1
|
Mai X, Tang J, Tang J, Zhu X, Yang Z, Liu X, Zhuang X, Feng G, Tang L. Research progress on the environmental risk assessment and remediation technologies of heavy metal pollution in agricultural soil. J Environ Sci (China) 2025; 149:1-20. [PMID: 39181626 DOI: 10.1016/j.jes.2024.01.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 08/27/2024]
Abstract
Controlling heavy metal pollution in agricultural soil has been a significant challenge. These heavy metals seriously threaten the surrounding ecological environment and human health. The effective assessment and remediation of heavy metals in agricultural soils are crucial. These two aspects support each other, forming a close and complete decision-making chain. Therefore, this review systematically summarizes the distribution characteristics of soil heavy metal pollution, the correlation between soil and crop heavy metal contents, the presence pattern and migration and transformation mode of heavy metals in the soil-crop system. The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined, which provides important guidance for an in-depth understanding of the characteristics of heavy metal pollution in farmland soils and the assessment of the environmental risk. Soil remediation strategies involve multiple physical, chemical, biological and even combined technologies, and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils. Finally, the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected. This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals.
Collapse
Affiliation(s)
- Xurui Mai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Juexuan Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xinyue Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhenhao Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xi Liu
- Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Xiaojie Zhuang
- Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Guang Feng
- Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
2
|
Yang W, Gong W, Zhu L, Ma X, Xu W. Novel catalytic behavior of defective nanozymes with catalase-mimicking characteristics for the degradation of tetracycline. J Colloid Interface Sci 2025; 677:952-966. [PMID: 39178674 DOI: 10.1016/j.jcis.2024.08.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Although nanozymes have shown significant potential in wastewater treatment, enhancing their degradation performance remains challenging. Herein, a novel catalytic behavior was revealed for defective nanozymes with catalase-mimicking characteristics that efficiently degraded tetracycline (TC) in wastewater. Hydroxyl groups adsorbed on defect sites facilitated the in-situ formation of vacancies during catalysis, thereby replenishing active sites. Additionally, electron transfer considerably enhanced the catalytic reaction. Consequently, numerous reactive oxygen species (ROS) were generated through these processes and subsequent radical reactions. The defective nanozymes, with their unique catalytic behavior, proved effective for the catalytic degradation of TC. Experimental results demonstrate that •OH, •O2-, 1O2 and e- were the primary contributors to the degradation process. In real wastewater samples, the normalized degradation rate constant for defective nanozymes reached 26.0 min-1 g-1 L, exceeding those of other catalysts. This study reveals the new catalytic behavior of defective nanozymes and provides an effective advanced oxidation process for the degradation of organic pollutants.
Collapse
Affiliation(s)
- Wenping Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Yıldız Sevgili B. The effect of use of Ni/Fe and mZVI on phenol removal with the heterogenous fenton process and in-situ generation of H 2O 2. ENVIRONMENTAL TECHNOLOGY 2024; 45:5501-5519. [PMID: 39439061 DOI: 10.1080/09593330.2024.2402097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/29/2024] [Indexed: 10/25/2024]
Abstract
To degrade phenol with the heterogeneous Fenton-like process and to compare the results, micro-scale zero-valent iron particles (mZVI) and nickel-coated iron bimetallic particles (Ni/Fe) were used. Oxygen was given to the system and converted to H2O2 and •OH radicals. The changes in the properties of mZVI and Ni/Fe particles after the reaction were determined by scanning electron microscope (SEM), X-ray energy-dispersive spectrometer (EDX), Brunauer-Emmett-Teller (BET), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) before and after the reaction. For phenol removal with an initial phenol concentration of 25 mg/L, initial pH of 3 and air flow rate of 150 L/h, 3 g/L dosage and 360 min reaction time for mZVI, 1.5 g/L dosage and 240 min for Ni/Fe reaction time were sufficient. Under these conditions, 76% and 98% phenol removal and 39% and 47% total organic carbon (TOC) removal were obtained for mZVI and Ni/Fe, while 189 and 85 mg/L H2O2 were produced, respectively. While SO 4 - 2 and PO 4 - 3 caused a slight increase in phenol removal efficiency in the mZVI system, these ionic species and Cl- and NO 3 - caused a decrease in the efficiency in the Ni/Fe system. The possible degradation pathway for phenol was suggested by high performance liquid chromatography (HPLC) analysis and hydroquinone, pyrocatechol, maleic acid, benzoquinone and acetic acid were the main intermediates. According to the cost analysis, when using mZVI to treat 1 m3 25 mg/L phenolic wastewater, the cost was $228.15, which was 1.45 times higher than the cost for Ni/Fe.
Collapse
Affiliation(s)
- Burçin Yıldız Sevgili
- Department of Environmental Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
4
|
Ji J, Mu Y, Ma S, Xu S, Mu X. Remediation on antimony-contaminated soil from mine area using zero-valent-iron doped biochar and their effect on the bioavailability of antimony. CHEMOSPHERE 2024; 363:143015. [PMID: 39103103 DOI: 10.1016/j.chemosphere.2024.143015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Due to the bioavailability and movement of antimony in trophic web, the overexploitation of antimony mine resulted in antimony contamination that harmed the ecology nearby, raising concerns for public health. Whereas, most researches focused on the removal of antimony in the aqueous instead of the immobilization of antimony in the soil. Herein, the immobilized performance of biochar (BC) loaded with nano zero-valent iron (nZVI-BC) on antimony in the soil near the smelting area was researched through pot experiments for the first time, and its stabilization mechanism on antimony was investigated by valent state variation of antimony. The results demonstrated that BC restricted the cation exchange capacity and catalase activity in the soil, while nZVI-BC had a favorable and negative impact on two variables, respectively. The nZVI-BC showed more stable immobilization capacity on antimony over time than BC, whose exchangeable speciation only marginally rose (2%-6%), although the exchangeable speciation of antimony fell both from 15% to 2% after adding the BC and nZVI-BC, The electron attraction force between nZVI-BC and antimony was also intensified owing to the oxidation-reduction process, which was considered as the stabilizing principle of nZVI-BC on antimony in soil. Furthermore, the decreased bioaccumulation factor for the perennial ryegrass (0.46-0.21) and Galinsoga parviflora Cav. (0.26-0.17) stated that the BC effectively mitigated the bioaccumulation risk of antimony.
Collapse
Affiliation(s)
- Jianghao Ji
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yizhen Mu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guizhou, 550025, Guiyang, China
| | - Siyi Ma
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guizhou, 550025, Guiyang, China
| | - Siqin Xu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guizhou, 550025, Guiyang, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Xiaoying Mu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Liu K, Li F, Zhu Z, Fang L. Nanoconfined Fe(II) releaser for long-term arsenic immobilization and its sustainability assessment. WATER RESEARCH 2024; 260:121954. [PMID: 38909421 DOI: 10.1016/j.watres.2024.121954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Ferrous (Fe(II))-based oxygen activation for pollutant abatements in soil and groundwater has attracted great attention, while the low utilization and insufficient longevity of electron donors are the primary challenges to hinder its practical applications. Herein, we propose a nanoconfined Fe(II) releasing strategy that enables stable long-term electron donation for oxygen activation and efficient arsenic (As) immobilization under oxic conditions, by encapsulating zero-valent iron in biomass-derived carbon shell (ZVI@porous carbon composites; ZVI@PC). This strategy effectively enhances the generation of reactive oxygen species, enabling efficient oxidation and subsequent immobilization of As(III) in soils. Importantly, this Fe(II) releaser exhibits strong anti-interference capability against complex soil matrices, and the accompanying generation of Fe(III) enables As immobilization in soils, effectively lowering soil As bioavailability. Soil fixed-bed column experiments demonstrate a 79.5 % reduction of the total As in effluent with a simulated rainfall input for 10 years, indicating the excellent long-term stability for As immobilization in soil. Life cycle assessment results show that this Fe(II) releaser can substantially mitigate the negative environmental impacts. This work offers new insights into developing green and sustainable technologies for environmental remediation.
Collapse
Affiliation(s)
- Kai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhenlong Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
6
|
Hao J, Cui Z, Liang J, Ma J, Ren N, Zhou H, Xing D. Sustainable efficient utilization of magnetic porous biochar for adsorption of orange G and tetracycline: Inherent roles of adsorption and mechanisms. ENVIRONMENTAL RESEARCH 2024; 252:118834. [PMID: 38565414 DOI: 10.1016/j.envres.2024.118834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Iron-doped biochar has been widely used as an adsorbent to remove contaminants due to the high adsorption performance, but it still suffers from complicated preparation methods, unstable iron loading, unsatisfactory specific surface area, and uneven distribution of active sites. Here, a novel magnetic porous biochar (FeCS800) with nanostructure on surface was synthesized by one-pot pyrolysis method of corn straw with K2FeO4, and used in orange G (OG) and tetracycline (TC) adsorption. FeCS800 exhibited outstanding adsorption capacities for OG and TC after K2FeO4 activation and the adsorption data were fitted satisfactorily to Langmuir isotherm and Pseudo-second-order kinetic model. The maximum adsorption capacities of FeCS800 for OG and TC were around 303.03 mg/g and 322.58 mg/g, respectively, at 25 °C and pH 7.0, which were 16.27 and 24.61 times higher than that before modification. Thermodynamic studies showed that the adsorption of OG/TC by FeCS800 were thermodynamically favorable and highly spontaneous. And the adsorption capacity of OG and TC by FeCS800 remained 77% and 81% after 5 cycles, respectively, indicating that FeCS800 had good stability. The outstanding adsorption properties and remarkable reusability of FeCS800 show its great potential to be an economic and environmental adsorbent in contaminants removal.
