1
|
Guo X, Ji X, Liu Z, Feng Z, Zhang Z, Du S, Li X, Ma J, Sun Z. Complex impact of metals on the fate of disinfection by-products in drinking water pipelines: A systematic review. WATER RESEARCH 2024; 261:121991. [PMID: 38941679 DOI: 10.1016/j.watres.2024.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Metals in the drinking water distribution system (DWDS) play an important role on the fate of disinfection by-products (DBPs). They can increase the formation of DBPs through several mechanisms, such as enhancing the proportion of reactive halogen species (RHS), catalysing the reaction between natural organic matter (NOM) and RHS through complexation, or by increasing the conversion of NOM into DBP precursors. This review comprehensively summarizes these complex processes, focusing on the most important metals (copper, iron, manganese) in DWDS and their impact on various DBPs. It organizes the dispersed 'metals-DBPs' experimental results into an easily accessible content structure and presents their underlying common or unique mechanisms. Furthermore, the practically valuable application directions of these research findings were analysed, including the toxicity changes of DBPs in DWDS under the influence of metals and the potential enhancement of generalization in DBP model research by the introduction of metals. Overall, this review revealed that the metal environment within DWDS is a crucial factor influencing DBP levels in tap water.
Collapse
Affiliation(s)
- Xinming Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Xiaoyue Ji
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zhuoran Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - ZiFeng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuang Du
- Institute of NBC Defense. PLA Army, P.O.Box1048, Beijing 102205 China
| | - Xueyan Li
- Suzhou University Science & Technology, School of Environmental Science & Engineering, Suzhou 215009, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China.
| |
Collapse
|
2
|
Siddiqui MU, Sibtain M, Ahmad F, Zushi Y, Nabi D. Screening Disinfection Byproducts in Arid-Coastal Wastewater: A Workflow Using GC×GC-TOFMS, Passive Sampling, and NMF Deconvolution Algorithm. J Xenobiot 2024; 14:554-574. [PMID: 38804286 PMCID: PMC11130967 DOI: 10.3390/jox14020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Disinfection during tertiary municipal wastewater treatment is a necessary step to control the spread of pathogens; unfortunately, it also gives rise to numerous disinfection byproducts (DBPs), only a few of which are regulated because of the analytical challenges associated with the vast number of potential DBPs. This study utilized polydimethylsiloxane (PDMS) passive samplers, comprehensive two-dimensional gas chromatography (GC×GC) coupled with time-of-flight mass spectrometry (TOFMS), and non-negative matrix factorization (NMF) spectral deconvolution for suspect screening of DBPs in treated wastewater. PDMS samplers were deployed upstream and downstream of the chlorination unit in a municipal wastewater treatment plant located in Abu Dhabi, and their extracts were analyzed using GC×GC-TOFMS. A workflow incorporating a multi-tiered, eight-filter screening process was developed, which successfully enabled the reliable isolation of 22 candidate DBPs from thousands of peaks. The NMF spectral deconvolution improved the match factor score of unknown mass spectra to the reference mass spectra available in the NIST library by 17% and facilitated the identification of seven additional DBPs. The close match of the first-dimension retention index data and the GC×GC elution patterns of DBPs, both predicted using the Abraham solvation model, with their respective experimental counterparts-with the measured data available in the NIST WebBook and the GC×GC elution patterns being those observed for the candidate peaks-significantly enhanced the accuracy of peak assignment. Isotopic pattern analysis revealed a close correspondence for 11 DBPs with clearly visible isotopologues in reference spectra, thereby further strengthening the confidence in the peak assignment of these DBPs. Brominated analogues were prevalent among the detected DBPs, possibly due to seawater intrusion. The fate, behavior, persistence, and toxicity of tentatively identified DBPs were assessed using EPI Suite™ and the CompTox Chemicals Dashboard. This revealed their significant toxicity to aquatic organisms, including developmental, mutagenic, and endocrine-disrupting effects in certain DBPs. Some DBPs also showed activity in various CompTox bioassays, implicating them in adverse molecular pathways. Additionally, 11 DBPs demonstrated high environmental persistence and resistance to biodegradation. This combined approach offers a powerful tool for future research and environmental monitoring, enabling accurate identification and assessment of DBPs and their potential risks.
