1
|
Abdelhamid AM, Saber S, Hamad RS, Abdel-Reheim MA, Ellethy AT, Amer MM, Abdel-Hamed MR, Mohamed EA, Ahmed SS, Elsisi HA, Khodeir MM, Alkhamiss AS, A. AA, Abu Elgasim MAE, Almansour ZH, Elesawy BH, Elmorsy EA. STA-9090 in combination with a statin exerts enhanced protective effects in rats fed a high-fat diet and exposed to diethylnitrosamine and thioacetamide. Front Pharmacol 2024; 15:1454829. [PMID: 39309001 PMCID: PMC11413491 DOI: 10.3389/fphar.2024.1454829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Liver fibrosis is a significant global health burden that lacks effective therapies. It can progress to cirrhosis and hepatocellular carcinoma (HCC). Aberrant hedgehog pathway activation is a key driver of fibrogenesis and cancer, making hedgehog inhibitors potential antifibrotic and anticancer agents. Methods We evaluated simvastatin and STA-9090, alone and combined, in rats fed a high-fat diet (HFD) and exposed to diethylnitrosamine and thioacetamide (DENA/TAA). Simvastatin inhibits HMG-CoA reductase, depleting cellular cholesterol required for Sonic hedgehog (Shh) modification and signaling. STA-9090 directly inhibits HSP90 chaperone interactions essential for Shh function. We hypothesized combining these drugs may provide liver protective effects through complementary targeting of the hedgehog pathway. Endpoints assessed included liver function tests, oxidative stress markers, histopathology, extracellular matrix proteins, inflammatory cytokines, and hedgehog signaling components. Results HFD and DENA/TAA caused aberrant hedgehog activation, contributing to fibrotic alterations with elevated liver enzymes, oxidative stress, dyslipidemia, inflammation, and collagen deposition. Monotherapies with simvastatin or STA-9090 improved these parameters, while the combination treatment provided further enhancements, including improved survival, near-normal liver histology, and compelling hedgehog pathway suppression. Discussion Our findings demonstrate the enhanced protective potential of combined HMG CoA reductase and HSP90 inhibition in rats fed a HFD and exposed to DENA and TAA. This preclinical study could help translate hedgehog-targeted therapies to clinical evaluation for treating this major unmet need.
Collapse
Affiliation(s)
- Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Abousree T. Ellethy
- Department of Oral and Medical Basic Sciences, Biochemistry Division, College of Dentistry, Qassim University, Buraidah, Saudi Arabia
| | - Maha M. Amer
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed R. Abdel-Hamed
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Enas A. Mohamed
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Syed Suhail Ahmed
- Department of Microbiology and Immunology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Hossam A. Elsisi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mostafa M. Khodeir
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Abdullah S. Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - AlSalloom A. A.
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Zainab H. Almansour
- Biological Sciences Department, College of Science, King Faisal University, Hofuf, Saudi Arabia
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Elsayed A. Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
2
|
Cacho-Navas C, López-Pujante C, Reglero-Real N, Colás-Algora N, Cuervo A, Conesa JJ, Barroso S, de Rivas G, Ciordia S, Paradela A, D'Agostino G, Manzo C, Feito J, Andrés G, Molina-Jiménez F, Majano P, Correas I, Carazo JM, Nourshargh S, Huch M, Millán J. ICAM-1 nanoclusters regulate hepatic epithelial cell polarity by leukocyte adhesion-independent control of apical actomyosin. eLife 2024; 12:RP89261. [PMID: 38597186 PMCID: PMC11006420 DOI: 10.7554/elife.89261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell-cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.
Collapse
Affiliation(s)
| | | | - Natalia Reglero-Real
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | | | - Ana Cuervo
- Centro Nacional de Biotecnologia (CSIC)MadridSpain
| | | | - Susana Barroso
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | - Gema de Rivas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | | | | | | | - Carlo Manzo
- Facultat de Ciències, Tecnologia i Enginyeries, Universitat de Vic – Universitat Central de Catalunya (UVic-UCC)VicSpain
| | - Jorge Feito
- Servicio de Anatomía Patológica, Hospital Universitario de SalamancaSalamancaSpain
| | - Germán Andrés
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | - Francisca Molina-Jiménez
- Molecular Biology Unit, Hospital Universitario de la PrincesaMadridSpain
- Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa)MadridSpain
| | - Pedro Majano
- Molecular Biology Unit, Hospital Universitario de la PrincesaMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
- Department of Cellular Biology, Universidad Complutense de MadridMadridSpain
| | - Isabel Correas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | | | - Sussan Nourshargh
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Jaime Millán
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| |
Collapse
|
3
|
Bovyn MJ, Haas PA. Shaping epithelial lumina under pressure. Biochem Soc Trans 2024; 52:BST20230632C. [PMID: 38415294 PMCID: PMC10903447 DOI: 10.1042/bst20230632c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
The formation of fluid- or gas-filled lumina surrounded by epithelial cells pervades development and disease. We review the balance between lumen pressure and mechanical forces from the surrounding cells that governs lumen formation. We illustrate the mechanical side of this balance in several examples of increasing complexity, and discuss how recent work is beginning to elucidate how nonlinear and active mechanics and anisotropic biomechanical structures must conspire to overcome the isotropy of pressure to form complex, non-spherical lumina.
Collapse
Affiliation(s)
- Matthew J. Bovyn
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Pierre A. Haas
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
4
|
Azam I, Benson JD. Multiscale transport and 4D time-lapse imaging in precision-cut liver slices (PCLS). PeerJ 2024; 12:e16994. [PMID: 38426134 PMCID: PMC10903333 DOI: 10.7717/peerj.16994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background Monitoring cellular processes across different levels of complexity, from the cellular to the tissue scale, is important for understanding tissue structure and function. However, it is challenging to monitor and estimate these structural and dynamic interactions within three-dimensional (3D) tissue models. Objective The aim of this study was to design a method for imaging, tracking, and quantifying 3D changes in cell morphology (shape and size) within liver tissue, specifically a precision-cut liver slice (PCLS). A PCLS is a 3D model of the liver that allows the study of the structure and function of liver cells in their native microenvironment. Methods Here, we present a method for imaging liver tissue during anisosmotic exposure in a multispectral four-dimensional manner. Three metrics of tissue morphology were measured to quantify the effects of osmotic stress on liver tissue. We estimated the changes in the volume of whole precision cut liver slices, quantified the changes in nuclei position, and calculated the changes in volumetric responses of tissue-embedded cells. Results During equilibration with cell-membrane-permeating and non-permeating solutes, the whole tissue experiences shrinkage and expansion. As nuclei showed a change in position and directional displacement under osmotic stress, we demonstrate that nuclei could be used as a probe to measure local osmotic and mechanical stress. Moreover, we demonstrate that cells change their volume within tissue slices as a result of osmotic perturbation and that this change in volume is dependent on the position of the cell within the tissue and the duration of the exposure. Conclusion The results of this study have implications for a better understanding of multiscale transport, mechanobiology, and triggered biological responses within complex biological structures.
Collapse
Affiliation(s)
- Iqra Azam
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - James D. Benson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Li K, Ren K, Du S, Gao X, Yu J. Development of Liver Cancer Organoids: Reproducing Tumor Microenvironment and Advancing Research for Liver Cancer Treatment. Technol Cancer Res Treat 2024; 23:15330338241285097. [PMID: 39363866 PMCID: PMC11456184 DOI: 10.1177/15330338241285097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Liver cancer a leading cause of cancer-related deaths worldwide, yet understanding of its development mechanism remains limited, and treatment barriers present substantial challenges. Owing to the heterogeneity of tumors, traditional 2D culture models are inadequate for capturing the complexity and diversity of tumor biology and understanding of the disease. Organoids have garnered considerable attention because of their ability to self-renew and develop functional structures in vitro that closely resemble those of human organs. This review explores the history of liver organoids, their cellular origins, techniques of constructing tumor microenvironments that recapitulate liver cancer organoids, and the biological and clinical applications of liver and liver cancer organoids and explores the current challenges related to liver cancer organoid applications and potentially valuable solutions, with the aim of facilitating the construction of in vitro clinical models of liver cancer therapeutic research.
