1
|
Anil Kumar S, Kaniganti S, Hima Kumari P, Sudhakar Reddy P, Suravajhala P, P S, Kishor PBK. Functional and biotechnological cues of potassium homeostasis for stress tolerance and plant development. Biotechnol Genet Eng Rev 2024; 40:3527-3570. [PMID: 36469501 DOI: 10.1080/02648725.2022.2143317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022]
Abstract
Potassium (K+) is indispensable for the regulation of a plethora of functions like plant metabolism, growth, development, and abiotic stress responses. K+ is associated with protein synthesis and entangled in the activation of scores of enzymes, stomatal regulation, and photosynthesis. It has multiple transporters and channels that assist in the uptake, efflux, transport within the cell as well as from soil to different tissues, and the grain filling sites. While it is implicated in ion homeostasis during salt stress, it acts as a modulator of stomatal movements during water deficit conditions. K+ is reported to abate the effects of chilling and photooxidative stresses. K+ has been found to ameliorate effectively the co-occurrence of drought and high-temperature stresses. Nutrient deficiency of K+ makes leaves necrotic, leads to diminished photosynthesis, and decreased assimilate utilization highlighting the role it plays in photosynthesis. Notably, K+ is associated with the detoxification of reactive oxygen species (ROS) when plants are exposed to diverse abiotic stress conditions. It is irrefutable now that K+ reduces the activity of NADPH oxidases and at the same time maintains electron transport activity, which helps in mitigating the oxidative stress. K+ as a macronutrient in plant growth, the role of K+ during abiotic stress and the protein phosphatases involved in K+ transport have been reviewed. This review presents a holistic view of the biological functions of K+, its uptake, translocation, signaling, and the critical roles it plays under abiotic stress conditions, plant growth, and development that are being unraveled in recent times.
Collapse
Affiliation(s)
- S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
| | - Sirisha Kaniganti
- Crop transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - P Sudhakar Reddy
- Crop transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - Suprasanna P
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
- Amity Institute of Biotechnology, Amity University Mumbai, Bhatan, Mumbai, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
| |
Collapse
|
2
|
Jiao Z, Shi X, Xu R, Zhang M, Chong L, Zhu Y. HOS1 ubiquitinates SPL9 for degradation to modulate salinity-delayed flowering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2600-2612. [PMID: 39412431 DOI: 10.1111/jipb.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024]
Abstract
Soil salinity is a serious environmental threat to plant growth and flowering. Flowering in the right place, at the right time, ensures maximal reproductive success for plants. Salinity-delayed flowering is considered a stress coping/survival strategy and the molecular mechanisms underlying this process require further studies to enhance the crop's salt tolerance ability. A nuclear pore complex (NPC) component, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 (HOS1), has been recognized as a negative regulator of plant cold responses and flowering. Here, we challenged the role of HOS1 in regulating flowering in response to salinity stress. Interestingly, we discovered that HOS1 can directly interact with and ubiquitinate transcription factor SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9) to promote its protein degradation in response to salinity stress. Moreover, we demonstrated that HOS1 and SPL9 antagonistically regulate plant flowering under both normal and salt stress conditions. HOS1 was further shown to negatively regulate the expression of SPLs and several key flowering genes in response to salinity stress. These results jointly revealed that HOS1 is an important integrator in the process of modulating salinity-delayed flowering, thus offering new perspectives on a salinity stress coping strategy of plants.
Collapse
Affiliation(s)
- Zhixin Jiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xiaoning Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Rui Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Mingxia Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
- Sanya Institute of Henan University, Sanya, 570203, China
| |
Collapse
|
3
|
Alrajeh S, Naveed Khan M, Irhash Putra A, Al-Ugaili DN, Alobaidi KH, Al Dossary O, Al-Obaidi JR, Jamaludin AA, Allawi MY, Al-Taie BS, Abdul Rahman N, Rahmad N. Mapping proteomic response to salinity stress tolerance in oil crops: Towards enhanced plant resilience. J Genet Eng Biotechnol 2024; 22:100432. [PMID: 39674646 PMCID: PMC11555348 DOI: 10.1016/j.jgeb.2024.100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 12/16/2024]
Abstract
Exposure to saline environments significantly hampers the growth and productivity of oil crops, harmfully affecting their nutritional quality and suitability for biofuel production. This presents a critical challenge, as understanding salt tolerance mechanisms in crops is key to improving their performance in coastal and high-salinity regions. Our content might be read more properly: This review assembles current knowledge on protein-level changes related to salinity resistance in oil crops. From an extensive analysis of proteomic research, featured here are key genes and cellular pathways which react to salt stress. The literature evinces that cutting-edge proteomic approaches - such as 2D-DIGE, IF-MS/MS, and iTRAQ - have been required to reveal protein expression patterns in oil crops under salt conditions. These studies consistently uncover dramatic shifts in protein abundance associated with important physiological activities including antioxidant defence, stress-related signalling pathways, ion homeostasis, and osmotic regulation. Notably, proteins like ion channels (SOS1, NHX), osmolytes (proline, glycine betaine), antioxidant enzymes (SOD, CAT), and stress-related proteins (HSPs, LEA) play central roles in maintaining cellular balance and reducing oxidative stress. These findings underline the complex regulatory networks that govern oil crop salt tolerance. The application of this proteomic information can inform breeding and genetic engineering strategies to enhance salt resistance. Future research should aim to integrate multiple omics data to gain a comprehensive view of salinity responses and identify potential markers for crop improvement.
Collapse
Affiliation(s)
- Sarah Alrajeh
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Muhammad Naveed Khan
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Aidhya Irhash Putra
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Dhafar N Al-Ugaili
- Department of Molecular and Medical Biotechnology, College of Biotechnology, AL-Nahrain University, Jadriya, Baghdad, Iraq
| | - Khalid H Alobaidi
- Department of Plant Biotechnology, College of Biotechnology, AL-Nahrain University, Baghdad, Iraq
| | - Othman Al Dossary
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia; Applied Science Research Center. Applied Science Private University, Amman, Jordan.
| | - Azi Azeyanty Jamaludin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia; Center of Biodiversity and Conservation, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
| | - Mohammed Yahya Allawi
- Environmental Health Department, College of Environmental Sciences, University of Mosul, 41002 Mosul, Iraq
| | - Bilal Salim Al-Taie
- Environmental Health Department, College of Environmental Sciences, University of Mosul, 41002 Mosul, Iraq
| | - Norafizah Abdul Rahman
- Gene Marker Laboratory, Faculty of Agriculture and Life Sciences (AGLS), Science South Building, Lincoln University, Lincoln, 7608 Canterbury, New Zealand
| | - Norasfaliza Rahmad
- Agro-Biotechnology Institute, National Institutes of Biotechnology Malaysia, Jalan Bioteknologi, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Yang J, Zhang Z, Li X, Guo L, Li C, Lai J, Han Y, Ye W, Miao Y, Deng M, Cao P, Zhang Y, Ding X, Zhang J, Yang J, Wang S. A gene cluster for polyamine transport and modification improves salt tolerance in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1706-1723. [PMID: 39401077 DOI: 10.1111/tpj.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/11/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Polyamines act as protective compounds directly protecting plants from stress-related damage, while also acting as signaling molecules to participate in serious abiotic stresses. However, the molecular mechanisms underlying these effects are poorly understood. Here, we utilized metabolome genome-wide association study to investigate the polyamine content of wild and cultivated tomato accessions, and we discovered a new gene cluster that drove polyamine content during tomato domestication. The gene cluster contains two polyphenol oxidases (SlPPOE and SlPPOF), two BAHD acyltransferases (SlAT4 and SlAT5), a coumaroyl-CoA ligase (Sl4CL6), and a polyamine uptake transporter (SlPUT3). SlPUT3 mediates polyamine uptake and transport, while the five other genes are involved in polyamine modification. Further salt tolerance assays demonstrated that SlPPOE, SlPPOF, and SlAT5 overexpression lines showed greater phenolamide accumulation and salt tolerance as compared with wild-type (WT). Meanwhile, the exogenous application of Spm to SlPUT3-OE lines displayed salt tolerance compared with WT, while having the opposite effect in slput3 lines, confirms that the polyamine and phenolamide can play a protective role by alleviating cell damage. SlPUT3 interacted with SlPIP2;4, a H2O2 transport protein, to maintain H2O2 homeostasis. Polyamine-derived H2O2 linked Spm to stress responses, suggesting that Spm signaling activates stress response pathways. Collectively, our finding reveals that the H2O2-polyamine-phenolamide module coordinately enhanced tomato salt stress tolerance and provide a foundation for tomato stress-resistance breeding.
Collapse
Affiliation(s)
- Jie Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Zhonghui Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xianggui Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Langchen Guo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Chun Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jun Lai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yige Han
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Weizhen Ye
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yuanyuan Miao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Meng Deng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Peng Cao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yueran Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xiangyu Ding
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jianing Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jun Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Shouchuang Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| |
Collapse
|
5
|
Zhang Y, Liu X, Shi Y, Lang L, Tao S, Zhang Q, Qin M, Wang K, Xu Y, Zheng L, Cao H, Wang H, Zhu Y, Song J, Li K, Xu A, Huang Z. The B-box transcription factor BnBBX22.A07 enhances salt stress tolerance by indirectly activating BnWRKY33.C03. PLANT, CELL & ENVIRONMENT 2024; 47:5424-5442. [PMID: 39189937 DOI: 10.1111/pce.15119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/21/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Salt stress has a detrimental impact on both plant growth and global crop yields. B-box proteins have emerged as pivotal players in plant growth and development regulation. Although the precise role of B-box proteins orchestrating salt stress responses in B. napus (Brassica napus) is not well understood in the current literature, further research and molecular explorations are required. Here, we isolated the B-box protein BnBBX22.A07 from B. napus. The overexpression of BnBBX22.A07 significantly improved the salt tolerance of Arabidopsis (Arabidopsis thaliana) and B. napus. Transcriptomic and histological analysis showed that BnBBX22.A07 enhanced the salt tolerance of B. napus by activating the expression of reactive oxygen species (ROS) scavenging-related genes and decreasing salt-induced superoxide anions and hydrogen peroxide. Moreover, BnBBX22.A07 interacted with BnHY5.C09, which specifically bound to and activated the promoter of BnWRKY33.C03. The presence of BnBBX22.A07 enhanced the activation of BnHY5.C09 on BnWRKY33.C03. Overexpression of BnHY5.C09 and BnWRKY33.C03 improved the salt tolerance of Arabidopsis. Functional analyses revealed that BnBBX22.A07-mediated salt tolerance was partly dependent on WRKY33. Taken together, we demonstrate that BnBBX22.A07 functions positively in salt responses not only by activating ROS scavenging-related genes but also by indirectly activating BnWRKY33.C03. Notably, our study offers a promising avenue for the identification of candidate genes that could be harnessed in breeding endeavours to develop salt-resistant transgenic crops.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Yiji Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Lina Lang
- Shandong Seed Administration Station, Jinan, China
| | - Shunxian Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Qi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Mengfan Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Kai Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Yu Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Lin Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Hanming Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Han Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Yunlin Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Jia Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Jiang J, Zhou Z, Lu K, Gong H, Zhang D, Fang Q, Zhang XY, Song Y. Exploiting light energy utilization strategies in Populus simonii through multitrait-GWAS: insights from stochastic differential models. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:275. [PMID: 39570411 DOI: 10.1007/s00122-024-04775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024]
Abstract
The photosynthetic phenotype of trees undergoes changes and interactions that reflect their abilities to exploit light energy. Environmental disturbances and genetic factors have been recognized as influencing these changes and interactions, yet our understanding of the underlying biological mechanisms remains limited, particularly in stochastic environments. Here, we developed a high-dimensional stochastic differential framework (HDSD) for the genome-wide mapping of quantitative trait loci (QTLs) that regulate competition or cooperation in environment-dependent phenotypes. The framework incorporates random disturbances into system mapping, a dynamic model that views multiple traits as a system. Not only does this framework describe how QTLs regulate a single phenotype, but also how they regulate multiple phenotypes and how they interact with each other to influence phenotypic variations. To validate the proposed model, we conducted mapping experiments using chlorophyll fluorescence phenotype data from Populus simonii. Through this analysis, we identified several significant QTLs that may play a crucial role in photosynthesis in stochastic environments, in which 76 significant QTLs have already been reported to encode proteins or enzymes involved in photosynthesis through functional annotation. The constructed genetic regulatory network allows for a more comprehensive analysis of the internal genetic interactions of the photosynthesis process by visualizing the relationships between SNPs. This study shows a new way to understand the genetic mechanisms that govern the photosynthetic phenotype of trees, focusing on how environmental stochasticity and genetic variation interact to shape their light energy utilization strategies.