Collapse
Affiliation(s)
- Muhammad Usman Siddiqui
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 48000, Pakistan
| | - Muhammad Sibtain
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 48000, Pakistan
| | - Farrukh Ahmad
- BioEnergy & Environmental Laboratory (BEEL), Masdar Institute Campus, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- California Environmental Protection Agency, Cypress, CA 90630, USA
| | - Yasuyuki Zushi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Ibaraki, Japan
| | - Deedar Nabi
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 48000, Pakistan
- BioEnergy & Environmental Laboratory (BEEL), Masdar Institute Campus, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| |
Collapse
|
3
|
Ma X, Cheng J, Zhang P, Wu Y, Deng J, Dong F, Li X, Dietrich AM. Impact of boiling on chemical and physical processes for reduction of halomethanes, haloacetonitriles, and haloacetic acids in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167657. [PMID: 37806591 DOI: 10.1016/j.scitotenv.2023.167657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Tap water is boiled by families across the globe in their daily life for cooking food and beverages, as well as for controlling some chlorine-resistant organisms to improve the water quality. However, the effects of boiling methods (heating temperature, heating modes, open or closed containers) on water quality, in particular the reduction of disinfection byproducts (DBPs), are unclear. This comprehensive research demonstrates that during the heating process, trihalomethanes (THMs) were markedly decreased, haloacetonitriles (HANs) were drastically reduced and sometimes completely removed, while haloacetic acids (HAAs) were reduced the least. Heating to boiling in open containers reduced DBPs concentrations more than heating in the closed containers. Residual chlorine from 0.1 to 5.0 mg/L did not affect the removal of HANs, but could increase concentrations of HAAs likely due to reaction of organic matter with chlorine at elevated temperatures. THMs demonstrated good removal at 0.1-1 mg/L residual chlorine, but less removal at 5 mg/L residual chlorine. Sodium chloride (salt), often added as seasoning agent in the process of family cooking, was found to have little effect on the removal of DBPs during cooking and boiling. Compared with the toxicity of DBPs in tap water, boiling could greatly reduce both the cytotoxicity and carcinogenicity through removal of DBPs. Consequently, boiling of tap water had a significant effect on reducing human exposure to DBPs and their associated toxicities.
Collapse
Affiliation(s)
- Xiaoyan Ma
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiayi Cheng
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peifeng Zhang
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifei Wu
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Andrea M Dietrich
- Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Deng YL, Lu TT, Hao H, Liu C, Yuan XQ, Miao Y, Zhang M, Zeng JY, Li YF, Lu WQ, Zeng Q. Association between Urinary Haloacetic Acid Concentrations and Liver Injury among Women: Results from the Tongji Reproductive and Environmental (TREE) Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17006. [PMID: 38261302 PMCID: PMC10805132 DOI: 10.1289/ehp13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Experimental studies have shown that disinfection byproducts (DBPs) including haloacetic acids (HAAs) can cause liver toxicity, but evidence linking this association in humans is sparse. OBJECTIVES We aimed to explore the associations between HAA exposures and liver injury. METHODS We included 922 women between December 2018 and January 2020 from the Tongji Reproductive and Environmental (TREE) cohort study in Wuhan, China. Urinary HAA concentrations including trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) and serum indicators of liver function, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyltransferase (GGT) were measured. Liver injury was defined as if any of serum indicator levels were above the 90th percentile. Multivariate logistic and linear regression models were fitted to assess the associations of urinary HAA concentrations with the risk of liver injury and liver function indicators. Stratified analyses by age, body mass index (BMI), alcohol use, and passive smoking were also applied to evaluate the potential effect modifiers. RESULTS There is little evidence of associations of urinary TCAA concentrations with liver injury risk and liver function indicators. However, urinary DCAA concentrations were associated with a higher risk of liver injury [odds ratios (OR) for 1-interquartile range (IQR) increase in natural log (ln) transformed DCAA concentrations: 1.45; 95% confidence interval (CI): 1.07, 1.98]. This association was observed only among nondrinkers (p interaction = 0.058 ). We also found that a 1-IQR increase in ln-transformed DCAA concentrations was positively associated with ALT levels (percentage change = 6.06 % ; 95% CI: 0.48%, 11.95%) and negatively associated with AST/ALT (percentage change = - 4.48 % ; 95% CI: - 7.80 % , - 1.04 % ). In addition, urinary DCAA concentrations in relation to higher GGT levels was observed only among passive smokers (p interaction = 0.040 ). CONCLUSION Our findings suggest that exposure to DCAA but not TCAA is associated with liver injury among women undergoing assisted reproductive technology. https://doi.org/10.1289/EHP13386.