Collapse
Affiliation(s)
- Kangkang Li
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
| | - Kuiwu Ren
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
| | - Sen Du
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
| | - Xiang Gao
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui province, China, 236000
| | - Jiangtao Yu
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang Hospital Affiliataed Bengbu Medical College, Fuyang, Anhui province, China, 236000
- Department of Hepato-Biliary-Pancreatic Surgery, Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui province, China, 236000
| |
Collapse
|
6
|
Seidemann L, Prinz S, Scherbel JC, Götz C, Seehofer D, Damm G. Optimization of extracellular matrix for primary human hepatocyte cultures using mixed collagen-Matrigel matrices. EXCLI JOURNAL 2023; 22:12-34. [PMID: 36660192 PMCID: PMC9837384 DOI: 10.17179/excli2022-5459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 01/21/2023]
Abstract
Loss of differentiation of primary human hepatocytes (PHHs) ex vivo is a known problem of in vitro liver models. Culture optimizations using collagen type I and Matrigel reduce the dedifferentiation process but are not able to prevent it. While neither of these extracellular matrices (ECMs) on their own correspond to the authentic hepatic ECM, a combination of them could more closely resemble the in vivo situation. Our study aimed to systematically analyze the influence of mixed matrices composed of collagen type I and Matrigel on the maintenance and reestablishment of hepatic functions. Therefore, PHHs were cultured on mixed collagen-Matrigel matrices in monolayer and sandwich cultures and viability, metabolic capacity, differentiation markers, cellular arrangement and the cells' ability to repolarize and form functional bile canaliculi were assessed by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), functional assays and immunofluorescence microscopy. Our results show that mixed matrices were superior to pure matrices in maintaining metabolic capacity and hepatic differentiation. In contrast, Matrigel supplementation can impair the development of a proper hepatocytic polarization. Our systematic study helps to compose an optimized ECM to maintain and reestablish hepatic differentiation on cellular and multicellular levels in human liver models.
Collapse
Affiliation(s)
- Lena Seidemann
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Liebigstr. 20, 04103 Leipzig, Germany,Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Sarah Prinz
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Liebigstr. 20, 04103 Leipzig, Germany,Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Jan-Constantin Scherbel
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Liebigstr. 20, 04103 Leipzig, Germany,Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Christina Götz
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Liebigstr. 20, 04103 Leipzig, Germany,Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Liebigstr. 20, 04103 Leipzig, Germany,Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Liebigstr. 20, 04103 Leipzig, Germany,Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany,*To whom correspondence should be addressed: Georg Damm, Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Liebigstr. 20, 04103 Leipzig, Germany; Tel.: +49-341-9739656, E-mail:
| |
Collapse
|
7
|
Florentino RM, Morita K, Haep N, Motomura T, Diaz-Aragon R, Faccioli LA, Collin de l’Hortet A, Cetin Z, Frau C, Vernetti L, Amler AK, Thomas A, Lam T, Kloke L, Takeishi K, Taylor DL, Fox IJ, Soto-Gutierrez A. Biofabrication of synthetic human liver tissue with advanced programmable functions. iScience 2022; 25:105503. [PMID: 36404924 PMCID: PMC9672940 DOI: 10.1016/j.isci.2022.105503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/01/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Advances in cellular engineering, as well as gene, and cell therapy, may be used to produce human tissues with programmable genetically enhanced functions designed to model and/or treat specific diseases. Fabrication of synthetic human liver tissue with these programmable functions has not been described. By generating human iPSCs with target gene expression controlled by a guide RNA-directed CRISPR-Cas9 synergistic-activation-mediator, we produced synthetic human liver tissues with programmable functions. Such iPSCs were guide-RNA-treated to enhance expression of the clinically relevant CYP3A4 and UGT1A1 genes, and after hepatocyte-directed differentiation, cells demonstrated enhanced functions compared to those found in primary human hepatocytes. We then generated human liver tissue with these synthetic human iPSC-derived hepatocytes (iHeps) and other non-parenchymal cells demonstrating advanced programmable functions. Fabrication of synthetic human liver tissue with modifiable functional genetic programs may be a useful tool for drug discovery, investigating biology, and potentially creating bioengineered organs with specialized functions.
Collapse
Affiliation(s)
- Rodrigo M. Florentino
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kazutoyo Morita
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nils Haep
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi Motomura
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Zeliha Cetin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carla Frau
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Tobias Lam
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Lutz Kloke
- Cellbricks GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Kazuki Takeishi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - D. Lansing Taylor
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ira J. Fox
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Chung GHC, Lorvellec M, Gissen P, Pichaud F, Burden JJ, Stefan CJ. The ultrastructural organization of endoplasmic reticulum-plasma membrane contacts is conserved in epithelial cells. Mol Biol Cell 2022; 33:ar113. [PMID: 35947498 PMCID: PMC9635291 DOI: 10.1091/mbc.e21-11-0534-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Contacts between the endoplasmic reticulum and the plasma membrane (ER-PM contacts) have important roles in membrane lipid and calcium dynamics, yet their organization in polarized epithelial cells has not been thoroughly described. Here we examine ER-PM contacts in hepatocytes in mouse liver using electron microscopy, providing the first comprehensive ultrastructural study of ER-PM contacts in a mammalian epithelial tissue. Our quantitative analyses reveal strikingly distinct ER-PM contact architectures spatially linked to apical, lateral, and basal PM domains. Notably, we find that an extensive network of ER-PM contacts exists at lateral PM domains that form intercellular junctions between hepatocytes. Moreover, the spatial organization of ER-PM contacts is conserved in epithelial spheroids, suggesting that ER-PM contacts may serve conserved roles in epithelial cell architecture. Consistent with this notion, we show that ORP5 activity at ER-PM contacts modulates the apical-basolateral aspect ratio in HepG2 cells. Thus ER-PM contacts have a conserved distribution and crucial roles in PM domain architecture across epithelial cell types.
Collapse
Affiliation(s)
- Gary Hong Chun Chung
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Maëlle Lorvellec
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Paul Gissen
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Franck Pichaud
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J Burden
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Christopher J Stefan
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
9
|
Matakovic L, Overeem AW, Klappe K, van IJzendoorn SCD. Induction of Bile Canaliculi-Forming Hepatocytes from Human Pluripotent Stem Cells. Methods Mol Biol 2022; 2544:71-82. [PMID: 36125710 DOI: 10.1007/978-1-0716-2557-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell polarity and formation of bile canaliculi can be achieved in hepatocytes which are generated from patient-derived induced pluripotent stem cells. This allows for the study of endogenous mutant proteins, patient-specific pathogenesis, and drug responses for diseases where hepatocyte polarity and bile canaliculi play a key role. Here, we describe a step-by-step protocol for the generation of bile canaliculi-forming hepatocytes from induced pluripotent stem cells and their evaluation.
Collapse
Affiliation(s)
- Lavinija Matakovic
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arend W Overeem
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Karin Klappe
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Yu JH, Ma S. Organoids as research models for hepatocellular carcinoma. Exp Cell Res 2021; 411:112987. [PMID: 34942189 DOI: 10.1016/j.yexcr.2021.112987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 11/04/2022]
Abstract
Organoid culture is an emerging research tool that has proved tremendously useful in a multitude of aspects, one of which is cancer research. They largely overcome the limitations of previous cancer models by their faithful recapitulation of the in vivo biology, while still remaining amenable to perturbations. Using a cocktail of biologicals that mimic the stem cell niche signaling, hepatocellular carcinoma (HCC) organoids could be generated from tissue samples of both human and murine origin. Existing reports show that HCC organoids retain key characteristics of their parental tumor tissue, including the histological architecture, genomic landscape, expression profile and intra-tumor heterogeneity. There is ongoing effort to establish living biobanks of patient-derived cancer organoids, annotated with multi-omics data and clinical data, and they can be particularly valuable in stratification of HCC subtypes, pre-clinical drug discovery and personalized medicine. In the future, efforts in the standardization of procedures and nomenclature, refinement of protocols, as well as engineering of the culture systems will enable scientists to unleash the full potential of organoid technology.
