatment processes. ENVIRONMENT INTERNATIONAL 2019; 130:104893. [PMID: 31226555 DOI: 10.1016/j.envint.2019.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Flow cytometry (FCM) and the ability to measure both total and intact cell populations through DNA staining methodologies has rapidly gained attention and consideration across the water sector in the past decade. In this study, water quality monitoring was undertaken over three years across 213 drinking water treatment works (WTW) in the Scottish Water region (Total n = 39,340). Samples subject to routine regulatory microbial analysis using culture-based methods were also analysed using FCM. In addition to final treated water, the bacterial content in raw water was measured over a one-year period. Three WTW were studied in further detail using on-site inter-stage sampling and analysis with FCM. It was demonstrated that there was no clear link between FCM data and the coliform samples taken for regulatory monitoring. The disinfectant Ct value (Ct = mg·min/L) was the driving factor in determining final water cell viability and the proportion of intact cells (intact/total cells) and the frequency of coliform detections in the water leaving the WTW. However, the free chlorine residual, without consideration of treatment time, was shown to have little impact on coliform detections or cell counts. Amongst the three treatment trains monitored in detail, the membrane filtration WTW showed the greatest log removal and robustness in terms of final water intact cell counts. Flow cytometry was shown to provide insights into the bacteriological quality of water that adds significant value over and above that provided by traditional bacterial monitoring.
Collapse
Affiliation(s)
- Ryan Cheswick
- Cranfield Water Science Institute, School of Water, Energy and Environment, Cranfield MK43 0AL, UK; Scottish Water, 6 Castle Drive, Carnegie Campus, Dunfermline KY11 8GG, UK
| | - Elise Cartmell
- Scottish Water, 6 Castle Drive, Carnegie Campus, Dunfermline KY11 8GG, UK
| | - Susan Lee
- Scottish Water, 6 Castle Drive, Carnegie Campus, Dunfermline KY11 8GG, UK
| | - Andrew Upton
- Cranfield Water Science Institute, School of Water, Energy and Environment, Cranfield MK43 0AL, UK; Scottish Water, 6 Castle Drive, Carnegie Campus, Dunfermline KY11 8GG, UK
| | - Paul Weir
- Scottish Water, 6 Castle Drive, Carnegie Campus, Dunfermline KY11 8GG, UK
| | - Graeme Moore
- Scottish Water, 6 Castle Drive, Carnegie Campus, Dunfermline KY11 8GG, UK
| | - Andreas Nocker
- IWW Water Centre, Morizstraße 26, 45476 Mülheim an der Ruhr, Germany
| | - Bruce Jefferson
- Cranfield Water Science Institute, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - Peter Jarvis
- Cranfield Water Science Institute, School of Water, Energy and Environment, Cranfield MK43 0AL, UK.
| |
Collapse
|
9
|
Safford HR, Bischel HN. Flow cytometry applications in water treatment, distribution, and reuse: A review. WATER RESEARCH 2019; 151:110-133. [PMID: 30594081 DOI: 10.1016/j.watres.2018.12.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Ensuring safe and effective water treatment, distribution, and reuse requires robust methods for characterizing and monitoring waterborne microbes. Methods widely used today can be limited by low sensitivity, high labor and time requirements, susceptibility to interference from inhibitory compounds, and difficulties in distinguishing between viable and non-viable cells. Flow cytometry (FCM) has recently gained attention as an alternative approach that can overcome many of these challenges. This article critically and systematically reviews for the first time recent literature on applications of FCM in water treatment, distribution, and reuse. In the review, we identify and examine nearly 300 studies published from 2000 to 2018 that illustrate the benefits and challenges of using FCM for assessing source-water quality and impacts of treatment-plant discharge on receiving waters, wastewater treatment, drinking water treatment, and drinking water distribution. We then discuss options for combining FCM with other indicators of water quality and address several topics that cut across nearly all applications reviewed. Finally, we identify priority areas in which more work is needed to realize the full potential of this approach. These include optimizing protocols for FCM-based analysis of waterborne viruses, optimizing protocols for specifically detecting target pathogens, automating sample handling and preparation to enable real-time FCM, developing computational tools to assist data analysis, and improving standards for instrumentation, methods, and reporting requirements. We conclude that while more work is needed to realize the full potential of FCM in water treatment, distribution, and reuse, substantial progress has been made over the past two decades. There is now a sufficiently large body of research documenting successful applications of FCM that the approach could reasonably and realistically see widespread adoption as a routine method for water quality assessment.