Collapse
Affiliation(s)
- Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Hao
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Qiong Yuan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Sánchez-Montes I, Santos GOS, Dos Santos AJ, Fernandes CHM, Souto RS, Chelme-Ayala P, El-Din MG, Lanza MRV. Toxicological aspect of water treated by chlorine-based advanced oxidation processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163047. [PMID: 36958544 DOI: 10.1016/j.scitotenv.2023.163047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
As well established in the literature, residual toxicity is an important parameter for evaluating the sanitary and environmental safety of water treatment processes, and this parameter becomes even more crucial when chlorine-based processes are applied for water treatment. Eliminating initial toxicity or preventing its increase after water treatment remains a huge challenge mainly due to the formation of highly toxic disinfection by-products (DBPs) that stem from the degradation of organic contaminants or the interaction of the chlorine-based oxidants with different matrix components. In this review, we present a comprehensive discussion regarding the toxicological aspects of water treated using chlorine-based advanced oxidation processes (AOPs) and the recent findings related to the factors influencing toxicity, and provide directions for future research in the area. The review begins by shedding light on the advances made in the application of free chlorine AOPs and the findings from studies conducted using electrochemical technologies based on free chlorine generation. We then delve into the insights and contributions brought to the fore regarding the application of NH2Cl- and ClO2-based treatment processes. Finally, we broaden our discussion by evaluating the toxicological assays and predictive models employed in the study of residual toxicity and provide an overview of the findings reported to date on this subject matter, while giving useful insights and directions for future research on the topic.
Collapse
Affiliation(s)
- Isaac Sánchez-Montes
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil; Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9 Edmonton, AB, Canada.
| | - Géssica O S Santos
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Alexsandro J Dos Santos
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Carlos H M Fernandes
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Robson S Souto
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Pamela Chelme-Ayala
- Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9 Edmonton, AB, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9 Edmonton, AB, Canada
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
6
|
Fu Y, Yan Y, Wei Z, Spinney R, Dionysiou DD, Vione D, Liu M, Xiao R. Overlooked Transformation of Nitrated Polycyclic Aromatic Hydrocarbons in Natural Waters: Role of Self-Photosensitization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37327199 DOI: 10.1021/acs.est.3c02276] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photochemical transformation is an important process that involves trace organic contaminants (TrOCs) in sunlit surface waters. However, the environmental implications of their self-photosensitization pathway have been largely overlooked. Here, we selected 1-nitronaphthalene (1NN), a representative nitrated polycyclic aromatic hydrocarbon, to study the self-photosensitization process. We investigated the excited-state properties and relaxation kinetics of 1NN after sunlight absorption. The intrinsic decay rate constants of triplet (31NN*) and singlet (11NN*) excited states were estimated to be 1.5 × 106 and 2.5 × 108 s-1, respectively. Our results provided quantitative evidence for the environmental relevance of 31NN* in waters. Possible reactions of 31NN* with various water components were evaluated. With the reduction and oxidation potentials of -0.37 and 1.95 V, 31NN* can be either oxidized or reduced by dissolved organic matter isolates and surrogates. We also showed that hydroxyl (•OH) and sulfate (SO4•-) radicals can be generated via the 31NN*-induced oxidation of inorganic ions (OH- and SO42-, respectively). We further investigated the reaction kinetics of 31NN* and OH- forming •OH, an important photoinduced reactive intermediate, through complementary experimental and theoretical approaches. The rate constants for the reactions of 31NN* with OH- and 1NN with •OH were determined to be 4.22 × 107 and 3.95 ± 0.01 × 109 M-1 s-1, respectively. These findings yield new insights into self-photosensitization as a pathway for TrOC attenuation and provide more mechanistic details into their environmental fate.
Collapse
Affiliation(s)
- Yifu Fu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yiqi Yan
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Engineering, Aarhus University, Hangøvej 2, Aarhus N DK-8200, Denmark
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, Torino 10125, Italy
| | - Min Liu
- State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Ruiyang Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
7
|
Dong F, Zhu J, Li J, Fu C, He G, Lin Q, Li C, Song S. The occurrence, formation and transformation of disinfection byproducts in the water distribution system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161497. [PMID: 36634528 DOI: 10.1016/j.scitotenv.2023.161497] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Disinfection is an effective process to inactivate pathogens in drinking water treatment. However, disinfection byproducts (DBPs) will inevitably form and may cause severe health concerns. Previous research has mainly focused on DBPs formation during the disinfection in water treatment plants. But few studies paid attention to the formation and transformation of DBPs in the water distribution system (WDS). The complex environment in WDS will affect the reaction between residual chlorine and organic matter to form new DBPs. This paper provides an overall review of DBPs formation and transformation in the WDS. Firstly, the occurrence of DBPs in the WDS around the world was cataloged. Secondly, the primary factors affecting the formation of DBPs in WDS have also been summarized, including secondary chlorination, pipe materials, biofilm, deposits and coexisting anions. Secondary chlorination and biofilm increased the concentration of regular DBPs (e.g., trihalomethanes (THMs) and haloacetic acids (HAAs)) in the WDS, while Br- and I- increased the formation of brominated DBPs (Br-DBPs) and iodinated DBPs (I-DBPs), respectively. The mechanism of DBPs formation and transformation in the WDS was systematically described. Aromatic DBPs could be directly or indirectly converted to aliphatic DBPs, including ring opening, side chain breaking, chlorination, etc. Finally, the toxicity of drinking water in the WDS caused by DBPs transformation was examined. This review is conducive to improving the knowledge gap about DBPs formation and transformation in WDS to better solve water supply security problems in the future.
