1
|
Liang J, Tan X, Ali I, Duan Z, Huang J, Zhu R. Polystyrene microplastics enhanced the photo-degradation and -ammonification of algae-derived dissolved organic matters. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135991. [PMID: 39369677 DOI: 10.1016/j.jhazmat.2024.135991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Algae-derived organic matter (ADOM) is a key source of chromophoric dissolved organic matter (CDOM) in natural waters. When exposed to solar irradiation, ADOM undergoes gradual degradation and transformation. The escalating presence of microplastics (MPs) can act as a novel type of environmental photosensitizer, however its impacts on ADOM photodegradation remains largely unexplored. Thus, in this study, ADOM were extracted from four common algal species (Microcystis aeruginosa, Synechococcus sp., Chlorella pyrenoidosa and Scenedesmus obliquus) and exposed to UV irradiation with or without polystyrene (PS) MPs, namely ADOM+PS groups and ADOM groups, respectively. The results indicated that a more rapid degradation of amino acid-like substances (∼38 % vs. ∼22 %) and more ammonia products (1.86 vs. 1.21 mg L-1) were observed in the ADOM+PS groups compared to the ADOM groups after a five-day exposure. This enhanced photodegradation might be attributed to the production of environmentally persistent free radicals and reactive species during the photoaging of PS. Furthermore, PS-derived high electron transfer belt activity of ADOM led to the production of highly aromatic and humified products. These humic-like products could potentially accelerate the degradation of amino acid-like compounds by exciting the generation of excited triplet CDOM. This study underscores the role of MPs as environmental photosensitizers in promoting ADOM degradation and ammonia generation, providing insights on the transformation of ADOM mediated by emerging pollutants and its impact on aquatic carbon and nitrogen cycles.
Collapse
Affiliation(s)
- Jia Liang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Rui Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
2
|
Jin Z, Zhang W, Wang X, Liu A, Li Z, Bai Y, Wu F. Leaching behaviors of dissolved organic matter from face masks revealed by fluorescence EEM combined with FRI and PARAFAC. WATER RESEARCH 2024; 254:121399. [PMID: 38447375 DOI: 10.1016/j.watres.2024.121399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Despite numerous studies investigating the occurrence and fate of microplastics, no effort has been devoted toward exploring the characteristics of dissolved organic matter (DOM) leached from face masks mainly made of plastics and additives used in large quantities during the COVID-19 pandemic. By using FTIR, UV-vis, fluorescence EEM coupling with FRI and PARAFAC, and kinetic models of leaching experiments, we explored the leaching behaviors of face mask-derived DOM (FM-DOM) from commonly used face masks including N95, KN95, medical surgical masks, etc. The concentration of FM-DOM increased quickly at early 0-48 h and reached equilibrium at about 48 h measured in terms of dissolved organic carbon and fluorescence intensity. The protein-like materials ranged from 80.32 % to 89.40 % of percentage fluorescence response (Pi,n) were dominant in four types of FM-DOM analyzed by fluorescence EEM-FRI during the leaching experiments from 1 to 360 h. Four fluorescent components were identified, which included tryptophan-like components, tyrosine-like components, microbial protein-like components, and fulvic-like components with fluorescence EEM-PARAFAC models. The multi-order kinetic model (Radj2 0.975-0.999) fitted better than the zero-order and first-order kinetic model (Radj2 0.936-0.982) for all PARAFAC components of FM-DOM based on equations derived by pseudo kinetic models. The leaching rate constants (kn) ranged from 0.058 to 30.938 and the half-life times (T1/2) ranged from 2.73 to 24.87 h for four FM-DOM samples, following the solubility order of fulvic-like components (C4) > microbial protein-like components (C3) > tryptophan-like components (C1) > tyrosine-like components (C2) for FM-DOM from four types of face masks during the leaching experiment from 0 to 360 h. These novel findings will contribute to the understanding of the underappreciated environment impact of face masks in aquatic ecosystems.
Collapse
Affiliation(s)
- Zhong Jin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Weibo Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xihuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
3
|
Liao Z, He H, Wang Y, Liu F, Cui D, Cui J, Guo Z, Lai C, Huang B, Sun H, Pan X. Algal Extracellular Organic Matter Induced Photochemical Oxidation of Mn(II) to Solid Mn Oxide: Role of Mn(III)-EOM Complex and Its Ability to Remove 17α-Ethinylestradiol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5832-5843. [PMID: 38511412 DOI: 10.1021/acs.est.3c07970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Photosensitizer-mediated abiotic oxidation of Mn(II) can yield soluble reactive Mn(III) and solid Mn oxides. In eutrophic water systems, the ubiquitous algal extracellular organic matter (EOM) is a potential photosensitizer and may have a substantial impact on the oxidation of Mn(II). Herein, we focused on investigating the photochemical oxidation process from Mn(II) to solid Mn oxide driven by EOM. The results of irradiation experiments demonstrated that the generation of Mn(III) intermediate was crucial for the successful photo oxidization of Mn(II) to solid Mn oxide mediated by EOM. EOM can serve as both a photosensitizer and a ligand, facilitating the formation of the Mn(III)-EOM complex. The complex exhibited excellent efficiency in removing 17α-ethinylestradiol. Furthermore, the complex underwent decomposition as a result of reactions with reactive intermediates, forming a solid Mn oxide. The presence of nitrate can enhance the photochemical oxidation process, facilitating the conversion of Mn(II) to Mn(III) and then to solid Mn oxide. This study deepens our grasp of Mn(II) geochemical processes in eutrophic water and its impact on organic micropollutant fate.
Collapse
Affiliation(s)
- Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Southwest United Graduate School, Kunming 650092, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yiying Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Feiyuan Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Danni Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jingye Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Southwest United Graduate School, Kunming 650092, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
4
|
Wu Y, Zhang X, Hao R, Zhou Y, Qiu G, Hu R, Song Y. Rethinking terrestrial dissolved organic matter in dam reservoirs before mixing: Linking photodegradation and biodegradation and the phenanthrene binding behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166653. [PMID: 37673243 DOI: 10.1016/j.scitotenv.2023.166653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/13/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
With the increased construction of dam reservoirs and the demand for water security, terrestrial dissolved organic matter (DOM) has received attention because of its role in regulating water quality, ecological functions, and the fate and transport of pollutants in dam reservoirs. This study investigated the transformations of soil DOM and vegetation DOM of dam reservoirs following photodegradation and biodegradation before conservative mixing, as well as the resultant effects on phenanthrene binding. Based on the results, terrestrial DOM could undergo transformation via photodegradation and biodegradation before conservative mixing in dam reservoirs. Although both processes resulted in substantial decreases in DOM concentrations, the changes in chromophoric DOM and fluorescent DOM depended on the original DOM sources. Furthermore, the photodegradation of terrestrial DOM resulted in more pronounced photobleaching than photomineralization. In addition, photodegradation of terrestrial DOM resulted in the generation of DOM-derived by-products with low molecular weight and low aromaticity, whereas the biodegradation of terrestrial DOM resulted in DOM-derived by-products with low molecular weight and high aromaticity. Subsequently, the photodegradation and biodegradation of terrestrial DOM substantially enhanced the binding affinity of phenanthrene. Soil DOM is prior to vegetation DOM when predicting the ecological risk of HOCs. These results indicate that the terrestrial DOM in dam reservoirs should be reconsidered before conservative mixing. Further studies on the coupling effects of both biogeochemical processes, as well as on the relative contributions of soil DOM and vegetation DOM after transformation to the aquatic DOM in dam reservoirs, are required. This study provides information on the environmental effects of dam construction from the perspective of biogeochemical processes.
Collapse
Affiliation(s)
- Yupeng Wu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueshuai Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; School of Chemical and Environmental Sciences, Kashi University, Kashi 844000, Xinjiang, China
| | - Rong Hao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yaru Zhou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guohong Qiu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ronggui Hu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yantun Song
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Reignier O, Bormans M, Marchand L, Sinquin C, Amzil Z, Zykwinska A, Briand E. Production and composition of extracellular polymeric substances by a unicellular strain and natural colonies of Microcystis: Impact of salinity and nutrient stress. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:783-796. [PMID: 37697704 PMCID: PMC10667651 DOI: 10.1111/1758-2229.13200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023]
Abstract
The transfer of toxic cyanobacterial Microcystis blooms from freshwater to estuaries constitutes a serious environmental problem worldwide that is expected to expand in scale and intensity with anthropogenic and climate change. The formation and maintenance of Microcystis in colonial form is conditioned to the presence of extracellular polymeric substances (EPS). In this study, we attempted to better understand how the mucilaginous colonial form of Microcystis evolves under environmental stress conditions. In particular, we studied and compared the production and the composition of EPS fractions (attached and free) from natural colonies of a Microcystis bloom and from a unicellular M. aeruginosa strain under salinity and nutrient stress (representing a land-sea continuum). Our results highlighted a greater production of EPS from the natural colonies of Microcystis than the unicellular one under nutrient and combined stress conditions dominated by the attached form. In comparison to the unicellular Microcystis, EPS produced by the colonial form were characterized by high molecular weight polysaccharides which were enriched in uronic acids and hexosamines, notably for the free fraction in response to increased salinities. This complex extracellular matrix gives the cells the ability to aggregate and allows the colonial cyanobacterial population to cope with osmotic shock.
Collapse
|
6
|
Pang X, Chen C, Sun J, Zhan H, Xiao Y, Cai J, Yu X, Liu Y, Long L, Yang G. Effects of complex pollution by microplastics and heavy metals on soil physicochemical properties and microbial communities under alternate wetting and drying conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131989. [PMID: 37453357 DOI: 10.1016/j.jhazmat.2023.131989] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Microplastics (MPs) broadly coexist with heavy metals (HMs) in soil, Cd and Cu are the main types of soil HMs contamination, in addition to polystyrene (PS), which is also widely present in the environment and prone to aging. However, differences in the effects of MPs and HMs on soil properties and microbial characteristics under alternating wetting and drying (AWD) remain unclear. Thus, this study investigated the effects of four conventional (0.2% (w/w)) and aged MPs in indoor incubation experiments on soil properties under desiccation (Dry) and AWD. We found that with the influence of the "enzyme lock" theory, the coexistence of MPs and HMs under Dry had a more pronounced effect on soil physicochemical properties, whereas the effects on soil enzyme activity under AWD were more significant. In addition, MPs decreased the available Cu by 4.27% and, conversely, increased the available Cd by 8.55%. Under Dry, MPs affected microbial function mainly through physicochemical properties, with a contribution of approximately 72.4%, whereas under AWD enzyme activity and HMs were significantly greater, with increases of 28.2% and 7.9%, respectively. These results indicate that the effects of MPs on environmental variation and microbial profiles under AWD conditions differed significantly from those under Dry.