Collapse
Affiliation(s)
- Justin Hy Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
11
|
Christ B, Collatz M, Dahmen U, Herrmann KH, Höpfl S, König M, Lambers L, Marz M, Meyer D, Radde N, Reichenbach JR, Ricken T, Tautenhahn HM. Hepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function. Front Physiol 2021; 12:733868. [PMID: 34867441 PMCID: PMC8637208 DOI: 10.3389/fphys.2021.733868] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Liver resection causes marked perfusion alterations in the liver remnant both on the organ scale (vascular anatomy) and on the microscale (sinusoidal blood flow on tissue level). These changes in perfusion affect hepatic functions via direct alterations in blood supply and drainage, followed by indirect changes of biomechanical tissue properties and cellular function. Changes in blood flow impose compression, tension and shear forces on the liver tissue. These forces are perceived by mechanosensors on parenchymal and non-parenchymal cells of the liver and regulate cell-cell and cell-matrix interactions as well as cellular signaling and metabolism. These interactions are key players in tissue growth and remodeling, a prerequisite to restore tissue function after PHx. Their dysregulation is associated with metabolic impairment of the liver eventually leading to liver failure, a serious post-hepatectomy complication with high morbidity and mortality. Though certain links are known, the overall functional change after liver surgery is not understood due to complex feedback loops, non-linearities, spatial heterogeneities and different time-scales of events. Computational modeling is a unique approach to gain a better understanding of complex biomedical systems. This approach allows (i) integration of heterogeneous data and knowledge on multiple scales into a consistent view of how perfusion is related to hepatic function; (ii) testing and generating hypotheses based on predictive models, which must be validated experimentally and clinically. In the long term, computational modeling will (iii) support surgical planning by predicting surgery-induced perfusion perturbations and their functional (metabolic) consequences; and thereby (iv) allow minimizing surgical risks for the individual patient. Here, we review the alterations of hepatic perfusion, biomechanical properties and function associated with hepatectomy. Specifically, we provide an overview over the clinical problem, preoperative diagnostics, functional imaging approaches, experimental approaches in animal models, mechanoperception in the liver and impact on cellular metabolism, omics approaches with a focus on transcriptomics, data integration and uncertainty analysis, and computational modeling on multiple scales. Finally, we provide a perspective on how multi-scale computational models, which couple perfusion changes to hepatic function, could become part of clinical workflows to predict and optimize patient outcome after complex liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Maximilian Collatz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
- Optisch-Molekulare Diagnostik und Systemtechnologié, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus Jena, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Sebastian Höpfl
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Matthias König
- Systems Medicine of the Liver Lab, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Lena Lambers
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Daria Meyer
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Nicole Radde
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Tim Ricken
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Polidoro MA, Ferrari E, Marzorati S, Lleo A, Rasponi M. Experimental liver models: From cell culture techniques to microfluidic organs-on-chip. Liver Int 2021; 41:1744-1761. [PMID: 33966344 DOI: 10.1111/liv.14942] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
The liver is one of the most studied organs of the human body owing to its central role in xenobiotic and drug metabolism. In recent decades, extensive research has aimed at developing in vitro liver models able to mimic liver functions to study pathophysiological clues in high-throughput and reproducible environments. Two-dimensional (2D) models have been widely used in screening potential toxic compounds but have failed to accurately reproduce the three-dimensionality (3D) of the liver milieu. To overcome these limitations, improved 3D culture techniques have been developed to recapitulate the hepatic native microenvironment. These models focus on reproducing the liver architecture, representing both parenchymal and nonparenchymal cells, as well as cell interactions. More recently, Liver-on-Chip (LoC) models have been developed with the aim of providing physiological fluid flow and thus achieving essential hepatic functions. Given their unprecedented ability to recapitulate critical features of the liver cellular environments, LoC have been extensively adopted in pathophysiological modelling and currently represent a promising tool for tissue engineering and drug screening applications. In this review, we discuss the evolution of experimental liver models, from the ancient 2D hepatocyte models, widely used for liver toxicity screening, to 3D and LoC culture strategies adopted for mirroring a more physiological microenvironment for the study of liver diseases.
Collapse
Affiliation(s)
- Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Erika Ferrari
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Simona Marzorati
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
13
|
Alam CM, Baghestani S, Pajari A, Omary MB, Toivola DM. Keratin 7 Is a Constituent of the Keratin Network in Mouse Pancreatic Islets and Is Upregulated in Experimental Diabetes. Int J Mol Sci 2021; 22:ijms22157784. [PMID: 34360548 PMCID: PMC8346022 DOI: 10.3390/ijms22157784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Keratin (K) 7 is an intermediate filament protein expressed in ducts and glands of simple epithelial organs and in urothelial tissues. In the pancreas, K7 is expressed in exocrine ducts, and apico-laterally in acinar cells. Here, we report K7 expression with K8 and K18 in the endocrine islets of Langerhans in mice. K7 filament formation in islet and MIN6 β-cells is dependent on the presence and levels of K18. K18-knockout (K18‒/‒) mice have undetectable islet K7 and K8 proteins, while K7 and K18 are downregulated in K8‒/‒ islets. K7, akin to F-actin, is concentrated at the apical vertex of β-cells in wild-type mice and along the lateral membrane, in addition to forming a fine cytoplasmic network. In K8‒/‒ β-cells, apical K7 remains, but lateral keratin bundles are displaced and cytoplasmic filaments are scarce. Islet K7, rather than K8, is increased in K18 over-expressing mice and the K18-R90C mutation disrupts K7 filaments in mouse β-cells and in MIN6 cells. Notably, islet K7 filament networks significantly increase and expand in the perinuclear regions when examined in the streptozotocin diabetes model. Hence, K7 represents a significant component of the murine islet keratin network and becomes markedly upregulated during experimental diabetes.
Collapse
Affiliation(s)
- Catharina M. Alam
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
- Correspondence: (C.M.A.); (D.M.T.)
| | - Sarah Baghestani
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
| | - Ada Pajari
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
| | - M. Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA;
| | - Diana M. Toivola
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
- Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
- Correspondence: (C.M.A.); (D.M.T.)
| |
Collapse
|
14
|
Takeishi K, Collin de l'Hortet A, Wang Y, Handa K, Guzman-Lepe J, Matsubara K, Morita K, Jang S, Haep N, Florentino RM, Yuan F, Fukumitsu K, Tobita K, Sun W, Franks J, Delgado ER, Shapiro EM, Fraunhoffer NA, Duncan AW, Yagi H, Mashimo T, Fox IJ, Soto-Gutierrez A. Assembly and Function of a Bioengineered Human Liver for Transplantation Generated Solely from Induced Pluripotent Stem Cells. Cell Rep 2021; 31:107711. [PMID: 32492423 DOI: 10.1016/j.celrep.2020.107711] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 05/08/2020] [Indexed: 12/22/2022] Open
Abstract
The availability of an autologous transplantable auxiliary liver would dramatically affect the treatment of liver disease. Assembly and function in vivo of a bioengineered human liver derived from induced pluripotent stem cells (iPSCs) has not been previously described. By improving methods for liver decellularization, recellularization, and differentiation of different liver cellular lineages of human iPSCs in an organ-like environment, we generated functional engineered human mini livers and performed transplantation in a rat model. Whereas previous studies recellularized liver scaffolds largely with rodent hepatocytes, we repopulated not only the parenchyma with human iPSC-hepatocytes but also the vascular system with human iPS-endothelial cells, and the bile duct network with human iPSC-biliary epithelial cells. The regenerated human iPSC-derived mini liver containing multiple cell types was tested in vivo and remained functional for 4 days after auxiliary liver transplantation in immunocompromised, engineered (IL2rg-/-) rats.