Collapse
Affiliation(s)
- Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiani Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinzhe Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chuyun Fu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guilin He
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200433, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Urinary trihalomethane concentrations and liver function indicators: a cross-sectional study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39724-39732. [PMID: 36596971 DOI: 10.1007/s11356-022-25072-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
While it is known that exposure to disinfection by-products (DBPs), including trihalomethanes (THMs), impairs liver function, few epidemiological studies have explored this association. Here, we determined the concentrations of four urinary trihalomethanes (chloroform [TCM], and three Br-THMs, bromodichloromethane [BDCM], dibromochloromethane [DBCM], and bromoform [TBM]), and nine serum liver function indicators in 182 adults ≥ 18 years of age, examined at a medical examination center in Wuxi, China, in 2020 and 2021. Generalized linear model analysis revealed positive associations between urinary DBCM and alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), total protein (TP), and albumin (ALB). Urinary Br-THMs and total THMs (TTHMs) were positively associated with ALT, AST, TBIL, indirect bilirubin (IBIL), TP, and ALB (all P < 0.05). Urinary THMs were not associated with alkaline phosphatase (ALP) or glutamine transaminase (GGT) (all P > 0.05). Generalized additive model-based penalized regression splines were used to confirm these associations. In conclusion, THM exposure was associated with altered serum biomarkers of liver function.
Collapse
|
9
|
Li D, Cheng W, Ren J, Qin L, Zheng X, Wan T, Wang M. In vitro toxicity assessment of haloacetamides via a toxicogenomics assay. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104026. [PMID: 36455839 DOI: 10.1016/j.etap.2022.104026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
It is important to study the stress effects and mechanisms of haloacetamide (HAcAm) disinfection byproducts to reveal their health hazards. In this context, toxicological g was applied to evaluate the effects of four HAcAms, revealing the status of gene expression on Escherichia coli in different stress response types (oxidative, protein, membrane, general, DNA). This study revealed that the main toxic action modes of these HAcAms were general and membrane stresses by high-resolution, real-time gene expression profiling combined with clustering analysis. The results of time-gene evaluation showed that the presence of chloroacetamide (CAcAm) and bromoacetamide (BAcAm) generated more reactive oxygen species, thus activating oxidative stress. Trichloroacetamide (tCAcAm) induced altered expression of glutathione marker genes and membrane stress-related genes, and iodoacetamide (IAcAm) caused severe DNA damage by damaging DNA strands and individual nucleotides mainly through damage to nucleic acids and bases. Furthermore, quantitative structure-activity relationship (QSAR) modelling results indicated that the biological activities of HAcAms were related to their quantum chemical and topological properties.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Wen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Jiehui Ren
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Lu Qin
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Tian Wan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Min Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
10
|
Liao P, Zhang T, Fang L, Jiang R, Wu G. Chlorine decay and disinfection by-products transformation under booster chlorination conditions: A pilot-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158115. [PMID: 35985588 DOI: 10.1016/j.scitotenv.2022.158115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Booster chlorination was usually employed in water distribution systems with a long hydraulic retention time. The free chlorine decay and disinfection by-products (DBPs) transformation under booster chlorination conditions were investigated within a pilot-scale water distribution system (WDS). Compared with the initial chlorination in water plants, the loss of chlorine was relatively slow and could be described with first-order kinetic model. The rate of chlorine decay and the generation of DBPs in WDS were much greater than those in beaker. High flow rate and the hydraulic transients both promoted chlorine decay and DBPs formation, especially for dichloroacetonitrile (DCAN). The formation of trihalomethanes (THMs) and haloacetic acids (HAAs) was higher in the ductile iron pipe than in the steel pipe. After booster chlorination, THMs, HAAs, and DCAN all climbed up and then declined continuously, but the peak times were different during the reaction process. The results showed the generation period of DBPs followed the order: THMs (27 h) > HAAs (22 h) > DCAN (5 h). DCAN was not stable in WDS and could be decomposed for a long hydraulic retention time (HRT). The decrease of dichloroacetic acid (DCAA) and increase of trichloroacetic acid (TCAA) indicated that DCAA may turn into TCAA. Linear relationships between the free chlorine demand (FCD) and the generation of THMs that considered both buck water and the pipe wall, as well as the different hydraulic conditions, were established to predict the formation of DBPs in WDS after booster chlorination.