Collapse
Affiliation(s)
- Jiayin Hao
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiliang Cui
- College of National Defense Engineering, Army Engineering University of PLA, Nanjing, 210007, China
| | - Jiale Liang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huihui Zhou
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Defeng Xing
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
7
|
Zhang Y, Zhang L, Pan X, Cheng Y, Liu L, Wang H, Han L, Lin Z. Rapid and selective removal of trace As(III) from water using FeMn binary oxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167876. [PMID: 37852493 DOI: 10.1016/j.scitotenv.2023.167876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
The rapid removal of trace arsenic is crucial for ensuring the safety of drinking water. However, achieving the rapid removal of trace arsenic poses a significant challenge. In this study, we aim to enhance the removal efficiency of trace arsenic by increasing the specific surface area of the adsorbent material while maintaining its micrometer size. The material design allowed for the rapid removal of trace amounts of As(III) in groundwater within 10 s, resulting in a concentration as low as 0.281 μg L-1, which meets the WHO drinking water standard (<10 μg L-1). Our experimental results demonstrated that the FeMn binary oxide could partially oxidize As(III) into As(V), achieving a removal efficiency exceeding 99 %. Furthermore, we investigated the influence of common cations and anions, such as K+, Mg2+, Ca2+, Cl-, NO3-, SO42-, and PO43-, which may be present in natural water, on As(III) removal. Our findings indicated that the FeMn binary oxide exhibited remarkably high separation factors (ranging from 10 to 103) for other coexisting ions, indicating its exceptional selectivity for As(III) even in the presence of other ions. The outstanding arsenic uptake capability and selectivity of the FeMn binary oxide make it a highly promising adsorbent for the efficient removal of trace As(III) from aqueous solutions.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiaohong Pan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Cheng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Liangwei Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Han Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
8
|
Li Z, Niu R, Yu J, Yu L, Cao D. Removal of cadmium from aqueous solution by magnetic biochar: adsorption characteristics and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6543-6557. [PMID: 38153572 DOI: 10.1007/s11356-023-31664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Experiments were conducted to investigate the potential of the efficient resource utilization of waste cow manure and corn straw in an agricultural ecosystem. In this study, a magnetic cow manure and straw biochar were synthesized by a co-precipitation method, and cadmium (Cd(II)) was removed by adsorption in aqueous solution. Several physicochemical characterization techniques were applied, including SEM, BET, Zeta, FTIR, Raman, XPS, and VSM. The effects of pH value, magnetic biochar content, adsorption kinetics, and isothermal adsorption on the adsorption of Cd(II) were investigated. The physicochemical characterizations revealed that the physical and chemical properties of the magnetic biochar were substantially changed compared to the unmodified biochar. The results showed that the surface of the biochar became rough, the number of oxygen (O)-containing functional groups increased, and the specific surface area increased. The results of the adsorption experiments showed that the adsorption capacity was affected by pH, magnetic biochar addition, Cd(II) concentration, and adsorption time. The adsorption kinetics and isothermal adsorption experiments showed that the Cd(II) adsorption processes of the cow manure and corn straw magnetic biochars were consistent with the Freundlich model and pseudo-second-order kinetic model. The results also showed that the Cd(II) adsorption effect of cow manure magnetic biochar was found to be more effective than that of corn straw magnetic biochar. The optimal conditions for Cd(II) adsorption were 800 ℃ for cow manure magnetic biochar, with a pH value of 5 and 0.14 g biochar addition, and 600 ℃ for straw magnetic biochar with a pH value of 8 and 0.12 g biochar addition. In conclusion, the cow manure magnetic biochar was an effective adsorbent for the absorption of Cd(II) in wastewater.
Collapse
Affiliation(s)
- Zhiwen Li
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Ruiyan Niu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jiaheng Yu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Liyun Yu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Di Cao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
9
|
Wang X, Jiang M, Lynch I, Guo Z, Zhang P, Wu L, Ma J. Construction of urchin-like core-shell Fe/Fe 2O 3@UiO-66 hybrid for effective tetracycline reduction and photocatalytic oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122280. [PMID: 37573962 DOI: 10.1016/j.envpol.2023.122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/15/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Although Fe/Fe2O3 has potential application compared with nanoscale zero-valent iron (nZVI), its smooth structure largely limits the catalytic performance. To address this challenge, we innovatively constructed highly efficient composite Fe/Fe2O3@UiO-66 via employing an urchin-like core-shell structure of Fe/Fe2O3 onto UiO-66 through a facile ion exchange precipitation method without inert gas protection. The characterization results show the urchin-like core-shell configuration can extend the life span of Fe0 and produce more active sites. Besides, the absorption spectrum is broadened by Fe2O3 which has narrow band gap and the high-efficiency separation of photogenerated electron-hole pairs is obtained with the load of Fe/Fe2O3. Moreover, Two-parameter pseudo-first-order decay model fits well with the reduction and adsorption of composites in the dark reaction, and a plausible pathway for tetracycline (TC) degradation is also proposed. The findings of this research provide a promising method for promoting the catalytic properties of MOF-based materials and Fe/Fe2O3.
Collapse
Affiliation(s)
- Xiangyu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Min Jiang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lisi Wu
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
10
|
Cai H, Du X, Lin Z, Tao X, Zou M, Liu J, Zhang L, Dang Z, Lu G. Enhanced arsenic(III) sequestration via sulfidated zero-valent iron in aerobic conditions: Adsorption and oxidation coupling processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132190. [PMID: 37536156 DOI: 10.1016/j.jhazmat.2023.132190] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Sulfidated zero-valent iron (S-ZVI) has shown significant potential for the removal of arsenic(III). However, little attention has been paid to the mechanism of As(III) sequestration enhancement and how the phase transformation for S-ZVI strengthens this process in aerobic conditions. In this work, sulfidated ZVI was created by ball-milling (S-ZVIbm) and liquid-mixing (S-ZVIlm) of ZVI with elemental sulfur(S0) to investigate the performance and mechanisms of As(III) sequestration in air-saturated water. Sulfidation was found to significantly enhance the As(III) removal rate constant, which was 2.8 ∼ 6.7 times (S-ZVIbm) and 3.1 ∼ 17.1 times (S-ZVIlm) higher than that without sulfidation. FeS was identified as the predominant sulfur species in the S-ZVI samples using S K-edge XANES spectra. The enhanced electron transfer and ZVI corrosion after sulfidation were verified via electrochemical tests. XANES and Mössbauer spectra suggested that lepidocrocite(γ-FeOOH) was the predominant corrosion product generated on the ZVI surface with the presence of oxygen, and DFT calculations further confirmed the improved performance of γ-FeOOH for As(III) sequestration. Besides, As(III) oxidation occurred dominantly on the heterogeneous surface rather than in solution, and the As(III) sequestration pathway of adsorption followed by oxidation was proposed. This study provides new insight into the enhanced As(III) sequestration by S-ZVI in aerobic conditions.
Collapse
Affiliation(s)
- Haiming Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ziting Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Jingyong Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
11
|
Gao Y, Xue Y, Zhen K, Guo J, Tang X, Zhang P, Wang C, Sun H, Wu J. Remediation of soil contaminated with PAHs and γ-HCH using Fenton oxidation activated by carboxymethyl cellulose-modified iron oxide-biochar. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131450. [PMID: 37088021 DOI: 10.1016/j.jhazmat.2023.131450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The remediation of soil contaminated with hydrophobic organic pollutants has attracted great public concern. In the present study, a novel catalyst using biochar supported ferro ferric oxide modified by carboxymethyl cellulose (CMC-Fe3O4/BC) was developed to activate the Fenton reaction for hazardous hydrophobic organic pollutants, and the degradation mechanisms were analyzed in terms of free radicals, electron transfer pathways and degradation intermediates. The results showed that the CMC-Fe3O4/BC-activated H2O2 system degraded nearly 100% of pyrene in the aqueous system after a 1440-min reaction. The catalyst was also applied to remediate industrial field soil contaminated with PAHs and γ-HCH. The removal rate of the total pollutants reached 61.1% after a 10-day reaction, which was higher than that of Fe3O4/BC without modification. CMC enabled the Fe3O4 particles to more equably distribute on the BC surface, further effectively activating H2O2 to generate more ⋅OH and forming different degradation products compared to the Fe3O4/BC. Additionally, the CMC-Fe3O4/BC-activated H2O2 system obviously enhanced electron transfer on the BC surface. Thus, the PAHs and γ-HCH could be degraded via electron transfer pathways.
Collapse
Affiliation(s)
- Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yanan Xue
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Kai Zhen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiacheng Guo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Peng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jizhou Wu
- National Testing & Certification International Group Jingcheng Testing Co., Ltd., Guangzhou 511400, China
| |
Collapse
|
12
|
Zhou Y, Yao B, Yuan Y, Hu W, Liu J, Zou H, Zhou Y. Enhancement of Fenton processes at initial circumneutral pH for the degradation of norfloxacin with Fe@FeS core-shell nanowires. ENVIRONMENTAL TECHNOLOGY 2023; 44:2451-2461. [PMID: 35084294 DOI: 10.1080/09593330.2022.2033329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/15/2022] [Indexed: 06/08/2023]
Abstract
The disadvantages of narrow working pH range (2.5-4.0), accumulation of iron sludge and incomplete degradation have hindered the practical application of the traditional homogeneous Fenton technique. In this research, Fe@FeS core-shell nanowires were synthesised and the innovative Fe@FeS/Fe2+/H2O2 system was adopted for norfloxacin (NOR) degradation at an initial circumneutral pH. More than 95% NOR has been removed in the Fe@FeS/Fe2+/H2O2 system within 30 min at pH 7. After investigating the concentration change of total iron, Fe2+ and H2O2 during the degradation process, NOR degradation in the Fe@FeS/Fe2+/H2O2 system might be attributed to the combined effect of homogeneous Fenton reaction and heterogeneous Fenton process. Besides that, the added Fe@FeS has accelerated Fe3+/Fe2+ redox cycle with extremely high degree. The generated reactive ●OH has been identified by electron paramagnetic resonance spectrometer results, possible degradation intermediates have also been proposed according to Gas chromatography-mass spectrometry analysis results. Moreover, Fe@FeS core-shell nanowires showed excellent reusability, it is a promising heterogeneous Fenton catalyst that is applicable for practical application.