Collapse
Affiliation(s)
- Xinghua Pang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Chao Chen
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Jie Sun
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, No.15 Shixing Street, Shijingshan District, Beijing 100041, China
| | - Haiquan Zhan
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Junzhuo Cai
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xiaoyu Yu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Lulu Long
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China.
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China.
| |
Collapse
|
7
|
Yang B, Graham N, Liu P, Liu M, Gregory J, Yu W. Atomic-Level Structural Differences between Fe(III) Coprecipitates Generated by the Addition of Fe(III) Coagulants and by the Oxidation of Fe(II) Coagulants Determine Their Coagulation Behavior in Phosphate and DOM Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12489-12500. [PMID: 37551789 DOI: 10.1021/acs.est.3c03463] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
In situ Fe(III) coprecipitation from Fe2+ oxidation is a widespread phenomenon in natural environments and water treatment processes. Studies have shown the superiority of in situ Fe(III) (formed by in situ oxidation of a Fe(II) coagulant) over ex situ Fe(III) (using a Fe(III) coagulant directly) in coagulation, but the reasons remain unclear due to the uncertain nature of amorphous structures. Here, we utilized an in situ Fe(III) coagulation process, oxidizing the Fe(II) coagulant by potassium permanganate (KMnO4), to treat phosphate-containing surface water and analyzed differences between in situ and ex situ Fe(III) coagulation in phosphate removal, dissolved organic matter (DOM) removal, and floc growth. Compared to ex situ Fe(III), flocs formed by the natural oxidizing Fe2+ coagulant exhibited more effective phosphate removal. Furthermore, in situ Fe(III) formed through accelerated oxidation by KMnO4 demonstrated improved flocculation behavior and enhanced removal of specific types of DOM by forming a more stable structure while still maintaining effective phosphate removal. Fe K-edge extended X-ray absorption fine structure spectra (EXAFS) of the flocs explained their differences. A short-range ordered strengite-like structure (corner-linked PO4 tetrahedra to FeO6 octahedra) was the key to more effective phosphorus removal of in situ Fe(III) than ex situ Fe(III) and was well preserved when KMnO4 accelerated in situ Fe(III) formation. Conversely, KMnO4 significantly inhibited the edge and corner coordination between FeO6 octahedra and altered the floc-chain-forming behavior by accelerating hydrolysis, resulting in a more dispersed monomeric structure than ex situ Fe(III). This research provides an explanation for the superiority of in situ Fe(III) in phosphorus removal and highlights the importance of atomic-level structural differences between ex situ and in situ Fe(III) coprecipitates in water treatment.
Collapse
Affiliation(s)
- Bingqian Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - John Gregory
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, U.K
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| |
Collapse
|
8
|
Liao Z, He H, Cui D, Cui J, Yang X, Guo Z, Chen H, Dao G, Huang B, Sun H, Pan X. Algal organic matter and dissolved Mn cooperatively accelerate 17α-ethinylestradiol photodegradation: Role of photogenerated reactive Mn(III). WATER RESEARCH 2023; 236:119980. [PMID: 37080107 DOI: 10.1016/j.watres.2023.119980] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Algal extracellular organic matter (EOM), a major fraction of the dissolved organic matter found in eutrophic plateau lakes, can act as a photosensitizer to drive the abiotic oxidation of Mn(II). This process has the potential to generate reactive Mn(III) and influence the fate of organic pollutants. In this study, the photodegradation of 17α-ethinylestradiol (EE2) in the presence of Mn(II) and EOM was investigated with emphasis on the photogeneration mechanism of Mn(III). The results indicated that Mn(II) can accelerate EE2 photodegradation in EOM solution owing to the photogeneration of reactive Mn(III), and the enhancement was greater at higher Mn(II) concentrations. The generation of reactive Mn(III) was mainly attributable to the action of superoxide radical generated by photosensitization of EOM. In addition, the photodegradation of EE2 was slower at higher pH, possibly because of the deactivation of Mn(III) under alkaline conditions. Single-electron transfer was an indispensable process in the photodegradation. The differences in fluorophore content, pH, and NO3- concentrations are all important determinants for EE2 photodegradation in natural waters. The information obtained in this research would contribute to the understanding of reactions between Mn(II) and EOM, and provide new insights into the behaviors of reactive Mn(III) in eutrophic water irradiated by sunlight.
Collapse
Affiliation(s)
- Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Danni Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jingye Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Chen
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China.
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
| |
Collapse
|
9
|
He J, Jiao L, Zhi G, Wu X, Yang Y, Ding S, Zheng J, Shao Z, Xia R. Heterogeneity of molecular-level and photochemical of dissolved organic matter derived from decomposing submerged macrophyte and algae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117420. [PMID: 36801677 DOI: 10.1016/j.jenvman.2023.117420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Aquatic macrophytes and algae are the most important sources of autochthonous dissolved organic matter (DOM), and their transformation and reuse significantly affect aquatic ecosystem health. In this study, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was used to identify the molecular features between submerged macrophyte-derived DOM (SMDOM) and algae-derived DOM (ADOM). The photochemical heterogeneity between SMDOM and ADOM by UV254-irradiation and their molecular mechanism were also discussed. The results showed that the molecular abundance of SMDOM was dominated by lignin/CRAM-like structures, tannins, and concentrated aromatic structures (sum of 91.79%), while that of ADOM was dominated by lipids, proteins, and unsaturated hydrocarbons (sum of 60.30%). UV254-radiation resulted in a net reduction of tyrosine-like, tryptophan-like and terrestrial humic-like, and conversely a net production of marine humic-like. The light decay rate constants obtained by the multiple exponential function model fitting revealed that both tyrosine-like and tryptophan-like components of SMDOM could be rapidly and directly photodegraded, while the photodegradation of tryptophan-like in ADOM depended on the production of photosensitizers. The photo-refractory fractions of both SMDOM and ADOM were as follows: humic-like > tyrosine-like > tryptophan-like. Our results provide new insights into the fate of autochthonous DOM in aquatic ecosystems where "grass-algae" coexist or evolve.
Collapse
Affiliation(s)
- Jia He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Kunming Institute of Eco-Environmental Sciences, Kunming 650032, China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Guoqiang Zhi
- Kunming Institute of Eco-Environmental Sciences, Kunming 650032, China
| | - Xue Wu
- Kunming Institute of Eco-Environmental Sciences, Kunming 650032, China
| | - Yan Yang
- Kunming Institute of Eco-Environmental Sciences, Kunming 650032, China
| | - Shuai Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jinlong Zheng
- Kunming Institute of Eco-Environmental Sciences, Kunming 650032, China
| | - Zhi Shao
- Kunming Institute of Eco-Environmental Sciences, Kunming 650032, China
| | - Rui Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
10
|
Wang X, Qian Y, Chen Y, Liu F, An D, Yang G, Dai R. Application of fluorescence spectra and molecular weight analysis in the identification of algal organic matter-based disinfection by-product precursors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163589. [PMID: 37087012 DOI: 10.1016/j.scitotenv.2023.163589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Algal organic matter (AOM) is considered to be threatening for the consumption of disinfectants and the formation of disinfection by-products (DBPs) during the disinfection process. Incompatible parameters in the conventional pretreatment of algal-laden water will lead to counterproductive results, such as AOM release. Therefore, the generation of AOM and its conversion to DBPs during pretreatment should be observed. The characteristics of DBPs from extracellular organic matter (EOM) and intracellular organic matter (IOM) were epitomized and simulation experiments were conducted in deionized (DI) water and source water under pretreatment conditions. Differences in DBP formation between the different backgrounds during chlorination and powdered activated carbon (PAC) treatment were investigated. Instead of monotonous excitation-emission matrix (EEM) spectra, molecular weight (MW) fractionation was simultaneously applied to elucidate the mechanisms of chlorination and PAC adsorption on AOM-based DBPs. The fluorescence regional integration (FRI) EEM results showed a clear correlation between the fluorescent properties and MW distribution of AOM. A decreasing trend was observed after a rapid increase in fluorescence intensity during the chlorination and PAC treatment of water samples in the simulation experiments in deionized (DI) water and source water. The DBP formation potential (FP) in the source water was consistent with the change in AOM during chlorination and PAC adsorption. In addition, EEM showed decent predictability of AOM-based trihalomethanes (THM) FPs (R2 = 0.77-0.99) invoking a combination with MW fractionation. Macromolecular protein compounds were highly correlated with the formation of dichloroacetonitrile (DCAN) (R2 = 0.89-0.98). These post-mortems results imply that EEM spectra are a useful tool for identifying AOM-based precursors to reveal the accurate environmental fate and risk assessments of AOM.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| | - Yunkun Qian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| | - Yanan Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China; Department of the Built Environment, Aalborg University, Aalborg 9220, Denmark
| | - Fan Liu
- Department of the Built Environment, Aalborg University, Aalborg 9220, Denmark
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Guodong Yang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| | - Ruihua Dai
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| |
Collapse
|
11
|
Pan R, Huang Y, Ao J, Wu Y, Bu L, Zhou S, Deng L, Shi Z. A molecular-level mechanism analysis of PFS coagulation behaviors: Differences in natural organic matter and algal organic matter. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
12
|
He J, Yang Y, Wu X, Zhi G, Zhang Y, Sun X, Jiao L, Deng W, Zhou H, Shao Z, Zhu Q. Responses of dissolved organic matter (DOM) characteristics in eutrophic lake to water diversion from external watershed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119992. [PMID: 36029904 DOI: 10.1016/j.envpol.2022.119992] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Eutrophication is an important water environment issue facing global lakes. Diversion of water from external watersheds into lakes is considered as effective in ameliorating eutrophication and reducing algal blooms. Nevertheless, the changes in lake water environment caused by external water diversion, especially the influence of water diversion on the characteristics of dissolved organic matters (DOM), are still poorly understood. We therefore used a combination of EEM-PARAFAC, Principal Component Analysis (PCA), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to investigate the effects of water diversion from the Niulan River on DOM characteristics in Lake Dianchi. The results showed that the water diversion from the Niulan River significantly improved the water quality of Lake Dianchi, the concentrations of TN, TP, COD and Chla decreased rapidly, and the degree of humification of dissolved organic matter (DOM) increased, which was in sharp contrast with that of pre-implementation. Firstly, the diversion of water from the Niulan River mainly led to changes in the structure of pollution sources. The load of influent rivers and sewage treatment plants rich in lignin and tannins increased, and the input of terrestrial humus increased. Second, the improved water quality reduced algal enrichment and frequency of blooms, and reduced the release of lipid- and protein-riched algal-derived DOM. Finally, the hydraulic retention time of Lake Dianchi caused by water diversion was shortened, the hydrodynamic conditions were significantly improved, and the dissolved oxygen (DO) level gradually recovered, which played a positive role in improving the humification degree of DOM. Our findings provide new insights for exploring the improvement of eutrophic lake eco-environmental quality caused by water diversion projects.