Collapse
Affiliation(s)
- Pubin Liao
- College of Civil Engineering and Architecture, Zhejiang University, Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou 310058, PR China.
| | - Tuqiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou 310058, PR China.
| | - Lei Fang
- College of Civil Engineering and Architecture, Zhejiang University, Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou 310058, PR China.
| | - Rongrong Jiang
- College of Civil Engineering and Architecture, Zhejiang University, Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou 310058, PR China.
| | - Guojian Wu
- College of Civil Engineering and Architecture, Zhejiang University, Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou 310058, PR China.
| |
Collapse
|
11
|
Štiglić J, Ujević Bošnjak M, Héry M, Kurajica L, Kinsela AS, Casiot C, Capak K. Bacterial diversity across four drinking water distribution systems in Croatia: impacts of water management practices and disinfection by-products. FEMS Microbiol Ecol 2022; 99:fiac146. [PMID: 36473705 DOI: 10.1093/femsec/fiac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Several factors may impact bacterial diversity in drinking water distribution systems (DWDSs) including the origin of the raw water, the water treatment technologies, and the disinfection practices applied. 16S rRNA metabarcoding was used for the in-depth characterization of bacterial communities in the four studied Croatian DWDSs (A, B, C, D) two of which had residual disinfectant (A, B) and two were without (C, D), while only B utilized the conventional water treatment technology. Significantly higher diversity and species richness were evidenced in non-disinfected DWDSs (p<0.05) compared to disinfected DWDSs. The phylum Proteobacteria was the most abundant in all the DWDSs, being proportionately higher in non-disinfected systems (p<0.05). The most abundant genera in DWDS-A Mycobacterium and Sphingomonas both positively correlated, whereas Lactobacillus negatively correlated with the concentration of disinfection by-products (DBPs) as a sum of haloacetic acids (HAAs). Conversely, the genus Ralstonia positively correlated with the individual DBP dichloroacetic acid. These results indicate that genera Sphingomonas, Mycobacterium, Lactobacillus and Ralstonia could have an effect on promoting the formation of DBPs, in a similar manner to how negatively correlated taxa may influence their degradation.
Collapse
Affiliation(s)
- J Štiglić
- Croatian Institute of Public Health, Rockefellerova 7, 10000 Zagreb, Croatia
| | - M Ujević Bošnjak
- Croatian Institute of Public Health, Rockefellerova 7, 10000 Zagreb, Croatia
| | - M Héry
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| | - L Kurajica
- Croatian Institute of Public Health, Rockefellerova 7, 10000 Zagreb, Croatia
| | - A S Kinsela
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - C Casiot
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| | - K Capak
- Croatian Institute of Public Health, Rockefellerova 7, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Pang Z, Zhang P, Chen X, Dong F, Deng J, Li C, Liu J, Ma X, Dietrich AM. Occurrence and modeling of disinfection byproducts in distributed water of a megacity in China: Implications for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157674. [PMID: 35926603 DOI: 10.1016/j.scitotenv.2022.157674] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Disinfection byproducts (DBPs) are initially formed in the process of chlorination in the drinking water treatment plants (DWTPs), then further formed in the distribution system due to the presence of residual chlorine and reactive organic matters. However, in China, DBPs are monitored in the effluent from the DWTPs, but less is known about concentrations of DBPs in tap water since they are usually monitored once per half a year. The smart water service system is establishing real-time monitoring of water indices, although DBPs are an urgent need, they are difficult to monitor in real-time due to their diversity and complicated detection methods. If the correlation between DBP concentration and routinely real-time monitored water quality parameters (e.g., pH value, residual chlorine, ammonia) can be evaluated, the concentration of DBPs can be predicted, which will strengthen the control of tap water safety. This article comprehensively assessed the physicochemical parameters and the occurrence of DBP formation in the tap water with an 18-month investigation in Z city (China). DBP formation in tap water of different seasons and different water sources were compared. Based on the relationship between DBPs and physicochemical parameters, linear prediction and nonlinear prediction models of trihalomethanes (THMs), haloacetonitriles (HANs) and haloacetic acids (HAAs) were established, and the accuracy of these models was verified by measured data. Finally, the toxicity and carcinogenic and non-carcinogenic health risk assessment of DBPs in tap water were analyzed.