Collapse
Affiliation(s)
- Junze Jiang
- College of Science, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Ziyang Zhou
- College of Science, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Kaiyan Lu
- College of Science, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Huiying Gong
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Deqiang Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Qing Fang
- Faculty of Science, Yamagata University, Yamagata, 990, Japan
| | - Xiao-Yu Zhang
- College of Science, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
| | - Yuepeng Song
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
| |
Collapse
|
7
|
Tribhuvan KU, Shivakumaraswamy M, Mishra T, Kaur S, Sarkar B, Pattanayak A, Singh BK. Identification, genomic localization, and functional validation of salt-stress-related lncRNAs in Indian Mustard (Brassica juncea L.). BMC Genomics 2024; 25:1121. [PMID: 39567864 PMCID: PMC11580500 DOI: 10.1186/s12864-024-10964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Indian Mustard (Brassica juncea L.) is a globally cultivated winter oilseed crop of the rapeseed-mustard group. It is predominantly grown in the semi-arid northwest agroclimatic zone of India, characterized by high soil salinity. Enhancing tolerance to salt stress in B. juncea is therefore crucial for sustaining its production in this region. Long non-coding RNAs (lncRNAs) play critical roles in coordinating gene expression under various abiotic stresses, including salt stress, but their involvement in the salt stress response in B. juncea remains largely unknown. In this study, we conducted RNA-seq analysis on control, salt-stressed, and salt-shocked young leaves of the salt-tolerant B. juncea cv CS-52. We identified a total of 3,602 differentially expressed transcripts between stress versus control and shock versus control samples. Among these, 61 were identified as potential lncRNAs, with 21 specific to salt stress and 40 specific to salt shock. Of the 21 lncRNAs specific to salt stress, 15 were upregulated and six were downregulated, while all 40 lncRNAs unique to salt shock were downregulated. Chromosomal distribution analysis of the lncRNAs revealed their uneven placement across 18 chromosomes in B. juncea. RNA-RNA interaction analysis between salt stress-upregulated lncRNAs and salt stress-related miRNAs identified 26 interactions between 10 lncRNAs and 23 miRNAs and predicted 13 interactions between six miRNAs and 13 mRNAs. Finally, six lncRNA-miRNA-mRNA interaction networks were established, involving five lncRNAs, 13 miRNAs, and 23 mRNAs. RT-qPCR analysis revealed the upregulation of four out of five lncRNAs, along with their target mRNAs, supporting their involvement in the salt stress response in B. juncea.
Collapse
Affiliation(s)
- Kishor U Tribhuvan
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - M Shivakumaraswamy
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - Twinkle Mishra
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - Simardeep Kaur
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793 103, India
| | - Biplab Sarkar
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - A Pattanayak
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India
| | - Binay K Singh
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834 003, India.
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793 103, India.
| |
Collapse
|
8
|
Sun L, Wang L, Niu J, Yang W, Li Z, Liu L, Gao S. The maize gene ZmSBP17 encoding an SBP transcription factor confers osmotic resistance in transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1483486. [PMID: 39574449 PMCID: PMC11578699 DOI: 10.3389/fpls.2024.1483486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024]
Abstract
Among the major abiotic stresses, salt and drought have considerably affected agricultural development globally by interfering with gene expression profiles and cell metabolism. Transcription factors play crucial roles in activating or inhibiting the expression of stress-related genes in response to abiotic stress in plants. In this study, the Zea mays L. SQUAMOSA promoter-binding protein gene (ZmSBP17) was identified, and the molecular regulatory mechanism of osmotic stress tolerance was analyzed. Phylogenetic analysis confirmed that ZmSBP17 is part of the SBP gene family and is closely related to OsSBP17. The ZmSBP17-GFP fusion protein exhibited green fluorescence in the nucleus, as determined via tobacco epidermal transient transformation system. Acting as a transcriptional activator, the overexpression of ZmSBP17 in Arabidopsis significantly enhanced the expression of genes encoding superoxide dismutases (CSD1/2, MSD1), catalases (CAT1/2), ascorbate peroxidase 1 (APX1), and myeloblastosis transcription factors (AtMYB53/65), which increased the activity of reactive oxygen species (ROS)-scavenging enzymes and reduced ROS levels. Additionally, the expression of abiotic stress-related genes, such as AtDREB2A and AtNHX1, was significantly upregulated by ZmSBP17. Furthermore, ZmSBP17 specifically bound to cis-acting elements containing GTAC core sequences in the promoters of stress-related genes, suggesting that ZmSBP17 regulates the transcription of certain genes by recognizing these sequences. These results indicate that the overexpression of ZmSBP17 in Arabidopsis thaliana significantly increased tolerance to osmotic stress during the germination and seedling stages, which may enhance our understanding of the biological functions of SBPs in maize under abiotic stresses.
Collapse
Affiliation(s)
- Lifang Sun
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Lijiao Wang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jinping Niu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wei Yang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Zhifang Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Libin Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Shuren Gao
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| |
Collapse
|
9
|
Chen H, Ailijiang N, Cui Y, Wu M, He C, Zhang Y, Zhang Y, Aikedai S. Enhanced removal of PPCPs and antibiotic resistance genes in saline wastewater using a bioelectrochemical-constructed wetland system. ENVIRONMENTAL RESEARCH 2024; 260:119794. [PMID: 39142461 DOI: 10.1016/j.envres.2024.119794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) are insufficiently degraded in saline wastewater treatment processes and are found at high concentrations and detection frequencies in aquatic environments. In this study, the wetland plant Thalia dealbata was selected using a screening plant experiment to ensure good salt tolerance and high efficiency in removing PPCPs. An electric integrated vertical-flow constructed wetland (E-VFCW) was developed to improve the removal of PPCPs and reduce the abundance of antibiotic resistance genes (ARGs). The removal efficiency of ofloxacin, enrofloxacin, and diclofenac in the system with anaerobic cathodic and aerobic anodic chambers is higher than that of the control system (41.84 ± 2.88%, 47.29 ± 3.01%, 53.29 ± 2.54%) by approximately 20.31%, 16.04%, and 35.25%. The removal efficiency of ibuprofen in the system with the aerobic anodic and anaerobic cathodic chamber was 28.51% higher than that of the control system (72.41 ± 3.06%) and promotes the reduction of ARGs. Electrical stimulation can increase the activity of plant enzymes, increasing their adaptability to stress caused by PPCPs, and PPCPs are transferred to plants. Species related to PPCPs biodegradation (Geobacter, Lactococcus, Hydrogenophaga, and Nitrospira) were enriched in the anodic and cathodic chambers of the system. This study provides an essential reference for the removal of PPCPs in saline-constructed wetlands.
Collapse
Affiliation(s)
- Hailiang Chen
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China.
| | - Yincang Cui
- The Analysis and Testing Center of Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Mei Wu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Yiming Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Yaotian Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - SiKandan Aikedai
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| |
Collapse
|
10
|
Lv B, Deng H, Wei J, Feng Q, Liu B, Zuo A, Bai Y, Liu J, Dong J, Ma P. SmJAZs-SmbHLH37/SmERF73-SmSAP4 module mediates jasmonic acid signaling to balance biosynthesis of medicinal metabolites and salt tolerance in Salvia miltiorrhiza. THE NEW PHYTOLOGIST 2024; 244:1450-1466. [PMID: 39262232 DOI: 10.1111/nph.20110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Salvia miltiorrhiza holds significant importance in traditional Chinese medicine. Stress-associated proteins (SAP), identified by A20/AN1 zinc finger structural domains, play crucial roles in regulating plant growth, development, resistance to biotic and abiotic stress, and hormone responses. Herein, we conducted a genome-wide identification of the SAP gene family in S. miltiorrhiza. The expression analysis revealed a significant upregulation of SmSAP4 under methyl jasmonate (MeJA) and salt stress. Overexpressing SmSAP4 in S. miltiorrhiza hairy roots increased tanshinones content while decreasing salvianolic acids content, while RNAi-silencing SmSAP4 had the opposite effect. SmSAP4 overexpression in both Arabidopsis thaliana and S. miltiorrhiza hairy roots decreased their salt stress tolerance, accompanied by increased activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a hindered ability to maintain the Na+ : K+ ratio. Further investigations demonstrated that MeJA alleviated the inhibitory effect of SmJAZ3 on SmSAP4 activation by SmbHLH37 and SmERF73. However, MeJA did not affect the inhibition of SmSAP4 activation by SmJAZ8 through SmbHLH37. In summary, our research reveals that SmSAP4 negatively regulates the accumulation of salvianic acid through the SmJAZs-SmbHLH37/SmERF73-SmSAP4 module and positively impacting the accumulation of tanshinones. Additionally, it functions as a negative regulator under salt stress.
Collapse
Affiliation(s)
- Bingbing Lv
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Huaiyu Deng
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jia Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China
| | - Qiaoqiao Feng
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Bo Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Anqi Zuo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yichen Bai
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
11
|
Hua Y, Pei M, Song H, Liu Y, Zhou T, Chao H, Yue C, Huang J, Qin G, Feng Y. Boron confers salt tolerance through facilitating BnaA2.HKT1-mediated root xylem Na + unloading in rapeseed (Brassica napus L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1326-1342. [PMID: 39453388 DOI: 10.1111/tpj.17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Boron (B) is an important limiting factor for plant growth and yield in saline soils, but the underlying molecular mechanisms remain poorly understood. In this study, we found that appropriate B supply obviously complemented rapeseed (Brassica napus L.) growth under salinity accompanied by higher biomass production and less reactive oxygen species accumulation. Determination of Na+ content in shoots and roots indicated that B significantly repressed root-to-shoot Na+ translocation, and non-invasive micro-tests of root xylem sap demonstrated that B increased xylem Na+ unloading in the roots of rapeseed plants under salinity. Comparative transcriptomic profiling revealed that B strongly upregulated BnaHKT1s expression, especially BnaA2.HKT1, in rapeseed roots exposed to salinity. In situ hybridizations analysis showed that BnaA2.HKT1 was significantly induced in root stelar tissues by high B (HB) under salinity. Green fluorescent protein and yeast heterologous expression showed that BnaA2.HKT1 functioned as a plasma membrane-localized Na+ transporter. Knockout of BnaA2.HKT1 by CRISPR/Cas9 resulted in hypersensitive of rapeseed plants to salinity even under HB condition, with higher shoot Na+ accumulation and lower biomass production. By contrast, overexpression of BnaA2.HKT1 ameliorated salinity-induced growth inhibition under B deficiency and salinity. Overall, our results proposed that B functioned as a positive regulator for the rapeseed growth and seed production under salt stress through facilitating BnaA2.HKT1-mediated root xylem Na+ unloading. This study may also provide an alternative strategy for the improvement of crop growth and development in saline soils.
Collapse
Affiliation(s)
- Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Minnan Pei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haili Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying Liu
- School of Biological Engineering, Xinxiang Institute of Engineering, Xinxiang, 453700, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Caipeng Yue
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinyong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangyong Qin
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingna Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
12
|
Luo D, Li Z, Mubeen S, Rehman M, Cao S, Wang C, Yue J, Pan J, Jin G, Li R, Chen T, Chen P. Integrated transcriptomic and proteomic analysis revealed the regulatory role of 5-azacytidine in kenaf salt stress alleviation. J Proteomics 2024; 309:105328. [PMID: 39368635 DOI: 10.1016/j.jprot.2024.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Salinity stress limits agricultural production. The DNA methyltransferase inhibitor, 5-azacitidine (5-azaC), plays a role in plant abiotic stress regulation, but its molecular basis in mediating salinity tolerance in kenaf remains unclear. To investigate the effects on 5-azaC on alleviating salt stress, kenaf seedlings were pre-treated with 0, 50, 100, 150, and 200 μM 5-azaC and then exposed to 150 mM NaCl in a nutrient solution. Physiological, transcriptomic, and proteomic analyses were conducted on the root system to understand the regulatory mechanism of 5-azaC (comparing 5-azaC150 and control group 5-azaC0) under salt stress. The results indicated that 5-azaC significantly mitigated salt stress in kenaf by activating the antioxidant system, reducing reactive oxygen species (ROS), and increasing starch, soluble sugars, and adenosine triphosphate (ATP) content. A total of 14,348 differentially expressed genes (DEGs) and 313 differentially abundant proteins (DAPs) were identified. Combined proteomic and transcriptomic analysis revealed 27 DEGs/DAPs, with jointly up-regulated proteins (genes) including HcTHI1, HcBGLU11, and HcCBL1, and jointly down-regulated proteins (genes) including HcGAPDH, HcSS, and HcPP2C52. Overexpression and virus-induced gene silencing (VIGS) of HcPP2C52 demonstrated its role as a negative regulator of salt tolerance. These findings provide insights into the regulatory role of 5-azaC in plant responses to abiotic stresses. SIGNIFICANCE: The specific molecular mechanism by which 5-azaC affects gene expression and protein activity of kenaf has been revealed, leading to enhanced salt tolerance.
Collapse
Affiliation(s)
- Dengjie Luo
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China; College of Life Science & Technology, Guangxi University, Nanning 530004, China.
| | - Zengqiang Li
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China; Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Samavia Mubeen
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China.
| | - Muzammal Rehman
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China.
| | - Shan Cao
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China.
| | - Caijin Wang
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China.
| | - Jiao Yue
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China.
| | - Jiao Pan
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China.
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China.
| | - Ru Li
- College of Life Science & Technology, Guangxi University, Nanning 530004, China.