Collapse
Affiliation(s)
- Jia He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Yan Yang
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Xue Wu
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Guoqiang Zhi
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Ying Zhang
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Xiaoneng Sun
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Weiming Deng
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Hongbin Zhou
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Zhi Shao
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Qifeng Zhu
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| |
Collapse
|
13
|
Liu Y, Wang X, Sun J. Bacterial Transformation and Processing of Diatom-Derived Organic Matter: A Case Study for Skeletonema dohrnii. Front Microbiol 2022; 13:840564. [PMID: 35572715 PMCID: PMC9096949 DOI: 10.3389/fmicb.2022.840564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial transformation and processing of phytoplankton-derived organic matter are extremely important for the formation of ubiquitous organic matter (OM) in aquatic ecosystems. Heterotrophic bacteria convert OM into biomass and recycle inorganic components, contributing to the production of microbial food webs. While phytoplankton-derived organic matter is commonly studied, the transformation and processing of dissolved OM (DOM) and lysate OM (LOM) by culturable epiphytic bacteria remains poorly understood. In this study, cultivable epiphytic bacteria from the marine diatom, Skeletonema dohrnii, were isolated, purified, and identified. Three bacteria, Roseobacteria sp., Marinobacter sp., and Bacillus sp., were selected to study the transformation and processing of S. dohrnii-derived DOM and LOM using excitation-emission matrix (EEM) fluorescence methods, and bacterial abundance, dissolved organic carbon (DOC) concentration, and transparent exopolymer particle (TEP) content were measured. Meanwhile, the bacterial transformation of DOM and LOM was further evaluated by the fluorescence index, biological index, β/α, and humification index. The primary fluorophores, peak A (humic-like), peak C (humic-like), peak M (humic-like), peak B (protein-like), and peak T (tryptophan-like), were present in the sample. The fluorescence of DOM and LOM was dominated by protein-like signal that became increasingly humic-like over time, suggesting that more complex molecules (e.g., recalcitrant OM) are being produced. The fluorescence of DOM and LOM was dominated by a protein-like signal that became increasingly humic-like over time, suggesting that epiphytic bacteria produced more complex molecules. Results showed that the bacteria utilized LOM more rapidly than DOM. While the three bacteria transformed OM to different degrees, all were able to facilitate microbial reprocessing of OM into refractory OM.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Xueru Wang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Sun
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
14
|
Bai S, Xi B, Li X, Wang Y, Yang J, Li S, Zhao X. Anaerobic digestion of chicken manure: Sequences of chemical structures in dissolved organic matter and its effect on acetic acid production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113245. [PMID: 34265661 DOI: 10.1016/j.jenvman.2021.113245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The use of chicken manure (CM) leads to serious environmental pollution due to the existence of bacteria and insect pests. Anaerobic digestion (AD) is one of the important technologies of CM treatment. However, methane production is limited by the accumulation of short-chain fatty acids (SCFAs) from AD. Therefore, the study explored the possible formation mechanism of acetic acid by understanding the effect of sequences of chemical structure variation in DOM on acetic acid production. The chemical structures of DOM were observed. The tyrosine-like substances (C1, 53.53-29.99%) and humic-like substances (C3, 18.38-5.96%) showed a tendency to decrease. Tryptophan-like substances (C2, 28.09-64.04%) showed the increasing trend. The results indicated that C2 was unwilling to biodegrade. In DOM, the order of biodegradability was C2< C1< C3. AD resulted in the enrichment of N-H in-plane (0-22.75%) and COO- stretch (7.53-18.57%) and the loss of O-H stretch (19.39-13.72%), C-H stretch (4.56%-0), CC stretch (12.04-9.61%) and C-O stretch (10.02-5.03%). Two-dimensional correlation spectroscopy is applied to investigate the sequences of chemical structures in DOM, the order is as follows: CC stretch > COO- stretch > N-H in-plane > C-O stretch. The result confirmed that protein was rapidly decomposed and utilized, which would result in the increase of microorganism metabolism and hydrolysis rate, polysaccharide was hydrolyzed to form phenol and carboxylic acid. Four possible pathways were identified in AD by the structural equation model. C1and hydroxyl can promote propionic and butyric acid formation by the pathway of valeric or iso-butyric acid production and further effected acetic acid production. This study proposed the possible formative mechanisms of acetic acid according to sequences of chemical structures variation in DOM during AD, which can provide the theoretical basis for directional regulating the conversion of different chemical structures of DOM into acetic acid in AD.
Collapse
Affiliation(s)
- Sicong Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yihan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Chemistry, Tianjin Normal University, 300387, China
| | - Jinjin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shaokang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
15
|
Cui H, Wang J, Liu T, Qu X. Spatial and seasonal patterns of dissolved organic matter hydrophobicity in Lake Taihu revealed by the aqueous two-phase system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145892. [PMID: 33639473 DOI: 10.1016/j.scitotenv.2021.145892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
The hydrophobicity of dissolved organic matter (DOM) is a key property influencing the environmental risks of organic pollutants. Our understanding of the spatial and seasonal pattern of DOM hydrophobicity in aquatic systems and the major controlling factors is still limited. In this study, the hydrophobicity of 124 DOM samples collected from northern Lake Taihu, a typical eutrophic lake, was quantified using the partition coefficient of DOM in the aqueous two-phase system (KATPS). The results revealed high-resolution spatial patterns and seasonal variations of DOM hydrophobicity in Lake Taihu. The riverine input, algae activity, and photodegradation were identified as important processes shaping the spatial and seasonal pattern of DOM hydrophobicity. The riverine input and algae activity strongly affected DOM hydrophobicity in the west part and the central area of the lake. Photodegradation process played a significant role in DOM hydrophobicity in the east part of the lake in summer. The high-resolution spatial and seasonal pattern of the hydrophobic organic pollutant partition affinity of DOM (KOC) was assessed based on the two-phase system model and the KATPS dataset. The KOC values vary significantly in Lake Taihu between spring and summer, especially in the Zhushan Bay and east coast areas, highlighting the need for considering DOM dynamics in sorption assessment. Our results detailly profiled the spatial and seasonal patterns of DOM hydrophobicity and sorption behavior and elucidated the major controlling factors, which is crucial for environmental risk assessment.
Collapse
Affiliation(s)
- He Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Jiaxue Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Tao Liu
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China.
| |
Collapse
|
16
|
Wang XY, Yang QP, Tian SJ, Song FH, Guo F, Huang NN, Tan WQ, Bai YC. Photochemical Reactivity of Humic Substances in an Aquatic System Revealed by Excitation-Emission Matrix Fluorescence. Front Chem 2021; 9:679286. [PMID: 34124005 PMCID: PMC8193985 DOI: 10.3389/fchem.2021.679286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The photochemical reactivity of humic substances plays a critical role in the global carbon cycle, and influences the toxicity, mobility, and bioavailability of contaminants by altering their molecular structure and the mineralization of organic carbon to CO2. Here, we examined the simulated irradiation process of Chinese standard fulvic acid (FA) and humic acid (HA) by using excitation-emission matrix fluorescence combined with fluorescence regional integration (FRI), parallel factor (PARAFAC) analysis, and kinetic models. Humic-like and fulvic-like materials were the main materials (constituting more than 90%) of both FA and HA, according to the FRI analysis. Four components were identified by the PARAFAC analysis: fulvic-like components composed of both carboxylic-like and phenolic-like chromophores (C1), terrestrial humic-like components primarily composed of carboxylic-like chromophores (C2), microbial humic-like overwhelming composed of phenolic-like fluorophores (C3), and protein-like components (C4). After irradiation for 72 h, the maximum fluorescence intensity (F max) of C1 and C2 of FA was reduced to 36.01-58.34%, while the F max of C3 of both FA and HA also decreased to 0-9.63%. By contrast, for HA, the F max of its C1 and C2 increased to 236.18-294.77% when irradiated for 72 h due to greater aromaticity and photorefractive tendencies. The first-order kinetic model (R 2 = 0.908-0.990) fitted better than zero-order kinetic model (R 2 = 0-0.754) for the C1, C2, and C3, of both FA and HA, during their photochemical reactivity. The photodegradation rate constant (k 1) of C1 had values (0.105 for FA; 0.154 for HA) that surpassed those of C2 (0.059 for FA, 0.079 for HA) and C3 (0.079 for both FA and HA) based on the first-order kinetic model. The half-life times of C1, C2, and C3 ranged from 6.61-11.77 h to 4.50-8.81 h for FA and HA, respectively. Combining an excitation-emission matrix with FRI and PARAFAC analyses is a powerful approach for elucidating changes to humic substances during their irradiation, which is helpful for predicting the environmental toxicity of contaminants in natural ecosystems.
Collapse
Affiliation(s)
- Xin-Yuan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Qi-Peng Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Shi-Jie Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Fan-Hao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Nan-Nan Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wei-Qiang Tan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Ying-Chen Bai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China.,State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
17
|
Liao ZL, Zhao ZC, Zhu JC, Chen H, Meng DZ. Complexing characteristics between Cu(Ⅱ) ions and dissolved organic matter in combined sewer overflows: Implications for the removal of heavy metals by enhanced coagulation. CHEMOSPHERE 2021; 265:129023. [PMID: 33246708 DOI: 10.1016/j.chemosphere.2020.129023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/07/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
Enhanced coagulation has been widely used in storm tanks to remove heavy metal ions (HMs) from combined sewer overflows (CSOs), but faces challenges on removing the HMs bound to dissolved organic matter (DOM) with small molecular weight (MW). DOM ubiquitously existing in CSOs generally contains a large distribution range of MW, which can significantly impact the MW distribution of HMs by complexing reaction, thereby adding uncertainties for the removal efficiency of coagulation. Therefore, realizing the potential MW distribution of the HMs bound to CSO-DOM is greatly important for cost-effectively removing HMs from CSOs in the coagulation process. This paper presents a comprehensive approach of ultrafiltration, fluorescence quenching titration, excitation-emission matrix parallel factor analysis, complexation model, and two-dimensional correlation fluorescence spectroscopy for exploring the MW-based complexing characteristics between Cu(II) ions and CSO-DOM components. Results show that: (1) Cu(II) ions that bound to the CSO-DOM were mainly distributed in the MW range of <5 kDa, which makes them very difficult to be removed from CSOs by coagulation technique. (2) Concentration effect and molecular composition exerted great impacts on the MW distribution of the Cu(II) ions bound to CSO-DOM. (3) The humic-like component of terrestrial origin with the MW range of 100 kDa∼0.45 μm possessed high binding stability, capacity, and priority with Cu(II) ions, and they could be used at a high concentration to promote the removal efficiency of coagulation for Cu(Ⅱ) ions of CSOs by competitive complexation and inter-molecular bridging.
