1
|
Erjavec E, Angée C, Hadjadj D, Passet B, David P, Kostic C, Dodé E, Zanlonghi X, Cagnard N, Nedelec B, Crippa SV, Bole-Feysot C, Zarhrate M, Creuzet S, Castille J, Vilotte JL, Calvas P, Plaisancié J, Chassaing N, Kaplan J, Rozet JM, Taie LF. Congenital microcoria deletion in mouse links Sox21 dysregulation to disease and suggests a role for TGFB2 in glaucoma and myopia. Am J Hum Genet 2024; 111:2265-2282. [PMID: 39293448 PMCID: PMC11480854 DOI: 10.1016/j.ajhg.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024] Open
Abstract
Congenital microcoria (MCOR) is a rare hereditary developmental defect of the iris dilator muscle frequently associated with high axial myopia and high intraocular pressure (IOP) glaucoma. The condition is caused by submicroscopic rearrangements of chromosome 13q32.1. However, the mechanisms underlying the failure of iris development and the origin of associated features remain elusive. Here, we present a 3D architecture model of the 13q32.1 region, demonstrating that MCOR-related deletions consistently disrupt the boundary between two topologically associating domains (TADs). Deleting the critical MCOR-causing region in mice reveals ectopic Sox21 expression precisely aligning with Dct, each located in one of the two neighbor TADs. This observation is consistent with the TADs' boundary alteration and adoption of Dct regulatory elements by the Sox21 promoter. Additionally, we identify Tgfb2 as a target gene of SOX21 and show TGFΒ2 accumulation in the aqueous humor of an MCOR-affected subject. Accumulation of TGFB2 is recognized for its role in glaucoma and potential impact on axial myopia. Our results highlight the importance of SOX21-TGFB2 signaling in iris development and control of eye growth and IOP. Insights from MCOR studies may provide therapeutic avenues for this condition but also for glaucoma and high myopia conditions, affecting millions of people.
Collapse
Affiliation(s)
- Elisa Erjavec
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Clémentine Angée
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Djihad Hadjadj
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Bruno Passet
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Pierre David
- Transgenesis Platform, Laboratoire d'Expérimentation Animale et Transgenèse (LEAT), Imagine Institute, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, Paris, France
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Emmanuel Dodé
- Institut Ophtalmologique de L'Ouest-Clinique Jules VERNE, Nantes, France
| | - Xavier Zanlonghi
- Institut Ophtalmologique de L'Ouest-Clinique Jules VERNE, Nantes, France
| | - Nicolas Cagnard
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Brigitte Nedelec
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Sylvain V Crippa
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Christine Bole-Feysot
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, INSERM US24/CNRS UAR3633, Paris, France
| | - Mohammed Zarhrate
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, INSERM US24/CNRS UAR3633, Paris, France
| | - Sophie Creuzet
- Paris-Saclay Institute of Neuroscience, NeuroPSI, CNRS, Paris-Saclay University, Campus CEA Saclay, Bât 151, 151 Route de la Rotonde, 91400 Saclay, France
| | - Johan Castille
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, Jouy-en-Josas, France
| | - Patrick Calvas
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Julie Plaisancié
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), CHU Toulouse, Toulouse, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France.
| | - Lucas Fares Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Université Paris Cité, Paris, France.
| |
Collapse
|
2
|
Niharika, Ureka L, Roy A, Patra SK. Dissecting SOX2 expression and function reveals an association with multiple signaling pathways during embryonic development and in cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189136. [PMID: 38880162 DOI: 10.1016/j.bbcan.2024.189136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
SRY (Sex Determining Region) box 2 (SOX2) is an essential transcription factor that plays crucial roles in activating genes involved in pre- and post-embryonic development, adult tissue homeostasis, and lineage specifications. SOX2 maintains the self-renewal property of stem cells and is involved in the generation of induced pluripotency stem cells. SOX2 protein contains a particular high-mobility group domain that enables SOX2 to achieve the capacity to participate in a broad variety of functions. The information about the involvement of SOX2 with gene regulatory elements, signaling networks, and microRNA is gradually emerging, and the higher expression of SOX2 is functionally relevant to various cancer types. SOX2 facilitates the oncogenic phenotype via cellular proliferation and enhancement of invasive tumor properties. Evidence are accumulating in favor of three dimensional (higher order) folding of chromatin and epigenetic control of the SOX2 gene by chromatin modifications, which implies that the expression level of SOX2 can be modulated by epigenetic regulatory mechanisms, specifically, via DNA methylation and histone H3 modification. In view of this, and to focus further insights into the roles SOX2 plays in physiological functions, involvement of SOX2 during development, precisely, the advances of our knowledge in pre- and post-embryonic development, and interactions of SOX2 in this scenario with various signaling pathways in tumor development and cancer progression, its potential as a therapeutic target against many cancers are summarized and discussed in this article.
Collapse
Affiliation(s)
- Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lina Ureka
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
3
|
Damuth DL, Cunningham DD, Silva EM. Sox21 homeologs autoregulate expression levels to control progression through neurogenesis. Genesis 2024; 62:e23612. [PMID: 39054872 DOI: 10.1002/dvg.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
The SRY HMG box transcription factor Sox21 plays multiple critical roles in neurogenesis, with its function dependent on concentration and developmental stage. In the allotetraploid Xenopus laevis, there are two homeologs of sox21, namely sox21.S and sox21.L. Previous studies focused on Sox21.S, but its amino acid sequence is divergent, lacking conserved poly-A stretches and bearing more similarity with ancestral homologs. In contrast, Sox21.L shares higher sequence similarity with mouse and chick Sox21. To determine if Sox21.S and Sox21.L have distinct functions, we conducted gain and loss-of-function studies in Xenopus embryos. Our studies revealed that Sox21.S and Sox21.L are functionally redundant, but Sox21.L is more effective at driving changes than Sox21.S. These results also support our earlier findings in ectodermal explants, demonstrating that Sox21 function is dose-dependent. While Sox21 is necessary for primary neuron formation, high levels prevent their formation. Strikingly, these proteins autoregulate, with high levels of Sox21.L reducing sox21.S and sox21.L mRNA levels, and decreased Sox21.S promoting increased expression of sox21.L. Our findings shed light on the intricate concentration-dependent roles of Sox21 homeologs in Xenopus neurogenesis.
Collapse
Affiliation(s)
- Dillon L Damuth
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Elena M Silva
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
4
|
Singleton KS, Silva-Rodriguez P, Cunningham DD, Silva EM. Xenopus Sox11 Partner Proteins and Functional Domains in Neurogenesis. Genes (Basel) 2024; 15:243. [PMID: 38397232 PMCID: PMC10887758 DOI: 10.3390/genes15020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Sox11, a member of the SoxC family of transcription factors, has distinct functions at different times in neural development. Studies in mouse, frog, chick, and zebrafish show that Sox11 promotes neural fate, neural differentiation, and neuron maturation in the central nervous system. These diverse roles are controlled in part by spatial and temporal-specific protein interactions. However, the partner proteins and Sox11-interaction domains underlying these diverse functions are not well defined. Here, we identify partner proteins and the domains of Xenopus laevis Sox11 required for protein interaction and function during neurogenesis. Our data show that Sox11 co-localizes and interacts with Pou3f2 and Neurog2 in the anterior neural plate and in early neurons, respectively. We also demonstrate that Sox11 does not interact with Neurog1, a high-affinity partner of Sox11 in the mouse cortex, suggesting that Sox11 has species-specific partner proteins. Additionally, we determined that the N-terminus including the HMG domain of Sox11 is necessary for interaction with Pou3f2 and Neurog2, and we established a novel role for the N-terminal 46 amino acids in the specification of placodal progenitors. This is the first identification of partner proteins for Sox11 and of domains required for partner-protein interactions and distinct roles in neurogenesis.