Collapse
Affiliation(s)
- Zhen Pang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peifeng Zhang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200433, China
| | - Junping Liu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Andrea M Dietrich
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
13
|
Dong F, Pang Z, Yu J, Deng J, Li X, Ma X, Dietrich AM, Deng Y. Spatio-temporal variability of halogenated disinfection by-products in a large-scale two-source water distribution system with enhanced chlorination. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127113. [PMID: 34523488 DOI: 10.1016/j.jhazmat.2021.127113] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Distributions of halogenated disinfection byproducts (DBPs) in a two-source water distribution system (WDS) with enhanced chlorination were investigated. The WDS was divided into different sub-service areas based on different electrical conductivity of two water sources. Results clearly show that the principal halogenated DBPs were trihalomethanes (THMs) (5.06-82.69 μg/L), varying within the concentration range as 2-5 times as the levels of haloacetic acids (HAAs) (1.41-61.48 μg/L) and haloacetonitriles (HANs) (0.21-15.13 μg/L). Different water sources, treatment trains, and enhanced chlorination within the WDS had significant effects on seasonal and spatial variations of the DBP distributions over water conveyance. THM and HAA formation followed the sequence of summer > autumn > winter > spring. On the other hand, the DBP spatial distributions were visualized using the ArcGIS enabled Inverse distance weighting technique. The superposition of different DBP spatial distributions allowed for the identification of the high-risk THMs and HAAs areas based on the average values of THMs (27.49 μg/L) and HAAs (14.06 μg/L). Beyond the comprehensive analyses of DBP distribution in a municipal WDS, the project proposed and validated an innovative methodology to locate the DBP high-risk areas and to reveal the effects of different factors on DBPs distribution in a two-source WDS.
Collapse
Affiliation(s)
- Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhen Pang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianquan Yu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Andrea M Dietrich
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| |
Collapse
|
14
|
Jin X, Zhang J, Li Y, Zhang Z, Cui T, Wang Y, Yao L, Yang X, Qu G, Zheng Y, Jiang G. Exogenous Chemical Exposure Increased Transcription Levels of the Host Virus Receptor Involving Coronavirus Infection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1854-1863. [PMID: 35049283 PMCID: PMC8790821 DOI: 10.1021/acs.est.1c07172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 05/28/2023]
Abstract
Virus receptors are highly involved in mediating the entrance of infectious viruses into host cells. Here, we found that typical chemical exposure caused the upregulation of virus receptor mRNA levels. Chemicals with the same structural characteristics can affect the transcription of angiotensin-converting enzyme 2 (ACE2), a dominant receptor of SARS-CoV-2. Some chemicals can also regulate the transcription of ACE2 by similar regulatory mechanisms, such as multilayer biological responses and the crucial role of TATA-box binding protein associated factor 6. The abovementioned finding suggested that chemical mixtures may have a joint effect on the ACE2 mRNA level in the real scenario, where humans are exposed to numerous chemicals simultaneously in daily life. Chemically regulated virus receptor transcription was in a tissue-dependent manner, with the highest sensitivity in pulmonary epithelial cells. Therefore, in addition to genetic factors, exogenous chemical exposure can be an emerging nongenetic factor that stimulates the transcription of virus receptor abundance and may elevate the protein expression. These alterations could ultimately give rise to the susceptibility to virus infection and disease severity. This finding highlights new requirements for sufficient epidemiological data about exposomes on pathogen receptors in the host.
Collapse
Affiliation(s)
- Xiaoting Jin
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- Department
of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Jingxu Zhang
- Department
of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Yanting Li
- Department
of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Ze Zhang
- Department
of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Tenglong Cui
- Department
of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Yuanyuan Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
| | - Linlin Yao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
| | - Xiaoxi Yang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
| | - Guangbo Qu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, P. R. China
| | - Yuxin Zheng
- Department
of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, P. R. China
| |
Collapse
|
15
|
He G, Zhang T, Li Y, Li J, Chen F, Hu J, Dong F. Comparison of fleroxacin oxidation by chlorine and chlorine dioxide: Kinetics, mechanism and halogenated DBPs formation. CHEMOSPHERE 2022; 286:131585. [PMID: 34293556 DOI: 10.1016/j.chemosphere.2021.131585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Fleroxacin (FLE) is a widely used fluoroquinolones to cure urinary tract infections and respiratory disease, which has been frequently detected in the aquatic environment. The reactivity kinetics of FLE by chlorine and chlorine dioxide (ClO2) and transformation mechanism were investigated in this study. The results showed that FLE was degraded efficiently by chlorine and ClO2, and both reactions followed second-order kinetics overall. The increase of disinfectant dosage and temperature would enhance the degradation of FLE. The highest removal of FLE by chlorine was achieved at a neutral condition (pH 7.4), whereas ClO2 reaction rates increased dramatically with the increasing pH in this study condition. The number of intermediates identified in FLE chlorination and ClO2 oxidation was seven and ten, respectively. The piperazine ring cleavage was the principal and initial reaction in both above reactions. Then, the removal of the piperazine group was predominantly in FLE removal by chlorine, while the decarboxylation mainly occurred in FLE removal by ClO2. The intermediates increased first and then decreased with time, while three kinds of halogenated DBPs increased with time, indicating the above-identified intermediates were further transformed to the halogenated DBPs. Additionally, compared to chlorine reaction, the reaction of ClO2 with FLE reduced the formation of halogenated DBPs, but it also induced the formation of chlorite. The analysis of toxicity showed that compared with chlorination, the oxidation of ClO2 was more suitable for FLE removal.