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China.
| | - Peng Chen
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China.
| |
Collapse
|
13
|
He L, Li C, Chen Z, Huo Y, Zhou B, Xie F. Combined metabolome and transcriptome analysis reveal the mechanism of water stress in Ophiocordyceps sinensis. BMC Genomics 2024; 25:1014. [PMID: 39472792 PMCID: PMC11523607 DOI: 10.1186/s12864-024-10785-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Ophiocordyceps sinensis (O. sinensis) is the dominant bacterium in the asexual stage of Chinese cordyceps, and its growth usually suffers from water stress. Thus, simulating its ecological growth environment is crucial for artificial cultivation. This study aimed to reveal the mechanism underlying the water stress tolerance of Ophiocordyceps sinensis (O. sinensis) by combining metabolomic and transcriptome analyses to identify crucial pathways related to differentially expressed genes (DEGs) and metabolites (DEMs) involved in the response to water stress. RESULTS Gene coexpression analysis revealed that many genes related to 'betalain biosynthesis', 'tyrosine metabolism', 'linoleic acid metabolism', 'fructose and mannose metabolism', and 'starch and sucrose metabolism' were highly upregulated after 20d-water stress. Metabolomic analysis revealed that many metabolites regulated by these genes in these metabolic pathways were markedly decreased. On the one hand, we surmised that carbohydrate metabolism and the β-oxidation pathway worked cooperatively to generate enough acyl-CoA and then entered the TCA cycle to provide energy when exposed to water stress. On the other hand, the betalain biosynthesis and tyrosine metabolism pathway might play crucial roles in response to water stress in O. sinensis by enhancing cell osmotic potential and producing osmoregulatory substances (betaine) and antioxidant pigments (eumelanin). CONCLUSIONS Overall, our findings provide important information for further exploration of the mechanism underlying the water stress tolerance of O. sinensis for the industrialization of artificial cultivation of Chinese cordyceps.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - ChuanYong Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - ZhaoHe Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - YanLi Huo
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Bo Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China.
| |
Collapse
|
14
|
Wang Y, Liu H, Wang M, Liu J, Geng G, Wang Y. Salt Tolerance in Sugar Beet: From Impact Analysis to Adaptive Mechanisms and Future Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:3018. [PMID: 39519937 PMCID: PMC11548545 DOI: 10.3390/plants13213018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
The continuous global escalation of soil salinization areas presents severe challenges to the stability and growth of agricultural development across the world. In-depth research on sugar beet (Beta vulgaris L.), an important economic and sugar crop with salt tolerance characteristics, is crucial for to determine its salt-tolerance mechanisms, which has important practical implications for production. This review summarizes the multifaceted effects of salt stress on sugar beet, ranging from individual plant responses to cellular and molecular adaptations. Sugar beet exhibits robust salt-tolerance mechanisms, including osmotic regulation, ion balance management, and the compartmentalization of toxic ions. Omics technologies, including genomics, transcriptomics, proteomics, post-translational modification omics and metabolomics, have played crucial roles in elucidating these mechanisms. Key genes and pathways involved in salt tolerance in sugar beet have been identified, paving the way for targeted breeding strategies and biotechnological advancements. Understanding these mechanisms not only enhances our knowledge of sugar beet's adaptation strategies but also provides insights for improving salt tolerance in other crops. Future studies should focus on analyzing gene expression changes in sugar beet under salt stress to gain insight into the molecular aspects of its salt-tolerance mechanisms. Meanwhile, the effects of different environmental conditions on sugar beet adaptation strategies should also be investigated to improve their growth potential in salinized soils.
Collapse
Affiliation(s)
- Yuetong Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Huajun Liu
- Cash Crops Research Institute of Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, Xinjiang, China
| | - Maoqian Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Jiahui Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Gui Geng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Yuguang Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
15
|
Zhang H, Wang S, Li O, Zeng C, Liu X, Wen J, Zhao L, Fu T, Wan H, Shen J. Genome-wide identification of alcohol dehydrogenase (ADH) gene family in oilseed rape (Brassica napus L.) and BnADH36 functional verification under salt stress. BMC PLANT BIOLOGY 2024; 24:1013. [PMID: 39465389 PMCID: PMC11520067 DOI: 10.1186/s12870-024-05716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Alcohol dehydrogenase (ADH) is an enzyme that binds to zinc, facilitating the interconversion of ethanol and acetaldehyde or other corresponding alcohols/aldehydes in the pathway of ethanol fermentation. It plays a pivotal role in responding to environmental stress. However, the response of the ADH family to abiotic stress remains unknown in rapeseed. RESULT In this study, we conducted a comprehensive genome-wide investigation of the ADH family in rapeseed, encompassing analysis of their gene structure, replication patterns, conserved motifs, cis-acting elements, and response to stress. A total of 47 ADH genes were identified within the rapeseed genome. Through phylogenetic analysis, BnADHs were classified into four distinct clades (I, II, IV, V). Prediction of protein domains revealed that all BnADH members possessed a GroES-like (ADH_N) domain and a zinc-bound (ADH_zinc_N) domain. Analysis of promoter sequences demonstrated that BnADHs contained numerous cis-acting elements associated with hormone and stress responses, indicating their widespread involvement in various biological regulatory processes. Expression profiling under different concentrations of salt stress treatments (0%, 0.4%, 0.8%, 1.0% NaCl) further highlighted the significant role played by the BnADH family in abiotic stress response mechanisms. Overexpression of BnADH36 in rapeseed significantly improved the salt tolerance of rapeseed. CONCLUSION The features of the BnADH family in rapeseed was comprehensively characterized in this study, which could provide reference to the research of BnADHs in abiotic stress response.
Collapse
Affiliation(s)
- Hao Zhang
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shanshan Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, 430056, China
| | - Ouqi Li
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, 430056, China
| | - Xiaoyun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, 430056, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heping Wan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Wuhan, 430056, China.
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Yang G, Li Z, Rong M, Yu R, Zhang Q, Wang G, Xu Z, Du X, Xu X. Comparative transcriptome analysis to identify the important mRNA and lncRNA associated with salinity tolerance in alfalfa. PeerJ 2024; 12:e18236. [PMID: 39430557 PMCID: PMC11490228 DOI: 10.7717/peerj.18236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Salinity represents a fatal factor affecting the productivity of alfalfa. But the regulation of salinity tolerance via lncRNAs and mRNAs remains largely unclear within alfalfa. For evaluating salinity stress resistance-related lncRNAs and mRNAs within alfalfa, we analyzed root transcriptomics in two alfalfa varieties, GN5 (salinity-tolerant) and GN3 (salinity-sensitive), after treatments with NaCl at 0 and 150 mM. There were altogether 117,677 lncRNAs and 172,986 mRNAs detected, including 1,466 lncRNAs and 2,288 mRNAs with significant differential expression in GN5150/GN50, GN3150/GN30, GN50/GN30, and GN5150/GN3150. As revealed by GO as well as KEGG enrichment, some ionic and osmotic stress-associated genes, such as HPCA1-LRR, PP2C60, PP2C71, CRK1, APX3, HXK2, BAG6, and ARF1, had up-regulated levels in GN5 compared with in GN3. In addition, NaCl treatment markedly decreased CNGC1 expression in GN5. According to co-expressed network analyses, six lncRNAs (TCONS_00113549, TCONS_00399794, TCONS_00297228, TCONS_00004647, TCONS_00033214 and TCONS_00285177) modulated 66 genes including ARF1, BAG6, PP2C71, and CNGC1 in alfalfa roots, suggesting that these nine genes and six lncRNAs probably facilitated the different salinity resistance in GN5 vs. GN3. These results shed more lights on molecular mechanisms underlying genotype difference in salinity tolerance among alfalfas.
Collapse
Affiliation(s)
- Gaimei Yang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Zhengyan Li
- Animal Husbandry and Veterinary Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Mengru Rong
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Rugang Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qiting Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Guoliang Wang
- Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Zhiming Xu
- Animal Husbandry and Veterinary Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xueling Du
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Xian Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
17
|
Li YN, Lei C, Yang Q, Yu X, Li S, Sun Y, Ji C, Zhang C, Xue JA, Cui H, Li R. Identification and expression analysis of calcium-dependent protein kinase family in oat ( Avena sativa L.) and their functions in response to saline-alkali stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1395696. [PMID: 39450084 PMCID: PMC11499199 DOI: 10.3389/fpls.2024.1395696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Calcium-dependent protein kinases (CDPKs) serve as calcium ion sensors and play crucial roles in all aspects of plant life cycle. While CDPK gene family has been extensively studied in various plants, there is limited information available for CDPK members in oat, an important cereal crop worldwide. Totally, 60 AsCDPK genes were identified in oat genome and were classified into four subfamilies based on their phylogenetic relationship. The members within each subfamily shared similar gene structure and conserved motifs. Collinearity analysis revealed that AsCDPK gene amplification was attributed to segmental duplication events and underwent strong purifying selection. AsCDPK promoters were predicted to contain cis-acting elements associated with hormones, biotic and abiotic stresses. AsCDPK gene expressions were induced by different salt stresses, exhibiting stress-specific under different salt treatments. Moreover, overexpression of AsCDPK26 gene enhanced salt resistance in C. reinhardtii, a single-cell photoautotrophic model plants. Further analysis revealed a significant correlation between AsCDPK26 and Na+/H+ antiporter 1 (p<0.05), suggesting that AsCDPK26 may interact with ion transporter to modulate salt resistance. These results not only provide valuable insights into AsCDPK genes in response to different salt stresses, but also lay the foundation to mine novel candidates for improving salt tolerance in oat and other crops.
Collapse
Affiliation(s)
- Ya-nan Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunyan Lei
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Qian Yang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yan Sun
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunhui Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jin-ai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Bio-Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandon, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
18
|
Che J, Yamaji N, Wang SF, Xia Y, Yang SY, Su YH, Shen RF, Ma JF. OsHAK4 functions in retrieving sodium from the phloem at the reproductive stage of rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:76-90. [PMID: 39139125 DOI: 10.1111/tpj.16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Soil salinity significantly limits rice productivity, but it is poorly understood how excess sodium (Na+) is delivered to the grains at the reproductive stage. Here, we functionally characterized OsHAK4, a member of the clade IV HAK/KUP/KT transporter subfamily in rice. OsHAK4 was localized to the plasma membrane and exhibited influx transport activity for Na+, but not for K+. Analysis of organ- and growth stage-dependent expression patterns showed that very low expression levels of OsHAK4 were detected at the vegetative growth stage, but its high expression in uppermost node I, peduncle, and rachis was found at the reproductive stage. Immunostaining indicated OsHAK4 localization in the phloem region of node I, peduncle, and rachis. Knockout of OsHAK4 did not affect the growth and Na+ accumulation at the vegetative stage. However, at the reproductive stage, the hak4 mutants accumulated higher Na+ in the peduncle, rachis, husk, and brown rice compared to the wild-type rice. Element imaging revealed higher Na+ accumulation at the phloem region of the peduncle in the mutants. These results indicate that OsHAK4 plays a crucial role in retrieving Na+ from the phloem in the upper nodes, peduncle, and rachis, thereby preventing Na+ distribution to the grains at the reproductive stage of rice.
Collapse
Affiliation(s)
- Jing Che
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Shao Fei Wang
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Xia
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shun Ying Yang
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yan Hua Su
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren Fang Shen
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
19
|
Wu L, Song Z, Wu Y, Xia S, Kuzyakov Y, Hartley IP, Fang Y, Yu C, Wang Y, Chen J, Guo L, Li Z, Zhao X, Yang X, Zhang Z, Liu S, Wang W, Ran X, Liu CQ, Wang H. Organic matter composition and stability in estuarine wetlands depending on soil salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173861. [PMID: 38871323 DOI: 10.1016/j.scitotenv.2024.173861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Coastal wetlands are key players in mitigating global climate change by sequestering soil organic matter. Soil organic matter consists of less stable particulate organic matter (POM) and more stable mineral-associated organic matter (MAOM). The distribution and drivers of MAOM and POM in coastal wetlands have received little attention, despite the processes and mechanisms differ from that in the upland soils. We explored the distribution of POM and MAOM, their contributions to SOM, and the controlling factors along a salinity gradient in an estuarine wetland. In the estuarine wetland, POM C and N were influenced by soil depth and vegetation type, whereas MAOM C and N were influenced only by vegetation type. In the estuarine wetland, SOM was predominantly in the form of MAOM (> 70 %) and increased with salinity (70 %-76 %), leading to long-term C sequestration. Both POM and MAOM increased with SOM, and the increase rate of POM was higher than that of MAOM. Aboveground plant biomass decreased with increasing salinity, resulted in a decrease in POM C (46 %-81 %) and N (52 %-82 %) pools. As the mineral amount and activity, and microbial biomass decreased, the MAOM C (2.5 %-64 %) and N pool (8.6 %-59 %) decreased with salinity. When evaluating POM, the most influential factors were microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Key parameters, including MBC, DOC, soil salinity, soil water content, aboveground plant biomass, mineral content and activity, and bulk density, were identified as influencing factors for both MAOM abundance. Soil water content not only directly controlled MAOM, but together with salinity also indirectly regulated POM and MAOM by controlling microbial biomass and aboveground plant biomass. Our findings have important implications for improving the accumulation and increased stability of soil organic matter in coastal wetlands, considering the global sea level rise and increased frequency of inundation.