Collapse
Affiliation(s)
- Kaela S. Singleton
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 200057, USA
| | - Pablo Silva-Rodriguez
- Department of Biology, Georgetown University, Washington, DC 20057, USA; (P.S.-R.); (D.D.C.)
| | - Doreen D. Cunningham
- Department of Biology, Georgetown University, Washington, DC 20057, USA; (P.S.-R.); (D.D.C.)
| | - Elena M. Silva
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 200057, USA
- Department of Biology, Georgetown University, Washington, DC 20057, USA; (P.S.-R.); (D.D.C.)
| |
Collapse
|
5
|
Akshay A, Gheinani AH, Besic M, Braga S, Uldry AC, Heller M, Rehrauer H, Fournier CA, Burkhard FC, Monastyrskaya K. De-obstruction of bladder outlet in humans reverses organ remodelling by normalizing the expression of key transcription factors. BMC Urol 2024; 24:33. [PMID: 38326801 PMCID: PMC10848355 DOI: 10.1186/s12894-024-01417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Benign prostatic hyperplasia in elderly males often causes bladder outlet obstruction termed benign prostatic obstruction (BPO). BPO induces lower urinary tract symptoms and quantifiable urodynamic alterations in bladder function. When conservative medical treatments are exhausted, surgical interventions like transurethral resection of the prostate (TURP) are employed for bladder outlet de-obstruction. Elucidating the molecular changes in the human bladder resulting from BPO and their reversal post-de-obstruction is pivotal for defining the "point of no return", when the organ deterioration becomes irreversible. In this study we carried out a comprehensive molecular and urodynamic characterization of the bladders in men with BPO before TURP and 3 months after the relief of obstruction. METHODS We report integrated transcriptome and proteome analysis of bladder samples from male patients with BPO before and 3 months after de-obstruction surgery (TURP). mRNA and protein profiles were correlated with urodynamic findings, specifically voiding detrusor pressure (PdetQmax) before TURP. We delineated the molecular classifiers of each group, pointing at the different pre-TURP bladder status. RESULTS Age-matched patients with BPO without DO were divided into two groups based on the PdetQmax values recorded by UDI before de-obstruction: high and medium pressure (HP and MP) groups. Three months after de-obstruction surgery, the voiding parameters PdetQmax, Qmax and RV were significantly improved in both groups, without notable inter-group differences in the values after TURP. Patients with high PdetQmax showed less advanced remodeling and inflammatory changes than those with lower values. We detected significant dysregulation of gene expression, which was at least partially reversed by de-obstruction in both patients' groups. Transcription factor SOX21 and its target thrombospondin 4 (THBS4) demonstrated normalization post-TURP. CONCLUSIONS Our findings reveal substantial yet incomplete reversal of cell signalling pathways three months after TURP, consistent with improved urodynamic parameters. We propose a set of biomarker genes, indicative of BPO, and possibly contributing to the bladder changes. This study unveils the stages of progressive obstruction-induced bladder decompensation and offers insights into selecting an optimal intervention point to mitigate loss of contractility.
Collapse
Affiliation(s)
- Akshay Akshay
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ali Hashemi Gheinani
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010, Bern, Switzerland
- Department of Urology, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mustafa Besic
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland
| | - Sophie Braga
- Proteomics and Mass Spectrometry Core Facility, DBMR University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, DBMR University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, DBMR University of Bern, Bern, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | | | - Fiona C Burkhard
- Department of Urology, Inselspital University Hospital, 3010, Bern, Switzerland
| | - Katia Monastyrskaya
- Functional Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland.
- Department of Urology, Inselspital University Hospital, 3010, Bern, Switzerland.
| |
Collapse
|
6
|
Hussain G, Akram R, Anwar H, Sajid F, Iman T, Han HS, Raza C, De Aguilar JLG. Adult neurogenesis: a real hope or a delusion? Neural Regen Res 2024; 19:6-15. [PMID: 37488837 PMCID: PMC10479850 DOI: 10.4103/1673-5374.375317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neurogenesis, the process of creating new neurons, involves the coordinated division, migration, and differentiation of neural stem cells. This process is restricted to neurogenic niches located in two distinct areas of the brain: the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle, where new neurons are generated and then migrate to the olfactory bulb. Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells. Interestingly, recent years have seen tremendous progress in our understanding of adult brain neurogenesis, bridging the knowledge gap between embryonic and adult neurogenesis. Here, we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells. In this notion, we talk about the importance of intracellular signaling molecules in mobilizing endogenous neural stem cell proliferation. Based on the current understanding, we can declare that these molecules play a role in targeting neurogenesis in the mature brain. However, to achieve this goal, we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints, which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope.
Collapse
Affiliation(s)
- Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Tehreem Iman
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Clinical Omics Institute, Kyungpook National University, Daegu, Korea
| | - Chand Raza
- Department of Zoology, Faculty of Chemistry and Life Sciences, Government College University, Lahore, Pakistan
| | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Braun E, Danan-Gotthold M, Borm LE, Lee KW, Vinsland E, Lönnerberg P, Hu L, Li X, He X, Andrusivová Ž, Lundeberg J, Barker RA, Arenas E, Sundström E, Linnarsson S. Comprehensive cell atlas of the first-trimester developing human brain. Science 2023; 382:eadf1226. [PMID: 37824650 DOI: 10.1126/science.adf1226] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/09/2023] [Indexed: 10/14/2023]
Abstract
The adult human brain comprises more than a thousand distinct neuronal and glial cell types, a diversity that emerges during early brain development. To reveal the precise sequence of events during early brain development, we used single-cell RNA sequencing and spatial transcriptomics and uncovered cell states and trajectories in human brains at 5 to 14 postconceptional weeks (pcw). We identified 12 major classes that are organized as ~600 distinct cell states, which map to precise spatial anatomical domains at 5 pcw. We described detailed differentiation trajectories of the human forebrain and midbrain and found a large number of region-specific glioblasts that mature into distinct pre-astrocytes and pre-oligodendrocyte precursor cells. Our findings reveal the establishment of cell types during the first trimester of human brain development.
Collapse
Affiliation(s)
- Emelie Braun
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Miri Danan-Gotthold
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Lars E Borm
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Ka Wai Lee
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Elin Vinsland
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Peter Lönnerberg
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Lijuan Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Xiaofei Li
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Xiaoling He
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Žaneta Andrusivová
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, 171 65 Solna, Sweden
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, 171 65 Solna, Sweden
| | - Roger A Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Ernest Arenas
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Erik Sundström
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Stockholm, Sweden
| |
Collapse
|
8
|
Wang H, Ma ZW, Ho FM, Sethi G, Tang FR. Dual Effects of miR-181b-2-3p/SOX21 Interaction on Microglia and Neural Stem Cells after Gamma Irradiation. Cells 2023; 12:cells12040649. [PMID: 36831315 PMCID: PMC9954616 DOI: 10.3390/cells12040649] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Ionizing radiation induces brain inflammation and the impairment of neurogenesis by activating microglia and inducing apoptosis in neurogenic zones. However, the causal relationship between microglial activation and the impairment of neurogenesis as well as the relevant molecular mechanisms involved in microRNA (miR) remain unknown. In the present study, we employed immunohistochemistry and real-time RT-PCR to study the microglial activation and miRNA expression in mouse brains. Real-time RT-PCR, western blot, ELISA, cell proliferation and cytotoxicity assay were used in BV2 and mouse neural stem cells (NSCs). In the mouse model, we found the acute activation of microglia at 1 day and an increased number of microglial cells at 1, 7 and 120 days after irradiation at postnatal day 3 (P3), day 10 (P10) and day 21 (P21), respectively. In cell models, the activation of BV2, a type of microglial cell line, was observed after gamma irradiation. Real-time RT-PCR analysis revealed a deceased expression of miR-181b-2-3p and an increased expression of its target SRY-related high-mobility group box transcription factor 21 (SOX21) in a dose- and time-dependent fashion. The results of the luciferase reporter assay confirmed that SOX21 was the target of miR-181b-2-3p. Furthermore, SOX21 knockdown by siRNA inhibited the activation of microglia, thereby suggesting that the direct interaction of 181b-2-3p with SOX21 might be involved in radiation-induced microglial activation and proliferation. Interestingly, the gamma irradiation of NSCs increased miR-181b-2-3p expression but decreased SOX21 mRNA, which was the opposite of irradiation-induced expression in BV2 cells. As irradiation reduced the viability and proliferation of NSCs, whereas the overexpression of SOX21 restored the impaired cell viability and promoted the proliferation of NSCs, the findings suggest that the radiation-induced interaction of miR-181b-2-3p with SOX21 may play dual roles in microglia and NSCs, respectively, leading to the impairment of brain neurogenesis.