Collapse
Affiliation(s)
- Hannah R Safford
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States
| | - Heather N Bischel
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States.
| |
Collapse
|
10
|
Whitton R, Fane S, Jarvis P, Tupper M, Raffin M, Coulon F, Nocker A. Flow cytometry-based evaluation of the bacterial removal efficiency of a blackwater reuse treatment plant and the microbiological changes in the associated non-potable distribution network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1620-1629. [PMID: 30248879 DOI: 10.1016/j.scitotenv.2018.07.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
The study evaluated the changes in bacterial numbers across a full-scale membrane bioreactor (MBR) blackwater reuse system. Flow cytometry was used to quantify total and intact bacterial concentrations across the treatment train and during distribution of the recycled water. Membrane passage reduced bacterial numbers by up to 5-log units resulting in coliform-free permeate. A 2-log increase in bacterial cell concentration was subsequently observed after the granular activated carbon unit followed by a reduction in intact cells after chlorination, which corresponds to an overall intact bacteria removal of 3.4-log units. In the distribution network, the proportion of intact cells greatly depended on the free chlorine residual, with decreasing residual enabling regrowth. An initial target of 0.5 mg L-1 free chlorine ensured sufficient suppression of intact cells for up to 14 days (setting the time intervals for system flushes at times of low water usage). Bacterial regrowth was only observed when the free chlorine concentration was below 0.34 mg L-1. Such loss of residual chlorine mainly applied to distant points in the distribution network from the blackwater reuse treatment plant (BRTP). Flushing these network points for 5 min did not substantially reduce cell numbers. At points closer to the BRTP, on the other hand, flushing reduced cell numbers by up to 1.5-log units concomitant with a decreasing proportion of intact cells. Intact cell concentrations did not correlate with DOC, total nitrogen, or soluble reactive phosphate, but it was shown that dead biomass could be efficiently converted into new biomass within seven days.
Collapse
Affiliation(s)
- Rachel Whitton
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Sarah Fane
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Peter Jarvis
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Martyn Tupper
- Thames Water Utilities Ltd, Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB, United Kingdom
| | - Marie Raffin
- Thames Water Utilities Ltd, Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB, United Kingdom
| | - Frédéric Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Andreas Nocker
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany.
| |
Collapse
|
11
|
Miller HC, Wylie JT, Kaksonen AH, Sutton D, Puzon GJ. Competition between Naegleria fowleri and Free Living Amoeba Colonizing Laboratory Scale and Operational Drinking Water Distribution Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2549-2557. [PMID: 29390181 DOI: 10.1021/acs.est.7b05717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Free living amoebae (FLA), including pathogenic Naegleria fowleri, can colonize and grow within pipe wall biofilms of drinking water distribution systems (DWDSs). Studies on the interactions between various FLA species in biofilms are limited. Understanding the interaction between FLA and the broader biofilm ecology could help better predict DWDS susceptibility to N. fowleri colonization. The aim of this study was to determine if N. fowleri and other FLAs ( Naegleria, Vermamoeba, Willaertia, and Vahlkampfia spp.) cocolonize DWDS biofilm. FLAs commonly isolated from DWDSs ( N. fowleri, V. vermiformis, and N. lovaniensis) were introduced into laboratory-scale biomonitors to determine the impact of these amoebae on N. fowleri's presence and viability. Over 18 months, a single viable amoebae ( N. fowleri, N. lovaniensis, or V. vermiformis) was detected in each biofilm sample, with the exception of N. lovaniensis and N. fowleri, which briefly cocolonized biofilm following their coinoculation. The analysis of biofilm and bulk water samples from operational DWDSs revealed a similar lack of cocolonization with a single FLA detected in 99% ( n = 242) of samples. Interestingly, various Naegleria spp. did colonize the same DWDS locations but at different times. This knowledge furthers the understanding of ecological factors which enable N. fowleri to colonize and survive within operational DWDSs and could aid water utilities to control its occurrence.
Collapse
Affiliation(s)
- Haylea C Miller
- CSIRO Land and Water , Private Bag No. 5 , Wembley , Western Australia 6913 , Australia
- School of Biomedical Sciences , University of Western Australia , 35 Stirling Highway , Crawley , Western Australia 6009 , Australia
| | - Jason T Wylie
- CSIRO Land and Water , Private Bag No. 5 , Wembley , Western Australia 6913 , Australia
| | - Anna H Kaksonen
- CSIRO Land and Water , Private Bag No. 5 , Wembley , Western Australia 6913 , Australia
- School of Biomedical Sciences , University of Western Australia , 35 Stirling Highway , Crawley , Western Australia 6009 , Australia
| | - David Sutton
- School of Biomedical Sciences , University of Western Australia , 35 Stirling Highway , Crawley , Western Australia 6009 , Australia
| | - Geoffrey J Puzon
- CSIRO Land and Water , Private Bag No. 5 , Wembley , Western Australia 6913 , Australia
| |
Collapse
|
12
|
Van Nevel S, Koetzsch S, Proctor CR, Besmer MD, Prest EI, Vrouwenvelder JS, Knezev A, Boon N, Hammes F. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. WATER RESEARCH 2017; 113:191-206. [PMID: 28214393 DOI: 10.1016/j.watres.2017.01.065] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.