Collapse
Affiliation(s)
- Zhen-Liang Liao
- College of Civil Engineering and Architecture, Xinjiang University, Xinjiang, 830046, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, UNEP-Tongji Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Key Laboratory of Yangtze River Water Environment (Ministry of Education), Tongji University, Siping Road, Shanghai, 200092, People's Republic of China
| | - Zhi-Chao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, UNEP-Tongji Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Key Laboratory of Yangtze River Water Environment (Ministry of Education), Tongji University, Siping Road, Shanghai, 200092, People's Republic of China
| | - Jing-Cheng Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, UNEP-Tongji Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Hao Chen
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), Tongji University, Siping Road, Shanghai, 200092, People's Republic of China.
| | - Dai-Zong Meng
- State Key Laboratory of Pollution Control and Resource Reuse, UNEP-Tongji Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Key Laboratory of Yangtze River Water Environment (Ministry of Education), Tongji University, Siping Road, Shanghai, 200092, People's Republic of China
| |
Collapse
|
18
|
Hu B, Wang P, Bao T, Shi Y. The photochemical release of dissolved organic matter from resuspended sediments: Insights from fluorescence spectroscopy. CHEMOSPHERE 2020; 257:127161. [PMID: 32526465 DOI: 10.1016/j.chemosphere.2020.127161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Sediments exposed to sunlight can serve as an important source of dissolved organic carbon (DOC) and nutrients to overlying waters. However, the photochemical release processes of dissolved organic matter (DOM) from resuspended sediments and the characteristics of photoreleased DOM are not fully understood. In this study, excitation-emission matrix fluorescence combined with parallel factor analysis (EEMs-PARAFAC) was used to study the photochemical release of DOM qualitatively and quantitatively. The EEMs-PARAFAC demonstrated that the photoreleased DOM is dominated by humic-like substances, and the photorelease process could be consist of the photoproduction and photodegradation of DOM. The concurrent photodegradation may result in the underestimation of photoreleased DOM. Moreover, the significant increases in DOC content and fluorescence intensity of humic-like components along with increasing nitrate and ferric ion indicated that nitrate and ferric ion could facilitate the photoproduction of DOM through the photochemical produced hydroxyl radical. However, the decreases in DOC and fluorescence intensity were also observed at high concentration of nitrate and ferric ion, owing to the photodegradation of DOM by redundant hydroxyl radical. All of these results suggest that EEMs-PARAFAC is an effective and sensitive analytical technique for evaluating DOM photoreleased from suspended lake sediments and previous studies may underestimate photochemical release of DOM from sediments due to the overlook of the subsequently photodegradation of these released DOM. Thus, the photochemical release of DOM and its associated pollutants from suspended particles in shallow and eutrophic lakes should be more significant then should be paid more attention.
Collapse
Affiliation(s)
- Bin Hu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Peifang Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Tianli Bao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yue Shi
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
19
|
Zhang J, Song F, Li T, Xie K, Yao H, Xing B, Li Z, Bai Y. Simulated photo-degradation of dissolved organic matter in lakes revealed by three-dimensional excitation-emission matrix with regional integration and parallel factor analysis. J Environ Sci (China) 2020; 90:310-320. [PMID: 32081327 DOI: 10.1016/j.jes.2019.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Simulated photo-degradation of fluorescent dissolved organic matter (FDOM) in Lake Baihua (BH) and Lake Hongfeng (HF) was investigated with three-dimensional excitation-emission matrix (3DEEM) fluorescence combined with the fluorescence regional integration (FRI), parallel factor (PARAFAC) analysis, and multi-order kinetic models. In the FRI analysis, fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM. Four individual components were identified by use of PARAFAC analysis as humic-like components (C1), fulvic-like components (C2), protein-like components (C3) and unidentified components (C4). The maximum 3DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%, 70% and 90%, respectively after photo-degradation. The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient (Radj2) (0.963-0.998). The photo-degradation rate constants (kn) showed differences of three orders of magnitude, from 1.09 × 10-6 to 4.02 × 10-4 min-1, and half-life of multi-order model ( T1/2n) ranged from 5.26 to 64.01 min. The decreased values of fluorescence index (FI) and biogenic index (BI), the fact that of percent fluorescence response parameter of Region I (PI,n) showed the greatest change ratio, followed by percent fluorescence response parameter of Region II (PII,n), while the largest decrease ratio was found for C3 components, and the lowest T1/2n was observed for C3, indicated preferential degradation of protein-like materials/components derived from biological sources during photo-degradation. This research on the degradation of FDOM by 3DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FDOM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.
Collapse
Affiliation(s)
- Jin Zhang
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu 213164, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Tingting Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kefu Xie
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu 213164, China
| | - Huiying Yao
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Zhongyu Li
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu 213164, China.
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
20
|
Mao Y, Li H, Huangfu X, Liu Y, He Q. Nanoplastics display strong stability in aqueous environments: Insights from aggregation behaviour and theoretical calculations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113760. [PMID: 31855670 DOI: 10.1016/j.envpol.2019.113760] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Nanoplastics are inevitably released into aquatic environments due to their extensive use and the continuous fragmentation of plastics. Therefore, it is imperative to understand the aggregation behaviours that determine the transport and fate of nanoplastics in aquatic environments. In this study, the effects of various metal cations, pH, aging and extracellular polymeric substances (EPS) on the aggregation of polystyrene nanoplastics (nano-PS) in aqueous solutions were systematically evaluated based on aggregation kinetics experiments and Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical calculation. The concentration, valence and hydration ability of metal cations jointly affected the aggregation of nano-PS. The critical coagulation concentration (CCC) of nano-PS was significantly higher than the ionic strengths in aquatic environments, indicating that the aggregation rate of nano-PS is relatively low in aquatic environments. The results of the aggregation kinetics experiments were consistent with DLVO theory, which showed that the energy barrier of nano-PS was dependent on electrostatic repulsion forces and van der Waals forces, and increased with pH. Nano-PS was artificially aged by UV-H2O2, which reduced the hydrophobic nature of the particle surfaces, consequently enhancing the stability of the nanoplastics. EPS (excreted from Chlorella pyrenoidosa) decreased the aggregation rates of nano-PS due to steric effects, which was confirmed by the extend DLVO model. Our results highlight the high stability of nano-PS in aquatic environments, which could help facilitate the evaluation of their environmental impact.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China; Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China; Lingzhi Environmental Protection Group, Wuxi, 214200, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yao Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
21
|
Gao ZC, Lin YL, Xu B, Xia Y, Hu CY, Zhang TY, Cao TC, Pan Y, Gao NY. A comparison of dissolved organic matter transformation in low pressure ultraviolet (LPUV) and ultraviolet light-emitting diode (UV-LED)/chlorine processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134942. [PMID: 31710848 DOI: 10.1016/j.scitotenv.2019.134942] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
This study compared the degradation of dissolved organic matter (DOM) by UV/chlorine advanced oxidation processes (AOPs) with emerging ultraviolet light-emitting diode (UV-LED, 275 nm) and traditional low pressure UV (LPUV, 254 nm) as UV sources. Excitation emission matrix-parallel factor (EEM-PARAFAC) analysis and two-dimensional (2D) correlation gel permeation chromatograph were applied to explore the evolutions of DOM during oxidation processes. The degradation behaviors of DOM indicated by UV absorbance at 254 nm (UV254), dissolved organic carbon (DOC), and fluorophores fitted the pseudo-first-order kinetics well. The removal efficiency of DOM was similar under UV-LED and LPUV irradiation alone. However, UV-LED exhibited much higher degradation rates (increased by 29-160%) than LPUV regardless of the tracking variables during UV/chlorine processes. For three PARAFAC components, humic-like fluorescences were preferentially degraded by UV/chlorine oxidation compared with protein-like fluorescence potentially due to the differences of electronic moieties and molecular weight (MW). The decline in UV254, DOC, and fluorophores increased with increasing chlorine dosage; linear correlations between those indicators were observed during the two AOPs. Moreover, UV-LED/chlorine could achieve greater extents of MW change. Our study demonstrated that UV-LED could be a superior alternative for the future selection of UV source in the UV/chlorine process.
Collapse
Affiliation(s)
- Ze-Chen Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan, ROC
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Ying Xia
- Shanghai Chengtou Water (Group) Co., Ltd., Water Production Branch, Shanghai 200086, PR China
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Tong-Cheng Cao
- School of Chemical Science and Engineering, Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 200092, PR China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
22
|
Optimization of cyanobacterial harvesting and extracellular organic matter removal utilizing magnetic nanoparticles and response surface methodology: A comparative study. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Si W, Xu H, Kong M, Liu J, Xu M, Liu X. Effects of molecular weight fractions and chemical properties of time-series cyanobacterial extracellular polymeric substances on the aggregation of lake colloidal particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1201-1208. [PMID: 31539951 DOI: 10.1016/j.scitotenv.2019.07.360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Colloidal particles in lake waters interact inevitably with cyanobacterial extracellular polymeric substance (EPS), which will change their behavior and fate. Quantitative prediction of the effects of cyanobacterial EPS on colloidal behavior is difficult due to its variability and heterogeneity. To explore the effects of molecular weight (MW) fractions and chemical properties of cyanobacterial EPS on aggregation kinetics of colloidal particles, time-series cyanobacterial samples were collected in Lake Taihu, China, from April to November (during blooming and maintenance period), with the bulk EPS matrix fractionating into low MW (LMW-, <1 nm) and high MW (HMW-, 1 nm-0.45 μm) fractions. HMW-EPS was generally characterized with higher absorbance and predominant distribution of protein-like substances, while LMW-EPS contained mainly the humic- and fulvic-like substances. The absorbance, molecular size, and humification degree for each MW fraction consistently increased from April to November, showing obvious temporal variations from blooming period to maintenance period. As for the MW-dependent aggregation behaviors, the HMW-EPS provided better stability against aggregation than the LMW-EPS, and the bulk EPS matrix that consisted of HMW- and LMW-fractions exhibited the effects intermediate between that of each fraction alone. Regardless of MW fractions, the effects of EPS-induced stability enhancement were more evident in maintenance period than in blooming period. Further analysis showed that the colloidal stability was correlated positively with SUVA254 (R2 = 0.82-0.93) but negatively with Slope275-295 (R2 = 0.53-0.91) of UV-Vis absorption spectra, indicating that aromaticity and MWs were two critical parameters controlling colloidal aggregation. Therefore, cyanobacterial EPS can exhibit variable effects on colloidal stability, and characterization of MW distribution is strongly required in predicating the behavior and fate of colloidal particles in water environments.