Collapse
Affiliation(s)
- Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Zhao-Wu Ma
- The School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou 434023, China
| | - Feng-Ming Ho
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
- Correspondence:
| |
Collapse
|
9
|
Shimotohno A. Illuminating the molecular mechanisms underlying shoot apical meristem homeostasis in plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:19-28. [PMID: 35800970 PMCID: PMC9200092 DOI: 10.5511/plantbiotechnology.22.0213a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/13/2022] [Indexed: 05/15/2023]
Abstract
Unlike animals, terrestrial plants are sessile and able to give rise to new organs throughout their lifetime. In the most extreme cases, they can survive for over a thousand years. With such protracted life cycles, plants have evolved sophisticated strategies to adapt to variable environments by coordinating their morphology as well as their growth, and have consequently acquired a high degree of developmental plasticity, which is supported by small groups of long-lived stem cells found in proliferative centers called meristems. Shoot apical meristems (SAMs) contain multipotent stem cells and provide a microenvironment that ensures both a self-renewable reservoir, to produce primordia and sustain growth, and a differentiating population that develops into all of the above-ground organs of land plants. The homeodomain transcription factor WUSCHEL (WUS) is expressed in the organizing center and acts as a master regulator to govern shoot stem cell homeostasis. In this review, I highlight recent advances in our understanding of the molecular mechanisms and signaling networks that underlie SAM maintenance, and discuss how plants utilize WUS to integrate intrinsic and extrinsic cues.
Collapse
Affiliation(s)
- Akie Shimotohno
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
- E-mail: Tel: +81-52-789-2841 Fax: +81-52-789-3240
| |
Collapse
|
10
|
Neha S, Dholaniya PS. The Prevailing Role of Topoisomerase 2 Beta and its Associated Genes in Neurons. Mol Neurobiol 2021; 58:6443-6459. [PMID: 34546528 DOI: 10.1007/s12035-021-02561-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
Topoisomerase 2 beta (TOP2β) is an enzyme that alters the topological states of DNA by making a transient double-strand break during the transcription process. The direct interaction of TOP2β with DNA strand results in transcriptional regulation of certain genes and some studies have suggested that a particular set of genes are regulated by TOP2β, which have a prominent role in various stages of neuron from development to degeneration. In this review, we discuss the role of TOP2β in various phases of the neuron's life. Based on the existing reports, we have compiled the list of genes, which are directly regulated by the enzyme, from different studies and performed their functional classification. We discuss the role of these genes in neurogenesis, neuron migration, fate determination, differentiation and maturation, generation of neural circuits, and senescence.
Collapse
Affiliation(s)
- Neha S
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
11
|
Wang J, Liu C, Chen Y, Wang W. Taiji-reprogram: a framework to uncover cell-type specific regulators and predict cellular reprogramming cocktails. NAR Genom Bioinform 2021; 3:lqab100. [PMID: 34761218 PMCID: PMC8573821 DOI: 10.1093/nargab/lqab100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cellular reprogramming is a promising technology to develop disease models and cell-based therapies. Identification of the key regulators defining the cell type specificity is pivotal to devising reprogramming cocktails for successful cell conversion but remains a great challenge. Here, we present a systems biology approach called Taiji-reprogram to efficiently uncover transcription factor (TF) combinations for conversion between 154 diverse cell types or tissues. This method integrates the transcriptomic and epigenomic data to construct cell-type specific genetic networks and assess the global importance of TFs in the network. Comparative analysis across cell types revealed TFs that are specifically important in a particular cell type and often tightly associated with cell-type specific functions. A systematic search of TFs with differential importance in the source and target cell types uncovered TF combinations for desired cell conversion. We have shown that Taiji-reprogram outperformed the existing methods to better recover the TFs in the experimentally validated reprogramming cocktails. This work not only provides a comprehensive catalog of TFs defining cell specialization but also suggests TF combinations for direct cell conversion.
Collapse
Affiliation(s)
- Jun Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359, USA
| | - Cong Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359, USA
| | - Yue Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359, USA
| |
Collapse
|
12
|
Appel LM, Franke V, Bruno M, Grishkovskaya I, Kasiliauskaite A, Kaufmann T, Schoeberl UE, Puchinger MG, Kostrhon S, Ebenwaldner C, Sebesta M, Beltzung E, Mechtler K, Lin G, Vlasova A, Leeb M, Pavri R, Stark A, Akalin A, Stefl R, Bernecky C, Djinovic-Carugo K, Slade D. PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC. Nat Commun 2021; 12:6078. [PMID: 34667177 PMCID: PMC8526623 DOI: 10.1038/s41467-021-26360-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay.
Collapse
Affiliation(s)
- Lisa-Marie Appel
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Vedran Franke
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Melania Bruno
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Aiste Kasiliauskaite
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tanja Kaufmann
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Ursula E Schoeberl
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin G Puchinger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Sebastian Kostrhon
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Carmen Ebenwaldner
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Marek Sebesta
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Etienne Beltzung
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Gen Lin
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Anna Vlasova
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Martin Leeb
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Rushad Pavri
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna Biocenter (VBC), Vienna, Austria
| | - Altuna Akalin
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Carrie Bernecky
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg, Austria
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Dea Slade
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Eenjes E, Buscop-van Kempen M, Boerema-de Munck A, Edel GG, Benthem F, de Kreij-de Bruin L, Schnater M, Tibboel D, Collins J, Rottier RJ. SOX21 modulates SOX2-initiated differentiation of epithelial cells in the extrapulmonary airways. eLife 2021; 10:57325. [PMID: 34286693 PMCID: PMC8331192 DOI: 10.7554/elife.57325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/20/2021] [Indexed: 12/23/2022] Open
Abstract
SOX2 expression levels are crucial for the balance between maintenance and differentiation of airway progenitor cells during development and regeneration. Here, we describe patterning of the mouse proximal airway epithelium by SOX21, which coincides with high levels of SOX2 during development. Airway progenitor cells in this SOX2+/SOX21+ zone show differentiation to basal cells, specifying cells for the extrapulmonary airways. Loss of SOX21 showed an increased differentiation of SOX2+ progenitor cells to basal and ciliated cells during mouse lung development. We propose a mechanism where SOX21 inhibits differentiation of airway progenitors by antagonizing SOX2-induced expression of specific genes involved in airway differentiation. Additionally, in the adult tracheal epithelium, SOX21 inhibits basal to ciliated cell differentiation. This suppressing function of SOX21 on differentiation contrasts SOX2, which mainly drives differentiation of epithelial cells during development and regeneration after injury. Furthermore, using human fetal lung organoids and adult bronchial epithelial cells, we show that SOX2+/SOX21+ regionalization is conserved. Lastly, we show that the interplay between SOX2 and SOX21 is context and concentration dependent leading to regulation of differentiation of the airway epithelium.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Marjon Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Anne Boerema-de Munck
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gabriela G Edel
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Floor Benthem
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Lisette de Kreij-de Bruin
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Marco Schnater
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Jennifer Collins
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell biology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
14
|
Motosugi N, Okada C, Sugiyama A, Kawasaki T, Kimura M, Shiina T, Umezawa A, Akutsu H, Fukuda A. Deletion of lncRNA XACT does not change expression dosage of X-linked genes, but affects differentiation potential in hPSCs. Cell Rep 2021; 35:109222. [PMID: 34107248 DOI: 10.1016/j.celrep.2021.109222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/08/2021] [Accepted: 05/14/2021] [Indexed: 12/28/2022] Open
Abstract
Female human pluripotent stem cells (hPSCs) regularly show erosion of X chromosome inactivation featured by the loss of the long non-coding (lnc) RNA XIST and the accumulation of lncXACT. Here, we report that a common mechanism for the initiation of erosion depends on XIST loss but not XACT accumulation on inactive X chromosomes. We further demonstrate that XACT deletion does not affect X-linked gene dosage in eroded hPSCs and that aberrant XIST RNA diffusion induced by the CRISPR activation system is independent of the presence of XACT RNA. In contrast, the deletion of XACT results in the upregulation of neuron-related genes, facilitating neural differentiation in both male and eroded female hPSCs. XACT RNA repression by CRIPSR inhibition results in the same phenotype. Our study finds that XACT is dispensable for maintaining the erosion of X-lined gene repression on inactive X chromosomes but affects neural differentiation in hPSCs.