Collapse
Affiliation(s)
- Yuzhou Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Yawen Yuan
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Wenyong Hu
- College of Biological Resources and Environmental Science, Jishou University, Jishou, People's Republic of China
| | - Jingyi Liu
- College of Biological Resources and Environmental Science, Jishou University, Jishou, People's Republic of China
| | - Huanwei Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| |
Collapse
|
13
|
Som I, Roy M, Saha R. Polyethylene glycol-modified mesoporous zerovalent iron nanoparticle as potential catalyst for improved reductive degradation of Congo red from wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023:1-24. [PMID: 37243365 DOI: 10.1080/10934529.2023.2215679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/23/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
In this study, bare zero-valent iron nanoparticles (nZVI) have been modified using polyethylene glycol (PEG) of various molecular weight in a facile technique. The synthesized nZVI modified with PEG, M.W. of 600 and 6000 was denoted by nZVI-PEG600 and nZVI-PEG6000, respectively, and compared their catalytic activity towards the reductive degradation of Congo red (CR) using NaBH4.The existence of PEG layer surrounds the nZVI core was confirmed by several characterization tools, such as XRD, FTIR, FESEM and TEM. Herein, both nZVI-PEG600 and nZVI-PEG6000 exhibited remarkable removal efficiencies of 89.6% and 99.2% within 14 min of reaction time. The optimum reaction parameters were found to be as follows: 0.2 g L-1 catalyst dose and initial dye concentration of 2 × 10-5 molL-1 etc. Kinetic studies of dye degradation were investigated which follow pseudo-1st-order kinetics. The TOC analysis confirmed the complete mineralization of CR dye by nZVI-PEG6000 nanocatalyst. GCMS analysis of plausible degraded products was performed to elucidate a probable mechanistic pathway of CR degradation. Further, we have investigated the degradation of two anionic dyes mixture, i.e., CR and methyl orange (MO) using best catalyst, i.e., nZVI-PEG6000.
Collapse
Affiliation(s)
- Ipsita Som
- Department of Chemistry, National Institute of Technology, Durgapur, India
| | - Mouni Roy
- Department of Chemistry, Banasthali University, Banasthali, Rajasthan, India
| | - Rajnarayan Saha
- Department of Chemistry, National Institute of Technology, Durgapur, India
| |
Collapse
|
14
|
Zhou X, Lai C, Almatrafi E, Liu S, Yan H, Qian S, Li H, Qin L, Yi H, Fu Y, Li L, Zhang M, Xu F, Zeng Z, Zeng G. Unveiling the roles of dissolved organic matters derived from different biochar in biochar/persulfate system: Mechanism and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161062. [PMID: 36565867 DOI: 10.1016/j.scitotenv.2022.161062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Biochar has been frequently used as a persulfate (PS) activator due to its attractive properties, but dissolved organic matter (DOM) derived from the non‑carbonized part of biochar has received less attention, not to mention its specific role and impact in biochar/PS systems. In this study, wheat straw, municipal sludge, and swine bone were selected as the representative feed stocks of biochar. Subsequently, these three types of biochar were adopted to explore the roles of DOM in biochar/PS systems. Although the composition and amount of DOM derived from different biochar were discrepant, they exhibited similar effect in biochar/PS systems. To be specific, the pore-clogging effect of DOM on biochar suppressed the adsorption capacity and catalytic performance of the three biochar. Furthermore, the removal of DOM decreased the environmental risk of these biochar/PS systems and enhanced the stability of the involved biochar. With respect to the variation in degradation mechanism, the removal of DOM increased the proportion of electron transfer pathway in unison, but the diminution in the roles of O2•¯ and 1O2 was more remarkable in bone-derived-biochar/PS systems. Additionally, the toxicity test illustrated that the leakage and accumulation of DOM were toxic to Chlorella sp., and the DOM from sludge-derived-biochar presented the highest toxicity. Overall, this study analyzes the roles of DOM derived from different biochar in biochar/PS systems and evaluates their environmental risk, which contributes to a comprehensive understanding of the fate of DOM derived from biochar.
Collapse
Affiliation(s)
- Xuerong Zhou
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Cui Lai
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shiyu Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shixian Qian
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hanxi Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ling Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Guangming Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
15
|
Xu L, Shu Z, Song J, Li T, Zhou J. Waste bamboo framework decorated with α-FeOOH nanoneedles for effective arsenic (V/III) removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160951. [PMID: 36528951 DOI: 10.1016/j.scitotenv.2022.160951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Arsenic pollution of water is one of the severest environmental challenges for human health, and adsorption is the most often used technique in investigations of selective As removal. However, the development of low-cost and easily recoverable adsorbent for aqueous arsenic adsorption remains a challenge. In this work, the α-FeOOH-decorated monolith bamboo composites (α-FeOOH/MB) were fabricated via directly decorating α-FeOOH nanoneedles on the waste bamboo framework without pre‑carbonization. As expected, the as-prepared α-FeOOH/MB exhibits considerably increased adsorption capacity for aqueous arsenic over pure α-FeOOH nanoneedles, with increases of 1.88 and 1.52 times for As(V) and As(III), respectively. Meanwhile, the α-FeOOH/MB composites exhibit positive reusability (recovering 89.73 % and 80.17 % adsorption capacity for As(V) and As(III) after 5 cycles) and are easy to separate after water treatment. Furthermore, the α-FeOOH/MB composites exhibit high arsenic adsorption selectivity even in the presence of competing anions. Overall, the as-obtained α-FeOOH/MB composites, reuse of waste bamboo, are a kind of favorable candidate for arsenic decontamination in practical application owing to the high adsorption capacity, low-cost and facile separation features.
Collapse
Affiliation(s)
- Lina Xu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
| | - Zhu Shu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China; Hubei Three Gorges Laboratory, 1 Mazongling Road, Yichang 443007, China
| | - Jingyang Song
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
| | - Tiantian Li
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Jun Zhou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China; Hubei Three Gorges Laboratory, 1 Mazongling Road, Yichang 443007, China.
| |
Collapse
|
16
|
Yu J, Zhang X, Zhao X, Ma R, Du Y, Zuo S, Dong K, Wang R, Zhang Y, Gu Y, Sun J. Heterogeneous Fenton oxidation of 2,4-dichlorophenol catalyzed by PEGylated nanoscale zero-valent iron supported by biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41333-41347. [PMID: 36630031 DOI: 10.1007/s11356-023-25182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The excessive use of herbicides and fungicides containing 2,4-dichlorophenol (2,4-DCP) has led to serious environmental water pollution; 2,4-DCP is chemically stable and difficult to be degraded effectively by biological and physical methods. And the degradation of 2,4-DCP using advanced oxidation techniques has been a hot topic. Biochar, polyethylene glycol, ferrous sulfate, and sodium borohydride were used to synthesize the heterogeneous catalyst PEGylated nanoscale zero-valent iron supported by biochar (PEG-nZVI@BC). The catalyst was characterized using scanning electron microscope (SEM) and other means to determine its physicochemical properties. Catalytic performance and mechanism of this catalyst with hydrogen peroxide for the oxidation of 2,4-DCP were investigated. The results showed that PEG-nZVI@BC had good dispersibility, stability, and inoxidizability; the degradation efficiency of 50 mg/L 2,4-DCP by PEG-nZVI@BC/H2O2 system 92.94%, 1.68 times higher than that of nZVI/H2O2 system; there are both free radical and non-free radical pathways in PEG-nZVI@BC/H2O2 system; the degradation process of 2,4-DCP includes hydroxylation, dechlorination, and ring-opening. Overall, PEG-nZVI@BC is a promising heterogeneous catalyst for the degradation of 2,4-DCP.
Collapse
Affiliation(s)
- Junlong Yu
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Xiuxia Zhang
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Xiaodong Zhao
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Ruojun Ma
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yi Du
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Shuai Zuo
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Kangning Dong
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Ruirui Wang
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yupeng Zhang
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yingying Gu
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Juan Sun
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| |
Collapse
|
17
|
Ren X, Feng H, Zhao M, Zhou X, Zhu X, Ouyang X, Tang J, Li C, Wang J, Tang W, Tang L. Recent Advances in Thallium Removal from Water Environment by Metal Oxide Material. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3829. [PMID: 36900837 PMCID: PMC10001460 DOI: 10.3390/ijerph20053829] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Thallium is widely used in industrial and agricultural development. However, there is still a lack of systematic understanding of its environmental hazards and related treatment methods or technologies. Here, we critically assess the environmental behavior of thallium in aqueous systems. In addition, we first discuss the benefits and limitations of the synthetic methods of metal oxide materials that may affect the practicality and scalability of TI removal from water. We then assess the feasibility of different metal oxide materials for TI removal from water by estimating the material properties and contaminant removal mechanisms of four metal oxides (Mn, Fe, Al, and Ti). Next, we discuss the environmental factors that may inhibit the practicality and scalability of Tl removal from water. We conclude by highlighting the materials and processes that could serve as more sustainable alternatives to TI removal with further research and development.