Collapse
Affiliation(s)
- Wei Si
- Department of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Jin Liu
- Key Laboratory of the Pearl River Estuarine Dynamics & Associated Process Regulation, MWR, Guangzhou 510661, China
| | - Mengwen Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
24
|
Gong W, Xie B, Deng S, Fan Y, Tang X, Liang H. Enhancement of anaerobic digestion effluent treatment by microalgae immobilization: Characterized by fluorescence excitation-emission matrix coupled with parallel factor analysis in the photobioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:105-113. [PMID: 31075577 DOI: 10.1016/j.scitotenv.2019.04.440] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The bacterial-microalgal consortium has been investigated to anaerobic digestion effluent (ADE) treatment in the photobioreactor (PBR). However, the high concentrations of nutrients reduced the ADE treatment efficiency and the transformation of organic pollutants in PBR was still unclear. In this study, two-sequencing batch PBRs were operated with suspended Microcystis aeruginosa (M. aeruginosa, SMA) and immobilized M. aeruginosa (IMA) to compare the ADE treatment performance. Fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) was conducted to identify organics degradations. The results showed that the proportion of living M. aeruginosa cell (86.4%) in PBR (IMA) was highly significant (p < 0.05) higher than that in PBR (SMA) (75.2%). This indicated immobilized microalgae beads enhanced the resistance to the high concentration of nutrients in PBR (IMA). EEM-PARAFAC analysis displayed the biodegradation order in the bacterial-microalgal consortium system was humic-like substances > tyrosine-like substances > tryptophan-like substances. The removals of humic-like matters (94.05 ± 0.92%) and tyrosine-like matters (91.13 ± 2.49%) in PBR (IMA) were significantly (p < 0.01) higher than those in PBR (SMA). Notably, the average removals of nutrients in PBR (IMA) were significantly (p < 0.05) higher than those in PBR (SMA). This result verified that microalgae immobilization benefitted nutrients removals with 93.05 ± 1.45% of NH4+-N and complete PO43--P removal in PBR (IMA). Moreover, the enrichment of functional genera Flavobacterium and Opitutus contributed to decreasing the organics loadings and strengthening the ADE treatment performance. Therefore, this study verified microalgae immobilization enhanced the actual ADE treatment. Additionally, fluorescent organic pollutants degradations were further evaluated by EEM-PARAFAC analysis in the bacterial-microalgal consortium.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China.
| | - Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; National University of Singapore Environmental Research Institute, National University of Singapore, 5A Engineering Dr. 1, Singapore 117411, Singapore
| | - Shihai Deng
- National University of Singapore Environmental Research Institute, National University of Singapore, 5A Engineering Dr. 1, Singapore 117411, Singapore; School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Yuhui Fan
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
25
|
Yu H, Qu F, Zhang X, Shao S, Rong H, Liang H, Bai L, Ma J. Development of correlation spectroscopy (COS) method for analyzing fluorescence excitation emission matrix (EEM): A case study of effluent organic matter (EfOM) ozonation. CHEMOSPHERE 2019; 228:35-43. [PMID: 31022618 DOI: 10.1016/j.chemosphere.2019.04.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 05/26/2023]
Abstract
Two-dimensional correlation spectroscopy (2DCOS) has been used as a powerful tool for analyzing spectral features, but it has never been applied to fluorescence excitation-emission matrix (EEM) data due to the incompatible dimensions. This study first investigated EEM-COS by reducing the dimensions of the EEM (using parallel factor analysis, PARAFAC) for fitting to 2DCOS (EEM-PARAFAC-COS). The fluorescence changes of effluent organic matter (EfOM) during ozonation were studied using EEM-COS and synchronous fluorescence (SF)-2DCOS. The conventionally used SF-2DCOS proved to be biased due to the intrinsic drawback of SF, while the EEM-PARAFAC-COS gave accurate and trustworthy results. Homo-EEM-PARAFAC-COS indicated that the fluorescence protein-like and fulvic-like substances in EfOM were preferentially ozonated compared to humic-like substances. Hetero-EEM-PARAFAC-COS analyses on the EEM, FTIR, UV-vis absorbance, and size-exclusion chromatography showed that the fluorescence protein-like and fulvic-like substances in EfOM were associated with lower molecular weight (MW, ∼0.95 kDa), UV absorbance at ∼280 nm, and more electron-enriched aromatics (with amide and phenolic groups), which explained their ozonation preference, while humic-like substances were related to carboxylic groups, UV absorbance at ∼255 nm, and organics at MW of ∼4.50 kDa. This work demonstrated the great potential of EEM-PARAFAC-COS in studying fluorescence change and correlating fluorescence with other spectra.
Collapse
Affiliation(s)
- Huarong Yu
- School of Civil Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, PR China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, PR China.
| | - Xiaolei Zhang
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China
| |
Collapse
|
26
|
Xing J, Liang H, Xu S, Chuah CJ, Luo X, Wang T, Wang J, Li G, Snyder SA. Organic matter removal and membrane fouling mitigation during algae-rich surface water treatment by powdered activated carbon adsorption pretreatment: Enhanced by UV and UV/chlorine oxidation. WATER RESEARCH 2019; 159:283-293. [PMID: 31102857 DOI: 10.1016/j.watres.2019.05.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 05/26/2023]
Abstract
In this work, UV and UV/chlorine (UV/Cl) were employed to enhance powdered activated carbon (PAC) adsorption pretreatment prior to ultrafiltration process for algae-contaminated surface water treatment. Their performance on membrane fouling mitigation and organic pollutant rejection was systematically evaluated. A comparative experiment was conducted under varying pollution degrees of algal extracellular organic matter (EOM) contamination in surface river water. The results indicated that UV/PAC and UV/Cl/PAC pretreatment effectively enhanced the removal of dissolved organic carbon (DOC) and UV-absorbing at 254 nm (UV254). The characteristics of feed water after pretreatments were investigated through apparent molecular-weight (MW) distribution and fluorescence parallel factor analysis (PARAFAC). In regard to membrane fouling mitigation, UV/Cl/PAC noticeably decreased reversible and irreversible fouling resistance simultaneously and UV/PAC preferred reducing reversible membrane fouling. Combined fouling modeling was operated to scrutinize the fouling mitigation mechanisms and standard pore blocking was proved to be dominant during the filtration process. Moreover, the UV/Cl and UV/Cl/PAC pretreatments were proved positive for emerging micropollutants degradation and disinfection by-products formation potential reduction. The results suggested that UV and UV/Cl are likely strategies to enhance the efficiency of PAC adsorption pretreatments prior to ultrafiltration during algae-contaminated water treatment.
Collapse
Affiliation(s)
- Jiajian Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Siqi Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chong Joon Chuah
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tianyu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shane A Snyder
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
| |
Collapse
|
27
|
Xu H, Zou L, Guan D, Li W, Jiang H. Molecular weight-dependent spectral and metal binding properties of sediment dissolved organic matter from different origins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:828-835. [PMID: 30790755 DOI: 10.1016/j.scitotenv.2019.02.186] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
The metal binding potential of dissolved organic matter (DOM) is highly related with its inherent properties such as molecular weight (MW). Here sediment DOMs with different origins, i.e., algae- and macrophyte-dominated sediment DOM (named as ASDOM and MSDOM, respectively), were size-fractionated into low MW (LMW-, <1 kDa) and high MW (HMW-, 1 kDa~0.45 μm) fractions, with the spectral and metal binding properties in different MW fractions exploring via total organic carbon, absorption spectroscopy, fluorescence parallel factor (PARAFAC) analysis, and Cu(II) titration techniques. The MSDOM contained more organic carbon, lower specific UV absorbance, lower fluorescence index, higher humification index, and lower biological index compared to the ASDOM. As for the MW-fractionated samples, the humic- and fulvic-like fluorophores were mainly distributed in the LMW-DOM, while the protein-like ones were located richly in the HMW-DOM. Thus, obvious MW- and origin-dependent heterogeneities in abundance and spectral properties were observed for sediment DOMs. One humic-like, one fulvic-like, and two protein-like fluorescent components were identified by PARAFAC analysis, with different components exhibiting different variable patterns in response to Cu(II) addition. Irrespective of sample sources, humic- and fulvic-like components had higher condition stability constants (logKM > 4.96) than protein-like components (logKM < 4.86). As for the MW-fractionated samples, the HMW-DOM, especially the HMW humic-/fulvic-like components, exhibited higher metal binding potential than the bulk and LMW counterparts. This study highlighted the importance of HMW-DOM in manipulating the behavior, fate, and bioavailability of heavy metals in lake sediments.
Collapse
Affiliation(s)
- Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Li Zou
- School of Naval Architecture, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China.
| | - Dongxin Guan
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
28
|
Wu J, Zhao Y, Yu H, Wei D, Yang T, Wei Z, Lu Q, Zhang X. Effects of aeration rates on the structural changes in humic substance during co-composting of digestates and chicken manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:510-520. [PMID: 30579208 DOI: 10.1016/j.scitotenv.2018.12.198] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
High humidity and potential threat of pathogen of anaerobic digestates are unfavorable to the environment by direct utilization. To achieve the sustainable utilization of digestates, composting might be a good choice. Meanwhile, the aeration rate of composting has been optimized. Co-composting of digestates and chicken manure was performed under different aeration conditions (0.05, 0.1 and 0.15 L·min-1·kg-1·organic matter (OM)). During composting, internal transformation of humic substance (HS) has been studied for obtaining the potential application value of the co-composting products. Results suggested that the HS concentration was increased by 21.1%, 26.4% and 22.4% with the aeration rates were 0.05, 0.1 and 0.15 L·min-1·kg-1·OM, respectively. The aeration rate of 0.15 L·min-1·kg-1·OM was more conducive to germination. Parallel factor analysis and dimensional correlation spectra (2DCOS) have been combined to reveal the conversion relationships of HS components for understanding the compost application pattern. Hetero-2DCOS indicated that aeration of 0.05 min-1·kg-1·OM and 0.1 L·min-1·kg-1·OM contributed to the formation of complex compounds at long wavelength, and aeration of 0.15 L·min-1·kg-1·OM was beneficial for labile compounds formation at short wavelength. In views of the aeration of 0.1 L·min-1·kg-1·OM was more beneficial to improve HS concentration than 0.05 L·min-1·kg-1·OM, 0.1 L·min-1·kg-1·OM and 0.15 L·min-1·kg-1·OM were consider as the most important aeration rate to conduct digestates composting. Overall, the aeration affected the HS composition which, in turn, might affect the application ways of composting products. This study could provide a reference for industrial composting production and applications.