Collapse
Affiliation(s)
- Nami Motosugi
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Chisa Okada
- Support Center for Medical Research and Education, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Akiko Sugiyama
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Minoru Kimura
- The Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Atsushi Fukuda
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan; The Institute of Medical Sciences, Tokai University, Isehara, Japan; Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan; Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
15
|
Mus LM, Van Haver S, Popovic M, Trypsteen W, Lefever S, Zeltner N, Ogando Y, Jacobs EZ, Denecker G, Sanders E, Van Neste C, Vanhauwaert S, Decaesteker B, Deforce D, Van Nieuwerburgh F, Mestdagh P, Vandesompele J, Menten B, De Preter K, Studer L, Heindryckx B, Durinck K, Roberts S, Speleman F. Recurrent chromosomal imbalances provide selective advantage to human embryonic stem cells under enhanced replicative stress conditions. Genes Chromosomes Cancer 2021; 60:272-281. [PMID: 33336840 DOI: 10.1002/gcc.22931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/07/2022] Open
Abstract
Human embryonic stem cells (hESCs) and embryonal tumors share a number of common features, including a compromised G1/S checkpoint. Consequently, these rapidly dividing hESCs and cancer cells undergo elevated levels of replicative stress, inducing genomic instability that drives chromosomal imbalances. In this context, it is of interest that long-term in vitro cultured hESCs exhibit a remarkable high incidence of segmental DNA copy number gains, some of which are also highly recurrent in certain malignancies such as 17q gain (17q+). The selective advantage of DNA copy number changes in these cells has been attributed to several underlying processes including enhanced proliferation. We hypothesized that these recurrent chromosomal imbalances become rapidly embedded in the cultured hESCs through a replicative stress driven Darwinian selection process. To this end, we compared the effect of hydroxyurea-induced replicative stress vs normal growth conditions in an equally mixed cell population of isogenic euploid and 17q + hESCs. We could show that 17q + hESCs rapidly overtook normal hESCs. Our data suggest that recurrent chromosomal segmental gains provide a proliferative advantage to hESCs under increased replicative stress, a process that may also explain the highly recurrent nature of certain imbalances in cancer.
Collapse
Affiliation(s)
- Liselot M Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Stéphane Van Haver
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Mina Popovic
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Wim Trypsteen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steve Lefever
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nadja Zeltner
- Center for Molecular Medicine, Department of Biochemistry & Molecular Biology and Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Yudelca Ogando
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Eva Z Jacobs
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Geertrui Denecker
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ellen Sanders
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Christophe Van Neste
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Suzanne Vanhauwaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bieke Decaesteker
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dieter Deforce
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Björn Menten
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, USA
- Developmental Biology Program, Sloan Kettering Institute, New York, USA
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kaat Durinck
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Stephen Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Ghent University, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
16
|
Stevanovic M, Drakulic D, Lazic A, Ninkovic DS, Schwirtlich M, Mojsin M. SOX Transcription Factors as Important Regulators of Neuronal and Glial Differentiation During Nervous System Development and Adult Neurogenesis. Front Mol Neurosci 2021; 14:654031. [PMID: 33867936 PMCID: PMC8044450 DOI: 10.3389/fnmol.2021.654031] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The SOX proteins belong to the superfamily of transcription factors (TFs) that display properties of both classical TFs and architectural components of chromatin. Since the cloning of the Sox/SOX genes, remarkable progress has been made in illuminating their roles as key players in the regulation of multiple developmental and physiological processes. SOX TFs govern diverse cellular processes during development, such as maintaining the pluripotency of stem cells, cell proliferation, cell fate decisions/germ layer formation as well as terminal cell differentiation into tissues and organs. However, their roles are not limited to development since SOX proteins influence survival, regeneration, cell death and control homeostasis in adult tissues. This review summarized current knowledge of the roles of SOX proteins in control of central nervous system development. Some SOX TFs suspend neural progenitors in proliferative, stem-like state and prevent their differentiation. SOX proteins function as pioneer factors that occupy silenced target genes and keep them in a poised state for activation at subsequent stages of differentiation. At appropriate stage of development, SOX members that maintain stemness are down-regulated in cells that are competent to differentiate, while other SOX members take over their functions and govern the process of differentiation. Distinct SOX members determine down-stream processes of neuronal and glial differentiation. Thus, sequentially acting SOX TFs orchestrate neural lineage development defining neuronal and glial phenotypes. In line with their crucial roles in the nervous system development, deregulation of specific SOX proteins activities is associated with neurodevelopmental disorders (NDDs). The overview of the current knowledge about the link between SOX gene variants and NDDs is presented. We outline the roles of SOX TFs in adult neurogenesis and brain homeostasis and discuss whether impaired adult neurogenesis, detected in neurodegenerative diseases, could be associated with deregulation of SOX proteins activities. We present the current data regarding the interaction between SOX proteins and signaling pathways and microRNAs that play roles in nervous system development. Finally, future research directions that will improve the knowledge about distinct and various roles of SOX TFs in health and diseases are presented and discussed.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Ectopic activation of GABA B receptors inhibits neurogenesis and metamorphosis in the cnidarian Nematostella vectensis. Nat Ecol Evol 2020; 5:111-121. [PMID: 33168995 DOI: 10.1038/s41559-020-01338-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 09/29/2020] [Indexed: 01/22/2023]
Abstract
The metabotropic gamma-aminobutyric acid B receptor (GABABR) is a G protein-coupled receptor that mediates neuronal inhibition by the neurotransmitter GABA. While GABABR-mediated signalling has been suggested to play central roles in neuronal differentiation and proliferation across evolution, it has mostly been studied in the mammalian brain. Here, we demonstrate that ectopic activation of GABABR signalling affects neurogenic functions in the sea anemone Nematostella vectensis. We identified four putative Nematostella GABABR homologues presenting conserved three-dimensional extracellular domains and residues needed for binding GABA and the GABABR agonist baclofen. Moreover, sustained activation of GABABR signalling reversibly arrests the critical metamorphosis transition from planktonic larva to sessile polyp life stage. To understand the processes that underlie the developmental arrest, we combined transcriptomic and spatial analyses of control and baclofen-treated larvae. Our findings reveal that the cnidarian neurogenic programme is arrested following the addition of baclofen to developing larvae. Specifically, neuron development and neurite extension were inhibited, resulting in an underdeveloped and less organized nervous system and downregulation of proneural factors including NvSoxB(2), NvNeuroD1 and NvElav1. Our results thus point to an evolutionarily conserved function of GABABR in neurogenesis regulation and shed light on early cnidarian development.