Collapse
Affiliation(s)
- Xiaoyi Ren
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Xu Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Xilian Ouyang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Changwu Li
- Aerospace Kaitian Environmental Technology Co., Ltd., Changsha 410100, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
18
|
Xiang Y, Zhou Y, Yao B, Sun Y, Khan E, Li W, Zeng G, Yang J, Zhou Y. Vinasse-based biochar magnetic composites: adsorptive removal of tetracycline in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8916-8927. [PMID: 35146603 DOI: 10.1007/s11356-022-19012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Highly efficient and cost-effective adsorbents for antibiotic removal are the key to mitigate pollution by industrial wastewaters. Pyrolyzing low-cost winemaking waste into biochar is a promising means for waste biomass utilization. This study assembled vinasse-derived biochar with manganese ferrite into vinasse-manganese ferrite biochar-magnetic composites (V-MFB-MCs) through simultaneous pyrolysis of waste biomass and metal (Mn and Fe) hydroxide precipitates. Batch experiments were conducted to evaluate the kinetics and isotherms of tetracycline (TC) adsorption as well as the influence of pH value, humic acid, and ionic strength. Morphological characterization showed that crystalline MnFe2O4 nanoparticles were impregnated within the framework of fabricated V-MFB-MCs. Superior TC adsorption capacity and fast pseudo-second-order kinetics could be achieved by the V-MFB-MCs-800 at pH 3.0. The TC adsorption onto V-MFB-MCs-800 was highly pH-dependent and controlled by the positive influence of ionic strength and humic acid. V-MFB-MCs-800 showed excellent adsorption performance in different natural water. Multiple interaction mechanisms including pore filling effect, π-π stacking interaction, and hydrogen bonding contribute to TC removal by V-MFB-MCs-800, which can be an innovative biowaste-derived material for industrial wastewater treatment.
Collapse
Affiliation(s)
- Yujia Xiang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yuzhou Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, USA
| | - Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi, 562400, China
| | - Guihua Zeng
- Hunan Research Academy of Environmental Sciences, Changsha, 410002, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
19
|
Shao Y, Tian C, Yang Y, Shao Y, Zhang T, Shi X, Zhang W, Zhu Y. Carbothermal Synthesis of Sludge Biochar Supported Nanoscale Zero-Valent Iron for the Removal of Cd 2+ and Cu 2+: Preparation, Performance, and Safety Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16041. [PMID: 36498112 PMCID: PMC9740856 DOI: 10.3390/ijerph192316041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The practical application of nanoscale zero-valent iron (NZVI) is restricted by its easy oxidation and aggregation. Here, sludge biochar (SB) was used as a carrier to stabilize NZVI for Cd2+ and Cu2+ removal. SB supported NZVI (SB-NZVI) was synthesized using the carbothermic method. The superior preparation conditions, structural characteristics, and performance and mechanisms of the SB-NZVI composites for the removal of Cd2+ and Cu2+ were investigated via batch experiments and characterization analysis. The optimal removal capacities of 55.94 mg/g for Cd2+ and 97.68 mg/g for Cu2+ were achieved at a Fe/sludge mass ratio of 1:4 and pyrolysis temperature of 900 °C. Batch experiments showed that the SB-NZVI (1:4-900) composite had an excellent elimination capacity over a broad pH range, and that weakly acidic to neutral solutions were optimal for removal. The XPS results indicated that the Cd2+ removal was mainly dependent on the adsorption and precipitation/coprecipitation, while reduction and adsorption were the mechanisms that play a decisive role in Cu2+ removal. The presence of Cd2+ had an opposite effect on the Cu2+ removal. Moreover, the SB-NZVI composites made of municipal sludge greatly reduces the leaching toxicity and bio-availability of heavy metals in the municipal sludge, which can be identified as an environmentally-friendly material.
Collapse
Affiliation(s)
- Yingying Shao
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Shandong Shanke Institute of Ecological Environment Co., Ltd., Jinan 250000, China
| | - Chao Tian
- Shandong Shanke Institute of Ecological Environment Co., Ltd., Jinan 250000, China
| | - Yanfeng Yang
- Shandong Shanke Institute of Ecological Environment Co., Ltd., Jinan 250000, China
| | - Yanqiu Shao
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Tao Zhang
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xinhua Shi
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Weiyi Zhang
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Ying Zhu
- Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
20
|
Wang Q, Li JS, Poon CS. An iron-biochar composite from co-pyrolysis of incinerated sewage sludge ash and peanut shell for arsenic removal: Role of silica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120115. [PMID: 36122654 DOI: 10.1016/j.envpol.2022.120115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Modification of biochar by low-cost iron sources has gained increasing attention to improve pollutants removal performance and reduce production costs compared to conventional chemical modifications. While such iron sources generally have complex compositions, their effects on properties of the iron-biochar composite are not well investigated. This study produced an iron-biochar (RBC) composite from co-pyrolysis of incinerated sewage sludge ash (ISSA) and peanut shell, and examined the role of silica with widespread existence in ISSA and other low-cost iron sources on properties of the iron-biochar composite relevant to As(III)/As(V) removal. Silica was found to react with iron during the pyrolysis process at 850 °C and formed iron silicon at the expense of producing zero valent iron and Fe3O4 which resulted in a poorer removal efficacy for As(III) and As(V) compared to the iron-biochar (FBC) made from pure Fe2O3 and peanut shell. Moreover, a high leaching of reactive silica from RBC was observed which affected the formation of corrosion products of ZVI and competed with arsenic for active adsorption sites. Despite this, RBC still exhibited a maximum adsorption capacity of 17.44 and 57.56 mg/g towards As(III) and As(V) respectively at pH 3.0. Overall, this study provides an interesting insight into upcycling ISSA into useful media for sorptive removal of arsenic from aqueous solutions.
Collapse
Affiliation(s)
- Qiming Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong; Research Centre for Resources Engineering Towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jiang-Shan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Hung Hom, Kowloon, Hong Kong; Research Centre for Resources Engineering Towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
21
|
Li H, Gong K, Jin X, Owens G, Chen Z. Mechanism for the simultaneous removal of Sb(III) and Sb(V) from mining wastewater by phytosynthesized iron nanoparticles. CHEMOSPHERE 2022; 307:135778. [PMID: 35863409 DOI: 10.1016/j.chemosphere.2022.135778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/19/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Since antimony (Sb) is a toxic metalloid cost-effective method for the simultaneous removal of the two major Sb species from mining wastewater has attracted much attention. In this study, phytosynthesized iron nanoparticles (nFe) prepared using a eucalyptus leaf extract were successfully used to simultaneously remove Sb(III) and Sb(V) via an adsorption and oxidation mechanism with removal efficiencies of 100 and 97.7% for Sb(III) and Sb(V), respectively. Advanced analysis using X-ray photoelectron spectroscopy (XPS), ion chromatography-atomic fluorescence spectroscopy (IC-AFS), and electrochemical analysis confirmed that Sb(III) was oxidized to Sb(V) by Fe(III) on the nFe surface while Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) indicated that both Sb(III) and Sb(V) were adsorbed onto nFe. Adsorption of both Sb(III) and Sb(V) best fit the Langmuir adsorption model with R2 of 0.999 and 0.989, respectively and both followed pseudo-second-order kinetics with R2 of 0.999 and 0.981, respectively. Furthermore, the adsorption rate of Sb(III) was faster than that of Sb(V) due to inner-sphere complex formation, and the Fe-O bonds in the asymmetric tetrahedron structure of Sb(III) were easier to break due to a lower energy barrier (0.863 eV). Consequently, a simultaneous removal mechanism of Sb(III) and Sb(V) was proposed. Finally, nFe was used practically to remove Sb in mining wastewater with a removal efficiency of 93.5%, demonstrating that nFe have significant potential to remove Sb in contaminated mining wastewaters.
Collapse
Affiliation(s)
- Heng Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Kaisheng Gong
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
22
|
Huang X, Niu X, Zhang D, Li X, Li H, Wang Z, Lin Z, Fu M. Fate and mechanistic insights into nanoscale zerovalent iron (nZVI) activation of sludge derived biochar reacted with Cr(VI). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115771. [PMID: 35982569 DOI: 10.1016/j.jenvman.2022.115771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
While nanoscale zero-valent iron modified biochar (nZVI-BC) have been widely investigated for the removal of heavy metals, the corrosion products of nZVI and their interaction with heavy metals have not been revealed yet. In this paper, nZVI-BC was synthesized and applied for the removal of Cr(VI). Batch experiments indicated that the adsorption of Cr(VI) fit Langmuir isotherm, with the maximum removal capacity at 172.4 mg/g at pH 2.0. SEM-EDS, BET, XRD, FT-IR, Raman and XPS investigation suggested that reduction of Cr(VI) to Cr(III) was the major removal mechanism. pH played an important role on the corrosion of nZVI-BC, at pH 4.5 and 2.0, FeOOH and Fe3O4 were detected as the major iron oxide, respectively. Therefore, FeOOH-BC and Fe3O4-BC were further prepared and their interaction with Cr were studied. Combining with DFT calculations, it revealed that Fe3O4 has higher adsorption capacity and was responsible for the effective removal of Cr(VI) through electrostatic attraction and reduction under acidic conditions. However, Fe3O4 will continue to convert to the more stable FeOOH, which is the key to for the subsequent stabilization of the reduced Cr(III). The results showed that the oxide corrosion products of nZVI-BC were subjected to the environment, which will eventually affect the fate and transport of the adsorbed heavy metal.
Collapse
Affiliation(s)
- Xuyin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| | - Xiaoqin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Haoshen Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Ziyuan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhang Lin
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
23
|
Yin L, Li W, Lin S, Owens G, Chen Z. Simultaneous removal of arsenite and arsenate from mining wastewater using ZIF-8 embedded with iron nanoparticles. CHEMOSPHERE 2022; 304:135269. [PMID: 35691398 DOI: 10.1016/j.chemosphere.2022.135269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Arsenic contamination is an increasing global environmental problem, especially in mining industry wastewater where both arsenite (As(III)) and arsenate (As(V)) have been routinely detected. In this paper, a novel porous metal-organic framework material (ZIF-8) was composited with iron nanoparticles (FeNPs) to form a functional material (ZIF-8@FeNPs) for the simultaneous removal of As(III)/(V) from wastewater. The material effectively removed both As(III) and As(V) with removal efficiencies of 99.9 and 71.2%, respectively. Advanced characterization techniques including X-ray photoelectron spectroscopy (XPS) and Fourier infrared (FTIR) indicated that removal of As(III) and As(V) involved complex formation. Adsorption kinetics followed a pseudo-second order kinetics indicating adsorption involved chemisorption. After four cycles of reuse the he removal rate of As species was still relatively high at > 60% When ZIF-8@FeNPs were used to remove As from real wastewater from acid mines the removal efficiency was 94.27%. Finally, a As(III) and As(V) removal mechanism was proposed.