Collapse
Affiliation(s)
- Lele Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China; Haihe Laboratory of Sustainable Chemical Transformations, China.
| | - Yuntao Wu
- College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Shaopan Xia
- Institute of Resource, Ecosystem and Environment of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, 37077 Göttingen, Germany; Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia; Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Iain P Hartley
- Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia
| | - Yunying Fang
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan 4111, Australia
| | - Changxun Yu
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yidong Wang
- Tianjin Key Laboratory of Water Resources and Environment, School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Department of Agroecology, Aarhus University, 8830 Tjele, Denmark
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Zimin Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Xiangwei Zhao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China
| | - Xiaomin Yang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Zhenqing Zhang
- Tianjin Key Laboratory of Water Resources and Environment, School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Shuyan Liu
- National Nature Reserve Management Center of Liujiang Basin Geological Relics, Qinhuangdao, China
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiangbin Ran
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin, China; Haihe Laboratory of Sustainable Chemical Transformations, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
20
|
Ren Y, Jiang M, Zhu JK, Zhou W, Zhao C. Simultaneous mutations in ITPK4 and MRP5 genes result in a low phytic acid level without compromising salt tolerance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2109-2125. [PMID: 39031490 DOI: 10.1111/jipb.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Generation of crops with low phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6)) is an important breeding direction, but such plants often display less desirable agronomic traits. In this study, through ethyl methanesulfonate-mediated mutagenesis, we found that inositol 1,3,4-trisphosphate 5/6-kinase 4 (ITPK4), which is essential for producing InsP6, is a critical regulator of salt tolerance in Arabidopsis. Loss of function of ITPK4 gene leads to reduced root elongation under salt stress, which is primarily because of decreased root meristem length and reduced meristematic cell number. The itpk4 mutation also results in increased root hair density and increased accumulation of reactive oxygen species during salt exposure. RNA sequencing assay reveals that several auxin-responsive genes are down-regulated in the itpk4-1 mutant compared to the wild-type. Consistently, the itpk4-1 mutant exhibits a reduced auxin level in the root tip and displays compromised gravity response, indicating that ITPK4 is involved in the regulation of the auxin signaling pathway. Through suppressor screening, it was found that mutation of Multidrug Resistance Protein 5 (MRP5)5 gene, which encodes an ATP-binding cassette (ABC) transporter required for transporting InsP6 from the cytoplasm into the vacuole, fully rescues the salt hypersensitivity of the itpk4-1 mutant, but in the itpk4-1 mrp5 double mutant, InsP6 remains at a very low level. These results imply that InsP6 homeostasis rather than its overall amount is beneficial for stress tolerance in plants. Collectively, this study uncovers a pair of gene mutations that confer low InsP6 content without impacting stress tolerance, which offers a new strategy for creating "low-phytate" crops.
Collapse
Affiliation(s)
- Yuying Ren
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Mengdan Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies, Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunzhao Zhao
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
21
|
Peng X, Ruan J, Jiang F, Zhou R, Wu Z. Identification of the BZR Family in Garlic ( Allium sativum L.) and Verification of the AsBZR11 under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2749. [PMID: 39409617 PMCID: PMC11478727 DOI: 10.3390/plants13192749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Brassinazole-Resistant (BZR) is an important transcription factor (TF) in the brassinosteroid (BR) signaling pathway, which plays a crucial role in plant growth, development and stress resistance. In this study, we performed a genome-wide analysis of BZRs in garlic (Allium sativum L.) and identified a total of 11 members of the AsBZR gene family. By comparing the expression patterns of AsBZR genes under salt stress, the candidate gene AsBZR11 with salt tolerance function was identified. Subcellular localization results showed that AsBZR11 was localized in the nucleus. The salt tolerance of overexpression lines improved, and the germination rate and root length of overexpression lines increased as compared with wild type. The content of reactive oxygen species (ROS) decreased, and the activity of antioxidant enzymes increased in AsBZR11-OE, suggesting that AsBZR11 has the function of improving plant salt tolerance. Our results enriched the knowledge of plant BZR family and laid a foundation for the molecular mechanism of salt tolerance of garlic, which will provide a theoretical basis for the subsequent creation of salt-tolerant germplasm resources.
Collapse
Affiliation(s)
- Xianghan Peng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.P.); (J.R.); (F.J.); (R.Z.)
| | - Jiaojiao Ruan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.P.); (J.R.); (F.J.); (R.Z.)
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.P.); (J.R.); (F.J.); (R.Z.)
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.P.); (J.R.); (F.J.); (R.Z.)
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.P.); (J.R.); (F.J.); (R.Z.)
| |
Collapse
|
22
|
Shriti S, Bhar A, Roy A. Unveiling the role of epigenetic mechanisms and redox signaling in alleviating multiple abiotic stress in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1456414. [PMID: 39363922 PMCID: PMC11446805 DOI: 10.3389/fpls.2024.1456414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024]
Abstract
Anthropogenic activities and subsequent global climate change instigate drastic crop productivity and yield changes. These changes comprise a rise in the number and severity of plant stress factors, which can arise simultaneously or sequentially. When abiotic stress factors are combined, their impact on plants is more substantial than that of a singleton stress factor. One such impact is the alteration of redox cellular homeostasis, which, in turn, can regulate downstream stress-responsive gene expression and resistance response. The epigenetic regulation of gene expression in response to varied stress factors is an interesting phenomenon, which, conversely, can be stable and heritable. The epigenetic control in plants in response to abiotic stress combinations and their interactions with cellular redox alteration is an emerging field to commemorate crop yield management under climate change. The article highlights the integration of the redox signaling pathways and epigenetic regulations as pivotal components in the complex network of plant responses against multi-combinatorial stresses across time and space. This review aims to lay the foundation for developing novel approaches to mitigate the impact of environmental stresses on crop productivity, bridging the gap between theoretical understanding and practical solutions in the face of a changing climate and anthropogenic disturbances.
Collapse
Affiliation(s)
- Surbhi Shriti
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| | - Anirban Bhar
- Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, India
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| |
Collapse
|
23
|
Thabet SG, Safhi FA, Börner A, Alqudah AM. Genome-wide association scan reveals the reinforcing effect of nano-potassium in improving the yield and quality of salt-stressed barley via enhancing the antioxidant defense system. PLANT MOLECULAR BIOLOGY 2024; 114:97. [PMID: 39249621 DOI: 10.1007/s11103-024-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 09/10/2024]
Abstract
Salinity is one of the major environmental factor that can greatly impact the growth, development, and productivity of barley. Our study aims to detect the natural phenotypic variation of morphological and physiological traits under both salinity and potassium nanoparticles (n-K) treatment. In addition to understanding the genetic basis of salt tolerance in barley is a critical aspect of plant breeding for stress resilience. Therefore, a foliar application of n-K was applied at the vegetative stage for 138 barley accessions to enhance salt stress resilience. Interestingly, barley accessions showed high significant increment under n-K treatment compared to saline soil. Based on genome-wide association studies (GWAS) analysis, causative alleles /reliable genomic regions were discovered underlying improved salt resilience through the application of potassium nanoparticles. On chromosome 2H, a highly significant QTN marker (A:C) was located at position 36,665,559 bp which is associated with APX, AsA, GSH, GS, WGS, and TKW under n-K treatment. Inside this region, our candidate gene is HORVU.MOREX.r3.2HG0111480 that annotated as NAC domain protein. Allelic variation detected that the accessions carrying C allele showed higher antioxidants (APX, AsA, and GSH) and barley yield traits (GS, WGS, and TKW) than the accessions carrying A allele, suggesting a positive selection of the accessions carrying C allele that could be used to develop barley varieties with improved salt stress resilience.
Collapse
Affiliation(s)
- Samar G Thabet
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr 3, D-06466, Seeland, Germany
| | - Ahmad M Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
24
|
Wang F, Jiang X, Liu Y, Zhang G, Zhang Y, Jin Y, Shi S, Men X, Liu L, Wang L, Liao W, Chen X, Chen G, Liu H, Ahmad M, Fu C, Wang Q, Zhang H, Lee SY. Tobacco as a promising crop for low-carbon biorefinery. Innovation (N Y) 2024; 5:100687. [PMID: 39285903 PMCID: PMC11402777 DOI: 10.1016/j.xinn.2024.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Energy crops play a vital role in meeting future energy and chemical demands while addressing climate change. However, the idealization of low-carbon workflows and careful consideration of cost-benefit equations are crucial for their more sustainable implementation. Here, we propose tobacco as a promising energy crop because of its exceptional water solubility, mainly attributed to a high proportion of water-soluble carbohydrates and nitrogen, less lignocellulose, and the presence of acids. We then designed a strategy that maximizes biomass conversion into bio-based products while minimizing energy and material inputs. By autoclaving tobacco leaves in water, we obtained a nutrient-rich medium capable of supporting the growth of microorganisms and the production of bioproducts without the need for extensive pretreatment, hydrolysis, or additional supplements. Additionally, cultivating tobacco on barren lands can generate sufficient biomass to produce approximately 573 billion gallons of ethanol per year. This approach also leads to a reduction of greenhouse gas emissions by approximately 76% compared to traditional corn stover during biorefinery processes. Therefore, our study presents a novel and direct strategy that could significantly contribute to the goal of reducing carbon emissions and global sustainable development compared to traditional methods.
Collapse
Affiliation(s)
- Fan Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglin Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Yuchen Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Ge Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China
| | - Yao Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yongming Jin
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Sujuan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiao Men
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Lijuan Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Lei Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Weihong Liao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaona Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guoqiang Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Manzoor Ahmad
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Chunxiang Fu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haibo Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
25
|
Iqbal MS, Clode PL, Malik AI, Erskine W, Kotula L. Salt tolerance in mungbean is associated with controlling Na and Cl transport across roots, regulating Na and Cl accumulation in chloroplasts and maintaining high K in root and leaf mesophyll cells. PLANT, CELL & ENVIRONMENT 2024; 47:3638-3653. [PMID: 38757412 DOI: 10.1111/pce.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Salinity tolerance requires coordinated responses encompassing salt exclusion in roots and tissue/cellular compartmentation of salt in leaves. We investigated the possible control points for salt ions transport in roots and tissue tolerance to Na+ and Cl- in leaves of two contrasting mungbean genotypes, salt-tolerant Jade AU and salt-sensitive BARI Mung-6, grown in nonsaline and saline (75 mM NaCl) soil. Cryo-SEM X-ray microanalysis was used to determine concentrations of Na, Cl, K, Ca, Mg, P, and S in various cell types in roots related to the development of apoplastic barriers, and in leaves related to photosynthetic performance. Jade AU exhibited superior salt exclusion by accumulating higher [Na] in the inner cortex, endodermis, and pericycle with reduced [Na] in xylem vessels and accumulating [Cl] in cortical cell vacuoles compared to BARI Mung-6. Jade AU maintained higher [K] in root cells than BARI Mung-6. In leaves, Jade AU maintained lower [Na] and [Cl] in chloroplasts and preferentially accumulated [K] in mesophyll cells than BARI Mung-6, resulting in higher photosynthetic efficiency. Salinity tolerance in Jade AU was associated with shoot Na and Cl exclusion, effective regulation of Na and Cl accumulation in chloroplasts, and maintenance of high K in root and leaf mesophyll cells.
Collapse
Affiliation(s)
- Md Shahin Iqbal
- Center for Plant Genetics and Breeding, The UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Pulses Research Center, Bangladesh Agricultural Research Institute, Ishurdi, Bangladesh
| | - Peta L Clode
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Al Imran Malik
- Center for Plant Genetics and Breeding, The UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- International Center for Tropical Agriculture (CIAT-Asia), Lao People's Democratic Republic Office, Vientiane, Laos
| | - William Erskine
- Center for Plant Genetics and Breeding, The UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| | - Lukasz Kotula
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
26
|
Chen J, Wang Y. Understanding the salinity resilience and productivity of halophytes in saline environments. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112171. [PMID: 38969140 DOI: 10.1016/j.plantsci.2024.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
The escalating salinity levels in cultivable soil pose a significant threat to agricultural productivity and, consequently, human sustenance. This problem is being exacerbated by natural processes and human activities, coinciding with a period of rapid population growth. Developing halophytic crops is needed to ensure food security is not impaired and land resources can be used sustainably. Evolution has created many close halophyte relatives of our major glycophytic crops, such as Puccinellia tenuiflora (relative of barley and wheat), Oryza coarctata (relative of rice) and Glycine soja (relative of soybean). There are also some halophytes have been subjected to semi-domestication and are considered as minor crops, such as Chenopodium quinoa. In this paper, we examine the prevailing comprehension of robust salinity resilience in halophytes. We summarize the existing strategies and technologies that equip researchers with the means to enhance the salt tolerance capabilities of primary crops and investigate the genetic makeup of halophytes.