Collapse
Affiliation(s)
- S Van Nevel
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - S Koetzsch
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - C R Proctor
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland; Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - M D Besmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - E I Prest
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - J S Vrouwenvelder
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands; Wetsus, Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands; King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - A Knezev
- Het Waterlaboratorium, J.W. Lucasweg 2, 2031 BE, Haarlem, The Netherlands
| | - N Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - F Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.
| |
Collapse
|
13
|
Miller HC, Morgan MJ, Wylie JT, Kaksonen AH, Sutton D, Braun K, Puzon GJ. Elimination of Naegleria fowleri from bulk water and biofilm in an operational drinking water distribution system. WATER RESEARCH 2017; 110:15-26. [PMID: 27974249 DOI: 10.1016/j.watres.2016.11.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/07/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
Global incidence of primary amoebic meningoencephalitis cases associated with domestic drinking water is increasing. The need for understanding disinfectant regimes capable of eliminating the causative microorganism, Naegleria fowleri, from bulk water and pipe wall biofilms is critical. This field study demonstrated the successful elimination of N. fowleri from the bulk water and pipe wall biofilm of a persistently colonised operational drinking water distribution system (DWDS), and the prevention of further re-colonisation. A new chlorination unit was installed along the pipe line to boost the free chlorine residual to combat the persistence of N. fowleri. Biofilm and bulk water were monitored prior to and after re-chlorination (RCl), pre-rechlorination (pre-RCl) and post-rechlorination (post-RCl), respectively, for one year. A constant free chlorine concentration of > 1 mg/L resulted in the elimination of N. fowleri from both the bulk water and biofilm at the post-RCl site. Other amoeba species were detected during the first two months of chlorination, but all amoebae were eliminated from both the bulk water and biofilm at post-RCl after 60 days of chlorination with free chlorine concentrations > 1 mg/L. In addition, a dynamic change in the biofilm community composition and a four log reduction in biofilm cell density occurred post-RCl. The pre-RCl site continued to be seasonally colonised by N. fowleri, but the constant free chlorine residual of > 1 mg/L prevented N. fowleri from recolonising the bulk and pipe wall biofilm at the post-RCl site. To our knowledge, this is the first study to demonstrate successful removal of N. fowleri from both the bulk and pipe wall biofilm and prevention of re-colonisation of N. fowleri in an operational DWDS. The findings of this study are of importance to water utilities in addressing the presence of N. fowleri and other amoeba in susceptible DWDSs.
Collapse
Affiliation(s)
- Haylea C Miller
- CSIRO Land and Water, Private Bag No.5, Wembley, Western Australia 6913, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Matthew J Morgan
- CSIRO Land and Water, Black Mountain Laboratories, P.O. Box 1700, Canberra, ACT 2601, Australia
| | - Jason T Wylie
- CSIRO Land and Water, Private Bag No.5, Wembley, Western Australia 6913, Australia
| | - Anna H Kaksonen
- CSIRO Land and Water, Private Bag No.5, Wembley, Western Australia 6913, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - David Sutton
- School of Pathology and Laboratory Medicine, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Kalan Braun
- Water Corporation of Western Australia, 629 Newcastle Street, Leederville, Western Australia 6007, Australia
| | - Geoffrey J Puzon
- CSIRO Land and Water, Private Bag No.5, Wembley, Western Australia 6913, Australia.
| |
Collapse
|
14
|
Huang H, Sawade E, Cook D, Chow CWK, Drikas M, Jin B. High-performance size exclusion chromatography with a multi-wavelength absorbance detector study on dissolved organic matter characterisation along a water distribution system. J Environ Sci (China) 2016; 44:235-243. [PMID: 27266320 DOI: 10.1016/j.jes.2015.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 06/06/2023]
Abstract
This study examined the associations between dissolved organic matter (DOM) characteristics and potential nitrification occurrence in the presence of chloramine along a drinking water distribution system. High-performance size exclusion chromatography (HPSEC) coupled with a multiple wavelength detector (200-280nm) was employed to characterise DOM by molecular weight distribution, bacterial activity was analysed using flow cytometry, and a package of simple analytical tools, such as dissolved organic carbon, absorbance at 254nm, nitrate, nitrite, ammonia and total disinfectant residual were also applied and their applicability to indicate water quality changes in distribution systems were also evaluated. Results showed that multi-wavelength HPSEC analysis was useful to provide information about DOM character while changes in molecule weight profiles at wavelengths less than 230nm were also able to be related to other water quality parameters. Correct selection of the UV wavelengths can be an important factor for providing appropriate indicators associated with different DOM compositions. DOM molecular weight in the range of 0.2-0.5kDa measured at 210nm correlated positively with oxidised nitrogen concentration (r=0.99), and the concentrations of active bacterial cells in the distribution system (r=0.85). Our study also showed that the changes of DOM character and bacterial cells were significant in those sampling points that had decreases in total disinfectant residual. HPSEC-UV measured at 210nm and flow cytometry can detect the changes of low molecular weight of DOM and bacterial levels, respectively, when nitrification occurred within the chloraminated distribution system.