Collapse
Affiliation(s)
- Longwei Yin
- School of Chemistry& Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Wenpeng Li
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Shen Lin
- School of Chemistry& Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
24
|
Nguyen KT, Navidpour AH, Ahmed MB, Mojiri A, Huang Y, Zhou JL. Adsorption and desorption behavior of arsenite and arsenate at river sediment-water interface. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115497. [PMID: 35751289 DOI: 10.1016/j.jenvman.2022.115497] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/05/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The adsorption of inorganic arsenic (As) plays an important role in the mobility and transport of As in the river environment. In this work, the adsorption and desorption of arsenite [As(III)] and arsenate [As(V)] on river sediment were conducted under different pH, initial As concentrations, river water and sediment composition to assess As adsorption behavior and mechanism. Both adsorption kinetics and equilibrium results showed higher adsorption capacity of sediment for As(V) than As(III). Adsorption of As(III) and As(V) on river sediment was favored in acidic to neutral conditions and on finer sediment particles, while sediment organic matter marginally reduced adsorption capacity. In addition, higher adsorption affinity of As(III) and As(V) in river sediment was observed in deionised water than in river water. For the release process, the desorption of both As(III) and As(V) followed nonlinear kinetic models well, showing higher amount of As(III) release from sediment than As(V). Adsorption isotherm was well described by both Langmuir and Freundlich models, demonstrating higher maximum adsorption capacity of As(V) at 298.7 mg/kg than As(III) at 263.3 mg/kg in deionised water, and higher maximum adsorption capacity of As(III) of 234.3 mg/kg than As(V) of 206.2 mg/kg in river water. The XRD showed the changes in the peaks of mineral groups of sediment whilst FTIR results revealed the changes related to surface functional groups before and after adsorption, indicating that Fe-O/Fe-OH, Si(Al)-O, hydroxyl and carboxyl functional groups were predominantly involved in As(III) and As(V) adsorption on sediment surface. XPS analysis evidenced the transformation between these As species in river sediment after adsorption, whilst SEM-EDS revealed higher amount of As(V) in river sediment than As(III) due to the lower signal of Al.
Collapse
Affiliation(s)
- Kien Thanh Nguyen
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Amir Hossein Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Mohammad Boshir Ahmed
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Yuhan Huang
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia.
| |
Collapse
|
25
|
Wang Y, Guo C, Zhang L, Lu X, Liu Y, Li X, Wang Y, Wang S. Arsenic Oxidation and Removal from Water via Core-Shell MnO 2@La(OH) 3 Nanocomposite Adsorption. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10649. [PMID: 36078364 PMCID: PMC9518204 DOI: 10.3390/ijerph191710649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As(III)), more toxic and with less affinity than arsenate (As(V)), is hard to remove from the aqueous phase due to the lack of efficient adsorbents. In this study, a core-shell structured MnO2@La(OH)3 nanocomposite was synthesized via a facile two-step precipitation method. Its removal performance and mechanisms for As(V) and As(III) were investigated through batch adsorption experiments and a series of analysis methods including the transformation kinetics of arsenic species in As(III) removal, FTIR, XRD and XPS. Solution pH could significantly influence the removal efficiencies of arsenic. The adsorption process of As(V) occurred rapidly in the first 5 h and then gradually decreased, whereas the As(III) removal rate was relatively slower. The maximum adsorption capacities of As(V) and As(III) were up to 138.9 and 139.9 mg/g at pH 4.0, respectively. For As(V) removal, the inner-sphere complexes of lanthanum arsenate were formed through the ligand exchange reactions and coprecipitation. The oxidation of As(III) to the less toxic As(V) by δ-MnO2 and subsequently the synergistic adsorption process by the lanthanum hydroxide on the MnO2@La(OH)3 nanocomposite to form lanthanum arsenate were the dominant mechanisms of As(III) removal. XPS analysis indicated that approximately 20.6% of Mn in the nanocomposite after As(III) removal were Mn(II). Furthermore, a small amount of Mn(II) and La(III) were released into solution during the process of As(III) removal. These results confirm its efficient performance in the arsenic-containing water treatment, such as As(III)-contaminated groundwater used for irrigation and As(V)-contaminated industrial wastewater.
Collapse
Affiliation(s)
- Yulong Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Chen Guo
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Lin Zhang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Xihao Lu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yanhong Liu
- College of Software, Henan University, Kaifeng 475004, China
| | - Xuhui Li
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
26
|
Song Y, Huang P, Li H, Li R, Zhan W, Du Y, Ma M, Lan J, Zhang TC, Du D. Uptake of arsenic(V) using iron and magnesium functionalized highly ordered mesoporous MCM-41 (Fe/Mg-MCM-41) as an effective adsorbent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:154858. [PMID: 35351504 DOI: 10.1016/j.scitotenv.2022.154858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/03/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Mesoporous silica (MCM-41) is widely used as a supporting material due to its large specific surface area and good stability, but it cannot remove heavy metals due to the lack of adsorption active sites. In this study, the MCM-41 (a mesoporous SiO2 material) decorated with iron and magnesium oxide (Fe/Mg-MCM-41) was found to be an excellent adsorbent to remove arsenic(V) from water. FTIR, BET, TEM-EDS, XRD, XPS, etc. were applied for characterization analysis. Adsorption isotherms were fitted well by the Langmuir model and the experimental maximum adsorption capacity of Fe/Mg4-MCM-41 (magnesium accounts for 4%) was 71.53 mg/g at pH = 3. Thermodynamics analysis suggested exothermic nature of adsorption behavior. Kinetic process was well described by the pseudo-second-order model and adsorption rate was controlled by intraparticle diffusion and film diffusion. Moreover, the adsorption behavior of As(V) onto Fe/Mg4-MCM-41 was investigated under different reaction conditions, such as pH, temperature, Mg-doping and competing ions. The results showed that loading a certain amount of magnesium can significantly improve arsenic removal efficiency. Additionally, Fe/Mg4-MCM-41 exhibits high arsenic(V) removal in the wide pH range of 3-10. The Fe/Mg4-MCM-41 can be regenerated and used after four consecutive cycles. The high arsenic(V) sorption capacity, wide range of pH applications, ability to regenerate, and reusability of Fe/Mg4-MCM-41 confirmed that this adsorbent is promising for treating As-contaminated wastewater.
Collapse
Affiliation(s)
- Yanqing Song
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China
| | - Ping Huang
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China
| | - Hong Li
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China
| | - Ruiyue Li
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China
| | - Wei Zhan
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China.
| | - Yaguang Du
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China
| | - Mengyu Ma
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China
| | - Jirong Lan
- School of Resource and Environmental Science, Wuhan University, PR China
| | - Tian C Zhang
- Civil and Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Dongyun Du
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan 430074, China; Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan 430074, China
| |
Collapse
|
27
|
Ni T, Feng H, Tang J, Wang J, Yu J, Yi Y, Wu Y, Guo Y, Tang L. A novel electrocatalytic system with high reactive chlorine species utilization capacity to degrade tetracycline in marine aquaculture wastewater. CHEMOSPHERE 2022; 300:134449. [PMID: 35364089 DOI: 10.1016/j.chemosphere.2022.134449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The problems of high salinity and coexistence of antibiotics in mariculture wastewater pose a great challenge to the traditional wastewater treatment technology. Herein, an electrocatalytic system based on cathodes to sustain reactive chlorine species (RCS) in a high chlorine environment was proposed. The results show that the content of RCS is affected by cathodes. The electrocatalytic system with FeNi/NF as cathode has the largest RCS retention capacity when compared with other cathode systems (carbon felt, nickel foam, copper foam, stainless steel, and nickel-iron foam). This is related to FeNi/NF's higher hydrogen production activity, which inhibits the reduction reaction of RCS. Furthermore, the degradation of tetracycline by the proposed FeNi/NF system maintained long-term effective performance across 20 cycles. Thus, the application of high chlorine resistance electrocatalysis system provides a possibility for practical electrocatalysis treatment of mariculture wastewater.
Collapse
Affiliation(s)
- Ting Ni
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Yuyang Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Yangfeng Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Yuyao Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| |
Collapse
|
28
|
Multifunctional MnCo@C yolk-shell nanozymes with smartphone platform for rapid colorimetric analysis of total antioxidant capacity and phenolic compounds. Biosens Bioelectron 2022; 216:114652. [DOI: 10.1016/j.bios.2022.114652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
|
29
|
Liang L, Tan W, Xue Y, Xi F, Meng X, Hu B, Du J. Effects of magnetic field on selenite removal by sulfidated zero valent iron under aerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154755. [PMID: 35339539 DOI: 10.1016/j.scitotenv.2022.154755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
A novel strategy of sulfide modified zero valent iron (S-ZVI) coupled with the magnetic field (MF) is developed for selenite (Se(IV)) removal. The original ZVI particle size (30 μm), S/Fe ratio (1:80), solution pH (5), S-ZVI loading (0.75 g L-1), and MF intensity (20 mT) can exhibit the optimal enhancement effects of MF on Se(IV) removal by S-ZVI. Common corrosion promoters (Cl-, PO43-, SO42-, Mg2+, and Ca2+) and inhibitors (NO3-, SiO32-, and CO32-) show positive and negative effects on Se(IV) removal by S-ZVI, respectively. But MF can alleviate promoting or inhibiting effects of coexisting ions on Se(IV) removal by S-ZVI, and well preserve the reactivity of S-ZVI from background ions in water. Furthermore, MF can also enhance the reactivity of S-ZVI towards Se(IV) during consecutive experiments, the promotion factor (the ratio of kobs with MF to kobs without MF) increased from 2.57 to 5.83 with the increase of cycles. MF can not only improve the reactivity of ZVI covered with iron oxide or iron hydroxide but also effectively enhance the ability of ZVI covered with iron sulfide. S-ZVI exhibited good stability and recyclability in the presence of MF. XANES analysis of selenium species reveals that the reductive product of Se(IV) with or without MF is primarily Se(0), and Se(IV) removal by S-ZVI can be ascribed to adsorption and reduction. This work indicates that MF may widen the application of S-ZVI for pollutants removal in environmental remediation.