Collapse
Affiliation(s)
- Kazuki Takeishi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | - Yang Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Kan Handa
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jorge Guzman-Lepe
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kentaro Matsubara
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kazutoyo Morita
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sae Jang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nils Haep
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rodrigo M Florentino
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - Fangchao Yuan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ken Fukumitsu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kimimasa Tobita
- Department of Bioengineering and Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | - Wendell Sun
- LifeCell Corporation, Branchburg, NJ 08876, USA
| | - Jonathan Franks
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA
| | - Evan R Delgado
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3110, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erik M Shapiro
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Nicolas A Fraunhoffer
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Maimónides, Ciudad Autónoma de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires 1001, Argentina
| | - Andrew W Duncan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3110, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hiroshi Yagi
- Department of Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, University of Tokyo, Tokyo 158-8557, Japan
| | - Ira J Fox
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3110, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3110, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
15
|
Nguyen R, Da Won Bae S, Qiao L, George J. Developing liver organoids from induced pluripotent stem cells (iPSCs): An alternative source of organoid generation for liver cancer research. Cancer Lett 2021; 508:13-17. [PMID: 33771683 DOI: 10.1016/j.canlet.2021.03.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Primary liver cancer (PLC) represents a significant proportion of all human cancers and constitutes a substantial health and economic burden to society. Traditional therapeutic approaches such as surgical resection and chemotherapy often fail due to tumour relapse or innate tumour chemoresistance. There is a dearth of efficient treatments for PLC in part due to the poor capacity of current laboratory models to reflect critical features of the native tumour in vivo. The increasing incorporation of organoid systems has led to a resurgence of interest in liver cancer research. Organoid systems show promise as the gold standard for recapitulating tumours in vitro. Further, developments in culturing techniques will improve the various shortcomings of the current systems. Induced pluripotent stem cell (iPSC)-derived liver organoids are a promising alternative to the conventional liver organoid model as it circumvents the need to rely on primary resections which are often scarce. In this concise review, we will discuss novel techniques for organoid culture with a focus on organoid co-cultures and their advantages over traditional organoid systems. A detailed technical protocol for the generation of iPSC-derived liver organoids is provided as an appendix.
Collapse
Affiliation(s)
- Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
16
|
Pradhan-Sundd T, Liu S, Singh S, Poddar M, Ko S, Bell A, Franks J, Huck I, Stolz D, Apte U, Ranganathan S, Nejak-Bowen K, Monga SP. Dual β-Catenin and γ-Catenin Loss in Hepatocytes Impacts Their Polarity through Altered Transforming Growth Factor-β and Hepatocyte Nuclear Factor 4α Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:885-901. [PMID: 33662348 DOI: 10.1016/j.ajpath.2021.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022]
Abstract
Hepatocytes are highly polarized epithelia. Loss of hepatocyte polarity is associated with various liver diseases, including cholestasis. However, the molecular underpinnings of hepatocyte polarization remain poorly understood. Loss of β-catenin at adherens junctions is compensated by γ-catenin and dual loss of both catenins in double knockouts (DKOs) in mice liver leads to progressive intrahepatic cholestasis. However, the clinical relevance of this observation, and further phenotypic characterization of the phenotype, is important. Herein, simultaneous loss of β-catenin and γ-catenin was identified in a subset of liver samples from patients of progressive familial intrahepatic cholestasis and primary sclerosing cholangitis. Hepatocytes in DKO mice exhibited defects in apical-basolateral localization of polarity proteins, impaired bile canaliculi formation, and loss of microvilli. Loss of polarity in DKO livers manifested as epithelial-mesenchymal transition, increased hepatocyte proliferation, and suppression of hepatocyte differentiation, which was associated with up-regulation of transforming growth factor-β signaling and repression of hepatocyte nuclear factor 4α expression and activity. In conclusion, concomitant loss of the two catenins in the liver may play a pathogenic role in subsets of cholangiopathies. The findings also support a previously unknown role of β-catenin and γ-catenin in the maintenance of hepatocyte polarity. Improved understanding of the regulation of hepatocyte polarization processes by β-catenin and γ-catenin may potentially benefit development of new therapies for cholestasis.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Minakshi Poddar
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sungjin Ko
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aaron Bell
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ian Huck
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Donna Stolz
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Sarangarajan Ranganathan
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kari Nejak-Bowen
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
17
|
Najimi M. Cell- and Stem Cell-Based Therapies for Liver Defects: Recent Advances and Future Strategies. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Ultrastructural Features of Gold Nanoparticles Interaction with HepG2 and HEK293 Cells in Monolayer and Spheroids. NANOMATERIALS 2020; 10:nano10102040. [PMID: 33081137 PMCID: PMC7650816 DOI: 10.3390/nano10102040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Use of multicellular spheroids in studies of nanoparticles (NPs) has increased in the last decade, however details of NPs interaction with spheroids are poorly known. We synthesized AuNPs (12.0 ± 0.1 nm in diameter, transmission electron microscopy (TEM data) and covered them with bovine serum albumin (BSA) and polyethyleneimine (PEI). Values of hydrodynamic diameter were 17.4 ± 0.4; 35.9 ± 0.5 and ±125.9 ± 2.8 nm for AuNPs, AuBSA-NPs and AuPEI-NPs, and Z-potential (net charge) values were −33.6 ± 2.0; −35.7 ± 1.8 and 39.9 ± 1.3 mV, respectively. Spheroids of human hepatocarcinoma (HepG2) and human embryo kidney (HEK293) cells (Corning ® spheroid microplates CLS4515-5EA), and monolayers of these cell lines were incubated with all NPs for 15 min–4 h, and fixed in 4% paraformaldehyde solution. Samples were examined using transmission and scanning electron microscopy. HepG2 and HEK2893 spheroids showed tissue-specific features and contacted with culture medium by basal plasma membrane of the cells. HepG2 cells both in monolayer and spheroids did not uptake of the AuNPs, while AuBSA-NPs and AuPEI-NPs readily penetrated these cells. All studied NPs penetrated HEK293 cells in both monolayer and spheroids. Thus, two different cell cultures maintained a type of the interaction with NPs in monolayer and spheroid forms, which not depended on NPs Z-potential and size.
Collapse
|
19
|
Sasikumar S, Chameettachal S, Kingshott P, Cromer B, Pati F. 3D hepatic mimics - the need for a multicentric approach. ACTA ACUST UNITED AC 2020; 15:052002. [PMID: 32460259 DOI: 10.1088/1748-605x/ab971c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The liver is a center of metabolic activity, including the metabolism of drugs, and consequently is prone to drug-induced liver injury. Failure to detect hepatotoxicity of drugs during their development will lead to the withdrawal of the drugs during clinical trials. To avoid such clinical and economic consequences, in vitro liver models that can precisely predict the toxicity of a drug during the pre-clinical phase is necessary. This review describes the different technologies that are used to develop in vitro liver models and the different approaches aimed at mimicking different functional aspects of the liver at the fundamental level. This involves mimicking of the functional and structural units like the sinusoid, the bile canalicular system, and the acinus.
Collapse
Affiliation(s)
- Shyama Sasikumar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India. Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | | | | | | | | |
Collapse
|
20
|
Kreisel W, Schaffner D, Lazaro A, Trebicka J, Merfort I, Schmitt-Graeff A, Deibert P. Phosphodiesterases in the Liver as Potential Therapeutic Targets of Cirrhotic Portal Hypertension. Int J Mol Sci 2020; 21:E6223. [PMID: 32872119 PMCID: PMC7503357 DOI: 10.3390/ijms21176223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis is a frequent condition with high impact on patients' life expectancy and health care systems. Cirrhotic portal hypertension (PH) gradually develops with deteriorating liver function and can lead to life-threatening complications. Other than an increase in intrahepatic flow resistance due to morphological remodeling of the organ, a functional dysregulation of the sinusoids, the smallest functional units of liver vasculature, plays a pivotal role. Vascular tone is primarily regulated by the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway, wherein soluble guanylate cyclase (sGC) and phosphodiesterase-5 (PDE-5) are key enzymes. Recent data showed characteristic alterations in the expression of these regulatory enzymes or metabolite levels in liver cirrhosis. Additionally, a disturbed zonation of the components of this pathway along the sinusoids was detected. This review describes current knowledge of the pathophysiology of PH with focus on the enzymes regulating cGMP availability, i.e., sGC and PDE-5. The results have primarily been obtained in animal models of liver cirrhosis. However, clinical and histochemical data suggest that the new biochemical model we propose can be applied to human liver cirrhosis. The role of PDE-5 as potential target for medical therapy of PH is discussed.