Collapse
Affiliation(s)
- Huiping Huang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Emma Sawade
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5100, Australia
| | - David Cook
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5100, Australia
| | - Christopher W K Chow
- School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5100, Australia.
| | - Mary Drikas
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5100, Australia
| | - Bo Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
15
|
Fabris R, Denman J, Braun K, Ho L, Drikas M. Surface analysis of pilot distribution system pipe autopsies: The relationship of organic and inorganic deposits to input water quality. WATER RESEARCH 2015; 87:202-210. [PMID: 26414297 DOI: 10.1016/j.watres.2015.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) surface analysis was conducted to characterise deposits in polyethylene pipes used in a novel pilot water distribution system (PDS). The system consisted of four (4) parallel distribution systems receiving water from different treatment processes, ranging from conventional coagulation through to an advanced membrane filtration system. After two years of operation, the distribution system was shut down and samples of pipe were collected for autopsy analysis. Inlet and outlet samples from each PDS were collected for purpose of comparison. ToF-SIMS was used to assess chemical differences in surface biofilm accumulation and particulate deposition, which resulted as a consequence of the treatment method and operational mode of each system. These data supplemented previously collected bacteriological and chemical water quality data. Results from the inorganic analysis of the pipes were consistent with corrosion and contamination events that occurred upstream in the corresponding treatment systems. Principal component analysis of data on organic constituents showed oxygen and nitrogen containing fragments were associated with the treatment inlet and outlet samples. These types of signals can often be ascribed to biofilm polysaccharides and proteins. A trend was observed when comparing samples from the same PDS, showing an association of lower molecular weight (MW) organic fragments with the inlet and higher MW organic fragments with the outlet samples.
Collapse
Affiliation(s)
- Rolando Fabris
- Australian Water Quality Centre, SA Water Corporation, Adelaide, South Australia 5001, Australia.
| | - John Denman
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Kalan Braun
- Australian Water Quality Centre, SA Water Corporation, Adelaide, South Australia 5001, Australia
| | - Lionel Ho
- Australian Water Quality Centre, SA Water Corporation, Adelaide, South Australia 5001, Australia
| | - Mary Drikas
- Australian Water Quality Centre, SA Water Corporation, Adelaide, South Australia 5001, Australia
| |
Collapse
|
16
|
Bacterial growth in batch-operated membrane filtration systems for drinking water treatment. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.09.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Bridgeman J, Baker A, Brown D, Boxall JB. Portable LED fluorescence instrumentation for the rapid assessment of potable water quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 524-525:338-46. [PMID: 25912529 DOI: 10.1016/j.scitotenv.2015.04.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 05/22/2023]
Abstract
Characterising the organic and microbial matrix of water are key issues in ensuring a safe potable water supply. Current techniques only confirm water quality retrospectively via laboratory analysis of discrete samples. Whilst such analysis is required for regulatory purposes, it would be highly beneficial to monitor water quality in-situ in real time, enabling rapid water quality assessment and facilitating proactive management of water supply systems. A novel LED-based instrument, detecting fluorescence peaks C and T (surrogates for organic and microbial matter, respectively), was constructed and performance assessed. Results from over 200 samples taken from source waters through to customer tap from three UK water companies are presented. Excellent correlation was observed between the new device and a research grade spectrophotometer (r(2)=0.98 and 0.77 for peak C and peak T respectively), demonstrating the potential of providing a low cost, portable alternative fluorimeter. The peak C/TOC correlation was very good (r(2)=0.75) at low TOC levels found in drinking water. However, correlations between peak T and regulatory measures of microbial matter (2 day/3 day heterotrophic plate counts (HPC), E. coli, and total coliforms) were poor, due to the specific nature of these regulatory measures and the general measure of peak T. A more promising correlation was obtained between peak T and total bacteria using flow cytometry. Assessment of the fluorescence of four individual bacteria isolated from drinking water was also considered and excellent correlations found with peak T (Sphingobium sp. (r(2)=0.83); Methylobacterium sp. (r(2)=1.0); Rhodococcus sp. (r(2)=0.86); Xenophilus sp. (r(2)=0.96)). It is notable that each of the bacteria studied exhibited different levels of fluorescence as a function of their number. The scope for LED based instrumentation for in-situ, real time assessment of the organic and microbial matrix of potable water is clearly demonstrated.
Collapse
Affiliation(s)
- J Bridgeman
- School of Civil Engineering, University of Birmingham, Birmingham, United Kingdom.
| | - A Baker
- Connected Waters Initiative Research Centre, University of NSW, Sydney, NSW 2052, Australia.
| | - D Brown
- School of Civil Engineering, University of Birmingham, Birmingham, United Kingdom; Department of Civil and Structural Engineering, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - J B Boxall
- Department of Civil and Structural Engineering, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, United Kingdom.