Collapse
Affiliation(s)
- Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Huimin Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tianxue Yang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Qian Lu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
29
|
Yan X, Xu X, Ji M, Zhang Z, Wang M, Wu S, Wang G, Zhang C, Liu H. Cyanobacteria blooms: A neglected facilitator of CH 4 production in eutrophic lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:466-474. [PMID: 30243166 DOI: 10.1016/j.scitotenv.2018.09.197] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Lakes are regarded as one of the important sources of atmospheric CH4. However, the role of cyanobacteria blooms (CBBs) play in the CH4 production in eutrophic lakes is not fully clear. In this study, the spatial distribution characteristics of CH4 concentrations in surface water and sediment columns were investigated in Zhushan Bay of Taihu lake, China. Results showed that CH4 concentrations in CBBs accumulated zones were much higher than that in the open lake areas, with the highest values of 3.79 μmol·L-1 and 2261.88 μmol·L-1 in surface water and sediment columns, respectively. CH4 concentrations were strongly influenced by various factors. In surface water, the occurrence of CBBs greatly contributed to CH4 productions, as evidenced by the well-predicting for CH4 concentrations using Chl-a and NH4+ concentrations. In the sediments, the Ignition Loss and C:N ratio values were two indicators of CH4 contents, suggesting that the methanogenesis processes were influenced by not only the quantities, but also the qualities of organic matter. The labile substrates produced during the CBBs decomposition processes promoted the CH4 production and migration from sediments to the water column, resulting in the coherence in CH4 concentrations between the sediments and the surface water. The high-resolution determinations of CH4 concentrations in surface water and sediments clarified that the CBBs were a neglected facilitator of CH4 productions, which should be considered in the future estimation of CH4 emissions in eutrophic lakes.
Collapse
Affiliation(s)
- Xingcheng Yan
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Ming Ji
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhongqian Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Mingyue Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Songjun Wu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, PR China; Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing 210023, PR China; Jiangsu Engineering Laboratory of Water and Soil Eco-remediation, Nanjing 210023, PR China.
| | - Chi Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Huichao Liu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
30
|
Lee MH, Osburn CL, Shin KH, Hur J. New insight into the applicability of spectroscopic indices for dissolved organic matter (DOM) source discrimination in aquatic systems affected by biogeochemical processes. WATER RESEARCH 2018; 147:164-176. [PMID: 30308375 DOI: 10.1016/j.watres.2018.09.048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/07/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Despite numerous studies on changes to optical proxies of dissolved organic matter (DOM) by biogeochemical processing, the applicability of commonly-used spectroscopic indices has not been explored as DOM source tracking tools under conditions where biogeochemical processes may alter them. For this study, two contrasting DOM end members, Suwannee River fulvic acid (SRFA) and algogenic DOM (ADOM), and their mixtures, were used to examine the potential changes in the conservative mixing behaviors of several well-known optical indices via end member mixing analysis under the influence of biodegradation, UV irradiation, and clay mineral (kaolin) adsorption. Most of the source tracking indices exhibited large deviations from conservative mixing behavior between the two end-members. Biodegradation tended to lower the portions of labile and ADOM in the mixtures, while the allochthonous end member (SRFA) was reduced by a greater extent after the process of UV irradiation or adsorption. The extent of the variations in biological index (BIX) and fluorescence index (FI) was smaller for more allochthonous DOM mixtures under the processes of biodegradation and UV irradiation. Overall, the process-driven variations in ratios of humic-like: protein-like fluorescence (as modeled by parallel factor analysis, PARAFAC) were greater for the SRFA versus ADOM. Evaluation criteria used in this study suggested that BIX, specific UV absorbance (SUVA), and FI each could be the reliable discrimination parameter least affected by biodegradation, UV irradiation, and adsorption, respectively. This study provided criterion information for the choice and the interpretation of the optical indices for DOM source discrimination in aquatic environments after substantial biogeochemical processing.
Collapse
Affiliation(s)
- Mi-Hee Lee
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea.
| | - Christopher L Osburn
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
31
|
Xu H, Yan M, Li W, Jiang H, Guo L. Dissolved organic matter binding with Pb(II) as characterized by differential spectra and 2D UV-FTIR heterospectral correlation analysis. WATER RESEARCH 2018; 144:435-443. [PMID: 30059906 DOI: 10.1016/j.watres.2018.07.062] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Dissolved organic matter (DOM) in aquatic environment significantly influences the behavior and fate of heavy metals via binding, complexation and thus changes the metal speciation; however detailed interfacial processes and mechanisms are still unclear. Here, differential absorbance and fluorescence spectra and two dimensional UV-FTIR heterospectral correlation analysis were applied to probe into the Pb(II)-DOM interaction at a wide range of pH and ionic strength (IS). The absorbance of DOM molecules under all conditions increased with metal addition, while the different extents of absorbance variations along the wavelength range in the differential zero-order and log-transformed absorbance spectra indicated the site heterogeneity within the DOM pool for metal binding. Spectral parameters, namely differential fluorescent components 1 and 2 (DFC1 and DFC2) and differential slopes of log-transformed absorbance in the range of wavelength 350-400 nm (DSlope350-400) were found to be highly correlated with the total amounts of DOM-bound Pb(II) predicted by the NICA-Donnan model, while the differential absorbance spectra at 235 nm (DA235) was related to the extent of Pb(II) bound by carboxylic groups. Thus, these parameters are an indicator or proxy for the in situ Pb(II)-DOM interaction extent. Aryl C-H gave the fastest response to Pb(II) binding at lower pH and IS (e.g., pH 4.7 and IS = 0.01 M), followed by carboxyl C=O and polysaccharide C-OH and then chromophoric groups at 265 nm (CDOM265). However, the CDOM265 bound to Pb(II) prior to aryl C-H and polysaccharide C-OH groups at higher pH and IS (6.0 and 0.1 M, respectively), showing that the binding sequences were highly dependent on solution chemistry. Differential spectra combined with two dimensional UV-FTIR heterospectral correlation analysis can be used as a promising approach to elucidate metal-DOM interaction processes, including site heterogeneity, binding sensitivity and sequence at the functional group level.
Collapse
Affiliation(s)
- Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, WI, 53204, USA.
| | - Mingquan Yan
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, WI, 53204, USA
| |
Collapse
|
32
|
Xie B, Gong W, Yu H, Tang X, Yan Z, Luo X, Gan Z, Wang T, Li G, Liang H. Immobilized microalgae for anaerobic digestion effluent treatment in a photobioreactor-ultrafiltration system: Algal harvest and membrane fouling control. BIORESOURCE TECHNOLOGY 2018; 268:139-148. [PMID: 30077170 DOI: 10.1016/j.biortech.2018.07.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 05/26/2023]
Abstract
A photobioreactor (PBR) coupled with ultrafiltration (UF) system was developed with goals of microalgae cultivation, harvest, and membrane fouling control in the anaerobic digestion effluent purification. Firstly, three-sequencing batch PBRs were started-up with suspended Chlorella vulgaris (C. vulgaris, SCV), immobilized C. vulgaris (ICV) and immobilized C. vulgaris with powdered activated carbon (ICV + PAC). The results exhibited high DOC degradation (66.61%-84.35%) and completely nutrients (nitrogen and phosphorus) removals were attained in PBRs. This indicated bacterial-microalgal consortiums enhanced biodegradation and PAC adsorption accelerated photodegradation. During the microalgae harvest by UF, immobilized microalgae beads protected cells integrity with less debris and intracellular/extracellular organic matters lysis. Moreover, the cake layer in ICV + PAC could even serve as a dynamic layer to entrap the residual pollutants and control membrane fouling. Hence, membrane fouling mitigation and ADE purification were realized during the microalgae harvest process in the ICV + PAC.
Collapse
Affiliation(s)
- Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Weijia Gong
- School of Engineering, Northeast Agriculture University, 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Huarong Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhongsen Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhendong Gan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Tianyu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
33
|
Yang X, Zheng X, Wu L, Cao X, Li Y, Niu J, Meng F. Interactions between algal (AOM) and natural organic matter (NOM): Impacts on their photodegradation in surface waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1185-1197. [PMID: 30114600 DOI: 10.1016/j.envpol.2018.07.099] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/08/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
The occurrence of algae bloom would lead to the release of algae-derived organic matter (AOM) and then alter the abundance and behavior of dissolved organic matter (DOM) in aquatic ecosystems. In this study, the characteristics and photodegradation of AOM, naturally occurring organic matter (NOM) derived from soil and plants and their mixtures were explored to reveal the potential interactions between AOM and NOM in water. Results indicated that the protein-like components from AOM and the humic-like components from SRNOM took place inter-component interactions in the AOM-NOM mixtures. Meanwhile, application of two-dimensional Fourier transform infrared correlation spectroscopic (2D-FTIR-COS) analysis revealed that carboxylic C=O had a high priority to bind with other functional groups (e.g., phenolic-OH, polysaccharides C-O, amideⅡC-N/N-H and celluloses C-H). More crucially, it was found that the AOM-NOM mixtures subjected to a very different photodegradation behavior to their end-members (i.e., AOM and NOM), likely because of the occurrence of AOM-NOM interactions as well as their roles in mediating the yield of reactive oxygen species. For instance, the presence of AOM led to increased photodegradation degrees of the chromophoric fraction in NOM. In contrast, the NOM did not exhibit any photosensitization role in the photodegradation of the proteins from AOM. This study has potential implications for our understanding of the carbon cycling in anthropogenically impacted aquatic systems such as inland rivers and lakes.
Collapse
Affiliation(s)
- Xiaofang Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Xing Zheng
- Department of Civil and Environmental Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Linjie Wu
- Department of Civil and Environmental Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Xin Cao
- Department of Civil and Environmental Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Junfeng Niu
- Dongguan University of Technology, School of Environment and Civil Engineering, Dongguan, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| |
Collapse
|
34
|
Assessment of microbial products in the biosorption process of Cu(II) onto aerobic granular sludge: Extracellular polymeric substances contribution and soluble microbial products release. J Colloid Interface Sci 2018; 527:87-94. [DOI: 10.1016/j.jcis.2018.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022]
|
35
|
Xu H, Xu M, Li Y, Liu X, Guo L, Jiang H. Characterization, origin and aggregation behavior of colloids in eutrophic shallow lake. WATER RESEARCH 2018; 142:176-186. [PMID: 29879655 DOI: 10.1016/j.watres.2018.05.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/10/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Stability of colloidal particles contributes to the turbidity in the water column, which significantly influences water quality and ecological functions in aquatic environments especially shallow lakes. Here we report characterization, origin and aggregation behavior of aquatic colloids, including natural colloidal particles (NCPs) and total inorganic colloidal particles (TICPs), in a highly turbid shallow lake, via field observations, simulation experiments, ultrafiltration, spectral and microscopic, and light scattering techniques. The colloidal particles were characterized with various shapes (spherical, polygonal and elliptical) and aluminum-, silicon-, and ferric-containing mineralogical structures, with a size range of 20-200 nm. The process of sediment re-suspension under environmentally relevant conditions contributed 78-80% of TICPs and 54-55% of NCPs in Lake Taihu, representing an important source of colloids in the water column. Both mono- and divalent electrolytes enhanced colloidal aggregation, while a reverse trend was observed in the presence of natural organic matter (NOM). The influence of NOM on colloidal stability was highly related to molecular weight (MW) properties with the high MW fraction exhibiting higher stability efficiency than the low MW counterparts. However, the MW-dependent aggregation behavior for NCPs was less significant than that for TICPs, implying that previous results on colloidal behavior using model inorganic colloids alone should be reevaluated. Further studies are needed to better understand the mobility/stability and transformation of aquatic colloids and their role in governing the fate and transport of pollutants in natural waters.