Collapse
Affiliation(s)
- Wolfgang Kreisel
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Denise Schaffner
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (A.L.); (P.D.)
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany;
- Department of Radiology–Medical Physics, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Adhara Lazaro
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (A.L.); (P.D.)
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, Goethe University Clinic Frankfurt, 60590 Frankfurt, Germany;
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany;
| | | | - Peter Deibert
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (A.L.); (P.D.)
| |
Collapse
|
21
|
3D Culture System for Liver Tissue Mimicking Hepatic Plates for Improvement of Human Hepatocyte (C3A) Function and Polarity. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6354183. [PMID: 32190673 PMCID: PMC7073475 DOI: 10.1155/2020/6354183] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
Abstract
In vitro 3D hepatocyte culture constitutes a core aspect of liver tissue engineering. However, conventional 3D cultures are unable to maintain hepatocyte polarity, functional phenotype, or viability. Here, we employed microfluidic chip technology combined with natural alginate hydrogels to construct 3D liver tissues mimicking hepatic plates. We comprehensively evaluated cultured hepatocyte viability, function, and polarity. Transcriptome sequencing was used to analyze changes in hepatocyte polarity pathways. The data indicate that, as culture duration increases, the viability, function, polarity, mRNA expression, and ultrastructure of the hepatic plate mimetic 3D hepatocytes are enhanced. Furthermore, hepatic plate mimetic 3D cultures can promote changes in the bile secretion pathway via effector mechanisms associated with nuclear receptors, bile uptake, and efflux transporters. This study provides a scientific basis and strong evidence for the physiological structures of bionic livers prepared using 3D cultures. The systems and cultured liver tissues described here may serve as a better in vitro 3D culture platform and basic unit for varied applications, including drug development, hepatocyte polarity research, bioartificial liver bioreactor design, and tissue and organ construction for liver tissue engineering or cholestatic liver injury.
Collapse
|
22
|
Nguyen R, Bae SDW, Zhou G, Read SA, Ahlenstiel G, George J, Qiao L. Application of organoids in translational research of human diseases with a particular focus on gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2020; 1873:188350. [PMID: 32007597 DOI: 10.1016/j.bbcan.2020.188350] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers constitute the largest portion of all human cancers and represent a significant health burden on modern society. Conventional therapeutic approaches such as chemotherapy and surgical resections often fail due to poor treatment response or tumour relapse. Unfortunately, drug discovery for GI cancers has stalled as current cancer models fail to recapitulate critical features of the parent tumour, leading to poor translation from bench to bedside. Recent advances in three-dimensional (3D) cell culturing techniques have driven the surge of interest in stem cell-derived organoid models, a promising platform with a plethora of potential applications due to its ability to retain crucial architectural, genomic and transcriptional properties of the native tissue. In this review article, we discuss current applications and advantages of organoid models in the translational research of GI cancers with a particular focus on primary liver cancer that currently lack effective curative treatments.
Collapse
Affiliation(s)
- Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Gang Zhou
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Scott A Read
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia; Blacktown Medical School, Western Sydney University, Blacktown, NSW, Australia
| | - Golo Ahlenstiel
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia; Blacktown Medical School, Western Sydney University, Blacktown, NSW, Australia; Blacktown Hospital, Blacktown, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
23
|
Liu Y, Zhang Y, Li T, Han J, Wang Y. The tight junction protein TJP1 regulates the feeding-modulated hepatic circadian clock. Nat Commun 2020; 11:589. [PMID: 32001717 PMCID: PMC6992704 DOI: 10.1038/s41467-020-14470-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
Circadian clocks in the suprachiasmatic nucleus and peripheral tissues orchestrate behavioral and physiological activities of mammals in response to environmental cues. In the liver, the circadian clock is also modulated by feeding. However, the molecular mechanisms involved are unclear. Here, we show that TJP1 (tight junction protein 1) functions as a mediator of mTOR (mechanistic target of rapamycin) to modulate the hepatic circadian clock. TJP1 interacts with PER1 (period circadian regulator 1) and prevents its nuclear translocation. During feeding, mTOR phosphorylates TJP1 and attenuates its association with PER1, thereby enhancing nuclear shuttling of PER1 to dampen circadian oscillation. Therefore, our results provide a previously uncharacterized mechanistic insight into how feeding modulates the hepatic circadian clock. The circadian clock regulates rhythms of physiology and metabolism in response to environmental cues such as food intake. Here, the authors show that tight junction protein 1 (TJP1) interacts with period 1 and modulates its nuclear translocation in a mTOR-dependent manner.
Collapse
Affiliation(s)
- Yi Liu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuanyuan Zhang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tong Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinbo Han
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yiguo Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
24
|
Balasubramanian L, Zuzarte-Luís V, Syed T, Mullick D, Deb S, Ranga-Prasad H, Meissner J, Almeida A, Furstenhaupt T, Siddiqi K, Prudêncio M, Rodrigues CMP, Mota M, Sundaramurthy V. Association of Plasmodium berghei With the Apical Domain of Hepatocytes Is Necessary for the Parasite's Liver Stage Development. Front Cell Infect Microbiol 2020; 9:451. [PMID: 32010639 PMCID: PMC6978659 DOI: 10.3389/fcimb.2019.00451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/12/2019] [Indexed: 01/11/2023] Open
Abstract
Plasmodium parasites undergo a dramatic transformation during the liver stage of their life cycle, amplifying over 10,000-fold inside infected hepatocytes within a few days. Such a rapid growth requires large-scale interactions with, and manipulations of, host cell functions. Whereas hepatocyte polarity is well-known to be critical for liver function, little is presently known about its involvement during the liver stage of Plasmodium development. Apical domains of hepatocytes are critical components of their polarity machinery and constitute the bile canalicular network, which is central to liver function. Here, we employed high resolution 3-D imaging and advanced image analysis of Plasmodium-infected liver tissues to show that the parasite associates preferentially with the apical domain of hepatocytes and induces alterations in the organization of these regions, resulting in localized changes in the bile canalicular architecture in the liver tissue. Pharmacological perturbation of the bile canalicular network by modulation of AMPK activity reduces the parasite's association with bile canaliculi and arrests the parasite development. Our findings using Plasmodium-infected liver tissues reveal a host-Plasmodium interaction at the level of liver tissue organization. We demonstrate for the first time a role for bile canaliculi, a central component of the hepatocyte polarity machinery, during the liver stage of Plasmodium development.
Collapse
Affiliation(s)
| | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tabish Syed
- School of Computer Science and Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | | | - Saptarathi Deb
- National Center for Biological Sciences, Bangalore, India
| | | | - Jana Meissner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ana Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tobias Furstenhaupt
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kaleem Siddiqi
- School of Computer Science and Centre for Intelligent Machines, McGill University, Montreal, QC, Canada
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Maria Mota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
25
|
Kang SWS, Cogger VC, Le Couteur DG, Fu D. Multiple cellular pathways regulate lipid droplet homeostasis for the establishment of polarity in collagen sandwich-cultured hepatocytes. Am J Physiol Cell Physiol 2019; 317:C942-C952. [DOI: 10.1152/ajpcell.00051.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatocyte polarization is energy dependent. The establishment of polarization in collagen sandwich culture of hepatocytes requires utilization of lipid droplets and mitochondrial β-oxidation to supply ATP. Multiple cellular pathways are involved in lipid droplet homeostasis; however, mechanistic insights of how hepatocytes utilize lipid droplets during polarization remain elusive. The current study investigated the effects of various pathways involved in lipid droplet homeostasis on bioenergetics during hepatocyte polarization. The results showed that hepatocytes were dependent on lipolysis of lipid droplets to release fatty acids for β-oxidation. Inhibition of lipolysis significantly decreased cellular fatty acid and ATP levels and inhibited hepatocyte polarization, revealing that lipolysis was an important mechanism for providing energy for hepatocyte polarization. The results also demonstrated that autophagic degradation of lipid droplets (lipophagy) was not essential for breaking down lipid droplets. Conversely, autophagy contributed to lipid droplet formation and played a key role in sustaining lipid droplet stores for energy production. In addition, cholesterol biosynthesis/cholesterol esterification and de novo fatty acid synthesis also contributed to maintaining lipid droplet stores for bioenergetics during hepatocyte polarization. In summary, multiple cellular pathways are coordinated to maintain lipid droplet homeostasis and sustain fatty acid β-oxidation during hepatocyte polarization.