Collapse
Affiliation(s)
- Jiahong Chen
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Dalian Practical Biotechnology Co. LTD., Dalian, Liaoning 116200, China.
| |
Collapse
|
27
|
Zhang T, Zhang W, Sun P. Potassium and ammonium recovery in treated urine by zeolite based mixed matrix membranes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122169. [PMID: 39128354 DOI: 10.1016/j.jenvman.2024.122169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Nitrogen, phosphorus and potassium are essential for crop growth, which are abundant in urine. Although numerous studies have developed techniques to recover ammonium and phosphorus from urine, limited research made efforts on the recovery of potassium, which is a non-renewable resource with uneven global distribution. In this study, we explored the possibility of zeolite based mixed matrix membranes (MMMs) to selectively recover ammonium and potassium from urine, with minimal detention of sodium. The findings demonstrated that upon the pre-treatment of zeolites with sodium chloride solution, a 70 wt% zeolite loaded MMM could achieve 69.3 % recovery of potassium and almost full recovery of ammonium. By varying the desorption temperatures and MMMs production process, it was discovered that stepwise backwash at low temperature (276 K) greatly lowered sodium recovery whilst simultaneously enhancing the recovery of potassium and ammonium. This study demonstrates the potential of recovering potassium and ammonium from urine using zeolite-loaded MMMs, coupled with achieving low-sodium recovery.
Collapse
Affiliation(s)
- Tian Zhang
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, China
| | - Wenlong Zhang
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, China.
| | - Peizhe Sun
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, China.
| |
Collapse
|
28
|
Ding M, Zhou Y, Becker D, Yang S, Krischke M, Scherzer S, Yu-Strzelczyk J, Mueller MJ, Hedrich R, Nagel G, Gao S, Konrad KR. Probing plant signal processing optogenetically by two channelrhodopsins. Nature 2024; 633:872-877. [PMID: 39198644 PMCID: PMC11424491 DOI: 10.1038/s41586-024-07884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Early plant responses to different stress situations often encompass cytosolic Ca2+ increases, plasma membrane depolarization and the generation of reactive oxygen species1-3. However, the mechanisms by which these signalling elements are translated into defined physiological outcomes are poorly understood. Here, to study the basis for encoding of specificity in plant signal processing, we used light-gated ion channels (channelrhodopsins). We developed a genetically engineered channelrhodopsin variant called XXM 2.0 with high Ca2+ conductance that enabled triggering cytosolic Ca2+ elevations in planta. Plant responses to light-induced Ca2+ influx through XXM 2.0 were studied side by side with effects caused by an anion efflux through the light-gated anion channelrhodopsin ACR1 2.04. Although both tools triggered membrane depolarizations, their activation led to distinct plant stress responses: XXM 2.0-induced Ca2+ signals stimulated production of reactive oxygen species and defence mechanisms; ACR1 2.0-mediated anion efflux triggered drought stress responses. Our findings imply that discrete Ca2+ signals and anion efflux serve as triggers for specific metabolic and transcriptional reprogramming enabling plants to adapt to particular stress situations. Our optogenetics approach unveiled that within plant leaves, distinct physiological responses are triggered by specific ion fluxes, which are accompanied by similar electrical signals.
Collapse
Affiliation(s)
- Meiqi Ding
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Yang Zhou
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Dirk Becker
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Shang Yang
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
| | - Markus Krischke
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Sönke Scherzer
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Jing Yu-Strzelczyk
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
| | - Martin J Mueller
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany.
| | - Georg Nagel
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany.
| | - Shiqiang Gao
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany.
| | - Kai R Konrad
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany.
| |
Collapse
|
29
|
Ren W, Li X, Liu T, Chen N, Xin M, Liu B, Qi Q, Li G. Impact of fertilization depth on sunflower yield and nitrogen utilization: a perspective on soil nutrient and root system compatibility. FRONTIERS IN PLANT SCIENCE 2024; 15:1440859. [PMID: 39206034 PMCID: PMC11349546 DOI: 10.3389/fpls.2024.1440859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Introduction The depth of fertilizer application significantly influences soil nitrate concentration (SNC), sunflower root length density (RLD), sunflower nitrogen uptake (SNU), and yield. However, current studies cannot precisely capture subtle nutrient variations between soil layers and their complex relationships with root growth. They also struggle to assess the impact of different fertilizer application depths on sunflower root development and distribution as well as their response to the spatial and temporal distribution of nutrients. Methods The Agricultural Production Systems sIMulator (APSIM) model was employed to explore the spatial and temporal patterns of nitrogen distribution in the soil at three controlled-release fertilizer (CRF) placement depths: 5, 15, and 25 cm. This study investigated the characteristics of the root system regarding nitrogen absorption and utilization and analyzed their correlation with sunflower yield formation. Furthermore, this study introduced the modified Jaccard index (considering the compatibility between soil nitrate and root length density) to analyze soil-root interactions, providing a deeper insight into how changes in CRF placement depth affect crop growth and nitrogen uptake efficiency. Results The results indicated that a fertilization depth of 15 cm improved the modified Jaccard index by 6.60% and 7.34% compared to 5 cm and 25 cm depths, respectively, maximizing sunflower yield (an increase of 9.44%) and nitrogen absorption rate (an increase of 5.40%). This depth promoted a greater Root Length Density (RLD), with an increases of 11.95% and 16.42% compared those at 5 cm and 25 cm, respectively, enhancing deeper root growth and improving nitrogen uptake. In contrast, shallow fertilization led to higher nitrate concentrations in the topsoil, whereas deeper fertilization increased the nitrate concentrations in the deeper soil layers. Discussion These results provide valuable insights for precision agriculture and sustainable soil management, highlighting the importance of optimizing root nitrogen absorption through tailored fertilization strategies to enhance crop production efficiency and minimize environmental impact.
Collapse
Affiliation(s)
- Wenhao Ren
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xianyue Li
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, China
- Research and Development of Efficient Water-saving Technology and Equipment and Research Engineering Center of Soil and Water Environment Effect in Arid Area of Inner Mongolia Autonomous Region, Hohhot, China
| | - Tingxi Liu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot, China
| | - Ning Chen
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Maoxin Xin
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Bin Liu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Qian Qi
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Gendong Li
- Inner Mongolia Hetao Irrigation District Water Conservancy Development Center, Bayannur, China
| |
Collapse
|
30
|
Huo J, Yu M, Feng N, Zheng D, Zhang R, Xue Y, Khan A, Zhou H, Mei W, Du X, Shen X, Zhao L, Meng F. Integrated transcriptome and metabolome analysis of salinity tolerance in response to foliar application of choline chloride in rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1440663. [PMID: 39148614 PMCID: PMC11324541 DOI: 10.3389/fpls.2024.1440663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Introduction Salt stress is a major abiotic stress that affects crop growth and productivity. Choline Chloride (CC) has been shown to enhance salt tolerance in various crops, but the underlying molecular mechanisms in rice remain unclear. Methods To investigate the regulatory mechanism of CC-mediated salt tolerance in rice, we conducted morpho-physiological, metabolomic, and transcriptomic analyses on two rice varieties (WSY, salt-tolerant, and HHZ, salt-sensitive) treated with 500 mg·L-1 CC under 0.3% NaCl stress. Results Our results showed that foliar application of CC improved morpho-physiological parameters such as root traits, seedling height, seedling strength index, seedling fullness, leaf area, photosynthetic parameters, photosynthetic pigments, starch, and fructose content under salt stress, while decreasing soluble sugar, sucrose, and sucrose phosphate synthase levels. Transcriptomic analysis revealed that CC regulation combined with salt treatment induced changes in the expression of genes related to starch and sucrose metabolism, the citric acid cycle, carbon sequestration in photosynthetic organs, carbon metabolism, and photosynthetic antenna proteins in both rice varieties. Metabolomic analysis further supported these findings, indicating that photosynthesis, carbon metabolism, and carbon fixation pathways were crucial in CC-mediated salt tolerance. Discussion The combined transcriptomic and metabolomic data suggest that CC treatment enhances rice salt tolerance by activating distinct transcriptional cascades and phytohormone signaling, along with multiple antioxidants and unique metabolic pathways. These findings provide a basis for further understanding the mechanisms of metabolite synthesis and gene regulation induced by CC in rice in response to salt stress, and may inform strategies for improving crop resilience to salt stress.
Collapse
Affiliation(s)
- Jingxin Huo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Minglong Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Rui Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Yingbin Xue
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Aaqil Khan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Hang Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Wanqi Mei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Xiaole Du
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Xuefeng Shen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Liming Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Fengyan Meng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| |
Collapse
|
31
|
Liang S, Zang Y, Wang H, Xue S, Xin J, Li X, Tang X, Chen J. Combined transcriptomics and metabolomics analysis reveals salinity stress specific signaling and tolerance responses in the seagrass Zostera japonica. PLANT CELL REPORTS 2024; 43:203. [PMID: 39080075 DOI: 10.1007/s00299-024-03292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
KEY MESSAGE Multiple regulatory pathways of Zostera japonica to salt stress were identified through growth, physiological, transcriptomic and metabolomic analyses. Seagrasses are marine higher submerged plants that evolved from terrestrial monocotyledons and have fully adapted to the high saline seawater environment during the long evolutionary process. As one of the seagrasses growing in the intertidal zone, Zostera japonica not only has the ability to quickly adapt to short-term salt stress but can also survive at salinities ranging from the lower salinity of the Yellow River estuary to the higher salinity of the bay, making it a good natural model for studying the mechanism underlying the adaptation of plants to salt stress. In this work, we screened the growth, physiological, metabolomic, and transcriptomic changes of Z. japonica after a 5-day exposure to different salinities. We found that high salinity treatment impeded the growth of Z. japonica, hindered its photosynthesis, and elicited oxidative damage, while Z. japonica increased antioxidant enzyme activity. At the transcriptomic level, hypersaline stress greatly reduced the expression levels of photosynthesis-related genes while increasing the expression of genes associated with flavonoid biosynthesis. Meanwhile, the expression of candidate genes involved in ion transport and cell wall remodeling was dramatically changed under hypersaline stress. Moreover, transcription factors signaling pathways such as mitogen-activated protein kinase (MAPK) were also significantly influenced by salt stress. At the metabolomic level, Z. japonica displayed an accumulation of osmolytes and TCA mediators under hypersaline stress. In conclusion, our results revealed a complex regulatory mechanism in Z. japonica under salt stress, and the findings will provide important guidance for improving salt resistance in crops.
Collapse
Affiliation(s)
- Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
- Department of Agriculture, Forestry and Food Science (DISAFA), Plant Stress Laboratory, Turin University, Grugliasco, Turin, Italy
| | - Yu Zang
- Ministry of Natural Resources, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Qingdao, Shandong, China
| | - Hongzhen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Song Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Jiayi Xin
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xinqi Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
32
|
Gao ZW, Ding J, Ali B, Nawaz M, Hassan MU, Ali A, Rasheed A, Khan MN, Ozdemir FA, Iqbal R, Çiğ A, Ercisli S, Sabagh AE. Putting Biochar in Action: A Black Gold for Efficient Mitigation of Salinity Stress in Plants. Review and Future Directions. ACS OMEGA 2024; 9:31237-31253. [PMID: 39072056 PMCID: PMC11270719 DOI: 10.1021/acsomega.3c07921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 07/30/2024]
Abstract
Soil salinization is a serious concern across the globe that is negatively affecting crop productivity. Recently, biochar received attention for mitigating the adverse impacts of salinity. Salinity stress induces osmotic, ionic, and oxidative damages that disturb physiological and biochemical functioning and nutrient and water uptake, leading to a reduction in plant growth and development. Biochar maintains the plant function by increasing nutrient and water uptake and reducing electrolyte leakage and lipid peroxidation. Biochar also protects the photosynthetic apparatus and improves antioxidant activity, gene expression, and synthesis of protein osmolytes and hormones that counter the toxic effect of salinity. Additionally, biochar also improves soil organic matter, microbial and enzymatic activities, and nutrient and water uptake and reduces the accumulation of toxic ions (Na+ and Cl), mitigating the toxic effects of salinity on plants. Thus, it is interesting to understand the role of biochar against salinity, and in the present Review we have discussed the various mechanisms through which biochar can mitigate the adverse impacts of salinity. We have also identified the various research gaps that must be addressed in future study programs. Thus, we believe that this work will provide new suggestions on the use of biochar to mitigate salinity stress.