Collapse
|
18
|
Wu CC, Brugeaud A, Seist R, Lin HC, Yeh WH, Petrillo M, Coppola G, Edge ASB, Stankovic KM. Altered expression of genes regulating inflammation and synaptogenesis during regrowth of afferent neurons to cochlear hair cells. PLoS One 2020; 15:e0238578. [PMID: 33001981 PMCID: PMC7529247 DOI: 10.1371/journal.pone.0238578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
The spiral ganglion neurons constitute the primary connection between auditory hair cells and the brain. The spiral ganglion afferent fibers and their synapse with hair cells do not regenerate to any significant degree in adult mammalian ears after damage. We have investigated gene expression changes after kainate-induced disruption of the synapses in a neonatal cochlear explant model in which peripheral fibers and the afferent synapse do regenerate. We compared gene expression early after damage, during regeneration of the fibers and synapses, and after completion of in vitro regeneration. These analyses revealed a total of 2.5% differentially regulated transcripts (588 out of 24,000) based on a threshold of p<0.005. Inflammatory response genes as well as genes involved in regeneration of neural circuits were upregulated in the spiral ganglion neurons and organ of Corti, where the hair cells reside. Prominent genes upregulated at several time points included genes with roles in neurogenesis (Elavl4 and Sox21), neural outgrowth (Ntrk3 and Ppp1r1c), axonal guidance (Rgmb and Sema7a), synaptogenesis (Nlgn2 and Psd2), and synaptic vesicular function (Syt8 and Syn1). Immunohistochemical and in situ hybridization analysis of genes that had not previously been described in the cochlea confirmed their cochlear expression. The time course of expression of these genes suggests that kainate treatment resulted in a two-phase response in spiral ganglion neurons: an acute response consistent with inflammation, followed by an upregulation of neural regeneration genes. Identification of the genes activated during regeneration of these fibers suggests candidates that could be targeted to enhance regeneration in adult ears.
Collapse
Affiliation(s)
- Chen-Chi Wu
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aurore Brugeaud
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Seist
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Otorhinolaryngology-Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Hsiao-Chun Lin
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wei-Hsi Yeh
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marco Petrillo
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Giovanni Coppola
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Albert S. B. Edge
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Konstantina M. Stankovic
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
19
|
Qin CX, Yang XQ, Zhan ZY. Connection between SOX7 Expression and Breast Cancer Prognosis. Med Sci Monit 2020; 26:e921510. [PMID: 32238796 PMCID: PMC7152737 DOI: 10.12659/msm.921510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background SOX7 exerts a repressing effect against tumors and imposes vital influences on malignancies. Our research discussed the importance of SOX7 in breast cancer prognoses. Material/Methods SOX7 mRNA expression in breast cancer tissues samples and matched adjacent normal controls of breast cancer patients was measured by quantitative real-time-polymerase chain reaction (qRT-PCR). The relationship of SOX7 with clinicopathological characteristics were analyzed via chi-square test. The association of SOX7 levels with clinical outcomes was evaluated adopting the Kaplan-Meier method and multivariate Cox proportional hazards regression model. Results SOX7 mRNA degree of expression exhibited a declining tendency in breast cancer tissue compared to paired bordering normal tissue specimens (P<0.001). In addition, the reduced SOX7 degree of expression had a strong correlation to larger cancer mass dimension (P=0.006) and lymph node metastasis (P=0.001). Survival analysis revealed that the overall survival (OS) time was much shorter among cases harboring low SOX7 degree of expression compared to high degree of expression (P=0.005). Moreover, SOX7 expression alone could predict OS among breast cancer patients (hazard ratio=3.956, 95% confidence interval=1.330–11.772, P=0.013). Conclusions SOX7 expression was downregulated in breast cancer tissues, and it could function as a useful prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Chun-Xin Qin
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai, Shandong, China (mainland)
| | - Xiao-Qing Yang
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai, Shandong, China (mainland)
| | - Zhi-Yong Zhan
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai, Shandong, China (mainland)
| |
Collapse
|
20
|
Fang Z, Liu X, Wen J, Tang F, Zhou Y, Jing N, Jin Y. SOX21 Ensures Rostral Forebrain Identity by Suppression of WNT8B during Neural Regionalization of Human Embryonic Stem Cells. Stem Cell Reports 2019; 13:1038-1052. [PMID: 31761677 PMCID: PMC6915843 DOI: 10.1016/j.stemcr.2019.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 11/29/2022] Open
Abstract
The generation of brain region-specific progenitors from human embryonic stem cells (hESCs) is critical for their application. However, transcriptional regulation of neural regionalization in humans is poorly understood. Here, we applied a rostrocaudal patterning system from hESCs to dissect global transcriptional networks controlling early neural regionalization. We found that SOX21 is required for rostral forebrain fate specification. SOX21 knockout led to activation of Wnt signaling, resulting in caudalization of regional identity of rostral forebrain neural progenitor cells. Moreover, we identified WNT8B as a SOX21 direct target. Deletion of WNT8B or inhibition of Wnt signaling in SOX21 knockout neural progenitor cells restored rostral forebrain identity. Furthermore, SOX21 interacted with β-catenin, interfering with the binding of TCF4/β-catenin complex to the WNT8B enhancer. Collectively, these results unveil the unknown role of SOX21 and shed light on how a transcriptional factor modulates early neural regionalization through crosstalk with a key component of Wnt signaling. The transcriptomic analysis of rostrocaudal patterning of hESC-derived NPCs SOX21 KO leads to caudalized regional identity in rostral forebrain progenitors SOX21 represses Wnt signaling to ensure the rostral forebrain identity WNT8B is a major downstream target of SOX21
Collapse
Affiliation(s)
- Zhuoqing Fang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xinyuan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jing Wen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Fan Tang
- Basic Clinical Research Center, Renji Hospital, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - Yang Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Ying Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Basic Clinical Research Center, Renji Hospital, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
21
|
Chen B, Zhu Z, Li L, Ye W, Zeng J, Gao J, Wang S, Zhang L, Huang Z. Effect of overexpression of Oct4 and Sox2 genes on the biological and oncological characteristics of gastric cancer cells. Onco Targets Ther 2019; 12:4667-4682. [PMID: 31417271 PMCID: PMC6592062 DOI: 10.2147/ott.s209734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/07/2019] [Indexed: 11/23/2022] Open
Abstract
Objective: Using the gastric cancer cell line SGC7901, we constructed a cell line that overexpressed octamer-binding protein 4 (Oct4) and SRY-box 2 (Sox2) to explore the stem cell oncological and biological characteristics of these cells and to elucidate the mechanisms of Oct4 and Sox2 in cancer. Methods: A lentiviral vector containing the Sox2 gene was constructed and transfected into a gastric cancer cell line overexpressing Oct4 (SGC7901-Oct4) to obtain a stably transfected cell line (SGC7901-Oct4-Sox2). Oct4 and Sox2 expression was detected by RT-PCR and Western blotting. The proliferation, drug resistance, migration, and invasion abilities of the cells were assessed using in vitro (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), drug resistance, scratch-wound migration, transwell migration, transwell invasion, and spherical clone formation assays, and their tumorigenic ability was assessed using a tumor formation experiment in mice. Results: Compared with the control group, the expression of Oct4, Sox2, CD44, and E-cadherin was significantly higher in the group that overexpressed Oct4 and Sox2, while the expression of c-Myc and Klf4 did not significantly change. The proliferation, drug resistance, migration, and invasion abilities were significantly enhanced in the overexpression group, and the tumorigenic ability in mice was also significantly enhanced, with significantly increased tumor size and weight. Conclusion: The proliferation, drug resistance, migration, invasion, and tumorigenic abilities of SGC7901 cells overexpressing Oct4 and Sox2 were significantly improved. Oct4 and Sox2 play important roles in the proliferation, migration, invasion, and tumorigenicity of gastric cancer cells, and the two genes may be synergistic to a certain degree.