Collapse
Affiliation(s)
- Sun Woo Sophie Kang
- Ageing and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, New South Wales, Australia
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Victoria C. Cogger
- Ageing and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - David G. Le Couteur
- Ageing and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Dong Fu
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
26
|
Morales-Navarrete H, Nonaka H, Scholich A, Segovia-Miranda F, de Back W, Meyer K, Bogorad RL, Koteliansky V, Brusch L, Kalaidzidis Y, Jülicher F, Friedrich BM, Zerial M. Liquid-crystal organization of liver tissue. eLife 2019; 8:e44860. [PMID: 31204997 PMCID: PMC6598764 DOI: 10.7554/elife.44860] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Functional tissue architecture originates by self-assembly of distinct cell types, following tissue-specific rules of cell-cell interactions. In the liver, a structural model of the lobule was pioneered by Elias in 1949. This model, however, is in contrast with the apparent random 3D arrangement of hepatocytes. Since then, no significant progress has been made to derive the organizing principles of liver tissue. To solve this outstanding problem, we computationally reconstructed 3D tissue geometry from microscopy images of mouse liver tissue and analyzed it applying soft-condensed-matter-physics concepts. Surprisingly, analysis of the spatial organization of cell polarity revealed that hepatocytes are not randomly oriented but follow a long-range liquid-crystal order. This does not depend exclusively on hepatocytes receiving instructive signals by endothelial cells, since silencing Integrin-β1 disrupted both liquid-crystal order and organization of the sinusoidal network. Our results suggest that bi-directional communication between hepatocytes and sinusoids underlies the self-organization of liver tissue.
Collapse
Affiliation(s)
| | - Hidenori Nonaka
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - André Scholich
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | | | - Walter de Back
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenDresdenGermany
- Centre for Information Services and High Performance ComputingTechnische Universität DresdenDresdenGermany
| | - Kirstin Meyer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Roman L Bogorad
- David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUnited States
| | - Victor Koteliansky
- Skolkovo Institute of Science and TechnologySkolkovoRussia
- Department of ChemistryMV Lomonosov Moscow State UniversityMoscowRussia
| | - Lutz Brusch
- Centre for Information Services and High Performance ComputingTechnische Universität DresdenDresdenGermany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| | - Benjamin M Friedrich
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
- Center for Advancing Electronics DresdenTechnische Universität DresdenDresdenGermany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| |
Collapse
|
27
|
Dao Thi VL, Wu X, Rice CM. Stem Cell-Derived Culture Models of Hepatitis E Virus Infection. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031799. [PMID: 29686039 DOI: 10.1101/cshperspect.a031799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Similar to other hepatotropic viruses, hepatitis E virus (HEV) has been notoriously difficult to propagate in cell culture, limiting studies to unravel its biology. Recently, major advances have been made by passaging primary HEV isolates and selecting variants that replicate efficiently in carcinoma cells. These adaptations, however, can alter HEV biology. We have explored human embryonic or induced pluripotent stem cell (hESC/iPSC)-derived hepatocyte-like cells (HLCs) as an alternative to conventional hepatoma and hepatocyte cell culture systems for HEV studies. HLCs are permissive for nonadapted HEV isolate genotypes (gt)1-4 replication and can be readily genetically manipulated. HLCs, therefore, enable studies of pan-genotype HEV biology and will serve as a platform for testing anti-HEV treatments. Finally, we discuss how hepatocyte polarity is likely an important factor in the maturation and spread of infectious HEV particles.
Collapse
Affiliation(s)
- Viet Loan Dao Thi
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065
| | - Xianfang Wu
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065
| | - Charles M Rice
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York 10065
| |
Collapse
|
28
|
Characterisation of a functional rat hepatocyte spheroid model. Toxicol In Vitro 2018; 55:160-172. [PMID: 30578835 PMCID: PMC6361770 DOI: 10.1016/j.tiv.2018.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
Many in vitro liver cell models, such as 2D systems, that are used to assess the hepatotoxic potential of xenobiotics suffer major limitations arising from a lack of preservation of physiological phenotype and metabolic competence. To circumvent some of these limitations there has been increased focus on producing more representative 3D models. Here we have used a novel approach to construct a size-controllable 3D hepatic spheroid model using freshly isolated primary rat hepatocytes (PRH) utilising the liquid-overlay technique whereby PRH spontaneously self-assemble in to 3D microtissues. This system produces viable spheroids with a compact in vivo-like structure for up to 21 days with sustained albumin production for the duration of the culture period. F-actin was seen throughout the spheroid body and P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (MRP2) transporters had polarised expression on the canalicular membrane of hepatocytes within the spheroids upon formation (day 3). The MRP2 transporter was able to functionally transport 5 μM 5-chloromethylfluorescein diacetate (CMFDA) substrates into these canalicular structures. These PRH spheroids display in vivo characteristics including direct cell-cell contacts, cellular polarisation, 3D cellular morphology, and formation of functional secondary structures throughout the spheroid. Such a well-characterised system could be readily exploited for pre-clinical and non-clinical repeat-dose investigations and could make a significant contribution to replace, reduce and refine the use of animals for applied research.
Collapse
|
29
|
Lu M, Wu J, Hao Z, Shang Y, Xu J, Nan G, Li X, Chen Z, Bian H. Basolateral CD147 induces hepatocyte polarity loss by E-cadherin ubiquitination and degradation in hepatocellular carcinoma progress. Hepatology 2018; 68:317-332. [PMID: 29356040 PMCID: PMC6055794 DOI: 10.1002/hep.29798] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/02/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatocytes are epithelial cells with highly specialized polarity. The disorder and loss of hepatocyte polarity leads to a weakness of cell adhesion and connection, the induction of epithelial-mesenchymal transition, and eventually the occurrence of hepatocellular carcinoma (HCC). Cluster of differentiation 147 (CD147), a tumor-related glycoprotein, promotes epithelial-mesenchymal transition and the invasion of HCC. However, the function of CD147 in hepatocyte depolarization is unknown. Here we identified that CD147 was basolaterally polarized in hepatocyte membrane of liver tissues and HepG2 cells. CD147 not only promoted transforming growth factor-β1-mediated hepatocyte polarity loss but also directly induced endocytosis and down-regulation of E-cadherin which contributed to hepatocyte depolarization. Overexpression of CD147 induced Src activation and subsequently recruited ubiquitin ligase Hakai for E-cadherin ubiquitination and lysosomal degradation, leading to decreases of partitioning defective 3 expression and β-catenin nuclear translocation. This signal transduction was initiated by competitive binding of CD147 with integrin β1 that interrupted the interaction between the Arg-Gly-Asp motif of fibronectin and integrin β1. The specific antibodies targeting integrin α5 and β1 reversed the decrease of E-cadherin and partitioning defective 3 levels induced by CD147 overexpression. In human liver tissues, CD147 polarity rates significantly declined from liver cirrhosis (71.4%) to HCC (10.4%). CD147-polarized localization negatively correlated with Child-Pugh scores in human liver cirrhosis (r = -0.6092, P < 0.0001) and positively correlated with differentiation grades in HCC (r = 0.2060, P = 0.004). HCC patients with CD147-polarized localization had significantly better overall survival than patients with CD147 nonpolarity (P = 0.021). CONCLUSION The ectopic CD147-polarized distribution on basolateral membrane promotes hepatocyte depolarization by activation of the CD147-integrin α5β1-E-cadherin ubiquitination-partitioning defective 3 decrease and β-catenin translocation signaling cascade, replenishing a molecular pathway in hepatic carcinogenesis. (Hepatology 2018;68:317-332).