Collapse
Affiliation(s)
- Zhan-Wu Gao
- Tourism
and Geographical Science Institute, Baicheng
Normal University, Baicheng, Jilin 137000, China
| | - Jianjun Ding
- Jiaxiang
Vocational Secondary Technical School, Jiaxiang, Shandong 272400, China
| | - Basharat Ali
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan, Punjab 62400, Pakistan
| | - Muhammad Nawaz
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan, Punjab 62400, Pakistan
| | - Muhammad Umair Hassan
- Research
Center of Ecological Sciences, Jiangxi Agricultural
University, Nanchang, Jiangxi 330029, China
| | - Abid Ali
- Department
of Agricultural and Food Sciences-DISTAL, University of Bologna, 40127 Bologna, Italy
| | - Adnan Rasheed
- College
of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Muhammad Nauman Khan
- Department
of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
- University
Public School, University of Peshawar, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Fethi Ahmet Ozdemir
- Department
of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, 12000 Bingol, Turkey
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Arzu Çiğ
- Faculty
of Agriculture, Department of Horticulture, Siirt University, 56100 Siirt, Turkey
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Ayman El Sabagh
- Faculty
of Agriculture, Department of Field Crops, Siirt University, 56100 Siirt, Turkey
- Department
of Agronomy, Faculty of Agriculture, Kafrelsheikh
University, Kafr al-Sheik 6860404, Egypt
| |
Collapse
|
33
|
Qu M, Huang X, Shabala L, Fuglsang AT, Yu M, Shabala S. Understanding Ameliorating Effects of Boron on Adaptation to Salt Stress in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1960. [PMID: 39065487 PMCID: PMC11280838 DOI: 10.3390/plants13141960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
When faced with salinity stress, plants typically exhibit a slowdown in their growth patterns. Boron (B) is an essential micronutrient for plants that are known to play a critical role in controlling cell wall properties. In this study, we used the model plant Arabidopsis thaliana Col-0 and relevant mutants to explore how the difference in B availability may modulate plant responses to salt stress. There was a visible root growth suppression of Col-0 with the increased salt levels in the absence of B while this growth reduction was remarkably alleviated by B supply. Pharmacological experiments revealed that orthovanadate (a known blocker of H+-ATPase) inhibited root growth at no B condition, but had no effect in the presence of 30 μM B. Salinity stress resulted in a massive K+ loss from mature zones of A. thaliana roots; this efflux was attenuated in the presence of B. Supplemental B also increased the magnitude of net H+ pumping by plant roots. Boron availability was also essential for root halotropism. Interestingly, the aha2Δ57 mutant with active H+-ATPase protein exhibited the same halotropism response as Col-0 while the aha2-4 mutant had a stronger halotropism response (larger bending angle) compared with that of Col-0. Overall, the ameliorative effect of B on the A. thaliana growth under salt stress is based on the H+-ATPase stimulation and a subsequent K+ retention, involving auxin- and ROS-pathways.
Collapse
Affiliation(s)
- Mei Qu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7005, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark;
| | - Xin Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
| | - Lana Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7005, Australia
- School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark;
| | - Min Yu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China; (M.Q.); (X.H.); (L.S.)
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7005, Australia
- School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| |
Collapse
|
34
|
Yan L, Lu M, Riaz M, Gao G, Tong K, Yu H, Wang L, Wang L, Cui K, Wang J, Niu Y. Differential response of proline metabolism defense, Na + absorption and deposition to salt stress in salt-tolerant and salt-sensitive rapeseed (Brassica napus L.) genotypes. PHYSIOLOGIA PLANTARUM 2024; 176:e14460. [PMID: 39091116 DOI: 10.1111/ppl.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Soil salinization is a major abiotic factor threatening rapeseed yields and quality worldwide, yet the adaptive mechanisms underlying salt resistance in rapeseed are not clear. Therefore, this study aimed to explore the differences in growth potential, sodium (Na+) retention in different plant tissues, and transport patterns between salt-tolerant (HY9) and salt-sensitive (XY15) rapeseed genotypes, which cultivated in Hoagland's nutrient solution in either the with or without of 150 mM NaCl stress. The results showed that the inhibition of growth-related parameters of the XY15 genotype was higher than those of the HY9 in response to salt stress. The XY15 had lower photosynthesis, chloroplast disintegration, and pigment content but higher oxidative damage than the HY9. Under NaCl treatment, the proline content in the root of HY9 variety increased by 8.47-fold, surpassing XY15 (5.41-fold). Under salt stress, the HY9 maintained lower Na+ content, while higher K+ content and exhibited a relatively abundant K+/Na+ ratio in root and leaf. HY9 also had lower Na+ absorption, Na+ concentration in xylem sap, and Na+ transfer factor than XY15. Moreover, more Na+ contents were accumulated in the root cell wall of HY9 with higher pectin content and pectin methylesterase (PME) activity than XY15. Collectively, our results showed that salt-tolerant varieties absorbed lower Na+ and retained more Na+ in the root cell wall (carboxyl group in pectin) to avoid leaf salt toxicity and induced higher proline accumulation as a defense and antioxidant system, resulting in higher resistance to salt stress, which provides the theoretical basis for screening salt resistant cultivars.
Collapse
Affiliation(s)
- Lei Yan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Mu Lu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guang Gao
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Kaiqing Tong
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Hualong Yu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Lu Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Lu Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Kunpeng Cui
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Jiahui Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
- School of Tourism and Geography Science, Qingdao University, Qingdao, China
| |
Collapse
|
35
|
van der Cruijsen K, Al Hassan M, van Erven G, Kollerie N, van Lent B, Dechesne A, Dolstra O, Paulo MJ, Trindade LM. Salt stress alters the cell wall components and structure in Miscanthus sinensis stems. PHYSIOLOGIA PLANTARUM 2024; 176:e14430. [PMID: 38981734 DOI: 10.1111/ppl.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Miscanthus is a perennial grass suitable for the production of lignocellulosic biomass on marginal lands. The effects of salt stress on Miscanthus cell wall composition and its consequences on biomass quality have nonetheless received relatively little attention. In this study, we investigated how exposure to moderate (100 mM NaCl) or severe (200 mM NaCl) saline growing conditions altered the composition of both primary and secondary cell wall components in the stems of 15 Miscanthus sinensis genotypes. The exposure to stress drastically impacted biomass yield and cell wall composition in terms of content and structural features. In general, the observed compositional changes were more pronounced under severe stress conditions and were more apparent in genotypes with a higher sensitivity towards stress. Besides a severely reduced cellulose content, salt stress led to increased pectin content, presumably in the form of highly branched rhamnogalacturonan type I. Although salt stress had a limited effect on the total lignin content, the acid-soluble lignin content was strongly increased in the most sensitive genotypes. This effect was also reflected in substantially altered lignin structures and led to a markedly reduced incorporation of syringyl subunits and p-coumaric acid moieties. Interestingly, plants that were allowed a recovery period after stress ultimately had a reduced lignin content compared to those continuously grown under control conditions. In addition, the salt stress-induced cell wall alterations contributed to an improved enzymatic saccharification efficiency.
Collapse
Affiliation(s)
| | - Mohamad Al Hassan
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Gijs van Erven
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Nicole Kollerie
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas van Lent
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Annemarie Dechesne
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Oene Dolstra
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria-João Paulo
- Biometris, Wageningen University & Research, Wageningen, The Netherlands
| | - Luisa M Trindade
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
36
|
Ilyas M, Maqsood MF, Shahbaz M, Zulfiqar U, Ahmad K, Naz N, Ali MF, Ahmad M, Ali Q, Yong JWH, Ali HM. Alleviating salinity stress in canola (Brassica napus L.) through exogenous application of salicylic acid. BMC PLANT BIOLOGY 2024; 24:611. [PMID: 38926637 PMCID: PMC11210054 DOI: 10.1186/s12870-024-05314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Canola, a vital oilseed crop, is grown globally for food and biodiesel. With the enormous demand for growing various crops, the utilization of agriculturally marginal lands is emerging as an attractive alternative, including brackish-saline transitional lands. Salinity is a major abiotic stress limiting growth and productivity of most crops, and causing food insecurity. Salicylic acid (SA), a small-molecule phenolic compound, is an essential plant defense phytohormone that promotes immunity against pathogens. Recently, several studies have reported that SA was able to improve plant resilience to withstand high salinity. For this purpose, a pot experiment was carried out to ameliorate the negative effects of sodium chloride (NaCl) on canola plants through foliar application of SA. Two canola varieties Faisal (V1) and Super (V2) were assessed for their growth performance during exposure to high salinity i.e. 0 mM NaCl (control) and 200 mM NaCl. Three levels of SA (0, 10, and 20 mM) were applied through foliar spray. The experimental design used for this study was completely randomized design (CRD) with three replicates. The salt stress reduced the shoot and root fresh weights up to 50.3% and 47% respectively. In addition, foliar chlorophyll a and b contents decreased up to 61-65%. Meanwhile, SA treatment diminished the negative effects of salinity and enhanced the shoot fresh weight (49.5%), root dry weight (70%), chl. a (36%) and chl. b (67%). Plants treated with SA showed an increased levels of both enzymatic i.e. (superoxide dismutase (27%), peroxidase (16%) and catalase (34%)) and non-enzymatic antioxidants i.e. total soluble protein (20%), total soluble sugar (17%), total phenolic (22%) flavonoids (19%), anthocyanin (23%), and endogenous ascorbic acid (23%). Application of SA also increased the levels of osmolytes i.e. glycine betaine (31%) and total free proline (24%). Salinity increased the concentration of Na+ ions and concomitantly decreased the K+ and Ca2+ absorption in canola plants. Overall, the foliar treatments of SA were quite effective in reducing the negative effects of salinity. By comparing both varieties of canola, it was observed that variety V2 (Super) grew better than variety V1 (Faisal). Interestingly, 20 mM foliar application of SA proved to be effective in ameliorating the negative effects of high salinity in canola plants.
Collapse
Affiliation(s)
- Maria Ilyas
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Kamran Ahmad
- Department of Botany, College of Life Sciences, Northwest A&F University, Yangling , Shaanxi, 712100, China
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Fraz Ali
- College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Qasim Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Khoso MA, Wang M, Zhou Z, Huang Y, Li S, Zhang Y, Qian G, Ko SN, Pang Q, Liu C, Li L. Bacillus altitudinis AD13-4 Enhances Saline-Alkali Stress Tolerance of Alfalfa and Affects Composition of Rhizosphere Soil Microbial Community. Int J Mol Sci 2024; 25:5785. [PMID: 38891975 PMCID: PMC11171787 DOI: 10.3390/ijms25115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Saline and alkaline stresses limit plant growth and reduce crop yield. Soil salinization and alkalization seriously threaten the sustainable development of agriculture and the virtuous cycle of ecology. Biofertilizers made from plant growth-promoting rhizobacteria (PGPR) not only enhance plant growth and stress tolerance, but also are environmentally friendly and cost-effective. There have been many studies on the mechanisms underlying PGPRs enhancing plant salt resistance. However, there is limited knowledge about the interaction between PGPR and plants under alkaline-sodic stress. To clarify the mechanisms underlying PGPR's improvement of plants' tolerance to alkaline-sodic stress, we screened PGPR from the rhizosphere microorganisms of local plants growing in alkaline-sodic land and selected an efficient strain, Bacillus altitudinis AD13-4, as the research object. Our results indicate that the strain AD13-4 can produce various growth-promoting substances to regulate plant endogenous hormone levels, cell division and differentiation, photosynthesis, antioxidant capacity, etc. Transcriptome analysis revealed that the strain AD13-4 significantly affected metabolism and secondary metabolism, signal transduction, photosynthesis, redox processes, and plant-pathogen interactions. Under alkaline-sodic conditions, inoculation of the strain AD13-4 significantly improved plant biomass and the contents of metabolites (e.g., soluble proteins and sugars) as well as secondary metabolites (e.g., phenols, flavonoids, and terpenoids). The 16S rRNA gene sequencing results indicated that the strain AD13-4 significantly affected the abundance and composition of the rhizospheric microbiota and improved soil activities and physiochemical properties. Our study provides theoretical support for the optimization of saline-alkali-tolerant PGPR and valuable information for elucidating the mechanism of plant alkaline-sodic tolerance.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Zhenzhen Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Yongxue Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Shenglin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Song Nam Ko
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Changli Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| |
Collapse
|
38
|
Wang F, Miao H, Zhang S, Hu X, Chu Y, Yang W, Wang H, Wang J, Shan S, Chen J. Weighted gene co-expression network analysis reveals hub genes regulating response to salt stress in peanut. BMC PLANT BIOLOGY 2024; 24:425. [PMID: 38769518 PMCID: PMC11103959 DOI: 10.1186/s12870-024-05145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Peanut (Arachis hypogaea L.) is an important oilseed crop worldwide. However, soil salinization becomes one of the main limiting factors of peanut production. Therefore, developing salt-tolerant varieties and understanding the molecular mechanisms of salt tolerance is important to protect peanut yield in saline areas. In this study, we selected four peanut varieties with contrasting response to salt challenges with T1 and T2 being tolerance and S1 and S2 being susceptible. High-throughput RNA sequencing resulted in more than 314.63 Gb of clean data from 48 samples. We identified 12,057 new genes, 7,971of which have functional annotations. KEGG pathway enrichment analysis of uniquely expressed genes in salt-tolerant peanut revealed that upregulated genes in the root are involved in the MAPK signaling pathway, fatty acid degradation, glycolysis/gluconeogenesis, and upregulated genes in the shoot were involved in plant hormone signal transduction and the MAPK signaling pathway. Na+ content, K+ content, K+/ Na+, and dry mass were measured in root and shoot tissues, and two gene co-expression networks were constructed based on weighted gene co-expression network analysis (WGCNA) in root and shoot. In this study, four key modules that are highly related to peanut salt tolerance in root and shoot were identified, plant hormone signal transduction, phenylpropanoid biosynthesis, starch and sucrose metabolism, flavonoid biosynthesis, carbon metabolism were identified as the key biological processes and metabolic pathways for improving peanut salt tolerance. The hub genes include genes encoding ion transport (such as HAK8, CNGCs, NHX, NCL1) protein, aquaporin protein, CIPK11 (CBL-interacting serine/threonine-protein kinase 11), LEA5 (late embryogenesis abundant protein), POD3 (peroxidase 3), transcription factor, and MAPKKK3. There were some new salt-tolerant genes identified in peanut, including cytochrome P450, vinorine synthase, sugar transport protein 13, NPF 4.5, IAA14, zinc finger CCCH domain-containing protein 62, beta-amylase, fatty acyl-CoA reductase 3, MLO-like protein 6, G-type lectin S-receptor-like serine/threonine-protein kinase, and kinesin-like protein KIN-7B. The identification of key modules, biological pathways, and hub genes in this study enhances our understanding of the molecular mechanisms underlying salt tolerance in peanuts. This knowledge lays a theoretical foundation for improving and innovating salt-tolerant peanut germplasm.