| |
Collapse
|
18
|
Shaw JLA, Monis P, Fabris R, Ho L, Braun K, Drikas M, Cooper A. Assessing the impact of water treatment on bacterial biofilms in drinking water distribution systems using high-throughput DNA sequencing. CHEMOSPHERE 2014; 117:185-192. [PMID: 25038469 DOI: 10.1016/j.chemosphere.2014.06.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 06/03/2023]
Abstract
Biofilm control in drinking water distribution systems (DWDSs) is crucial, as biofilms are known to reduce flow efficiency, impair taste and quality of drinking water and have been implicated in the transmission of harmful pathogens. Microorganisms within biofilm communities are more resistant to disinfection compared to planktonic microorganisms, making them difficult to manage in DWDSs. This study evaluates the impact of four unique drinking water treatments on biofilm community structure using metagenomic DNA sequencing. Four experimental DWDSs were subjected to the following treatments: (1) conventional coagulation, (2) magnetic ion exchange contact (MIEX) plus conventional coagulation, (3) MIEX plus conventional coagulation plus granular activated carbon, and (4) membrane filtration (MF). Bacterial biofilms located inside the pipes of each system were sampled under sterile conditions both (a) immediately after treatment application ('inlet') and (b) at a 1 km distance from the treatment application ('outlet'). Bacterial 16S rRNA gene sequencing revealed that the outlet biofilms were more diverse than those sampled at the inlet for all treatments. The lowest number of unique operational taxonomic units (OTUs) and lowest diversity was observed in the MF inlet. However, the MF system revealed the greatest increase in diversity and OTU count from inlet to outlet. Further, the biofilm communities at the outlet of each system were more similar to one another than to their respective inlet, suggesting that biofilm communities converge towards a common established equilibrium as distance from treatment application increases. Based on the results, MF treatment is most effective at inhibiting biofilm growth, but a highly efficient post-treatment disinfection regime is also critical in order to prevent the high rates of post-treatment regrowth.
Collapse
Affiliation(s)
- Jennifer L A Shaw
- Australian Centre for Ancient DNA (ACAD), University of Adelaide, Darling Building, North Terrace, Adelaide, SA 5000, Australia.
| | - Paul Monis
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Rolando Fabris
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Lionel Ho
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Kalan Braun
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Mary Drikas
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA (ACAD), University of Adelaide, Darling Building, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
19
|
Prest EI, El-Chakhtoura J, Hammes F, Saikaly PE, van Loosdrecht MCM, Vrouwenvelder JS. Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization. WATER RESEARCH 2014; 63:179-189. [PMID: 25000200 DOI: 10.1016/j.watres.2014.06.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 06/03/2023]
Abstract
The combination of flow cytometry (FCM) and 16S rRNA gene pyrosequencing data was investigated for the purpose of monitoring and characterizing microbial changes in drinking water distribution systems. High frequency sampling (5 min intervals for 1 h) was performed at the outlet of a treatment plant and at one location in the full-scale distribution network. In total, 52 bulk water samples were analysed with FCM, pyrosequencing and conventional methods (adenosine-triphosphate, ATP; heterotrophic plate count, HPC). FCM and pyrosequencing results individually showed that changes in the microbial community occurred in the water distribution system, which was not detected with conventional monitoring. FCM data showed an increase in the total bacterial cell concentrations (from 345 ± 15 × 10(3) to 425 ± 35 × 10(3) cells mL(-1)) and in the percentage of intact bacterial cells (from 39 ± 3.5% to 53 ± 4.4%) during water distribution. This shift was also observed in the FCM fluorescence fingerprints, which are characteristic of each water sample. A similar shift was detected in the microbial community composition as characterized with pyrosequencing, showing that FCM and genetic fingerprints are congruent. FCM and pyrosequencing data were subsequently combined for the calculation of cell concentration changes for each bacterial phylum. The results revealed an increase in cell concentrations of specific bacterial phyla (e.g., Proteobacteria), along with a decrease in other phyla (e.g., Actinobacteria), which could not be concluded from the two methods individually. The combination of FCM and pyrosequencing methods is a promising approach for future drinking water quality monitoring and for advanced studies on drinking water distribution pipeline ecology.
Collapse
Affiliation(s)
- E I Prest
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | - J El-Chakhtoura
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - F Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - P E Saikaly
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - M C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J S Vrouwenvelder
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| |
Collapse
|
20
|
Undabeytia T, Posada R, Nir S, Galindo I, Laiz L, Saiz-Jimenez C, Morillo E. Removal of waterborne microorganisms by filtration using clay-polymer complexes. JOURNAL OF HAZARDOUS MATERIALS 2014; 279:190-196. [PMID: 25063930 DOI: 10.1016/j.jhazmat.2014.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/04/2014] [Accepted: 07/05/2014] [Indexed: 06/03/2023]
Abstract
Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods.