Collapse
Affiliation(s)
- Borong Chen
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Zhipeng Zhu
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Lulu Li
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Weipeng Ye
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China
| | - Junjie Zeng
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Jin Gao
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Shengjie Wang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Liang Zhang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China
| | - Zhengjie Huang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, People's Republic of China.,Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China
| |
Collapse
|
22
|
Ray P, Torck A, Quigley L, Wangzhou A, Neiman M, Rao C, Lam T, Kim JY, Kim TH, Zhang MQ, Dussor G, Price TJ. Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq-based resource for pain and sensory neuroscience research. Pain 2019; 159:1325-1345. [PMID: 29561359 DOI: 10.1097/j.pain.0000000000001217] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular neurobiological insight into human nervous tissues is needed to generate next-generation therapeutics for neurological disorders such as chronic pain. We obtained human dorsal root ganglia (hDRG) samples from organ donors and performed RNA-sequencing (RNA-seq) to study the hDRG transcriptional landscape, systematically comparing it with publicly available data from a variety of human and orthologous mouse tissues, including mouse DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted gene coexpression patterns and putative transcriptional regulators, and formulated an information-theoretic framework to quantify DRG enrichment. Relevant gene families and pathways were also analyzed, including transcription factors, G-protein-coupled receptors, and ion channels. Our analyses reveal an hDRG-enriched protein-coding gene set (∼140), some of which have not been described in the context of DRG or pain signaling. Most of these show conserved enrichment in mDRG and were mined for known drug-gene product interactions. Conserved enrichment of the vast majority of transcription factors suggests that the mDRG is a faithful model system for studying hDRG, because of evolutionarily conserved regulatory programs. Comparison of hDRG and tibial nerve transcriptomes suggests trafficking of neuronal mRNA to axons in adult hDRG, and are consistent with studies of axonal transport in rodent sensory neurons. We present our work as an online, searchable repository (https://www.utdallas.edu/bbs/painneurosciencelab/sensoryomics/drgtxome), creating a valuable resource for the community. Our analyses provide insight into DRG biology for guiding development of novel therapeutics and a blueprint for cross-species transcriptomic analyses.
Collapse
Affiliation(s)
- Pradipta Ray
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Andrew Torck
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Lilyana Quigley
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Matthew Neiman
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Chandranshu Rao
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tiffany Lam
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Ji-Young Kim
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Michael Q Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
23
|
Zaletel I, Schwirtlich M, Perović M, Jovanović M, Stevanović M, Kanazir S, Puškaš N. Early Impairments of Hippocampal Neurogenesis in 5xFAD Mouse Model of Alzheimer’s Disease Are Associated with Altered Expression of SOXB Transcription Factors. J Alzheimers Dis 2018; 65:963-976. [DOI: 10.3233/jad-180277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ivan Zaletel
- Institute of Histology and Embryology “Aleksandar Đ Kostić”, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milka Perović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Mirna Jovanović
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- University of Belgrade, Faculty of Biology, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Selma Kanazir
- Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Nela Puškaš
- Institute of Histology and Embryology “Aleksandar Đ Kostić”, School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
24
|
Bryois J, Garrett ME, Song L, Safi A, Giusti-Rodriguez P, Johnson GD, Shieh AW, Buil A, Fullard JF, Roussos P, Sklar P, Akbarian S, Haroutunian V, Stockmeier CA, Wray GA, White KP, Liu C, Reddy TE, Ashley-Koch A, Sullivan PF, Crawford GE. Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat Commun 2018; 9:3121. [PMID: 30087329 PMCID: PMC6081462 DOI: 10.1038/s41467-018-05379-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/28/2018] [Indexed: 01/19/2023] Open
Abstract
Schizophrenia genome-wide association studies have identified >150 regions of the genome associated with disease risk, yet there is little evidence that coding mutations contribute to this disorder. To explore the mechanism of non-coding regulatory elements in schizophrenia, we performed ATAC-seq on adult prefrontal cortex brain samples from 135 individuals with schizophrenia and 137 controls, and identified 118,152 ATAC-seq peaks. These accessible chromatin regions in the brain are highly enriched for schizophrenia SNP heritability. Accessible chromatin regions that overlap evolutionarily conserved regions exhibit an even higher heritability enrichment, indicating that sequence conservation can further refine functional risk variants. We identify few differences in chromatin accessibility between cases and controls, in contrast to thousands of age-related differential accessible chromatin regions. Altogether, we characterize chromatin accessibility in the human prefrontal cortex, the effect of schizophrenia and age on chromatin accessibility, and provide evidence that our dataset will allow for fine mapping of risk variants.
Collapse
Affiliation(s)
- Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | | | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | | | - Graham D Johnson
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Annie W Shieh
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Alfonso Buil
- Research Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Roskilde, 4000, Denmark
| | - John F Fullard
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Panos Roussos
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Pamela Sklar
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Schahram Akbarian
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vahram Haroutunian
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- MIRECC, JJ Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, Center for Psychiatric Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Gregory A Wray
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Kevin P White
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Timothy E Reddy
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, 27708, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Durham, NC, 27701, USA
- Department of Medicine, Duke University, Durham, NC, 27708, USA
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177, Stockholm, Sweden.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599-7264, USA.
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27599-7264, USA.
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
25
|
Makrides N, Panayiotou E, Fanis P, Karaiskos C, Lapathitis G, Malas S. Sequential Role of SOXB2 Factors in GABAergic Neuron Specification of the Dorsal Midbrain. Front Mol Neurosci 2018; 11:152. [PMID: 29867344 PMCID: PMC5952183 DOI: 10.3389/fnmol.2018.00152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/17/2018] [Indexed: 12/23/2022] Open
Abstract
Studies proposed a model for embryonic neurogenesis where the expression levels of the SOXB2 and SOXB1 factors regulate the differentiation status of the neural stem cells. However, the precise role of the SOXB2 genes remains controversial. Therefore, this study aims to investigate the effects of individual deletions of the SOX21 and SOX14 genes during the development of the dorsal midbrain. We show that SOX21 and SOX14 function distinctly during the commitment of the GABAergic lineage. More explicitly, deletion of SOX21 reduced the expression of the GABAergic precursor marker GATA3 and BHLHB5 while the expression of GAD6, which marks GABAergic terminal differentiation, was not affected. In contrast deletion of SOX14 alone was sufficient to inhibit terminal differentiation of the dorsal midbrain GABAergic neurons. Furthermore, we demonstrate through gain-of-function experiments, that despite the homology of SOX21 and SOX14, they have unique gene targets and cannot compensate for the loss of each other. Taken together, these data do not support a pan-neurogenic function for SOXB2 genes in the dorsal midbrain, but instead they influence, sequentially, the specification of GABAergic neurons.
Collapse
Affiliation(s)
- Neoklis Makrides
- Developmental and Functional Genetics Group, The Cyprus Institute of Neurology & Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Elena Panayiotou
- Neurologic Clinic A, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - George Lapathitis
- Neuroscience Laboratory, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Stavros Malas
- Developmental and Functional Genetics Group, The Cyprus Institute of Neurology & Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
26
|
Sugiaman-Trapman D, Vitezic M, Jouhilahti EM, Mathelier A, Lauter G, Misra S, Daub CO, Kere J, Swoboda P. Characterization of the human RFX transcription factor family by regulatory and target gene analysis. BMC Genomics 2018; 19:181. [PMID: 29510665 PMCID: PMC5838959 DOI: 10.1186/s12864-018-4564-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Evolutionarily conserved RFX transcription factors (TFs) regulate their target genes through a DNA sequence motif called the X-box. Thereby they regulate cellular specialization and terminal differentiation. Here, we provide a comprehensive analysis of all the eight human RFX genes (RFX1-8), their spatial and temporal expression profiles, potential upstream regulators and target genes. RESULTS We extracted all known human RFX1-8 gene expression profiles from the FANTOM5 database derived from transcription start site (TSS) activity as captured by Cap Analysis of Gene Expression (CAGE) technology. RFX genes are broadly (RFX1-3, RFX5, RFX7) and specifically (RFX4, RFX6) expressed in different cell types, with high expression in four organ systems: immune system, gastrointestinal tract, reproductive system and nervous system. Tissue type specific expression profiles link defined RFX family members with the target gene batteries they regulate. We experimentally confirmed novel TSS locations and characterized the previously undescribed RFX8 to be lowly expressed. RFX tissue and cell type specificity arises mainly from differences in TSS architecture. RFX transcript isoforms lacking a DNA binding domain (DBD) open up new possibilities for combinatorial target gene regulation. Our results favor a new grouping of the RFX family based on protein domain composition. We uncovered and experimentally confirmed the TFs SP2 and ESR1 as upstream regulators of specific RFX genes. Using TF binding profiles from the JASPAR database, we determined relevant patterns of X-box motif positioning with respect to gene TSS locations of human RFX target genes. CONCLUSIONS The wealth of data we provide will serve as the basis for precisely determining the roles RFX TFs play in human development and disease.