Collapse
Affiliation(s)
- Liping Liang
- College of Life Science, Shaoxing University, Shaoxing 312000, PR China; College of Chemistry, Donghua University, Shanghai 201620, PR China
| | - Weishou Tan
- College of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Yuanyuan Xue
- College of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Fenfen Xi
- College of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Xu Meng
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, PR China
| | - Baowei Hu
- College of Life Science, Shaoxing University, Shaoxing 312000, PR China.
| | - Juanshan Du
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
30
|
Kong L, Wang Y, Hu X, Peng X, Xia Z, Wang J. Improving removal rate and efficiency of As(V) by sulfide from strongly acidic wastewater in a modified photochemical reactor. ENVIRONMENTAL TECHNOLOGY 2022; 43:2329-2341. [PMID: 33446066 DOI: 10.1080/09593330.2021.1877360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Employing ultraviolet light to enhance the removal of As(V) by sulfide (S(-II)) from strongly acidic wastewater is a potential method. However, we found the arsenic trisulfide (As2S3) and elemental sulfur (S8) particles formed in this method not only vastly hinder light transmission in the wastewater but also undergo light-induced redissolution, leading to a decrease in removal rate and efficiency of As(V). Herein, As(V) removal by sulfide from strongly acidic wastewater was performed in a modified photochemical reactor to weaken the effect of the formed particles on As(V) removal. It was found that in this study, the formed particles could be efficiently removed from the photoreactor by three operations, i.e. circulation-filtration, septum setting, and lamp sleeve cleaning. The removal of As(V) was approximately 11-fold faster than that without three operations, saving 90.9% of the reaction time and 89.4% of energy consumption. The removal efficiency of As(V) also increased through weakening the light-induced redissolution of the formed particles. This study facilitates the practical application of the UV light promoted As(V) removal technology and also provides a new method to lessen the light-blocking effect in the particle-forming photochemical reaction systems.
Collapse
Affiliation(s)
- Linghao Kong
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR People's Republic of China
| | - Yuchen Wang
- School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing, PR People's Republic of China
| | - Xingyun Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR People's Republic of China
| | - Xianjia Peng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR People's Republic of China
- University of Chinese Academy of Sciences, Beijing, PR People's Republic of China
| | - Zhilin Xia
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR People's Republic of China
- University of Chinese Academy of Sciences, Beijing, PR People's Republic of China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing, PR People's Republic of China
| |
Collapse
|
31
|
Feng H, Yu J, Tang J, Tang L, Liu Y, Lu Y, Wang J, Ni T, Yang Y, Yi Y. Enhanced electro-oxidation performance of FeCoLDH to organic pollutants using hydrophilic structure. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128464. [PMID: 35176697 DOI: 10.1016/j.jhazmat.2022.128464] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/26/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Iron-cobalt layered double hydroxides (FeCoLDH) showed superior oxygen evolution reaction (OER) performance, but the sluggish water adsorption and dissociation dynamics restrict its capacity to degrade organic pollutants by electro-oxidation. Herein, enhanced electro-oxidation performance of FeCoLDH with hydrophilic structure was designed and exhibited efficient removal efficiency of tetracycline. Theoretical calculation and characterization results consistently elucidated that the electronic structure of FeCoLDH is optimized by doping phosphorus and depositing copper nanodots (NDs). In addition, the obtained Cu NDs/P-FeCoLDH shows higher degradation ability of tetracycline in all-pH conditions than pristine FeCoLDH. That's because it owns smaller barrier with 0.6 eV to generate hydroxyl radicals (•OH) than pristine FeCoLDH. Furthermore, it can effectively degrade organic pollutants in seawater, river water and pharmaceutical wastewater samples. This work provides novel and rational electrode materials for electro-oxidation system with practical application potential, which could offer new insights into the fundamental understanding of electrochemistry.
Collapse
Affiliation(s)
- Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| | - Yani Liu
- College of Environmental Science and Engineering, Hunan University, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Ting Ni
- College of Environmental Science and Engineering, Hunan University, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yaya Yang
- College of Environmental Science and Engineering, Hunan University, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yuyang Yi
- College of Environmental Science and Engineering, Hunan University, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| |
Collapse
|
32
|
Huang Y, Zhang Q, Huang X, Li X. Synergistic Stabilization/Solidification of Heavy Metal Ions in Electrolytic Manganese Solid Waste and Phosphogypsum. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Ma X, Li Q, Li R, Zhang W, Sun X, Li J, Shen J, Han W. Efficient removal of Sb(Ⅴ) from water using sulphidated ferrihydrite via tripuhyite (FeSbO 4) precipitation and complexation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114675. [PMID: 35180437 DOI: 10.1016/j.jenvman.2022.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Elevated concentrations of antimony (Sb) in the ecological environment have received considerable attention due to the harmful consequence involved. This study synthesized sulphidated ferrihydrite with different S:Fe molar ratios to efficiently remove Sb(V) from water. As the S:Fe molar ratio ranged from 0.00 to 1.48, the removal efficiency of Sb(V) by sulphidated ferrihydrite first decreased before increasing considerably. Sulphidated ferrihydrite with an S:Fe molar ratio of 0.74 exhibited a strong affinity towards Sb(V) with an optimal removal capacity of 963.74 mg Sb/g, which was 3.2-fold higher than that of ferrihydrite. In the kinetic experiments, the removal behavior of Sb(V) was well described by the pseudo-second-order model, suggesting that the removal process was controlled via chemisorption. Moreover, Sb(V) was efficiently removed over a wide pH range of 3.00-11.00, and coexisting anions (NO3-, Cl-, SO42-, SiO32-, CO32- and PO43-) exhibited marginal impact on the Sb(V) removal by sulphidated ferrihydrite (S:Fe ≥ 0.44). The characterization results of XRD, SEM, TEM mapping and etched XPS revealed goethite to be the dominant phase of sulphidated ferrihydrite with an S:Fe molar ratio of 0.15, while a mixed constitution of mixed-valent iron (hydro)oxides and iron sulphide was formed when the S:Fe molar ratio exceeded 0.44. Moreover, sulphidated ferrihydrite acted as a donor for Fe and S for the effective retention of Sb(V) by two main pathways: precipitation (tripuhyite, FeSbO4) and complexation (≡S-H and ≡Fe-OH). Therefore, sulphidated ferrihydrite is a promising material for eliminating Sb(V) contamination from water.
Collapse
Affiliation(s)
- Xinyue Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rui Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
34
|
Huang W, Xu H, Liu X, Wang L, Li S, Ji L, Qu Z, Yan N. Surface protection method for the magnetic core using covalent organic framework shells and its application in As(III) depth removal from acid wastewater. J Environ Sci (China) 2022; 115:1-9. [PMID: 34969439 DOI: 10.1016/j.jes.2021.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 06/14/2023]
Abstract
Fe3O4-based materials are widely used for magnetic separation from wastewater. However, they often suffer from Fe-leaching behavior under acidic conditions, decreasing their activity and limiting sustainable practical applications. In this study, covalent organic frameworks (COFs) were used as the shell to protect the Fe3O4 core, and the Fe3O4@COF core-shell composites were synthesized for As(III) removal from acid wastewater. The imine-linked COFs can in situ grow on the surface of the Fe3O4 core layer by layer with [COFs/Fe3O4]mol ratio of up to 2:1. The Fe-leaching behavior was weakened over a wide pH range of 1-13. Moreover, such composites keep their magnetic characteristic, making them favorable for nanomaterial separation. As(III) batch adsorption experiments results indicated that, when COFs are used as the shell for the Fe3O4 core, a balance between As(III) removal efficiencies and the thickness of the COF shell exists. Higher As(III) removal efficiencies are obtained when the [COFs/Fe3O4]mol ratios were < 1.5:1, but thicker COF shells were not beneficial for As(III) removal. Such composites also exhibited better As(III) removal performances in the pH range of 1-7. Over a wide pH range, the zeta potential of Fe3O4@COF core-shell composites becomes more positive, which benefits the capture of negative arsenic ions. In addition, thinner surface COFs were favorable for mass transfer and facilitating the reaction of Fe and As elements. Our study highlights the promise of using COFs in nanomaterial surface protection and achieving As(III) depth removal under acidic conditions.