Collapse
Affiliation(s)
- Tomas Undabeytia
- Institute of Natural Resources and Agrobiology, IRNAS-CSIC, P. O. Box 1052, 41080 Seville, Spain.
| | - Rosa Posada
- Institute of Natural Resources and Agrobiology, IRNAS-CSIC, P. O. Box 1052, 41080 Seville, Spain
| | - Shlomo Nir
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Irene Galindo
- Institute of Natural Resources and Agrobiology, IRNAS-CSIC, P. O. Box 1052, 41080 Seville, Spain
| | - Leonila Laiz
- Institute of Natural Resources and Agrobiology, IRNAS-CSIC, P. O. Box 1052, 41080 Seville, Spain
| | - Cesareo Saiz-Jimenez
- Institute of Natural Resources and Agrobiology, IRNAS-CSIC, P. O. Box 1052, 41080 Seville, Spain
| | - Esmeralda Morillo
- Institute of Natural Resources and Agrobiology, IRNAS-CSIC, P. O. Box 1052, 41080 Seville, Spain
| |
Collapse
|
21
|
Fan J, Li H, Shuang C, Li W, Li A. Dissolved organic matter removal using magnetic anion exchange resin treatment on biological effluent of textile dyeing wastewater. J Environ Sci (China) 2014; 26:1567-1574. [PMID: 25108712 DOI: 10.1016/j.jes.2014.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
This study investigated the removal of dissolved organic matter (DOM) from real dyeing bio-treatment effluents (DBEs) with the use of a novel magnetic anion exchange resin (NDMP). DOMs in two typical DBEs were fractionized using DAX-8/XAD-4 resin and ultrafiltration membranes. The hydrophilic fractions and the low molecular weight (MW) (<3kDa) DOM fractions constituted a major portion (>50%) of DOMs for the two effluents. The hydrophilic and low MW fractions of both effluents were the greatest contributors of specific UV254 absorbance (SUVA254), and the SUVA254 of DOM fractions decreased with hydrophobicity and MW. Two DBEs exhibited acute and chronic biotoxicities. Both acute and chronic toxicities of DOM fractions increased linearly with the increase of SUVA254 value. Kinetics of dissolved organic carbon (DOC) removal via NDMP treatment was performed by comparing it with that of particle active carbon (PAC). Results indicated that the removal of DOC from DBEs via NDMP was 60%, whereas DOC removals by PAC were lower than 15%. Acidic organics could be significantly removed with the use of NDMP. DOM with large MW in DBE could be removed significantly by using the same means. Removal efficiency of NDMP for DOM decreased with the decrease of MW. Compared with PAC, NDMP could significantly reduce the acute and chronic bio-toxicities of DBEs. NaCl/NaOH mixture regenerants, with selected concentrations of 10% NaCl (m/m)/1% NaOH (m/m), could improve desorption efficiency.
Collapse
Affiliation(s)
- Jun Fan
- State Key Laboratory of Pollution Control and Resource Reuse, Collaborative Innovation Center for Advanced Water Pollution Control Technology and Equipment, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haibo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Collaborative Innovation Center for Advanced Water Pollution Control Technology and Equipment, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chendong Shuang
- State Key Laboratory of Pollution Control and Resource Reuse, Collaborative Innovation Center for Advanced Water Pollution Control Technology and Equipment, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resource Reuse, Collaborative Innovation Center for Advanced Water Pollution Control Technology and Equipment, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, Collaborative Innovation Center for Advanced Water Pollution Control Technology and Equipment, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
22
|
Braun K, Fabris R, Morran J, Ho L, Drikas M. Drought to flood: a comparative assessment of four parallel surface water treatments during the 2010-2012 inflows to the Murray-Darling Basin, South Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 488-489:36-45. [PMID: 24814034 DOI: 10.1016/j.scitotenv.2014.04.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/08/2014] [Accepted: 04/13/2014] [Indexed: 06/03/2023]
Abstract
Four treatment processes; conventional coagulation, magnetic ion exchange (MIEX)/coagulation, with and without granular activated carbon (GAC), and membrane treatment combining microfiltration (MF) and nanofiltration (NF), were operated in parallel using the same source water from the Murray-Darling basin in South Australia. During the two year study, high levels of natural organic matter and turbidity arising from floods affecting the Murray-Darling basin in 2010-2012 challenged the four processes. The comparative study indicated that all four processes could effectively meet basic water quality guidelines of turbidity and colour despite challenging source water quality but that the more advanced treatments improved overall organic and bacterial removal. Interestingly, the high organics and turbidity arising from the floods resulted in improved treatment efficiency for all treatments incorporating coagulation to the extent that, despite flood conditions, treated water quality could remain comparatively constant provided that the process was operated and optimised effectively.
Collapse
Affiliation(s)
- Kalan Braun
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Rolando Fabris
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Jim Morran
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Lionel Ho
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Mary Drikas
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia.