Collapse
Affiliation(s)
- Guilin He
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Tuqiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Yunfei Li
- Zhejiang Towards Environment Co., Ltd., Hangzhou, 310012, China
| | - Jinzhe Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Feiyong Chen
- Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China
| | - Jun Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
16
|
Wu N, Zhu T. Potential of Therapeutic Bacteriophages in Nosocomial Infection Management. Front Microbiol 2021; 12:638094. [PMID: 33633717 PMCID: PMC7901949 DOI: 10.3389/fmicb.2021.638094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/11/2021] [Indexed: 01/05/2023] Open
Abstract
Nosocomial infections (NIs) are hospital-acquired infections which pose a high healthcare burden worldwide. The impact of NIs is further aggravated by the global spread of antimicrobial resistance (AMR). Conventional treatment and disinfection agents are often insufficient to catch up with the increasing AMR and tolerance of the pathogenic bacteria. This has resulted in a need for alternative approaches and raised new interest in therapeutic bacteriophages (phages). In contrast to the limited clinical options available against AMR bacteria, the extreme abundance and biodiversity of phages in nature provides an opportunity to establish an ever-expanding phage library that collectively provides sustained broad-spectrum and poly microbial coverage. Given the specificity of phage-host interactions, phage susceptibility testing can serve as a rapid and cost-effective method for bacterial subtyping. The library can also provide a database for routine monitoring of nosocomial infections as a prelude to preparing ready-to-use phages for patient treatment and environmental sterilization. Despite the remaining obstacles for clinical application of phages, the establishment of phage libraries, pre-stocked phage vials prepared to good manufacturing practice (GMP) standards, and pre-optimized phage screening technology will facilitate efforts to make phages available as modern medicine. This may provide the breakthrough needed to demonstrate the great potential in nosocomial infection management.
Collapse
Affiliation(s)
- Nannan Wu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tongyu Zhu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Liu Y, Zhu D, Zhao Z, Zhou Q, Pan Y, Shi W, Qiu J, Yang Y. Comparative cytotoxicity studies of halophenolic disinfection byproducts using human extended pluripotent stem cells. CHEMOSPHERE 2021; 263:127899. [PMID: 33297007 DOI: 10.1016/j.chemosphere.2020.127899] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 06/12/2023]
Abstract
2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodophenol (TIP) are a new class of halophenolic disinfection byproducts (DBPs) which have been widely detected in drinking water. In recent years, their developmental toxicity has got increasing public attention due to their potential toxic effects on embryo development towards lower organisms. Nonetheless, the application of human embryos for embryonic toxicologic studies is rendered by ethical and moral considerations, as well as the technical barrier to sustaining normal development beyond a few days. Human extended pluripotent stem (EPS) cells (novel totipotent-like stem cells) represent a much more appropriate cellular model for studying human embryo development. In this study, we utilized human EPS cells to study the developmental toxicity of TCP, TBP and TIP, respectively. All three halophenolic DBPs showed cytotoxicity against human EPS cells in an obvious dose-dependent manner, among which TIP was the most cytotoxic one. Notably, the expression of pluripotent genes in human EPS cells significantly declined after 2,4,6-trihalophenol exposure. Meanwhile, 2,4,6-trihalophenol exposure promoted ectodermal differentiation of human EPS cells in an embryoid bodies (EBs) differentiation assay, while both endodermal and mesodermal differentiation were impaired. These results implied that phenolic halogenated DBPs have specific effects on human embryo development even in the early stage of pregnancy. In summary, we applied human EPS cells as a novel research model for human embryo developmental toxicity study of environmental pollutants, and demonstrated the toxicity of phenolic halogenated DBPs on early embryo development of human beings.