Collapse
Affiliation(s)
- Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Mengwen Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yani Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, WI 53204, USA
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
36
|
Huang L, Li M, Ngo HH, Guo W, Xu W, Du B, Wei Q, Wei D. Spectroscopic characteristics of dissolved organic matter from aquaculture wastewater and its interaction mechanism to chlorinated phenol compound. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Combined Effects of Trace Metals and Light on Photosynthetic Microorganisms in Aquatic Environment. ENVIRONMENTS 2018. [DOI: 10.3390/environments5070081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the present review, we critically examine the state-of-the-art of the research on combined effects of trace metals and light on photosynthetic microorganisms in aquatic environment. Light of different intensity and spectral composition affects the interactions between trace metals and photosynthetic microorganisms directly, by affecting vital cellular functions and metal toxicokinetics and toxicodynamics, and indirectly, by changing ambient medium characteristics. Light radiation and in particular, the ultraviolet radiation component (UVR) alters the structure and reactivity of dissolved organic matter in natural water, which in most of the cases decreases its metal binding capacity and enhances metal bioavailability. The increase of cellular metal concentrations is generally associated with increasing light intensity, however further studies are necessary to better understand the underlying mechanisms. Studies on the combined exposures of photosynthetic microorganisms to metals and UVR reveal antagonistic, additive or synergistic interactions depending on light intensity, spectral composition or light pre-exposure history. Among the light spectrum components, most of the research was performed with UVR, while the knowledge on the role of high-intensity visible light and environmentally relevant solar light radiation is still limited. The extent of combined effects also depends on the exposure sequence and duration, as well as the species-specific sensitivity of the tested microorganisms and the activation of stress defense responses.
Collapse
|
38
|
Yu MD, He XS, Xi BD, Gao RT, Zhao XW, Zhang H, Huang CH, Tan W. Investigating the composition characteristics of dissolved and particulate/colloidal organic matter in effluent-dominated stream using fluorescence spectroscopy combined with multivariable analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9132-9144. [PMID: 29340861 DOI: 10.1007/s11356-018-1190-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Fluorescence excitation-emission matrix (EEM) spectroscopy combined with principal component analysis (PCA) and parallel factor analysis (PARAFAC) were used to investigate the compositional characteristics of dissolved and particulate/colloidal organic matter and its correlations with nitrogen, phosphorus, and heavy metals in an effluent-dominated stream, Northern China. The results showed that dissolved organic matter (DOM) was comprised of fulvic-like, humic-like, and protein-like components in the water samples, and fulvic-like substances were the main fraction of DOM among them. Particulate/colloidal organic matter (PcOM) consisted of fulvic-like and protein-like matter. Fulvic-like substances existed in the larger molecular form in PcOM, and they comprised a large amount of nitrogen and polar functional groups. On the other hand, protein-like components in PcOM were low in benzene ring and bound to heavy metals. It could be concluded that nitrogen, phosphorus, and heavy metals in effluent had an effect on the compositional characteristics of natural DOM and PcOM, which may deepen our understanding about the environmental behaviors of organic matter in effluent.
Collapse
Affiliation(s)
- Min-Da Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Bei-Dou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Ru-Tai Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xian-Wei Zhao
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Cai-Hong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
39
|
Li J, Wei J, Ngo HH, Guo W, Liu H, Du B, Wei Q, Wei D. Characterization of soluble microbial products in a partial nitrification sequencing batch biofilm reactor treating high ammonia nitrogen wastewater. BIORESOURCE TECHNOLOGY 2018; 249:241-246. [PMID: 29049982 DOI: 10.1016/j.biortech.2017.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
In present study, the characterization of soluble microbial products (SMP) was evaluated in a partial nitrification sequencing batch biofilm reactor (SBBR). During the stable operation of SBBR, the NH4+-N removal efficiency and nitrite accumulation ratio were 96.70±0.41% and 93.77±1.04%, respectively. According to excitation-emission matrix (EEM), the intensities of protein-like substances were reduced under anoxic and aerobic phases, whereas humic-like substances had little change during the whole cycle. Parallel factor analysis (PARAFAC) further indentified two components and their fluorescence intensity scores were both reduced. Synchronous fluorescence spectra revealed that the fluorescence intensity of protein-like fraction decreased with reaction time. Two-dimensional correlation spectroscopy (2D-COS) further demonstrated that protein-like fraction might decrease earlier than the other fractions. The information obtained in present study is of fundamental significance for understanding the key components in SMP and their changes in partial nitrification system by using a spectral approach.
Collapse
Affiliation(s)
- Jibin Li
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Jinglin Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Haibao Liu
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
40
|
魏 高. Research Advances in Wetland Plants Dieback Induced by Eutrophication. INTERNATIONAL JOURNAL OF ECOLOGY 2018. [DOI: 10.12677/ije.2018.73020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Zhou L, Zhou Y, Hu Y, Cai J, Bai C, Shao K, Gao G, Zhang Y, Jeppesen E, Tang X. Hydraulic connectivity and evaporation control the water quality and sources of chromophoric dissolved organic matter in Lake Bosten in arid northwest China. CHEMOSPHERE 2017; 188:608-617. [PMID: 28917213 DOI: 10.1016/j.chemosphere.2017.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/25/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
Lake Bosten is the largest oligosaline lake in arid northwestern China, and water from its tributaries and evaporation control the water balance of the lake. In this study, water quality and chromophoric dissolved organic matter (CDOM) absorption and fluorescence were investigated in different seasons to elucidate how hydraulic connectivity and evaporation may affect the water quality and variability of CDOM in the lake. Mean suspended solids and turbidity were significantly higher in the upstream tributaries than in the lake, the difference being notably more pronounced in the wet than in the dry season. A markedly higher mean first principal component (PC1) score, which was significantly positively related to protein-like components, and a considerably lower fluorescence peak integration ratio - IC:IT, indicative of the terrestrial humic-like CDOM contribution percentage, were observed in the lake than in the upstream tributaries. Correspondingly, notably higher contribution percentages of terrestrial humic-like components were observed in the river mouth areas than in the remaining lake regions. Furthermore, significantly higher mean turbidity, and notably lower mean conductivity and salinity, were recorded in the southwestern Kaidu river mouth than in the remaining lake regions in the wet season. Notably higher mean salinity is recorded in Lake Bosten than in upstream tributaries. Autochthonous protein-like associated amino-acids and also PC1 scores increased significantly with increasing salinity. We conclude that the dynamics of water quality and CDOM composition in remote arid Lake Bosten are strongly driven by evaporation and also the hydraulic connectivity between the upstream tributaries and the downstream lake.
Collapse
Affiliation(s)
- Lei Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiang Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yang Hu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Cai
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengrong Bai
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Erik Jeppesen
- Department of Bioscience and Arctic Research Centre, Aarhus University, DK-8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research, Beijing 100190, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
42
|
Xu H, Guo L. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters. WATER RESEARCH 2017; 117:115-126. [PMID: 28391118 DOI: 10.1016/j.watres.2017.04.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/17/2017] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the <3 kDa fraction in freshwater samples, but these percentages were higher in the seawater sample. Spectroscopic properties of DOM, such as specific ultraviolet absorbance, spectral slope, and biological and humification indices also varied significantly with membrane cutoffs. In addition, different ultrafiltration membranes with the same manufacture-rated cutoff also gave rise to different DOM retention efficiencies and thus different colloidal abundances and size spectra. Thus, the size-dependent DOM properties were related to both sample types and membranes used. Our results here provide not only baseline data for filter pore-size selection when exploring DOM ecological and environmental roles, but also new insights into better understanding the physical definition of DOM and its size continuum in quantity and quality in aquatic environments.
Collapse
Affiliation(s)
- Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, WI, 53204, USA.
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave., Milwaukee, WI, 53204, USA.
| |
Collapse
|
43
|
Li W, Zhang F, Ye Q, Wu D, Wang L, Yu Y, Deng B, Du J. Composition and copper binding properties of aquatic fulvic acids in eutrophic Taihu Lake, China. CHEMOSPHERE 2017; 172:496-504. [PMID: 28104558 DOI: 10.1016/j.chemosphere.2017.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Fulvic acid (FA) plays a significant role in biogenic-elemental cycling in aquatic ecosystems which is highly dependent on their organic composition. In this study, the aquatic FA contents and binding properties during bloom and non-bloom periods in Taihu Lake were investigated by two-dimensional correlation spectroscopy Fourier transform infrared spectroscopy (2D-COS-FTIR), nuclear magnetic resonance (NMR) and elemental analysis. Compared with non-bloom FA, bloom FA was of lower nitrogen content and higher C/N ratio. It contained more carboxylic and aliphatic groups while less amide groups. 2D-COS-FTIR spectra evidenced the carboxyl groups in bloom FA had the fastest response to Cu(II) binding. Also, polysaccharide in bloom FA was more susceptive to Cu(II) concentrations than that in non-bloom FA. While comparing with bloom FA, the N-rich organic compounds in non-bloom FA exhibited faster binding sequence with Cu(II). A comprehensive scheme about the interaction process of FA-Cu(II) showed that both nitrogenous and oxygenic groups in FAs were active in binding to Cu(II). The alteration in binding behaviors of organic groups in FAs to Cu(II) may have been driven by algal products and microbial community variety in Taihu Lake. Our results here have the potential to contribute significantly to future studies of dissolved organic matter dynamic biogeochemistry processes and trace metal cycling processes in eutrophic lakes.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, China
| | - Fenfen Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, China.
| | - Qi Ye
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, China
| | - Dan Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, China
| | - Liying Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, China
| | - Yihua Yu
- Shanghai Key Laboratory of Magnetic Resonance, College of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, China
| | - Bing Deng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, China
| | - Jinzhou Du
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, China
| |
Collapse
|
44
|
Ly QV, Maqbool T, Hur J. Unique characteristics of algal dissolved organic matter and their association with membrane fouling behavior: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11192-11205. [PMID: 28281064 DOI: 10.1007/s11356-017-8683-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
Over the last several decades, the frequent occurrence of algal bloom in drinking water supplies, driven by increasing anthropogenic input and climate change, has posed serious problems for membrane filtration processes, resulting in reduced membrane permeability and increased energy consumption. It is essential to comprehensively understand the characteristics of algal dissolved organic matter (DOM) and the subsequent effects on the filtration processes for better insight into membrane fouling mitigation. Many studies have revealed that algal DOM has displayed unique characteristics distinguished from other sources of DOM with respect to the chemical composition, the structures, and the molecular weight distributions. Algal DOM is considered to be a major obstacle in understanding membrane fouling due to its complicated interactions among dissimilar algal DOM constituents as well as between algal DOM and membrane material matrices. The present review article summarizes (1) recent characterizing methods for algal DOM, (2) environmental factors affecting the characteristics of algal DOM, (3) the discrepancies between algal DOM and other sources of aquatic DOM, particularly terrestrial sources, and (4) potential fouling effects of algal DOM on membrane filtration processes and their associations with algal DOM characteristics. A broad understanding of algal DOM-driven membrane fouling can lead to breakthroughs in efficient membrane filtration processes to treat algal bloom water sources.