| |
Collapse
|
23
|
Ritson JP, Graham NJD, Templeton MR, Clark JM, Gough R, Freeman C. The impact of climate change on the treatability of dissolved organic matter (DOM) in upland water supplies: a UK perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 473-474:714-30. [PMID: 24412917 DOI: 10.1016/j.scitotenv.2013.12.095] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 05/06/2023]
Abstract
Climate change in the UK is expected to cause increases in temperatures, altered precipitation patterns and more frequent and extreme weather events. In this review we discuss climate effects on dissolved organic matter (DOM), how altered DOM and water physico-chemical properties will affect treatment processes and assess the utility of techniques used to remove DOM and monitor water quality. A critical analysis of the literature has been undertaken with a focus on catchment drivers of DOM character, removal of DOM via coagulation and the formation of disinfectant by-products (DBPs). We suggest that: (1) upland catchments recovering from acidification will continue to produce more DOM with a greater hydrophobic fraction as solubility controls decrease; (2) greater seasonality in DOM export is likely in future due to altered precipitation patterns; (3) changes in species diversity and water properties could encourage algal blooms; and (4) that land management and vegetative changes may have significant effects on DOM export and treatability but require further research. Increases in DBPs may occur where catchments have high influence from peatlands or where algal blooms become an issue. To increase resilience to variable DOM quantity and character we suggest that one or more of the following steps are undertaken at the treatment works: a) 'enhanced coagulation' optimised for DOM removal; b) switching from aluminium to ferric coagulants and/or incorporating coagulant aids; c) use of magnetic ion-exchange (MIEX) pre-coagulation; and d) activated carbon filtration post-coagulation. Fluorescence and UV absorbance techniques are highlighted as potential methods for low-cost, rapid on-line process optimisation to improve DOM removal and minimise DBPs.
Collapse
Affiliation(s)
- J P Ritson
- Grantham Institute for Climate Change, Imperial College London, South Kensington, London SW7 2AZ, UK; Department of Civil and Environmental Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - N J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - M R Templeton
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - J M Clark
- Walker Institute for Climate Systems Research and Soil Research Centre, Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, RG6 6DW, UK
| | - R Gough
- Wolfson Carbon Capture Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - C Freeman
- Wolfson Carbon Capture Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
24
|
Lipphaus P, Hammes F, Kötzsch S, Green J, Gillespie S, Nocker A. Microbiological tap water profile of a medium-sized building and effect of water stagnation. ENVIRONMENTAL TECHNOLOGY 2014; 35:620-8. [PMID: 24645441 DOI: 10.1080/09593330.2013.839748] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Whereas microbiological quality of drinking water in water distribution systems is routinely monitored for reasons of legal compliance, microbial numbers in tap water are grossly understudied. Motivated by gross differences in water from private households, we applied in this study flow cytometry as a rapid analytical method to quantify microbial concentrations in water sampled at diverse taps in a medium size research building receiving chlorinated water. Taps differed considerably in frequency of usage and were located in laboratories, bathrooms, and a coffee kitchen. Substantial differences were observed between taps with concentrations (per mL) in the range from 6.29 x 10(3) to 7.74 x 10(5) for total cells and from 1.66 x 10(3) to 4.31 x 10(5) for intact cells. The percentage of intact cells varied between 7% and 96%. Water from taps with very infrequent use showed the highest bacterial numbers and the highest proportions of intact cells. Stagnation tended to increase microbial numbers in water from those taps which were otherwise frequently used. Microbial numbers in other taps that were rarely opened were not affected by stagnation as their water is probably mostly stagnant. For cold water taps, microbial numbers and the percentage of intact cells tended to decline with flushing with the greatest decline for taps used least frequently whereas microbial concentrations in water from hot water taps tended to be somewhat more stable. We conclude that microbiological water quality is mainly determined by building-specific parameters. Tap water profiling can provide valuable insight into plumbing system hygiene and maintenance.
Collapse
|
25
|
Braun K, Cruaux L, Fabris R, Morran J, Ho L, Drikas M. Comparison of coagulation and MIEX pre-treatment processes for bacterial and turbidity removal, utilizing real-time optical monitoring techniques. ENVIRONMENTAL TECHNOLOGY 2014; 35:1038-1045. [PMID: 24645488 DOI: 10.1080/09593330.2013.859737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Jar testing and flow cytometry were used in conjunction with photometric dispersion analysis (PDA) to assess conventional alum coagulation with and without magnetic ion exchange (MIEX) pre-treatment for turbidity and bacterial removal capacity. Treatment assessment included powdered activated carbon (PAC) and pre-chlorination of the MIEX-treated raw water. Floc particles were subjected to shear forces after settling and re-suspended to gauge bacterial release potential, floc breakage and re-aggregation. MIEX in conjunction with alum coagulation achieved improved coagulation as measured by PDA but did not increase bacterial log removal value (LRV) in comparison with conventional coagulation. Pre-chlorination and PAC addition were seen to improve bacterial removal and coagulation, respectively, but were less effective for bacterial LRVs when they were used in conjunction during coagulation.