Collapse
Affiliation(s)
- Meng Lu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
| | - Jiao Wu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
| | - Zhi‐Wei Hao
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
| | - Yu‐Kui Shang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
- College of Life Sciences and BioengineeringBeijing Jiaotong UniversityBeijingChina
| | - Jing Xu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
| | - Gang Nan
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
| | - Xia Li
- Department of Biochemistry and Molecular BiologyFourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anChina
| |
Collapse
|
30
|
Bowe A, Zweerink S, Mück V, Kondylis V, Schulte S, Goeser T, Nierhoff D. Depolarized Hepatocytes Express the Stem/Progenitor Cell Marker Neighbor of Punc E11 After Bile Duct Ligation in Mice. J Histochem Cytochem 2018; 66:563-576. [PMID: 29624127 DOI: 10.1369/0022155418768230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a medical need of biomarkers for disease stratification in cholestatic liver diseases that come along with changes in hepatocyte polarity. Neighbor of Punc E11 (Nope) is an oncofetal marker that is lost after final differentiation and polarization of hepatocytes. We analyzed the expression pattern of Nope and connexin (Cx) 26 as markers of hepatocyte polarization during murine liver development as well as in adult liver with or without bile duct ligation (BDL) by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), western blotting (WB), and immunohistochemistry. Nope is highly expressed in fetal and postnatal liver but barely detectable thereafter. Cx26, however, is much higher expressed in adult than in fetal liver. Postnatally, Nope is directed to the sinusoidal membrane of early hepatocytes while Cx26 remains distributed over the whole membrane indicating limited polarization. In the adult liver, only Cx26 is detectable and restricted to the bile canalicular domain indicating fully polarized hepatocytes. After BDL, Nope is again >300-fold upregulated while Cx26 is reduced rapidly. By immunohistochemistry, Nope identifies a subset of hepatocytes with randomly distributed Cx26. In summary, Nope identifies depolarized adult hepatocytes after cholestatic liver injury resembling early postnatal hepatocytes. Therefore, Nope might be a valuable histochemical biomarker allowing stage-specific stratifications in cholestatic liver diseases.
Collapse
Affiliation(s)
- Andrea Bowe
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - Susanne Zweerink
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - Vera Mück
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - Vangelis Kondylis
- Institute for Genetics, Centre for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Sigrid Schulte
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - Tobias Goeser
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Okamoto CT. Regulation of Transporters and Channels by Membrane-Trafficking Complexes in Epithelial Cells. Cold Spring Harb Perspect Biol 2017; 9:a027839. [PMID: 28246186 PMCID: PMC5666629 DOI: 10.1101/cshperspect.a027839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vectorial secretion and absorption of fluid and solutes by epithelial cells is dependent on the polarized expression of membrane solute transporters and channels at the apical and basolateral membranes. The establishment and maintenance of this polarized expression of transporters and channels are affected by divers protein-trafficking complexes. Moreover, regulation of the magnitude of transport is often under control of physiological stimuli, again through the interaction of transporters and channels with protein-trafficking complexes. This review highlights the value in utilizing transporters and channels as cargo to characterize core trafficking machinery by which epithelial cells establish and maintain their polarized expression, and how this machinery regulates fluid and solute transport in response to physiological stimuli.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
32
|
Gupta K, Li Q, Fan JJ, Fong ELS, Song Z, Mo S, Tang H, Ng IC, Ng CW, Pawijit P, Zhuo S, Dong CY, Low BC, Wee A, Dan YY, Kanchanawong P, So P, Viasnoff V, Yu H. Actomyosin contractility drives bile regurgitation as an early response during obstructive cholestasis. J Hepatol 2017; 66:1231-1240. [PMID: 28189756 DOI: 10.1016/j.jhep.2017.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/10/2017] [Accepted: 01/29/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS A wide range of liver diseases manifest as biliary obstruction, or cholestasis. However, the sequence of molecular events triggered as part of the early hepatocellular homeostatic response in obstructive cholestasis is poorly elucidated. Pericanalicular actin is known to accumulate during obstructive cholestasis. Therefore, we hypothesized that the pericanalicular actin cortex undergoes significant remodeling as a regulatory response to obstructive cholestasis. METHODS In vivo investigations were performed in a bile duct-ligated mouse model. Actomyosin contractility was assessed using sandwich-cultured rat hepatocytes transfected with various fluorescently labeled proteins and pharmacological inhibitors of actomyosin contractility. RESULTS Actomyosin contractility induces transient deformations along the canalicular membrane, a process we have termed inward blebbing. We show that these membrane intrusions are initiated by local ruptures in the pericanalicular actin cortex; and they typically retract following repair by actin polymerization and actomyosin contraction. However, above a certain osmotic pressure threshold, these inward blebs pinch away from the canalicular membrane into the hepatocyte cytoplasm as large vesicles (2-8μm). Importantly, we show that these vesicles aid in the regurgitation of bile from the bile canaliculi. CONCLUSION Actomyosin contractility induces the formation of bile-regurgitative vesicles, thus serving as an early homeostatic mechanism against increased biliary pressure during cholestasis. LAY SUMMARY Bile canaliculi expand and contract in response to the amount of secreted bile, and resistance from the surrounding actin bundles. Further expansion due to bile duct blockade leads to the formation of inward blebs, which carry away excess bile to prevent bile build up in the canaliculi.
Collapse
Affiliation(s)
- Kapish Gupta
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Qiushi Li
- Mechanobiology Institute, National University of Singapore, Singapore; National University of Singapore Research Institute, Singapore
| | - Jun Jun Fan
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore; BioSyM, Singapore-MIT Alliance for Research and Technology, Singapore; Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, China
| | - Eliza Li Shan Fong
- Department of Physiology, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Ziwei Song
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shupei Mo
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Haoyu Tang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Inn Chuan Ng
- Department of Physiology, National University of Singapore, Singapore
| | - Chan Way Ng
- Department of Physiology, National University of Singapore, Singapore
| | - Pornteera Pawijit
- Department of Physiology, National University of Singapore, Singapore; NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Shuangmu Zhuo
- BioSyM, Singapore-MIT Alliance for Research and Technology, Singapore; Fujian Normal University, Fuzhou, Fujian, China
| | - Chen-Yuan Dong
- Department of Physics, National Taiwan University, Taiwan
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore
| | - Aileen Wee
- Department of Pathology, National University of Singapore, Singapore
| | - Yock Young Dan
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Peter So
- BioSyM, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore; CNRS UMI3639, Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, Singapore; Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore; BioSyM, Singapore-MIT Alliance for Research and Technology, Singapore; Department of Physiology, National University of Singapore, Singapore; Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
33
|
Zeigerer A, Wuttke A, Marsico G, Seifert S, Kalaidzidis Y, Zerial M. Functional properties of hepatocytes in vitro are correlated with cell polarity maintenance. Exp Cell Res 2017; 350:242-252. [DOI: 10.1016/j.yexcr.2016.11.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022]
|
34
|
Kang SWS, Haydar G, Taniane C, Farrell G, Arias IM, Lippincott-Schwartz J, Fu D. AMPK Activation Prevents and Reverses Drug-Induced Mitochondrial and Hepatocyte Injury by Promoting Mitochondrial Fusion and Function. PLoS One 2016; 11:e0165638. [PMID: 27792760 PMCID: PMC5085033 DOI: 10.1371/journal.pone.0165638] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK). When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury.