Collapse
Affiliation(s)
- Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoshuang Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Longlong Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shutang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Leipeng Ji
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
35
|
Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Jin M, Liu H, Deng H, Xiao H, Lu G, Yao H. Arsenic chemistry in municipal sewage sludge dewatering, thermal drying, and steam gasification: Effects of Fenton-CaO conditioning. WATER RESEARCH 2022; 213:118140. [PMID: 35152134 DOI: 10.1016/j.watres.2022.118140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
In sludge disposal, Arsenic (As) poses serious secondary pollution due to its high toxicity and low stability. This work systematically studied the effects of Fenton-CaO composite conditioning on As chemistry throughout sludge dewatering, thermal drying, and steam gasification processes. The experimental results showed that, for raw sludge, 40.9% of As was released with filtrate discharging and 26.8-57.3% emitted with flue gas emission. When sludge was conditioned by Fenton-CaO, all of the As in the filtrate was fixed in the sludge cake and the releasing rate of gaseous As was reduced by up to 86.0%. Furthermore, the comprehensive results of the model compounds experiment, sequential extraction, and thermodynamic calculations revealed the effects of Fe/Ca conditioners on As species evolution. In the Fenton pre-oxidation, As(V) was reduced to As(III) due to the decreasing Eh caused by the excessive Fe(II). After adding CaO, As(III)/DMA (dimethyl arsenic) was adsorbed onto the surface of amorphous Fe(OH)3 that was introduced by Fenton's reagent, 50% and 43% of which were then oxidized or demethylated to form As(V)/MMA (monomethyl arsenic), respectively. In the following drying process at 120-180 °C, the FeOOH and CaO derived by residual Fe/Ca conditioners could promote the oxidation of 30% of the rest As(III) by the catalytic effect or directly reacting with it. In the final steam gasification process, the very little As(III) left in the dry sludge was released with the gas phase and the proportion of As(V) in gasification ash almost reached 100%. In short, Fenton-CaO composite conditioning could achieve the near-zero emission of As and reduce the toxicity of the products throughout the whole sludge treatment process.
Collapse
Affiliation(s)
- Minghao Jin
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Hongping Deng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Han Xiao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Geng Lu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
37
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
38
|
Sivaranjanee R, Kumar PS, Mahalaxmi S. A Review on Agro-based Materials on the Separation of Environmental Pollutants From Water System. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Remediation of Chromium (VI) from Groundwater by Metal-Based Biochar under Anaerobic Conditions. WATER 2022. [DOI: 10.3390/w14060894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Iron salt-modified biochar has been widely used to remove Cr(VI) pollution due to the combination of the generated iron oxides and biochar, which can bring positive charge and rich redox activity. However, there are few comprehensive studies on the methods of modifying biochar with different iron salts. In this study, two iron salt (FeCl3 and Fe(NO3)3) modification methods were used to prepare two Fe-modified biochar materials for removing Cr(VI) in simulated groundwater environment. It was revealed by systematic characterization that FeCl3@BC prepared via the FeCl3 modification method, has larger pore size, higher zeta potential and iron oxide content, and has higher Cr(VI) adsorption-reduction performance efficiency as compared to Fe(NO3)3@BC prepared via Fe(NO3)3 modification method. Combined with XRD and XPS analyses, Fe3O4 is the key active component for the reduction of Cr(VI) to Cr(III). The experimental results have shown that acidic conditions promoted Cr(VI) removal, while competing ions (SO42− and PO43−) inhibited Cr(VI) removal by FeCl3@BC. The Elovich model and intra-particle diffusion model of FeCl3@BC can describe the adsorption behavior of Cr(VI) well, indicating that both the high activation energy adsorption process and intra-particle diffusion control the removal process of Cr(VI). The Freundlich model (R2 > 0.999) indicated that there were unevenly distributed chemisorptions centers on the FeCl3@BC surface. Stability experiments exposed that FeCl3@BC was stable under neutral, acidic, and alkaline conditions. Furthermore, the main mechanisms of FeCl3@BC removal of Cr(VI) include electrostatic adsorption, chemical reduction, ion exchange, and co-precipitation. In conclusion, our findings provide a new insight for the selection of iron salt-modified biochar methods, and will also be beneficial for the preparation of more efficient Fe-modified biochars in the future.
Collapse
|
40
|
Liu K, Li F, Pang Y, Fang L, Hocking R. Electron shuttle-induced oxidative transformation of arsenite on the surface of goethite and underlying mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127780. [PMID: 34801297 DOI: 10.1016/j.jhazmat.2021.127780] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The redox process of electron shuttles like cysteine on iron minerals under aerobic conditions may largely determine the fate of arsenic (As) in soils, while the interfacial processes and underlying mechanisms are barely explored. This work systematically investigates the interfacial oxidation processes of As(III) on goethite induced by cysteine. Results show that the addition of cysteine significantly enhances the oxidation efficiency (~ 40%) of As(III) (C0: 10 mg/L) by goethite at pH 7 under aerobic conditions, which is 19.5 times of that without cysteine. cysteine induces Fe(III) reduction on the surface of goethite, and the generation absorbed Fe(II) species play an important role in As(III) oxidation. In particular, the further complexation of Fe(II) with cysteine is thermodynamically favorable for electron transfer, leading to an enhanced As(III) oxidation efficiency. The oxidation efficiency of As(III) in the goethite/cysteine system increases by increasing cysteine concentration and decreases by elevating pH conditions. In addition, evidence indicates that •O2- radicals account for approximately 80% of total oxidized As(III). Meanwhile, only 16% of As(III) oxidation can be attributed to the formed •OH radicals. This work provides new insight into the role of organic electron shuttling compounds in determining As cycling in soils.
Collapse
Affiliation(s)
- Kai Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Yan Pang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Rosalie Hocking
- Department of Chemistry and Biotechnology and Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia
| |
Collapse
|
41
|
Li Y, Li S, Hu B, Zhao X, Guo P. FeOOH and nZVI combined with superconducting high gradient magnetic separation for the remediation of high-arsenic metallurgical wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Wang X, Du Y, Li F, Fang L, Pang T, Wu W, Liu C, Chen L. Unique feature of Fe-OM complexes for limiting Cd accumulation in grains by target-regulating gene expression in rice tissues. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127361. [PMID: 34879560 DOI: 10.1016/j.jhazmat.2021.127361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The excessive accumulation of cadmium (Cd) in rice grains is highly determined by the expression of specific genes in different tissues. Targeted gene regulation in rice plants is a long-standing challenge. Herein, a new strategy for regulating target gene expression responsible for Cd absorption and translocation in roots and leaves was developed by complexing Fe(II) with organic matter (i.e., Fe-OM) with the optimal mass ratio of 1. Results showed that Fe-OM noticeably reduced the grain Cd content from 0.48 ± 0.04 mg kg-1 to 0.25 ± 0.03 mg kg-1, exhibiting a significantly higher capacity in mitigating Cd accumulation in grains than Fe(II) or OM alone. The translocation factor (TF) was reduced from 0.14 (control) to 0.08 by Fe-FA from root to grain, which could be due to the preferential Cd translocation to leaves (i.e., TFroot to leaves was enhanced four times by the complex of Fe(II) with fulvic acid (Fe-FA). Further gene analysis revealed that the cooperative effects of OsNramp1 and OsNramp5 downregulation in roots/stems and OsLCT1 upregulation in leaves contributed to the mitigation of Cd in grains. This work provides a new strategy to regulating target gene expression in specific tissues to alleviate Cd accumulation in grains.
Collapse
Affiliation(s)
- Xiangqin Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Yanhong Du
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Tingting Pang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Weijian Wu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Chuanping Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Lei Chen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| |
Collapse
|
43
|
Zhang B, Han L, Sun K, Ma C, He J, Chen L, Jin J, Li F, Yang Z. Loading with micro-nanosized α-MnO 2 efficiently promotes the removal of arsenite and arsenate by biochar derived from maize straw waste: Dual role of deep oxidation and adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150994. [PMID: 34662605 DOI: 10.1016/j.scitotenv.2021.150994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The function of biochar (BC) as an eco-friendly adsorbent for environmental remediation is gaining much attention. However, the pristine BC had limited abilities for the removal of As (III, V). Towards this issue, this study synthesized biochar/micro-nanosized α-MnO2 (BM) composites with different mass ratios of biochar to MnO2. Comprehensive characterizations confirmed the successful loading of micro-nanosized α-MnO2 onto the BC surface and the obvious specific surface area enhancement (7.5-13.5 times) of BM relative to BC. BM composites exhibited 5.0-13.0 folds higher removal capacity for As (III, V) than pristine BC since the composites gave full play to the oxidation contributed by micro-nanosized α-MnO2 substrate and adsorption functions provided by the Mn-OH, BC-COOH, and BC-OH functional groups. Moreover, BM was well reused maintaining a relatively high removal efficiency for As (III, V). Regardless of reaction time and initial As (III) concentration (C0), the removal of As (III) by pristine BC was negligibly contributed by the oxidized As (V) remaining in solutions, with the relative contribution <15.0%. For the BM composites, relative contribution of adsorbed As (III, V) dominated over that of oxidation to mobile As (V) remaining in solution, and exhibited the decreasing trend with increasing C0. These findings demonstrated BM as a promising candidate in remediating As (III, V)-polluted water, and provide mechanistic insights into the role of oxidation and adsorption in As (III, V) removal.
Collapse
Affiliation(s)
- Biao Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiehong He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Liying Chen
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Zhifeng Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
44
|
Pal D, Hogland W. An overview and assessment of the existing technological options for management and resource recovery from beach wrack and dredged sediments: An environmental and economic perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113971. [PMID: 34715612 DOI: 10.1016/j.jenvman.2021.113971] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The present work discusses the problems and management options of beach wrack and dredged sediments. Beach wrack and dredged sediments near the shores have affected the coastal ecosystem, badly. The piles of beach wrack residues might be a significant emitter of greenhouse gases (GHGs) and dredged sediment is a substantial source of heavy metals and other pollutants. The recovery of valuable resources such as metals and nutrients from these so-called "wastes" is a sustainable strategy to enhance the resilience of the coastal ecosystem and management. The beach wrack meadows can be a potential source for green energy production. Even the demand for biodegradable polymers can be supplied by utilizing the waste beach wracks. The residues of beach wrack species like Posidonia oceanica, Zostera marina, Ulva spc. and Enhalus acorodies can be very beneficial species in terms of economic growth. Red algae have been the most favored and efficient candidate for methane yield. In case of dredged sediment, dewatering of sediment is an essential step for successful resource extraction. Although, extraction methods are almost similar to that applied for soil treatment, which includes pretreatment, physical partitioning, washing, thermal treatment, biological extraction, and immobilization. The fractionation study can be a beneficial tool for determining the metal species present in the sediment. Immobilization techniques are successful but continuous monitoring is required. The vitrification technique is highly effective but very expensive. Thermal treatment is useful for volatile metals such as mercury (Hg), but costs are high. Biological extractions are comparatively cheap but time-consuming. Henceforth, very few extraction methods are available for sediment and required further advancement in this field.