Collapse
Affiliation(s)
- Feifei Wang
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China
| | - Huarong Miao
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China
| | - Shengzhong Zhang
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China
| | - Xiaohui Hu
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China
| | - Ye Chu
- Department of Horticulture, University of Georgia Tifton Campus, Tifton, GA, 31793, USA
| | - Weiqiang Yang
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China
| | - Heng Wang
- Agricultural Technical Service Center, Rizhao, 276700, Shandong, China
| | - Jingshan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Shihua Shan
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China
| | - Jing Chen
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China.
| |
Collapse
|
39
|
Wang P, Zhang H, Hu X, Xu L, An X, Jin T, Ma R, Li Z, Chen S, Du S, Wei G, Chen C. Comparing the Potential of Silicon Nanoparticles and Conventional Silicon for Salinity Stress Alleviation in Soybean ( Glycine max L.): Growth and Physiological Traits and Rhizosphere/Endophytic Bacterial Communities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10781-10793. [PMID: 38709780 DOI: 10.1021/acs.jafc.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In this study, 20-day-old soybean plants were watered with 100 mL of 100 mM NaCl solution and sprayed with silica nanoparticles (SiO2 NPs) or potassium silicate every 3 days over 15 days, with a final dosage of 12 mg of SiO2 per plant. We assessed the alterations in the plant's growth and physiological traits, and the responses of bacterial microbiome within the leaf endosphere, rhizosphere, and root endosphere. The result showed that the type of silicon did not significantly impact most of the plant parameters. However, the bacterial communities within the leaf and root endospheres had a stronger response to SiO2 NPs treatment, showing enrichment of 24 and 13 microbial taxa, respectively, compared with the silicate treatment, which led to the enrichment of 9 and 8 taxonomic taxa, respectively. The rhizosphere bacterial communities were less sensitive to SiO2 NPs, enriching only 2 microbial clades, compared to the 8 clades enriched by silicate treatment. Furthermore, SiO2 NPs treatment enriched beneficial genera, such as Pseudomonas, Bacillus, and Variovorax in the leaf and root endosphere, likely enhancing plant growth and salinity stress resistance. These findings highlight the potential of SiO2 NPs for foliar application in sustainable farming by enhancing plant-microbe interactions to improve salinity tolerance.
Collapse
Affiliation(s)
- Pan Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Leilei Xu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin An
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Ruixue Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhefei Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Sen Du
- National Agro-Tech Extension and Service Center, Beijing 100125, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chun Chen
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
40
|
Tie HO, Che Man H, Koyama M, Syukri F, Md Yusoff F, Toda T, Nakasaki K, Mohamed Ramli N. Integrated nutrient recycling: Ammonia recovery from thermophilic composting of shrimp aquaculture sludge via self-heated bench-scale reactor and mango plant growth enhancement by the compost. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 180:55-66. [PMID: 38520898 DOI: 10.1016/j.wasman.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Due to the rapid growth of the aquaculture industry, large amounts of organic waste are released into nature and polluted the environment. Traditional organic waste treatment such as composting is a time-consuming process that retains the ammonia (NH3) in the compost, and the compost produced has little economic value as organic fertilizer. Illegal direct discharge into the environment is therefore widespread. This study investigates the recovery of NH3 through thermophilic composting of shrimp aquaculture sludge (SAS) and its application as a soil conditioner for the growth of mango plants. A maximum composting temperature of 57.10 °C was achieved through self-heating in a 200 L bench-scale reactor, resulting in NH3 recovery of 224.04 mol/ton-ds after 14 days. The addition of calcium hydroxide and increased aeration have been shown to increase NH3 volatilization. The recovered NH3 up to 3 kg-N can be used as a source of clean nitrogen for high-value microalgae cultivation, with a theoretical yield of up to 34.85 kg-algae of microalgae biomass from 1 ton-ds of SAS composting. Despite the high salinity, SAS compost improved mango plant growth and disease resistance. These results highlight the potential of SAS compost as a sustainable source of clean nitrogen for microalgae cultivation and soil conditioner, contributing to a waste-free circular economy through nutrient recycling and sustainable agriculture.
Collapse
Affiliation(s)
- Hieng Ong Tie
- SMART Farming Technology Research Centre (SFTRC), Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hasfalina Che Man
- SMART Farming Technology Research Centre (SFTRC), Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; The International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| | - Mitsuhiko Koyama
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Fadhil Syukri
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; The International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Fatimah Md Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; The International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Tatsuki Toda
- Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Tokyo 192-8577, Japan
| | - Kiyohiko Nakasaki
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Norulhuda Mohamed Ramli
- SMART Farming Technology Research Centre (SFTRC), Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; The International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| |
Collapse
|
41
|
Singh A, Kumar A, Prakash J, Verma AK. Similar and divergent responses to salinity stress of jamun ( Syzygium cumini L. Skeels) genotypes. PeerJ 2024; 12:e17311. [PMID: 38766484 PMCID: PMC11100480 DOI: 10.7717/peerj.17311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Background Genetic variation for salt tolerance remains elusive in jamun (Syzygium cumini). Methods Effects of gradually increased salinity (2.0-12.0 dS/m) were examined in 20 monoembryonic and 28 polyembryonic genotypes of jamun. Six genotypes were additionally assessed for understanding salt-induced changes in gas exchange attributes and antioxidant enzymes. Results Salt-induced reductions in leaf, stem, root and plant dry mass (PDM) were relatively greater in mono- than in poly-embryonic types. Reductions in PDM relative to control implied more adverse impacts of salinity on genotypes CSJ-28, CSJ-31, CSJ-43 and CSJ-47 (mono) and CSJ-1, CSJ-24, CSJ-26 and CSJ-27 (poly). Comparably, some mono- (CSJ-5, CSJ-18) and poly-embryonic (CSJ-7, CSJ-8, CSJ-14, CSJ-19) genotypes exhibited least reductions in PDM following salt treatment. Most polyembryonic genotypes showed lower reductions in root than in shoot mass, indicating that they may be more adept at absorbing water and nutrients when exposed to salt. The majority of genotypes did not exhibit leaf tip burn and marginal scorch despite significant increases in Na+ and Cl-, suggesting that tissue tolerance existed for storing excess Na+ and Cl- in vacuoles. Jamun genotypes were likely more efficient in Cl- exclusion because leaf, stem and root Cl- levels were consistently lower than those of Na+ under salt treatment. Leaf K+ was particularly little affected in genotypes with high leaf Na+. Lack of discernible differences in leaf, stem and root Ca2+ and Mg2+ contents between control and salt treatments was likely due to their preferential uptake. Correlation analysis suggested that Na+ probably had a greater inhibitory effect on biomass in both mono- and poly-embryonic types. Discriminant analysis revealed that while stem and root Cl- probably accounted for shared responses, root Na+, leaf K+ and leaf Cl- explained divergent responses to salt stress of mono- and poly-embryonic types. Genotypes CSJ-18 and CSJ-19 seemed efficient in fending off oxidative damage caused by salt because of their stronger antioxidant defences. Conclusions Polyembryonic genotypes CSJ-7, CSJ-8, CSJ-14 and CSJ-19, which showed least reductions in biomass even after prolonged exposure to salinity stress, may be used as salt-tolerant rootstocks. The biochemical and molecular underpinnings of tissue tolerance to excess Na+ and Cl- as well as preferential uptake of K+, Ca2+, and Mg2+ need to be elucidated.
Collapse
Affiliation(s)
- Anshuman Singh
- ICAR–Central Soil Salinity Research Institute, Karnal, Haryana, India
- ICAR–Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - Ashwani Kumar
- ICAR–Central Soil Salinity Research Institute, Karnal, Haryana, India
| | - Jai Prakash
- Division of Fruits and Horticultural Technology, ICAR–IARI, New Delhi, India
| | | |
Collapse
|
42
|
Ma Y, Zheng C, Bo Y, Song C, Zhu F. Improving crop salt tolerance through soil legacy effects. FRONTIERS IN PLANT SCIENCE 2024; 15:1396754. [PMID: 38799102 PMCID: PMC11116649 DOI: 10.3389/fpls.2024.1396754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Soil salinization poses a critical problem, adversely affecting plant development and sustainable agriculture. Plants can produce soil legacy effects through interactions with the soil environments. Salt tolerance of plants in saline soils is not only determined by their own stress tolerance but is also closely related to soil legacy effects. Creating positive soil legacy effects for crops, thereby alleviating crop salt stress, presents a new perspective for improving soil conditions and increasing productivity in saline farmlands. Firstly, the formation and role of soil legacy effects in natural ecosystems are summarized. Then, the processes by which plants and soil microbial assistance respond to salt stress are outlined, as well as the potential soil legacy effects they may produce. Using this as a foundation, proposed the application of salt tolerance mechanisms related to soil legacy effects in natural ecosystems to saline farmlands production. One aspect involves leveraging the soil legacy effects created by plants to cope with salt stress, including the direct use of halophytes and salt-tolerant crops and the design of cropping patterns with the specific crop functional groups. Another aspect focuses on the utilization of soil legacy effects created synergistically by soil microorganisms. This includes the inoculation of specific strains, functional microbiota, entire soil which legacy with beneficial microorganisms and tolerant substances, as well as the application of novel technologies such as direct use of rhizosphere secretions or microbial transmission mechanisms. These approaches capitalize on the characteristics of beneficial microorganisms to help crops against salinity. Consequently, we concluded that by the screening suitable salt-tolerant crops, the development rational cropping patterns, and the inoculation of safe functional soils, positive soil legacy effects could be created to enhance crop salt tolerance. It could also improve the practical significance of soil legacy effects in the application of saline farmlands.
Collapse
Affiliation(s)
- Yue Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Zheng
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yukun Bo
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Chunxu Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- National Observation and Research Station of Agriculture Green Development, Quzhou, China
| | - Feng Zhu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
43
|
Labulo AH, David OA, Hassan I, Oseghale CO, Terna AD, Olawuni I, Ndamadu DT, Ajewole TO. Mobility inhibition of arsenic in the soil: the role of green synthesized silica nanoparticles. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1683-1690. [PMID: 38712857 DOI: 10.1080/15226514.2024.2348044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The studies showed the effectiveness of green-synthesized SiO2NPs in mitigating the toxicity of Arsenic. Density Functional Theory (DFT) is a computational method used to determine electronic structure, energy gap, and toxicity prediction. Experimentally, silicon nanoparticles of 0 (S0) and 100% v/v (S100) were applied to the surface of the soil. 150 mL of Arsenic trioxide was applied twice at a rate of 0 (As0) and 3.2 g/mL (As3.2) at an interval of three weeks. Green synthesized SiO2NPs possessed a higher chemical potential (µ) and electrophilicity index; consequently, charges could be transferred and easily polarized. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of the green synthesized SiO2NPs enable them to donate electrons and complex with arsenic, reducing their bioavailability and toxicity. Evidence from the studies further showed that SiO2NPs had buffered the soil acidity and electric conductivity, posing a high binding site and reactivity with exchangeable cations and micronutrients due to their smaller energy gap. Furthermore, the catalytic activities of the soil enzymes dehydrogenase (DHA) and peroxidase (POD) were greatly increased, which enhanced the electrostatic interaction between the SiO2NPs and As.