Collapse
|
26
|
Butkovskyi A, Jeremiasse AW, Hernandez Leal L, van der Zande T, Rijnaarts H, Zeeman G. Electrochemical conversion of micropollutants in gray water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1893-901. [PMID: 24364736 DOI: 10.1021/es404411p] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrochemical conversion of micropollutants in real gray water effluent was studied for the first time. Six compounds that are frequently found in personal care and household products, namely methylparaben, propylparaben, bisphenol A, triclosan, galaxolide, and 4- methylbenzilidene camphor (4-MBC), were analyzed in the effluent of the aerobic gray water treatment system in full operation. The effluent was used for lab-scale experiments with an electrochemical cell operated in batch mode. Three different anodes and five different cathodes have been tested. Among the anodes, Ru/Ir mixed metal oxide showed the best performance. Ag and Pt cathodes worked slightly better than Ti and mixed metal oxide cathodes. The compounds that contain a phenolic ring (parabens, bisphenol A, and triclosan) were completely transformed on this anode at a specific electric charge Q = 0.03 Ah/L. The compounds, which contain a benzene ring and multiple side methyl methyl groups (galaxolide, 4-MBC) required high energy input (Q ≤ 0.6 Ah/L) for transformation. Concentrations of adsorbable organohalogens (AOX) in the gray water effluent increased significantly upon treatment for all electrode combinations tested. Oxidation of gray water on mixed metal oxide anodes could not be recommended as a post-treatment step for gray water treatment according to the results of this study. Possible solutions to overcome disadvantages revealed within this study are proposed.
Collapse
Affiliation(s)
- Andrii Butkovskyi
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Prest EI, Hammes F, Kötzsch S, van Loosdrecht MCM, Vrouwenvelder JS. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. WATER RESEARCH 2013; 47:7131-42. [PMID: 24183559 DOI: 10.1016/j.watres.2013.07.051] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 05/25/2023]
Abstract
Flow cytometry (FCM) is a rapid, cultivation-independent tool to assess and evaluate bacteriological quality and biological stability of water. Here we demonstrate that a stringent, reproducible staining protocol combined with fixed FCM operational and gating settings is essential for reliable quantification of bacteria and detection of changes in aquatic bacterial communities. Triplicate measurements of diverse water samples with this protocol typically showed relative standard deviation values and 95% confidence interval values below 2.5% on all the main FCM parameters. We propose a straightforward and instrument-independent method for the characterization of water samples based on the combination of bacterial cell concentration and fluorescence distribution. Analysis of the fluorescence distribution (or so-called fluorescence fingerprint) was accomplished firstly through a direct comparison of the raw FCM data and subsequently simplified by quantifying the percentage of large and brightly fluorescent high nucleic acid (HNA) content bacteria in each sample. Our approach enables fast differentiation of dissimilar bacterial communities (less than 15 min from sampling to final result), and allows accurate detection of even small changes in aquatic environments (detection above 3% change). Demonstrative studies on (a) indigenous bacterial growth in water, (b) contamination of drinking water with wastewater, (c) household drinking water stagnation and (d) mixing of two drinking water types, univocally showed that this FCM approach enables detection and quantification of relevant bacterial water quality changes with high sensitivity. This approach has the potential to be used as a new tool for application in the drinking water field, e.g. for rapid screening of the microbial water quality and stability during water treatment and distribution in networks and premise plumbing.
Collapse
Affiliation(s)
- E I Prest
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Characteristics of DOM and Removal of DBPs Precursors across O3-BAC Integrated Treatment for the Micro-Polluted Raw Water of the Huangpu River. WATER 2013. [DOI: 10.3390/w5041472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Liu G, Lut MC, Verberk JQJC, Van Dijk JC. A comparison of additional treatment processes to limit particle accumulation and microbial growth during drinking water distribution. WATER RESEARCH 2013; 47:2719-2728. [PMID: 23510692 DOI: 10.1016/j.watres.2013.02.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/24/2013] [Accepted: 02/10/2013] [Indexed: 06/01/2023]
Abstract
Water quality changes, particle accumulation and microbial growth occurring in pilot-scale water distribution systems fed with normally treated and additional treated groundwater were monitored over a period of almost one year. The treatment processes were ranked in the following order: nanofiltration (NF) > (better than) ultrafiltration (UF) > ion exchange (IEX) for limiting particle accumulation. A different order was found for limiting overall microbial growth: NF > IEX > UF. There were strong correlations between particle load and particle accumulation, and between nutrient load and microbial growth. It was concluded that particle accumulation can be controlled by reducing the particle load in water treatment plants; and the microbial growth can be better controlled by limiting organic nutrients rather than removing biomass in water treatment plants. The major focus of this study was on microbial growth. The results demonstrated that growth occurred in all types of treated water, including the phases of bulk water, biofilm and loose deposits. Considering the growth in different phases, similar growth in bulk water was observed for all treatments; NF strongly reduced growth both in loose deposits and in biofilm; UF promoted growth in biofilm, while strongly limiting growth in loose deposits. IEX had good efficiency in between UF and NF, limiting both growths in loose deposits and in biofilm. Significant growth was found in loose deposits, suggesting that loose deposit biomass should be taken into account for growth evaluation and/or prediction. Strong correlations were found between microbial growth and pressure drop in a membrane fouling simulator which proved that a membrane fouling simulator can be a fast growth predictor (within a week). Different results obtained by adenosine triphosphate and flow cytometry cell counts revealed that ATP can accurately describe both suspended and particle-associated biomass, and flow cytometry files of TCC measurements needs to be further processed for particle loaded samples and/or a pretreatment protocol should be developed.
Collapse
Affiliation(s)
- G Liu
- Section Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands.
| | | | | | | |
Collapse
|