Collapse
Affiliation(s)
| | - Ghada Haydar
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Caitlin Taniane
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Geoffrey Farrell
- Liver Research Group, Australian National University Medical School, Canberra, Australia
| | - Irwin M. Arias
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Dong Fu
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
35
|
Muikham I, Srakaew N, Chatchavalvanich K, Chumnanpuen P. Microanatomy of the digestive system of Supachai's caecilian,Ichthyophis supachaiiTaylor, 1960 (Amphibia: Gymnophiona). ACTA ZOOL-STOCKHOLM 2016. [DOI: 10.1111/azo.12173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Itsares Muikham
- Department of Zoology; Faculty of Science; Kasetsart University; Bangkok 10900 Thailand
| | - Nopparat Srakaew
- Department of Zoology; Faculty of Science; Kasetsart University; Bangkok 10900 Thailand
| | | | - Pramote Chumnanpuen
- Department of Zoology; Faculty of Science; Kasetsart University; Bangkok 10900 Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST); Kasetsart University; Bangkok 10900 Thailand
| |
Collapse
|
36
|
Bile canaliculi formation and biliary transport in 3D sandwich-cultured hepatocytes in dependence of the extracellular matrix composition. Arch Toxicol 2016; 90:2497-511. [PMID: 27325308 DOI: 10.1007/s00204-016-1758-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/09/2016] [Indexed: 01/09/2023]
Abstract
Primary human hepatocytes (PHH) are still considered as gold standard for investigation of in vitro metabolism and hepatotoxicity in pharmaceutical research. It has been shown that the three-dimensional (3D) cultivation of PHH in a sandwich configuration between two layers of extracellular matrix (ECM) enables the hepatocytes to adhere three dimensionally leading to formation of in vivo like cell-cell contacts and cell-matrix interactions. The aim of the present study was to investigate the influence of different ECM compositions on morphology, cellular arrangement and bile canaliculi formation as well as bile excretion processes in PHH sandwich cultures systematically. Freshly isolated PHH were cultured for 6 days between two ECM layers made of collagen and/or Matrigel in four different combinations. The cultures were investigated by phase contrast microscopy and immunofluorescence analysis with respect to cell-cell connections, repolarization as well as bile canaliculi formation. The influence of the ECM composition on cell activity and viability was measured using the XTT assay and a fluorescent dead or alive assay. Finally, the bile canalicular transport was analyzed by live cell imaging to monitor the secretion and accumulation of the fluorescent substance CDF in bile canaliculi. Using collagen and Matrigel in different compositions in sandwich cultures of hepatocytes, we observed differences in morphology, cellular arrangement and cell activity of PHH in dependence of the ECM composition. Sandwich-cultured hepatocytes with an underlay of collagen seem to represent the best in vivo tissue architecture in terms of formation of trabecular cell arrangement. Cultures overlaid with collagen were characterized by the formation of abundant bile canaliculi, while the bile canaliculi network in hepatocytes cultured on a layer of Matrigel and overlaid with collagen showed the most branched and stable canalicular network. All cultures showed a time-dependent leakage of CDF from the bile canaliculi into the culture supernatant with variations in dependence on the used matrix combination. In conclusion, the results of this study show that the choice of ECM has an impact on the morphology, cell assembly and bile canaliculi formation in PHH sandwich cultures. The morphology and the multicellular arrangement were essentially influenced by the underlaying matrix, while bile excretion and leakage of sandwich-cultured hepatocytes were mainly influenced by the overlay matrix. Leaking and damaged bile canaliculi could be a limitation of the investigated sandwich culture models in long-term excretion studies.
Collapse
|
37
|
Najimi M, Defresne F, Sokal EM. Concise Review: Updated Advances and Current Challenges in Cell Therapy for Inborn Liver Metabolic Defects. Stem Cells Transl Med 2016; 5:1117-25. [PMID: 27245366 DOI: 10.5966/sctm.2015-0260] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED : The development of liver cell transplantation (LCT), considered a major biotechnological breakthrough, was intended to provide more accessible treatments for liver disease patients. By preserving the native recipient liver and decreasing hospitalization time, this innovative approach has progressively gained interest among clinicians. LCT initially targets inborn errors of liver metabolism, enabling the compensation of deficient metabolic functions for up to 18 months post-transplantation, supporting its use at least as a bridge to transplantation. The rigorous clinical development and widespread use of LCT depends strongly on controlled and consistent clinical trial data, which may help improve several critical factors, including the standardization of raw biological material and immunosuppression regimens. Substantial effort has also been made in defining and optimizing the most efficient cell population to be transplanted in the liver setting. Although isolated hepatocytes remain the best cell type, showing positive clinical results, their widespread use is hampered by their poor resistance to both cryopreservation and in vitro culture, as well as ever-more-significant donor shortages. Hence, there is considerable interest in developing more standardized and widely accessible cell medicinal products to improve engraftment permanency and post-cell transplantation metabolic effects. SIGNIFICANCE In this therapeutic approach to liver disease, new solutions are being designed and evaluated to bypass the documented limitations and move forward toward wide clinical use. Future developments also require a deep knowledge of regulatory framework to launch specific clinical trials that will allow clear assessment of cell therapy and help patients with significant unmet medical needs.
Collapse
Affiliation(s)
- Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain and Cliniques Universitaires St Luc, Brussels, Belgium
| | - Florence Defresne
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain and Cliniques Universitaires St Luc, Brussels, Belgium
| | - Etienne M Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain and Cliniques Universitaires St Luc, Brussels, Belgium
| |
Collapse
|
38
|
Cellular Barriers after Extravasation: Leukocyte Interactions with Polarized Epithelia in the Inflamed Tissue. Mediators Inflamm 2016; 2016:7650260. [PMID: 26941485 PMCID: PMC4749818 DOI: 10.1155/2016/7650260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
During the inflammatory response, immune cells egress from the circulation and follow a chemotactic and haptotactic gradient within the tissue, interacting with matrix components in the stroma and with parenchymal cells, which guide them towards the sites of inflammation. Polarized epithelial cells compartmentalize tissue cavities and are often exposed to inflammatory challenges such as toxics or infections in non-lymphoid tissues. Apicobasal polarity is critical to the specialized functions of these epithelia. Indeed, a common feature of epithelial dysfunction is the loss of polarity. Here we review evidence showing that apicobasal polarity regulates the inflammatory response: various polarized epithelia asymmetrically secrete chemotactic mediators and polarize adhesion receptors that dictate the route of leukocyte migration within the parenchyma. We also discuss recent findings showing that the loss of apicobasal polarity increases leukocyte adhesion to epithelial cells and the consequences that this could have for the inflammatory response towards damaged, infected or transformed epithelial cells.
Collapse
|
39
|
Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol 2015; 63:1023-37. [PMID: 26116792 PMCID: PMC4582071 DOI: 10.1016/j.jhep.2015.06.015] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023]
Abstract
Hepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery. The process of hepatocyte polarization requires energy and, if abnormal, may result in severe liver disease. A number of inherited disorders affecting tight junction and intracellular trafficking proteins have been described and demonstrate clinical and pathophysiological features overlapping those of the genetic cholestatic liver diseases caused by defects in canalicular ABC transporters. Thus both structural and functional components contribute to the final hepatocyte polarity phenotype. Many acquired liver diseases target factors that determine hepatocyte polarity, such as junctional proteins. Hepatocyte depolarization frequently occurs but is rarely recognized because hematoxylin-eosin staining does not identify the bile canaliculus. However, the molecular mechanisms underlying these defects are not well understood. Here we aim to provide an update on the key factors determining hepatocyte polarity and how it is affected in inherited and acquired diseases.
Collapse
Affiliation(s)
- Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Institute of Child Health, London, UK; Great Ormond Street Hospital, London, UK.
| | - Irwin M Arias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| |
Collapse
|
40
|
Chen P, Güven S, Usta OB, Yarmush ML, Demirci U. Biotunable acoustic node assembly of organoids. Adv Healthc Mater 2015; 4:1937-43. [PMID: 26149464 PMCID: PMC4731612 DOI: 10.1002/adhm.201500279] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/21/2015] [Indexed: 11/06/2022]
Abstract
Bioengineering of 3D microtissues from cell spheroids is demonstrated by employing the vibration of acoustic standing waves and its hydrodynamic effect at the bottom of a liquid-carrier chamber. A large number of cell spheroids (>10(4) ) are assembled in seconds into a closely packed structure in a scaffold-free fashion under nodal pattern of the standing waves in a fluidic environment.
Collapse
Affiliation(s)
- Pu Chen
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford for Early Cancer Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304
| | - Sinan Güven
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford for Early Cancer Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304
| | - Osman Berk Usta
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA, 02114
| | - Martin L Yarmush
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA, 02114
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford for Early Cancer Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304
| |
Collapse
|