Collapse
Affiliation(s)
- Ayomide H Labulo
- Department of Chemistry, Federal University of Lafia, Lafia, Nigeria
| | - Oyinade A David
- Department of Plant Science and Biotechnology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Freiburg, Germany
- CIBSS (Centre for Integrative Biological Signalling Studies), University of Freiburg, Freiburg, Germany
| | - Ibrahim Hassan
- Department of Chemistry, Federal University of Lafia, Lafia, Nigeria
| | | | - Augustine D Terna
- Department of Chemistry, Federal University of Technology Owerri, Owerri, Nigeria
| | - Idowu Olawuni
- Department of Biochemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Divine T Ndamadu
- Department of Plant Science and Biotechnology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| | - Tolulope O Ajewole
- Department of Plant Science and Biotechnology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| |
Collapse
|
44
|
Qian Z, Lu L, Zihan W, Qianyue B, Chungang Z, Shuheng Z, Jiali P, Jiaxin Y, Shuang Z, Jian W. Gamma-aminobutyric acid (GABA) improves salinity stress tolerance in soybean seedlings by modulating their mineral nutrition, osmolyte contents, and ascorbate-glutathione cycle. BMC PLANT BIOLOGY 2024; 24:365. [PMID: 38706002 PMCID: PMC11071273 DOI: 10.1186/s12870-024-05023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions has not been fully elucidated. RESULTS This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiological mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl and Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metabolism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b significantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide (H2O2), malondialdehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG), Na+, and Cl- under 40- and 80 mM stress levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased Na+, Cl-, H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients (K+, K+/Na+ ratio, Zn2+, Fe2+, Mg2+, and Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxidant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability to improve their physiological stress response mechanisms and reduce harmful substances. CONCLUSION Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates salt tolerance in soybeans.
Collapse
Affiliation(s)
- Zhao Qian
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Liu Lu
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Wei Zihan
- School of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bai Qianyue
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Zhao Chungang
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Zhang Shuheng
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Pan Jiali
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Yu Jiaxin
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Zhang Shuang
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Wei Jian
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China.
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
45
|
Peng Y, Cui L, Wang Y, Wei L, Geng S, Chen H, Chen G, Yang L, Bie Z. Pumpkin CmoDREB2A enhances salt tolerance of grafted cucumber through interaction with CmoNAC1 to regulate H 2O 2 and ABA signaling and K +/Na + homeostasis. HORTICULTURE RESEARCH 2024; 11:uhae057. [PMID: 38720932 PMCID: PMC11077054 DOI: 10.1093/hr/uhae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 05/12/2024]
Abstract
Pumpkin CmoNAC1 enhances salt tolerance in grafted cucumbers. However, the potential interactions with other proteins that may co-regulate salt tolerance alongside CmoNAC1 have yet to be explored. In this study, we identified pumpkin CmoDREB2A as a pivotal transcription factor that interacts synergistically with CmoNAC1 in the co-regulation of salt tolerance. Both transcription factors were observed to bind to each other's promoters, forming a positive regulatory loop of their transcription. Knockout of CmoDREB2A in the root resulted in reduced salt tolerance in grafted cucumbers, whereas overexpression demonstrated the opposite effect. Multiple assays in our study provided evidence of the protein interaction between CmoDREB2A and CmoNAC1. Exploiting this interaction, CmoDREB2A facilitated the binding of CmoNAC1 to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2, and CmoHKT1;1, inducing H2O2 and ABA synthesis and increasing the K+/Na+ ratio in grafted cucumbers under salt stress. Additionally, CmoNAC1 also promoted the binding of CmoDREB2A to CmoHAK5;1/CmoHAK5;2 promoters, further contributing to the K+/Na+ homeostasis. In summary, these findings reveal a crucial mechanism of CmoNAC1 and CmoDREB2A forming a complex enhancing salt tolerance in grafted cucumbers.
Collapse
Affiliation(s)
- Yuquan Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Lvjun Cui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ying Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Lanxing Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Shouyu Geng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Hui Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Guoyu Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Li Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
- Hubei Hongshan Laboratory, Department of Science and Technology of Hubei Province, 430070 Wuhan, China
| |
Collapse
|
46
|
Chang H, Wu T, Shalmani A, Xu L, Li C, Zhang W, Pan R. Heat shock protein HvHSP16.9 from wild barley enhances tolerance to salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:687-704. [PMID: 38846458 PMCID: PMC11150235 DOI: 10.1007/s12298-024-01455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Heat shock proteins (HSPs) are known to play a crucial role in the response of plants to environmental stress, particularly heat stress. Nevertheless, the function of HSPs in salt stress tolerance in plants, especially in barley, remains largely unexplored. Here, we aimed to investigate and compare the salt tolerance mechanisms between wild barley EC_S1 and cultivated barley RGT Planet through a comprehensive analysis of physiological parameters and transcriptomic profiles. Results demonstrated that the number of differentially expressed genes (DEGs) in EC_S1 was significantly higher than in RGT Planet, indicating that wild barley gene regulation is more adaptive to salt stress. KEGG enrichment analysis revealed that DEGs were mainly enriched in the processes of photosynthesis, plant hormone signal transduction, and reactive oxygen species metabolism. Furthermore, the application of weighted gene correlation network analysis (WGCNA) enabled the identification of a set of key genes, including small heat shock protein (sHSP), Calmodulin-like proteins (CML), and protein phosphatases 2C (PP2C). Subsequently, a novel sHSP gene, HvHSP16.9 encoding a protein of 16.9 kDa, was cloned from wild barley, and its role in plant response to salt stress was elucidated. In Arabidopsis, overexpression of HvHSP16.9 increased the salt tolerance. Meanwhile, barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) of HvHSP16.9 significantly reduced the salt tolerance in wild barley. Overall, this study offers a new theoretical framework for comprehending the tolerance and adaptation mechanisms of wild barley under salt stress. It provides valuable insights into the salt tolerance function of HSP, and identifies new candidate genes for enhancing cultivated barley varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01455-4.
Collapse
Affiliation(s)
- Haowen Chang
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| | - Tiantian Wu
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100 China
| | - Le Xu
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| | - Chengdao Li
- Western Crop Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6105 Australia
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
47
|
Demircan N, Sonmez MC, Akyol TY, Ozgur R, Turkan I, Dietz KJ, Uzilday B. Alternative electron sinks in chloroplasts and mitochondria of halophytes as a safety valve for controlling ROS production during salinity. PHYSIOLOGIA PLANTARUM 2024; 176:e14397. [PMID: 38894507 DOI: 10.1111/ppl.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/21/2024]
Abstract
Electron flow through the electron transport chain (ETC) is essential for oxidative phosphorylation in mitochondria and photosynthesis in chloroplasts. Electron fluxes depend on environmental parameters, e.g., ionic and osmotic conditions and endogenous factors, and this may cause severe imbalances. Plants have evolved alternative sinks to balance the reductive load on the electron transport chains in order to avoid overreduction, generation of reactive oxygen species (ROS), and to cope with environmental stresses. These sinks act primarily as valves for electron drainage and secondarily as regulators of tolerance-related metabolism, utilizing the excess reductive energy. High salinity is an environmental stressor that stimulates the generation of ROS and oxidative stress, which affects growth and development by disrupting the redox homeostasis of plants. While glycophytic plants are sensitive to high salinity, halophytic plants tolerate, grow, and reproduce at high salinity. Various studies have examined the ETC systems of glycophytic plants, however, information about the state and regulation of ETCs in halophytes under non-saline and saline conditions is scarce. This review focuses on alternative electron sinks in chloroplasts and mitochondria of halophytic plants. In cases where information on halophytes is lacking, we examined the available knowledge on the relationship between alternative sinks and gradual salinity resilience of glycophytes. To this end, transcriptional responses of involved components of photosynthetic and respiratory ETCs were compared between the glycophyte Arabidopsis thaliana and the halophyte Schrenkiella parvula, and the time-courses of these transcripts were examined in A. thaliana. The observed regulatory patterns are discussed in the context of reactive molecular species formation in halophytes and glycophytes.
Collapse
Affiliation(s)
- Nil Demircan
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | | | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Ismail Turkan
- Department of Soil and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, İzmir, Türkiye
| | - Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| |
Collapse
|
48
|
Khan WA, Penrose B, Yun P, Zhou M, Shabala S. Exogenous zinc application mitigates negative effects of salinity on barley ( Hordeum vulgare) growth by improving root ionic homeostasis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23266. [PMID: 38753957 DOI: 10.1071/fp23266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Detrimental effects of salinity could be mitigated by exogenous zinc (Zn) application; however, the mechanisms underlying this amelioration are poorly understood. This study demonstrated the interaction between Zn and salinity by measuring plant biomass, photosynthetic performance, ion concentrations, ROS accumulation, antioxidant activity and electrophysiological parameters in barley (Hordeum vulgare L.). Salinity stress (200mM NaCl for 3weeks) resulted in a massive reduction in plant biomass; however, both fresh and dry weight of shoots were increased by ~30% with adequate Zn supply. Zinc supplementation also maintained K+ and Na+ homeostasis and prevented H2 O2 toxicity under salinity stress. Furthermore, exposure to 10mM H2 O2 resulted in massive K+ efflux from root epidermal cells in both the elongation and mature root zones, and pre-treating roots with Zn reduced ROS-induced K+ efflux from the roots by 3-4-fold. Similar results were observed for Ca2+ . The observed effects may be causally related to more efficient regulation of cation-permeable non-selective channels involved in the transport and sequestration of Na+ , K+ and Ca2+ in various cellular compartments and tissues. This study provides valuable insights into Zn protective functions in plants and encourages the use of Zn fertilisers in barley crops grown on salt-affected soils.
Collapse
Affiliation(s)
- Waleed Amjad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Beth Penrose
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Ping Yun
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; and School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
49
|
Qu M, Huang X, García-Caparrós P, Shabala L, Fuglsang AT, Yu M, Shabala S. Understanding the role of boron in plant adaptation to soil salinity. PHYSIOLOGIA PLANTARUM 2024; 176:e14358. [PMID: 38783511 DOI: 10.1111/ppl.14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Soil salinity is a major environmental constraint affecting the sustainability and profitability of agricultural production systems. Salinity stress tolerance has been present in wild crop relatives but then lost, or significantly weakened, during their domestication. Given the genetic and physiological complexity of salinity tolerance traits, agronomical solutions may be a suitable alternative to crop breeding for improved salinity stress tolerance. One of them is optimizing fertilization practices to assist plants in dealing with elevated salt levels in the soil. In this review, we analyse the causal relationship between the availability of boron (an essential metalloid micronutrient) and plant's adaptive responses to salinity stress at the whole-plant, cellular, and molecular levels, and a possibility of using boron for salt stress mitigation. The topics covered include the impact of salinity and the role of boron in cell wall remodelling, plasma membrane integrity, hormonal signalling, and operation of various membrane transporters mediating plant ionic and water homeostasis. Of specific interest is the role of boron in the regulation of H+-ATPase activity whose operation is essential for the control of a broad range of voltage-gated ion channels. The complex relationship between boron availability and expression patterns and the operation of aquaporins is also discussed.
Collapse
Affiliation(s)
- Mei Qu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xin Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Lana Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Min Yu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
- School of Biological Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
50
|
Zhen X, Liu X, Zhang X, Luo S, Wang W, Wan T. Identification of core genes involved in the response of Apocynum venetum to salt stress based on transcriptome sequencing and WGCNA. PLoS One 2024; 19:e0300277. [PMID: 38687723 PMCID: PMC11060595 DOI: 10.1371/journal.pone.0300277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
Apocynum venetum L. belongs to the Apocynaceae family and is a plant that is highly resistant to stress. It is important in the fields of ecology, feeding, industry and medicine. The molecular mechanism underlying salt tolerance has not been elucidated. In this study, RNA-seq based transcriptome sequencing of A. venetum leaves after 0, 2, 6, 12, 24 and 48 h of treatment with 300 mM NaCl was performed. We conducted a comprehensive analysis of the transcriptome expression profiles of A. venetum under salt stress using the WGCNA method and identified red, black, and brown as the core modules regulating the salt tolerance of A. venetum. A co-expression regulatory network was constructed to identify the core genes in the module according to the correlations between genes. The genes TRINITY_DN102_c0_g1 (serine carboxypeptidase), TRINITY_DN3073_c0_g1 (SOS signaling pathway) and TRINITY_DN6732_c0_g1 (heat shock transcription factor) in the red module were determined to be the core genes. Two core genes in the black module, TRINITY_DN9926_c0_g1 and TRINITY_DN7962_c0_g1, are pioneer candidate salt tolerance-associated genes in A. venetum. The genes in the brown module were mainly enriched in two pathways, namely photosynthesis and osmotic balance. Among them, the TRINITY_DN6321_c0_g2 and TRINITY_DN244_c0_g1 genes encode aquaporin, which is helpful for maintaining the cell water balance and plays a protective role in defending A. venetum under abiotic stress. Our findings contribute to the identification of core genes involved in the response of A. venetum to salt stress.
Collapse
Affiliation(s)
- Xi Zhen
- Key Laboratory of Grassland Resources of Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Hohhot, China
- Inner Mongolia Weather Modification Center, Inner Mongolia Hohhot, China
| | - Xuyang Liu
- Inner Mongolia Climate Center, Hohhot, China
| | - Xiaoming Zhang
- Key Laboratory of Grassland Resources of Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Hohhot, China
| | - Shujie Luo
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | | | - Tao Wan
- Key Laboratory of Grassland Resources of Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Hohhot, China
| |
Collapse
|