Collapse
Affiliation(s)
| | - Morana Vitezic
- Department of Biology, Bioinformatics Centre, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen, Denmark
| | - Eeva-Mari Jouhilahti
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anthony Mathelier
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, Canada
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL partnership, University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Sougat Misra
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Carsten O Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- School of Basic and Medical Biosciences, King's College London, London, UK
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
27
|
Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes. Dev Biol 2017; 431:152-167. [PMID: 28947179 DOI: 10.1016/j.ydbio.2017.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
The transcription factor Six1 and its cofactor Eya1 are important regulators of neurogenesis in cranial placodes, activating genes promoting both a progenitor state, such as hes8, and neuronal differentiation, such as neurog1. Here, we use gain and loss of function studies in Xenopus laevis to elucidate how these genes function during placodal neurogenesis. We first establish that hes8 is activated by Notch signaling and represses neurog1 and neuronal differentiation, indicating that it mediates lateral inhibition. Using hes8 knockdown we demonstrate that hes8 is essential for limiting neuronal differentiation during normal placode development. We next show that Six1 and Eya1 cell autonomously activate both hes8 and neurog1 in a dose-dependent fashion, with increasing upregulation at higher doses, while neuronal differentiation is increasingly repressed. However, high doses of Six1 and Eya1 upregulate neurog1 only transiently, whereas low doses of Six1 and Eya1 ultimately promote both neurog1 expression and neuronal differentiation. Finally, we show that Six1 and Eya1 can activate hes8 and arrest neuronal differentiation even when Notch signaling is blocked. Our findings indicate that Six1 and Eya1 can both promote and arrest neuronal differentiation by activating the Notch pathway genes neurog1 and hes8, respectively, revealing a novel mechanism of Six1/Eya1 action during placodal neurogenesis.
Collapse
|
28
|
In Vivo Analysis of the Neurovascular Niche in the Developing Xenopus Brain. eNeuro 2017; 4:eN-NWR-0030-17. [PMID: 28795134 PMCID: PMC5548361 DOI: 10.1523/eneuro.0030-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022] Open
Abstract
The neurovascular niche is a specialized microenvironment formed by the interactions between neural progenitor cells (NPCs) and the vasculature. While it is thought to regulate adult neurogenesis by signaling through vascular-derived soluble cues or contacted-mediated cues, less is known about the neurovascular niche during development. In Xenopus laevis tadpole brain, NPCs line the ventricle and extend radial processes tipped with endfeet to the vascularized pial surface. Using in vivo labeling and time-lapse imaging in tadpoles, we find that intracardial injection of fluorescent tracers rapidly labels Sox2/3-expressing NPCs and that vascular-circulating molecules are endocytosed by NPC endfeet. Confocal imaging indicates that about half of the endfeet appear to appose the vasculature, and time-lapse analysis of NPC proliferation and endfeet-vascular interactions suggest that proliferative activity does not correlate with stable vascular apposition. Together, these findings characterize the neurovascular niche in the developing brain and suggest that, while signaling to NPCs may occur through vascular-derived soluble cues, stable contact between NPC endfeet and the vasculature is not required for developmental neurogenesis.
Collapse
|
29
|
Julian LM, McDonald AC, Stanford WL. Direct reprogramming with SOX factors: masters of cell fate. Curr Opin Genet Dev 2017; 46:24-36. [PMID: 28662445 DOI: 10.1016/j.gde.2017.06.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/25/2017] [Accepted: 06/09/2017] [Indexed: 12/13/2022]
Abstract
Over the last decade significant advances have been made toward reprogramming the fate of somatic cells, typically by overexpression of cell lineage-determinant transcription factors. As key regulators of cell fate, the SOX family of transcription factors has emerged as potent drivers of direct somatic cell reprogramming into multiple lineages, in some cases as the sole overexpressed factor. The vast capacity of SOX factors, especially those of the SOXB1, E and F subclasses, to reprogram cell fate is enlightening our understanding of organismal development, cancer and disease, and offers tremendous potential for regenerative medicine and cell-based therapies. Understanding the molecular mechanisms through which SOX factors reprogram cell fate is essential to optimize the development of novel somatic cell transdifferentiation strategies.
Collapse
Affiliation(s)
- Lisa M Julian
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1L8L6, Canada
| | - Angela Ch McDonald
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, Ontario M5G0A4, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S3G9, Canada
| | - William L Stanford
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1L8L6, Canada; Department of Cellular and Molecular Medicine, Faulty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario K1H8M5, Canada; Department of Biochemistry, Microbiology and Immunology, Faulty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario K1H8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario K1H8M5, Canada.
| |
Collapse
|
30
|
Cheung LYM, Okano H, Camper SA. Sox21 deletion in mice causes postnatal growth deficiency without physiological disruption of hypothalamic-pituitary endocrine axes. Mol Cell Endocrinol 2017; 439:213-223. [PMID: 27616671 PMCID: PMC5123967 DOI: 10.1016/j.mce.2016.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/23/2022]
Abstract
The hypothalamic-pituitary axes are the coordinating centers for multiple endocrine gland functions and physiological processes. Defects in the hypothalamus or pituitary gland can cause reduced growth and severe short stature, affecting approximately 1 in 4000 children, and a large percentage of cases of pituitary hormone deficiencies do not have an identified genetic cause. SOX21 is a protein that regulates hair, neural, and trophoblast stem cell differentiation. Mice lacking Sox21 have reduced growth, but the etiology of this growth defect has not been described. We studied the expression of Sox21 in hypothalamic-pituitary development and examined multiple endocrine axes in these mice. We find no evidence of reduced intrauterine growth, food intake, or physical activity, but there is evidence for increased energy expenditure in mutants. In addition, despite changes in pituitary hormone expression, hypothalamic-pituitary axes appear to be functional. Therefore, SOX21 variants may be a cause of non-endocrine short stature in humans.
Collapse
Affiliation(s)
- Leonard Y M Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Laitman BM, Asp L, Mariani JN, Zhang J, Liu J, Sawai S, Chapouly C, Horng S, Kramer EG, Mitiku N, Loo H, Burlant N, Pedre X, Hara Y, Nudelman G, Zaslavsky E, Lee YM, Braun DA, Lu QR, Narla G, Raine CS, Friedman SL, Casaccia P, John GR. The Transcriptional Activator Krüppel-like Factor-6 Is Required for CNS Myelination. PLoS Biol 2016; 14:e1002467. [PMID: 27213272 PMCID: PMC4877075 DOI: 10.1371/journal.pbio.1002467] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/22/2016] [Indexed: 12/31/2022] Open
Abstract
Growth factors of the gp130 family promote oligodendrocyte differentiation, and viability, and myelination, but their mechanisms of action are incompletely understood. Here, we show that these effects are coordinated, in part, by the transcriptional activator Krüppel-like factor-6 (Klf6). Klf6 is rapidly induced in oligodendrocyte progenitors (OLP) by gp130 factors, and promotes differentiation. Conversely, in mice with lineage-selective Klf6 inactivation, OLP undergo maturation arrest followed by apoptosis, and CNS myelination fails. Overlapping transcriptional and chromatin occupancy analyses place Klf6 at the nexus of a novel gp130-Klf-importin axis, which promotes differentiation and viability in part via control of nuclear trafficking. Klf6 acts as a gp130-sensitive transactivator of the nuclear import factor importin-α5 (Impα5), and interfering with this mechanism interrupts step-wise differentiation. Underscoring the significance of this axis in vivo, mice with conditional inactivation of gp130 signaling display defective Klf6 and Impα5 expression, OLP maturation arrest and apoptosis, and failure of CNS myelination.