Collapse
Affiliation(s)
- Divya Pal
- Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujrat, 390002, India.
| | - William Hogland
- Environmental Engineering and Recovery, Faculty of Health and Life Sciences, Dept. of Biology and Environmental Science, Linnaeus University, SE-392 31, Kalmar, Sweden.
| |
Collapse
|
45
|
Hu ZT, Jin ZY, Gong SY, Wei X, Zhao J, Hu M, Zhao J, Chen Z, Pan Z, Li X. Supermagnetic Mn-substituted ZnFe 2O 4 with AB-site hybridization for the ultra-effective catalytic degradation of azoxystrobin. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00142j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Magnetic Zn0.25Mn0.75Fe2O4 was applied to the degradation of azoxystrobin in a Fenton-like system, and the performance was enhanced via crystal structure control.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
- Industrial Catalysis Institute, ZJUT, Hangzhou 310014, China
| | - Zi-Yan Jin
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Si-Yan Gong
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Xiuzhen Wei
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Jia Zhao
- Industrial Catalysis Institute, ZJUT, Hangzhou 310014, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR
| | - Zhong Chen
- School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Xiaonian Li
- Industrial Catalysis Institute, ZJUT, Hangzhou 310014, China
| |
Collapse
|
46
|
Giri DD, Jha JM, Srivastava N, Hashem A, Abd Allah EF, Shah M, Pal DB. Sustainable removal of arsenic from simulated wastewater using solid waste seed pods biosorbents of Cassia fistula L. CHEMOSPHERE 2022; 287:132308. [PMID: 34826947 DOI: 10.1016/j.chemosphere.2021.132308] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
The present investigation is focused to develop a new type of solid waste based biosorbent, derived from the Cassia fistula pod biomass. The prepared biosorbent has been characterized through different techniques including field emission scanning electron microscopy, fourier transform infrared spectroscope and X-ray diffraction to investigate the physiochemical properties which are potential for the bioadsorbent application. The experiments have been performed considering four parameters namely; pH, biosorbent dose, initial concentration of As+3 and duration in the batch reactor. The experimental results have been analyzed using the design-expert software for the optimization of different parameters. The maximum removal of arsenic could be achieved ∼91% whereas monolayer adsorption capacity is found to be 1.13 mg g-1 in 80 min at pH 6.0 and 30 °C by using 60 mg dose of bioadsorbent. The arsenic adsorption behavior of the bio-adsorbent has been well interpreted in terms of pseudo-first order and Freundlich model.
Collapse
Affiliation(s)
- Deen Dayal Giri
- Department of Botany, Maharaj Singh College, Saharanpur, 247001, Uttar Pradesh, India
| | - Jay Mant Jha
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology(BHU), Varanasi, 221005, India
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Maulin Shah
- Environmental Technology Limited, Ankeleshwar, Gujrat, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
47
|
Wan C, Li H, Zhao L, Li Z, Zhang C, Tan X, Liu X. Mechanism of removal and degradation characteristics of dicamba by biochar prepared from Fe-modified sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113602. [PMID: 34454201 DOI: 10.1016/j.jenvman.2021.113602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The pyrolysis of excess sludge derived from wastewater treatment plants to prepare biochar can achieve the mass-reduction and harmlessness of solid waste, but it is also necessary to further explore the application prospect of these biochars as a resource for wastewater treatment. In this study, Fe-modified biochar (BC-Fe) was prepared by pyrolysis of excess sludge modified by FeCl3 solution. The molecular structure, elemental valence state, and composition of biochars were comprehensively investigated. The results showed that, compared with the biochar prepared from sludge without modification (BC-blank), the O/C ratio of BC-Fe increased from 0.07 to 0.12, and the (N + O)/C ratio increased from 0.21 to 0.27, indicating increased polarity and weakened aromaticity. The ratio of integrated intensity of the D band and G band in the Raman spectrum increased from 1.34 to 2.40, showing the increased defect structure of the biochar obtained by Fe modification. In the reaction between BC-Fe and dicamba, the removal rate of dicamba reached 92.1% within 180 min, which was far higher than the 17.8% of BC-blank. It was confirmed the adsorption removal dominated and accounted for 70.6% of the dicamba removal by BC-Fe, and the adsorption capacity of biochar could be significantly enhanced by Fe-modification by 5.3 times. Moreover, the persistent free radicals (PFRs) on the surface of biochar was detected by an electron paramagnetic resonance analyzer, and the decline of PFRs signals after the reaction revealed that PFRs participated in the degradation process of dicamba. Through Q-TOF analysis, it could be concluded that dicamba was first converted to 3,6-dichlorosalicylic acid (DCSA) by PFRs reduction and then further transformed to 3,6-dichlorogentisic acid (DCGA). This study provided a reference for the understanding of the removal mechanism of dicamba by Fe-modified biochar and offered an application potential of biochar derived from Fe-containing sludge for the pollution control of dicamba pesticide pollutants.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| | - Huiqi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Lianfa Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Zhengwen Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Chen Zhang
- Shanghai Municipal Engineering Design Institute Group Co Ltd, Shanghai, 200092, China
| | - Xuejun Tan
- Shanghai Municipal Engineering Design Institute Group Co Ltd, Shanghai, 200092, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
48
|
Liu HY, Niu CG, Guo H, Huang DW, Liang C, Yang YY, Tang N, Zhang XG. Integrating the Z-scheme heterojunction and hot electrons injection into a plasmonic-based Zn 2In 2S 5/W 18O 49 composite induced improved molecular oxygen activation for photocatalytic degradation and antibacterial performance. J Colloid Interface Sci 2021; 610:953-969. [PMID: 34865737 DOI: 10.1016/j.jcis.2021.11.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
The semiconductor-based photocatalysts with local surface plasmon resonance (LSPR) effect can extend light response to near-infrared region (NIR), as well as promote charge-carriers transfer, which provide a novel insight into designing light-driven photocatalyst with excellent photocatalytic performance. Here, we designed cost-effective wide-spectrum Zn2In2S5/W18O49 composite with enhanced photocatalytic performance based on a dual-channel charge transfer pathway. Benefiting from the synergistic effect of Z-scheme heterostructure and unique LSPR effect, the interfacial charge-carriers transfer rate and light-absorbing ability of Zn2In2S5/W18O49 were enhanced significantly under visible and NIR (vis-NIR) light irradiation. More reactive oxygen species (ROS) were formed by efficient molecular oxygen activation, which were the critical factors for both Escherichia coli (E. coli) photoinactivation and tetracycline (TC) photodegradation. The enhancement of molecular oxygen activation (MOA) ability was verified via quantitative analyses, which evaluated the amount of ROS through degrading nitrotetrazolium blue chloride (NBT) and p-phthalic acid (TA). By combining theoretical calculations with diverse experimental results, we proposed a credible photocatalytic reaction mechanism for antibiotic degradation and bacteria inactivation. This study develops a new insight into constructing promising photocatalysts with efficient photocatalytic activity in practical wastewater treatment.
Collapse
Affiliation(s)
- Hui-Yun Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Cheng-Gang Niu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Hai Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Da-Wei Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PRC, Guangzhou 510655, China.
| | - Chao Liang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Ya-Ya Yang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Ning Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Xue-Gang Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
49
|
Ahn Y, Cho DW, Ahmad W, Jo J, Jurng J, Kurade MB, Jeon BH, Choi J. Efficient removal of formaldehyde using metal-biochar derived from acid mine drainage sludge and spent coffee waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113468. [PMID: 34392094 DOI: 10.1016/j.jenvman.2021.113468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
A novel metal-biochar (Biochar/AMDS) composite were fabricated by co-pyrolysis of spent coffee waste (SCW)/acid mine drainage sludge (AMDS), and their effective application in adsorptive removal of air pollutants such as formaldehyde in indoor environments was evaluated. The physicochemical characteristics of Biochar/AMDS were analyzed using SEM/EDS, XRF, XRD, BET, and FTIR. The characterization results illustrated that Biochar/AMDS had the highly porous structure, carbonaceous layers, and heterogeneous Fe phases (hematite, metallic Fe, and magnetite). The fixed-bed column test showed that the removal of formaldehyde by Biochar/AMDS was 18.4-fold higher than that by metal-free biochar (i.e., SCW-derived biochar). Changing the ratio of AMDS from 1:6 to 1:1 significantly increased the adsorption capacity for formaldehyde from 1008 to 1811 mg/g. In addition, thermal treatment of used adsorbent at 100 °C effectively restored the adsorptive function exhausted during the column test. These results provide new insights into the fabrication of practical, low-cost and ecofriendly sorbent for formaldehyde.
Collapse
Affiliation(s)
- Yongtae Ahn
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dong-Wan Cho
- Geological Environment Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon, 34132, Republic of Korea
| | - Waleed Ahmad
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Jungman Jo
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jongsoo Jurng
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea; Green School, Korea University, Seoul, Republic of Korea
| | - Mayur B Kurade
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jaeyoung Choi
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
50
|
Ye S, Feng C, Wang J, Tang L. Preparation and application of defective graphite phase carbon nitride photocatalysts. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2020-1674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|