Collapse
Affiliation(s)
- Quang Viet Ly
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea
| | - Tahir Maqbool
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
45
|
Xu H, Yang C, Jiang H. Aggregation kinetics of inorganic colloids in eutrophic shallow lakes: Influence of cyanobacterial extracellular polymeric substances and electrolyte cations. WATER RESEARCH 2016; 106:344-351. [PMID: 27750123 DOI: 10.1016/j.watres.2016.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
The stability/aggregation propensity of inorganic colloids in eutrophic shallow lakes is of great essence in governing the water transparency and contaminant behavior. In this study, time-resolved dynamic light scattering was employed to investigate the aggregation kinetics of Al2O3 inorganic colloids over a wide range of cyanobacterial extracellular polymeric substance (EPS) concentrations in the absence and presence of electrolyte cations. The results showed that EPS adsorption alone greatly decreased the hydrodynamic diameters of colloidal particles, whose stability behavior followed closely the predictions of the classical DLVO theory. Electrolyte cations, however, can induce the aggregation of colloidal particles, and divalent Ca2+ were found to be more efficient in destabilizing the colloids than monovalent Na+, as indicated by the considerably lower critical coagulation concentrations (2.5 mM for Ca2+ vs. 170 mM for Na+). Further addition of Ca2+, i.e., >2.5 mM, caused an extremely high aggregation degree and rate. High resolution transmission electron microscopy revealed that this enhanced aggregation should be attributed to the gel-like bridging between colloidal particles, which were verified to be the amorphous EPS-Ca2+ complexes. Field-emission scanning electron microscopy coupled with elemental mapping provided additional evidence that the bridging interaction of EPS with Ca2+ was the predominant mechanism for the aggregation enhancement.
Collapse
Affiliation(s)
- Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210005, China.
| | - Changming Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
46
|
|
47
|
Cai W, Liu J, Zhang X, Ng WJ, Liu Y. Generation of dissolved organic matter and byproducts from activated sludge during contact with sodium hypochlorite and its implications to on-line chemical cleaning in MBR. WATER RESEARCH 2016; 104:44-52. [PMID: 27508973 DOI: 10.1016/j.watres.2016.07.065] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
On-line chemical cleaning of membranes with sodium hypochlorite (NaClO) has been commonly employed for maintaining a constant permeability of membrane bioreactor (MBR) due to its simple and efficient operation. However, activated sludge is inevitably exposed to NaClO during this cleaning process. In spite of the broad applications of on-line chemical cleaning in MBR such as chemical cleaning-in-place (CIP) and chemical enhanced backwash (CEB), little information is currently available for the release of emerging dissolved organic matter (DOM) and byproducts from this prevalent practice. Therefore, in this study, activated sludge suspended in a phosphate buffered saline solution was exposed to different doses of NaClO in order to determine the generation of potential DOM and byproducts. The results showed the occurrence of significant DOM release (up to 24.7 mg/L as dissolved organic carbon) after exposure to NaClO for 30 min. The dominant components of the released DOM were characterized to be humic acid-like as well as protein-like substances by using an excitation-emission matrix fluorescence spectrophotometer. Furthermore, after the contact of activated sludge with NaClO, 19 kinds of chlorinated and brominated byproducts were identified by ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, eight of which were confirmed and characterized with standard compounds. Many byproducts were found to be halogenated aromatic compounds, including halopyrroles and halo(hydro)benzoquinones, which had been reported to be significantly more toxic than the halogenated aliphatic ones. Consequently, this study offers new insights into the practice of on-line chemical cleaning, and opens up a window to re-examine the current operation of MBR by looking into the generation of micropollutants.
Collapse
Affiliation(s)
- Weiwei Cai
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Jiaqi Liu
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wun Jern Ng
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore.
| |
Collapse
|
48
|
Du Y, Zhang Y, Chen F, Chang Y, Liu Z. Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: An insight into the fate of allochthonous DOM in alpine lakes affected by climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:216-225. [PMID: 27300561 DOI: 10.1016/j.scitotenv.2016.06.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Due to climate change, tree line advance is occurring in many alpine regions. Within the next 50 to 100years, alpine lake catchments are expected to develop increased vegetation cover similar to that of sub-alpine lake catchments which currently exist below the tree line. Such changes in vegetation could trigger increased allochthonous DOM inputs to alpine lakes. To understand the fate of allochthonous DOM in alpine lakes impacted by climate change, the photochemical reactivity of DOM in sub-alpine Lake Tiancai (located 200m below the tree line) was investigated by excitation emission matrix fluorescence combined with parallel factor analysis (EEM-PARAFAC) and UV-Vis spectra analysis. With photo-exposure, a decrease in apparent DOM molecular weight was observed and 32% DOM was photomineralized to CO2. Interestingly, the aromaticity of DOM increased after photodegradation, as evidenced by increases in both the specific UV absorbance at 254nm (SUVA254) and the humification index (HIX). Five EEM-PARAFAC components were identified, including four terrestrially-derived substances (C1, C2, C3 and C4; allochthonous) and one tryptophan-like substance (C5; autochthonous). Generally, allochthonous DOM represented by C2 and C3 exhibited greater photoreactivity than autochthonous DOM represented by C5. C4 was identified as a possible photoproduct with relatively high aromaticity and photorefractive tendencies and contributed to the observed increase in SUVA254 and HIX. UV light facilitated the photodegradation of DOM and had the greatest effect on the removal of C3. This study provides information on the transformation of EEM-PARAFAC components in a sub-alpine lake, which is important in understanding the fate of increased allochthonous DOM inputs to alpine lakes impacted by climate change.
Collapse
Affiliation(s)
- Yingxun Du
- Nanjing Institute of Geography and Limnology, State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yuanyuan Zhang
- Nanjing Institute of Geography and Limnology, State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Feizhou Chen
- Nanjing Institute of Geography and Limnology, State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuguang Chang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhengwen Liu
- Nanjing Institute of Geography and Limnology, State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
49
|
Xu H, Lv H, Liu X, Wang P, Jiang H. Electrolyte Cations Binding with Extracellular Polymeric Substances Enhanced Microcystis Aggregation: Implication for Microcystis Bloom Formation in Eutrophic Freshwater Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9034-9043. [PMID: 27502019 DOI: 10.1021/acs.est.6b00129] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The hydrodynamic and structural properties of Microcystis extracellular polymeric substances (EPS) in electrolytes with different valences and ionic strengths were investigated via using dynamic light scattering, the fluorescence excitation emission matrix coupled with parallel factor (EEM-PARAFAC) analysis, two-dimensional correlation spectroscopy (2D-COS), and cryogenic transmission electron microscopy (Cryo-TEM). The hydrodynamic diameters of EPS colloids exhibited no variation for monovalent NaCl but a substantial increase for divalent CaCl2 and MgCl2. However, the negative electrophoretic mobilities for all complexes indicated that charge neutralization would not be the main mechanism for EPS aggregation. Application of EEM-PARAFAC and 2D-Fourier transform infrared (FTIR)-COS revealed obvious electrolyte binding potential with both fluorescent phenolic and aromatic compounds and nonfluorescent polysaccharides. The complexation model showed that divalent Ca(2+) and Mg(2+) exhibited a strong binding capability with phenolic -OH, aromatic C═C, and polysaccharide C-O groups, while the monovalent electrolyte exhibited negligible association with these groups. Such a strong complexation can bridge each individual biomolecule together to form EPS aggregates and Microcystis colonies, as supported by in situ Cryo-TEM and light microscope observation, respectively. Given the increased concentration in natural ecosystems, electrolyte cations, especially divalent cations, would play increased roles in Microcystis bloom formation and thus should be considered.
Collapse
Affiliation(s)
- Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , 73 East Beijing Road, Nanjing 210008, China
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University , Nanjing 210098, China
| | - Hua Lv
- College of Materials Science and Engineering, Nanjing Forestry University , Nanjing 210037, China
| | - Xin Liu
- College of Materials Science and Engineering, Nanjing Forestry University , Nanjing 210037, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University , Nanjing 210098, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , 73 East Beijing Road, Nanjing 210008, China
| |
Collapse
|
50
|
Wei D, Ngo HH, Guo W, Xu W, Zhang Y, Du B, Wei Q. Biosorption of effluent organic matter onto magnetic biochar composite: Behavior of fluorescent components and their binding properties. BIORESOURCE TECHNOLOGY 2016; 214:259-265. [PMID: 27140816 DOI: 10.1016/j.biortech.2016.04.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 06/05/2023]
Abstract
Effluent organic matter (EfOM) is of great concern as one of main sources of organic pollutants from biologically treated wastewater, which is harmful to the quality of receiving waters. In present study, magnetic biochar composite (MBC) was successfully prepared, characterizated and applied to EfOM treatment. The interaction between EfOM and MBC was explored by a combination of excitation-emission matrix (EEM), parallel factor analysis (PARAFAC), synchronous fluorescence, two-dimensional correlation spectroscopy (2D-COS), and molecular weight distribution. Result implied that two fluorescence components were derived from EEM-PARAFAC, and their relative fluorescence intensity scores expressed decreased trend. Moreover, fluorescence quenching of EfOM with increased MBC took place sequentially in the following order: protein-like fraction<fulvic-like and humic-like fractions. Molecular weight distribution suggested that MBC had different uptake ability to various size ranges of EfOM. The obtained results could provide a potential application of fluorescence spectroscopy for EfOM treatment assessment.
Collapse
Affiliation(s)
- Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Weiying Xu
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Yongfang Zhang
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|