Collapse
Affiliation(s)
- Benjamin M. Laitman
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Linnéa Asp
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - John N. Mariani
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jingya Zhang
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jia Liu
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Setsu Sawai
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Candice Chapouly
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Sam Horng
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Elisabeth G. Kramer
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nesanet Mitiku
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Hannah Loo
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Natalie Burlant
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Xiomara Pedre
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yuko Hara
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - German Nudelman
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Systems Biology Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Elena Zaslavsky
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Systems Biology Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Young-Min Lee
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - David A. Braun
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Systems Biology Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Q. Richard Lu
- Pediatrics, Cincinnati Childrens’ Hospital, Cincinnati, Ohio, United States of America
| | - Goutham Narla
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Cedric S. Raine
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Scott L. Friedman
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Patrizia Casaccia
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Gareth R. John
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
32
|
Chen C, Jin J, Lee GA, Silva E, Donoghue M. Cross-species functional analyses reveal shared and separate roles for Sox11 in frog primary neurogenesis and mouse cortical neuronal differentiation. Biol Open 2016; 5:409-17. [PMID: 26962049 PMCID: PMC4890661 DOI: 10.1242/bio.015404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A well-functioning brain requires production of the correct number and types of cells during development; cascades of transcription factors are essential for cellular coordination. Sox proteins are transcription factors that affect various processes in the development of the nervous system. Sox11, a member of the SoxC family, is expressed in differentiated neurons and supports neuronal differentiation in several systems. To understand how generalizable the actions of Sox11 are across phylogeny, its function in the development of the frog nervous system and the mouse cerebral cortex were compared. Expression of Sox11 is largely conserved between these species; in the developing frog, Sox11 is expressed in the neural plate, neural tube and throughout the segmented brain, while in the mouse cerebral cortex, Sox11 is expressed in differentiated zones, including the preplate, subplate, marginal zone and cortical plate. In both frog and mouse, data demonstrate that Sox11 supports a role in promoting neuronal differentiation, with Sox11-positive cells expressing pan-neural markers and becoming morphologically complex. However, frog and mouse Sox11 cannot substitute for one another; a functional difference likely reflected in sequence divergence. Thus, Sox11 appears to act similarly in subserving neuronal differentiation but is species-specific in frog neural development and mouse corticogenesis. Summary: Sox11 acts to designate neurons in both mouse and frog brains, but orthologs are not functionally redundant. These data show evolutionary conservation of Sox11 function with molecular divergence.
Collapse
Affiliation(s)
- Chao Chen
- Department of Biology, Georgetown University, 37th and O Street NW, Washington, DC 20057, USA
| | - Jing Jin
- Department of Biology, Georgetown University, 37th and O Street NW, Washington, DC 20057, USA
| | - Garrett A Lee
- Department of Biology, Georgetown University, 37th and O Street NW, Washington, DC 20057, USA
| | - Elena Silva
- Department of Biology, Georgetown University, 37th and O Street NW, Washington, DC 20057, USA
| | - Maria Donoghue
- Department of Biology, Georgetown University, 37th and O Street NW, Washington, DC 20057, USA
| |
Collapse
|
33
|
Richards GS, Rentzsch F. Regulation of Nematostella neural progenitors by SoxB, Notch and bHLH genes. Development 2016; 142:3332-42. [PMID: 26443634 PMCID: PMC4631755 DOI: 10.1242/dev.123745] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Notch signalling, SoxB and Group A bHLH 'proneural' genes are conserved regulators of the neurogenic program in many bilaterians. However, the ancestry of their functions and interactions is not well understood. We address this question in the sea anemone Nematostella vectensis, a representative of the Cnidaria, the sister clade to the Bilateria. It has previously been found that the SoxB orthologue NvSoxB(2) is expressed in neural progenitor cells (NPCs) in Nematostella and promotes the development of both neurons and nematocytes, whereas Notch signalling has been implicated in the negative regulation of neurons and the positive regulation of nematocytes. Here, we clarify the role of Notch by reporting that inhibition of Notch signalling increases the numbers of both neurons and nematocytes, as well as increasing the number of NvSoxB(2)-expressing cells. This suggests that Notch restricts neurogenesis by limiting the generation of NPCs. We then characterise NvAth-like (Atonal/Neurogenin family) as a positive regulator of neurogenesis that is co-expressed with NvSoxB(2) in a subset of dividing NPCs, while we find that NvAshA (Achaete-scute family) and NvSoxB(2) are co-expressed in non-dividing cells only. Reciprocal knockdown experiments reveal a mutual requirement for NvSoxB(2) and NvAth-like in neural differentiation; however, the primary expression of each gene is independent of the other. Together, these data demonstrate that Notch signalling and NvSoxB(2) regulate Nematostella neural progenitors via parallel yet interacting mechanisms; with different aspects of these interactions being shared with Drosophila and/or vertebrate neurogenesis.
Collapse
Affiliation(s)
- Gemma Sian Richards
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen N-5008, Norway
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen N-5008, Norway
| |
Collapse
|
34
|
Moretto Zita M, Soncin F, Natale D, Pizzo D, Parast M. Gene Expression Profiling Reveals a Novel Regulatory Role for Sox21 Protein in Mouse Trophoblast Stem Cell Differentiation. J Biol Chem 2015; 290:30152-62. [PMID: 26491013 DOI: 10.1074/jbc.m115.659094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 11/06/2022] Open
Abstract
Appropriate self-renewal and differentiation of trophoblast stem cells (TSCs) are key factors for proper placental development and function and, in turn, for appropriate in utero fetal growth. To identify novel TSC-specific genes, we performed genome-wide expression profiling of TSCs, embryonic stem cells, epiblast stem cells, and mouse embryo fibroblasts, derived from mice of the same genetic background. Our analysis revealed a high expression of Sox21 in TSCs compared with other cell types. Sox21 levels were high in undifferentiated TSCs and were dramatically reduced upon differentiation. In addition, modulation of Sox21 expression in TSCs affected lineage-specific differentiation, based on both marker analysis and functional assessment. Our results implicate Sox21 specifically in the promotion of spongiotrophoblast and giant cell differentiation and establish a new mechanism through which trophoblast sublineages are specified.
Collapse
Affiliation(s)
| | | | - David Natale
- Reproductive Medicine, University of California San Diego, La Jolla, California 92093
| | | | | |
Collapse
|
35
|
Orchestration of Neuronal Differentiation and Progenitor Pool Expansion in the Developing Cortex by SoxC Genes. J Neurosci 2015. [PMID: 26203155 DOI: 10.1523/jneurosci.1663-15.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As the cerebral cortex forms, specialized molecular cascades direct the expansion of progenitor pools, the differentiation of neurons, or the maturation of discrete neuronal subtypes, together ensuring that the correct amounts and classes of neurons are generated. In several neural systems, the SoxC transcriptional regulators, particularly Sox11 and Sox4, have been characterized as functioning exclusively and redundantly in promoting neuronal differentiation. Using the mouse cerebral cortex as a model, Sox11 and Sox4 were examined in the formation of the most complex part of the mammalian brain. Anticipated prodifferentiation roles were observed. Distinct expression patterns and mutant phenotypes, however, reveal that Sox11 and Sox4 are not redundant in the cortex, but rather act in overlapping and discrete populations of neurons. In particular, Sox11 acts in early-born neurons; binding to its partner protein, Neurogenin1, leads to selective targeting and transactivation of a downstream gene, NeuroD1. In addition to neuronal expression, Sox4 was unexpectedly expressed in intermediate progenitor cells, the transit amplifying cell of the cerebral cortex. Sox4 mutant analyses reveal a requirement for Sox4 in IPC specification and maintenance. In intermediate progenitors, Sox4 partners with the proneural gene Neurogenin2 to activate Tbrain2 and then with Tbrain2 to maintain this cell fate. This work reveals an intricately structured molecular architecture for SoxC molecules, with Sox11 acting in a select set of cortical neurons and Sox4 playing an unanticipated role in designating secondary progenitors.
Collapse
|