Collapse
Affiliation(s)
- Yujie Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dicong Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhihua Zhao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
18
|
Lemus-Pérez MF, Rodríguez Susa M. The effect of operational conditions on the disinfection by-products formation potential of exopolymeric substances from biofilms in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141148. [PMID: 32798885 DOI: 10.1016/j.scitotenv.2020.141148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Biofilms are ubiquitous in drinking water systems due to their external matrix of exopolymeric substances (EPS) that provide them protection and adaptability. They are even more common in low flow conditions where hydraulics favor their growth. EPS are organic substances (i.e., proteins, carbohydrates and humic substances) that can react with disinfectant, forming disinfection byproducts (DBP), some of which are controlled by water regulation. However, there is little information available on biofilm-disinfectant interaction and the effect of operational conditions such as biofilm age, water velocity, chlorine and pipeline length on the DBP formation potential of EPS (DBPfpEPS). Using experimental setup and studies of two different biofilms: Biofilm 1 (2.6 ± 0.8 mg Cl/L) and Biofilm 2 (0.7 ± 0.2 mg Cl/L), the DBPfpEPS was studied and compared to the DBPfp of filtered water (FW). The DBP studied were trihalomethanes (THM), haloacetic acids (HAA), haloacetonitriles (HAN), chloropropanones (CP) and chloropicrin (CPK). The DBP concentration trend in both EPS and FW was HAA > THM > CP > HAN > CPK. Biofilm age only increased chloroform (CF)fpEPS in Biofilm 1, while other DBPfpEPS decreased. A direct relationship between water velocity and CFfp in Biofilm 1 was found, probably related to higher chlorine diffusion and the production of a more reactive matrix. Chlorine positively affected DBPfpEPS, increasing Cl-HAA, Cl-THM, CPK and Br-HAN. Biofilm 2 produced higher quantities of EPS per meter of pipeline, this constituting a precursor of intermediary DBP 1,1 dichloropropanone (1,1, DCP). The study compared DBP in chlorinated water in contact with biofilm (BCW) and without (CW). Biofilm 1 increased levels of Cl-HAA, Cl-CP and dichloro-acetonitrile, while Biofilm 2 diminished Cl-HAA and Cl-HAN. Biofilm 1 reduced some Br-HAA in BCW, whereas Biofilm 2 promoted Br-HAA and 1,1, DCP in BCW. EPS and biofilms were significant in terms of their effect on DBP formation.
Collapse
Affiliation(s)
- M F Lemus-Pérez
- Environmental Engineering Research Center, Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá D.C., Colombia.
| | - M Rodríguez Susa
- Environmental Engineering Research Center, Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| |
Collapse
|
19
|
Wu B, Hong H, Xia Z, Liu H, Chen X, Chen J, Yan B, Liang Y. Transcriptome analyses unravel CYP1A1 and CYP1B1 as novel biomarkers for disinfection by-products (DBPs) derived from chlorinated algal organic matter. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121685. [PMID: 31776088 DOI: 10.1016/j.jhazmat.2019.121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/11/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Disinfection by-products (DBPs) are generated during chlorination of drinking water. Previous studies demonstrate that DBPs are cytotoxic, genotoxic and associated with an increased risk of human cancer. However, the molecular basis of DBPs-induced toxic effects remains unclear. Here, we chlorinated samples of algal-derived organic matter (AOM) and sediment organic matter (SOM) from a local drinking water reservoir. Chemical properties, toxicities and transcriptomic profiles of human Caco-2 cell exposed to AOM and SOM were compared before and after chlorination. We analyzed chlorination-caused distinct gene expression patterns between AOM and SOM, and identified a set of 22 differentially expressed genes under chlorination of AOM that are different from chlorinated SOM. Consequent network analysis indicates that differential CYP1A1, CYP1B1, ID1 and ID2 are common targets of the upstream regulators predicted in the AOM group, but not the SOM group. Through experimental validation and data integration from previous reports related to DBPs or environmental stressors, we found that CYP1A1 and CYP1B1 are specifically up-regulated after chlorinating AOM. Our study demonstrates that the two CYP1 genes likely act as novel biomarkers of AOM derived DBPs, and this would be helpful for testing drinking water DBPs toxicity and further monitoring drinking water safety.
Collapse
Affiliation(s)
- Binbin Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huachang Hong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Zhengyuan Xia
- Department of Anesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hailong Liu
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xi Chen
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Bin Yan
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, 518036, China; School of Biomedical Sciences & Department of Computer Science, The University of Hong Kong, Hong Kong, China..
| | - Yan Liang
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|